A new highly antimicrobial bio-inspired protein-based polymer designed for medical devices

André da Costa 1, Raul Machado 1, Artur Ribeiro 1, Tony Collins 1, Thiagarajan Viruthachalam 2, María Teresa Neves-Petersen 3,4, José Carlos Rodríguez-Cabello 5, Andrea C. Gomes 1, Margarida Casal 1

1 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
2 School of Chemistry, Bharathidasan University, Tiruchirappalli – 620 024, India
3 BioPhotonics Group, Nanomedicine Department, International Iberian Nanotechnology Laboratory (INL), P.4715-310 Braga, Portugal
4 Faculty of Medicine, Aalborg University, DK-9220 Aalborg, Denmark
5 Bioforge (Group for Advanced Materials and Nanobiotechnology), Centro I-D, Universidad de Valladolid, Valladolid, Spain
6 Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-47011 Valladolid, Spain

Increasing antimicrobial resistant and the lack of new antibiotics poses a major public threat. Furthermore, conventional medical devices fail to microbial colonization resulting in healthcare associated infections. These threats have triggered the search for new antimicrobial materials that have the ability to kill microorganisms in a general way and, especially considering those directed for medical devices, without harming human tissues. With advances in synthetic biology approaches, it is now possible to reengineer novel functionalities and structures of protein-based materials, taking advantage of their extreme versatility and applicability. By combining the antimicrobial activity of naturally occurring antimicrobial peptides (AMPs) with recombinant protein-based polymers (rPBPs), it is possible to create novel materials that can be explored for the development of advanced antimicrobial medical devices.

In this work, we have constructed a novel antimicrobial rBP by combining a synthetic cationic AMP fused in frame with an elastin-like recombinamer consisting of 200 repeats of the structural unit VPAVG, for improved biocompatibility and processing. The polymer construction, named CM-A200, was biologically produced in Escherichia coli and purified by exploring the thermoresponsiveness property of poly-VPAVG. The antimicrobial activity of the hybrid polymer CM-A200 was studied in the form of free standing films produced by solvent casting, especially thinking in downstream processing for application as thin film coating of medical devices. The CM-A200 films showed high growth inhibition against a wide range of bacterial species, both Gram positive and negative as well as against fungi. The antimicrobial activity proved to be time-dependent, by direct contact and, in the case of A. nidaeana, was inclusively inhibitor of spore germination. Remarkably, in some cases, almost 100% of cell death was detected after 30 minutes of contact with the cast films. Furthermore, we demonstrate that cell death is a consequence of irreversible cell damaging and disruption. Finally, we describe the development of an ex vivo assay using pig skin, that avoids the use of glued components that may interfere with antimicrobial activity. Ex vivo assays in pig skin sustained the high antimicrobial activity of this material, whereas no cytotoxic effect was found for a normal human fibroblast cell line. These results significantly support the potential of this genetically engineered polymer for application as antimicrobial medical devices or coatings, representing a major breakthrough in the development of protein-based materials and demonstrates the high versatility of these materials.

Acknowledgments: This work was supported by FEDER through POFC – COMPETE and by Portuguese funds from FCT through the project PEst-OE/BEI/143458/2014. By the Spanish Minister of Economy and Competitiveness (MA2012-38403-C02-01) and Junta de Castilla y León-JCydl (VA12A12-2 and VA15A12-2). Spain. AC and RM, acknowledge FCT for SFRH/BPD/75882/2011 and SFRH/BPD/86470/2012 grants, respectively. TC is thankful to the FCT for its support through Programa Ciência 2008.

Keywords: elastin-like recombinamers; antimicrobial; polydopamine; cast; antimicrobial peptides; ex vivo

An alginate lyase functional coating catalysis-independent to prevent P. aeruginosa adhesion

D. Alves1, T. Silkeika2, P. Messersmith1 and M. O. Pereira1

1 Centre of Biological Engineering, LIBRO – Laboratório de Investigação in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
2 Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA

Bacterial colonisation of indwelling devices remains a serious threat in clinical field as it is commonly associated to persistent infections, called biomaterial-associated infections (BAI). Pseudomonas aeruginosa is the most common gram-negative bacillus associated with BAI and its emergence as a nosocomial pathogen is a growing concern. This opportunistic pathogen can produce a capsule-like polysaccharide called alginate that contributes to mucoid biofilm structure and persistent nature of infections. Given alginate’s contribution to bacterial virulence, it has long been considered as a promising target for interventional therapies. Alginate lyase, an enzyme able to degrade alginate, has been shown to detach mucoid biofilms from abiotic surfaces and increase their antibiotic susceptibility.

In this work, a new approach for alginate lyase was explored. Instead of using this enzyme for the treatment of pre-established mucoid biofilms, the ability of alginate lyase to prevent P. aeruginosa adhesion to a surface was investigated. For that purpose, a polydopamine (pDA) dip-coating strategy was applied for functionalization of biomaterials with alginate lyase. Polycarbonates (PC) substrates were immersed in an alkaline solution of dopamine to form a thin layer of pDA and then transferred into a solution of alginate lyase. Surface characterization was performed with XPS, contact angle measurement and SEM. Two reference strains of P. aeruginosa, a mucoid strain (ATCC 39324) and a non-mucoid (27853) as well as four clinical isolates, were used to assess the anti-adhesive properties of the functional coatings.

Surface characterization confirmed the successful and efficient grafting of alginate lyase onto pDA-coated PC substrates. Untreated PC substrates allowed the adhesion of both reference strains and most of bacteria were found alive on these surfaces. Polydopamine-coated substrates had no significant effect on bacterial adhesion compared to the unmodified substrates. Substrates functionalized with alginate lyase exhibited anti-adhesive properties, causing a significant inhibition of the mucoid strain adhesion. Interestingly, substrates immobilized with this enzyme also proved to inhibit the adhesion of the non-mucoid strain and pDA-coated PC substrates immobilized with heat-inactivated enzyme also prevented the attachment of both bacterial strains. These results suggested that alginate lyase immobilized on pDA-coated substrates was able to impair P. aeruginosa adhesion regardless its mucoid phenotype and therefore it could be applied in a different context than cystic fibrosis. For instance, this enzyme could be used to develop functional coatings able to prevent P. aeruginosa infections associated to biomaterials. To confirm this hypothesis, the attachment of 4 clinical strains of P. aeruginosa, isolated from peritoneal dialysis catheters, on alginate lyase functional coatings were also evaluated. Alginate lyase immobilized on the substrates impaired the attachment of the clinical strains with the exception of one as its adhesion to the unmodified PC was already low.

In this work, the versatile chemistry of polydopamine was successfully exploited to functionalize biomaterial surfaces with alginate lyase to impart them with anti-adhesive properties. The antibacterial performance of these alginate functional coatings was catalysis-independent which highlights the importance of further studies to better understand its mechanism of action against P. aeruginosa strains.

Acknowledgements: The authors thank the project FCT PTDC/SAU-SAP/113196/2009/FCOMP-01-0124-FEDER-016012, the Strategic Project PEst-OE/EBI/UI4050/2014, the Project “BioHealth - Biotechnology and Bioengineering approaches to improve health quality”, Ref. NORTE-07-0124-FEDER-006027, co-funded by the Programa Operacional Regional do Norte (ON.2 – O Novo Norte), QREN, FEDER, the project “RECI/BBB-EBI/0179/2012 - Consolidating Research Expertise and Resources on Cellular and Molecular Biotechnology at CEIB-BBB”, Ref. FCOMP-01-0124-FEDER-027462, FEDER. The authors also acknowledge Diana Alves PhD Grant SFRH/BPD/78065/2011. Authors also acknowledge Dr. Margarida Martins for kindly provided the isolated strains which were obtained under the scope of the project “Insights into peritoneal dialysis catheter associated biofilms” funded from the Portuguese Society of Nephrology to Dr. AnaBela Rodrigues.

Keywords: alginate lyase; antibacterial coating, Pseudomonas aeruginosa; biomaterial-associated infections.