New perspectives of *Juglans regia* L. phytochemicals against *Candida* species

Natália Martins,1,2 Lillian Barros,1 Ana Maria Carvalho, Sónia Silva,2 Mariana Henriques,2 Isabel C.F.R. Ferreira1

1Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Portugal.
2IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Braga, Portugal.

Opportunistic fungal infections have deserved special relevance in the last decades, presenting itself, a serious problem in terms of public health. Despite *Candida albicans* was considered the main agent responsible for those infections, other non-*albicans* *Candida* species have also been described in the last years [1-3]. Most of the species are susceptible to antimicrobial drugs, but recently it has been observed a growing number of microorganisms with drug resistance. Therefore, the discover/use of alternative therapies is crucial [4].

*Juglans regia* L. (walnut) leaves are commonly used in traditional medicine as antiseptic, antimicrobial and anti-inflammatory [5]; those benefits could be related with its richness in phenolic compounds [6]. In the present work, the antifungal potential of the hydroalcoholic extract prepared from walnut leaves was evaluated against a total of nineteen *Candida* strains (from the species: *C.albicans, C.glabrata, C.parapsilosis* and *C.tropicalis*), using the disc diffusion halo assay.

All the tested strains were sensible to the plant extract. The obtained values of the inhibitory zones ranged between 0.9-1.4 cm, being the halo maintained after 48h. The observed antifungal activity is certainly related to the phenolic compounds previously determined in the extract [6]: five phenolic acid derivatives—caffeoylquinic and *p*-coumaroylquinic acid derivatives, two dimers and one trimer of procyanidins, twelve flavonols- quercetin, myricetin and kaempferol derivatives, and five taxifolin *O*-pentoside isomers; 3-*O*-caffeoylquinic acids and quercetin *O*-pentoside were the main phenolic compounds. Further studies are necessaries in order to elucidate the most active compounds and the specific role of each one.

Acknowledgments: The authors are grateful to FCT (Portugal) for financial support to CIMO (PEst-OE/AGUI0690/2011), N. Martins (SFRH/BD/87658/2012), L. Barros (“Compromisso para a Ciência 2008) and S. Silva (NORTE-07-0124-FEDER-000027; QREN) contracts.

References: