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Abstract 
 Enabling a mobile robot to achieve its self-localization in real-time 
with vision only, demands for new approaches and new computer 
algorithms. An approach for giving game field self-localization to a Middle 
Size RoboCup Soccer robot can be based in two steps: finding the game 
field lines and evaluating the obtained coordinates calculating the robot 
coordinates. This paper describes a method to achieve the first step. This 
approach is based on an algorithm that combines three major features: edge 
detection, selection and collinearity search. The final target is to retrieve 
the line segments (defined by its two limits coordinates), which identify the 
game field boundary lines. These line coordinates will be used on the next 
step that is the process to calculate the robot position in the game field. 
Since this first step is to find lines in real time, it is an alternative method to 
the Hough Transform Method. 
 
1. Introduction 
 Computer vision in Middle-Size RoboCup Soccer is greatly 
responsible for success in this competition. Apart from other technologies 
that some teams use to achieve robot location/orientation (a description is 
made by [5], most of them are based on computer vision and recognition. 
But robot orientation does not mean robot localization. MINHO team [6] 
uses cameras for giving robot orientation even though the robots do not 
know where they are on the field. They simply follow a purpose of making 



a red ball to be aligned with a goal (blue or yellow) and kick the ball, 
avoiding collisions with any obstacles (black or white entities on the field). 
Since the robots do not know their location on the field, it is difficult to 
play in cooperation with the rest of the team. Moving around the game field 
is based only on virtual colour sensors detection that permits also avoiding 
obstacles such as the other robots or the game field walls. Recognizing the 
game field limits may be the first step for self-localization acquisition. 
 Using cameras and grabbing images for post-processing, requires 
most of the CPU processing time for this task. The need for using fast 
algorithms with minimum processing time makes software developers to 
create/develop new ideas for implementing known methods or creating new 
ones. One method that achieves the proposed objective, is based on the 
Generalization of Hough Transform by Ballard [1]. This is the most used in 
line detection, but in a real time environment this implementation could 
compromise all system performance [2]. 
 Indeed, there are lots of tasks that the processor needs to do like 
monitor the IR sensors, instruct the robot actions, communicate with the 
other robots, grabbing images, process strategy program, watching the 
batteries charge, and so on. In each machine cycle, most of these tasks must 
be fulfilled. The remaining processing time (very little) is for image 
processing. Depending on the type of robot construction and computer 
platform, this time may not be long enough to perform all the tasks. That is 
the reason why the image processing algorithms must be carefully designed 
and implemented. 
 For this work the image size used for each frame is 320x200 (256 
grey scale) pixels. The image size choice is of extreme importance because 
too much resolution brings down the algorithm performance and too low 
resolution may raise losses of information. The image size used for the 
captured images proved good results output. 
 The main reason to use grey scale rather than colours was that, to 
find segments or lines in an image, it is only a matter of image transitions 
in contrast. There is no advantage in using colours since the grey scale can 
give those transitions too with less computer effort. In this way, it is better 
to avoid the use of colours for this purpose. Even though, grey scale could 
give sharp transitions, making the edge detection more complex. 
 The picture below is the original image used all over this paper to 
describe the work, and consists of a scene of a robotic football game. 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

Fig. 1 - The original 320x200 grey scale picture. 
 
2. Edge and point detection 
 Finding edges in the picture is the first step for using this method. 
Convolution masks [3] are the best way to explain how this was achieved. 
These masks give the image contour; unfortunately the calculations have to 
be carried out on the whole image. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 – Resulting image after applying the 4x4 convolution mask on the right. 
  
 This task is very time consuming due to the pixel-by-pixel mask 
calculation. The algorithm performance can be greatly improved by 
calculating only the points needed. The idea is to draw virtual lines 
(referred to as detection lines onwards), beginning at a central point on the 
[x] axis and with an extreme [y] axis, as described in fig. 3. 
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Fig. 3 – Original picture with the detection lines. 
 
 When each line is drawn, the grey value of the current pixel is 
subtracted from the grey value of the previous pixel. If the result is greater 
than a trigger value, then it is considered a transition on the image, and so, 
it means that a relative point was found. 
 The trigger value must be user adjustable because it depends on the 
environment light intensity at the game field. For this example, a value of 
50 was used with good results, as shown on the next figure. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 – Resulting points after the detection lines process 
 
3. Point selection 
 The resulting image after applying the detection lines has some 
redundant points. Several points detected from the same feature are not to 
be selected. These points may be originated by noise on the image or by 
sudden variances in the features captured. This amount of points could 
compromise the reliability and performance on the next step. Therefore, a 
point selection must be carried out. To filter these points, a selection grid 



is used which acts like a filter for these disposable points. The grid size 
must be user adjustable and it means that in the 320x200 image size, with a 
20 pixels size cell, the result would be a 16x10 grid. The grid cells are 
composed by Boolean values and cleared each time a new image is 
processed. The tests showed good results with a 20 pixels size cells for this 
application. 
 The selection grid is filled during the process of point detection with 
the detection lines. When a new point is found, the [x, y] coordinates are 
divided by the size of a cell. The values returned match with one of the 
cells in the grid. For example, if a point coordinates are [120,80] with a 20 
pixels size cells, the matching cell will be the cell [6,8]. If the Boolean cell 
value is false, then this value is toggled and the point is stored in a vector 
with the original [x, y] coordinates and the angle from its detection line. If 
another point matches the same cell, it will find a Boolean cell value of true 
and it will be ignored. At the end, the resulting vector will have just one 
point from each matched cell. The next figure shows the resulting points 
after applying this filter. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 – Selection grid on the left and the resulting filtered points on the right. 
 
 It is well perceptible a lower density of points that result from this 
detection, without great loss of information. After finishing the points 
gathering, the resulting vector needs to be sorted. The sort must be made 
first on the [y] coordinate and then on the [x] coordinate. 
 
 The following figure describes the whole process. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 – Edge detection and point selection description. 
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4. Finding collinear points 
 To find the collinear points from the resulting vector, the algorithm 
makes a search for all the combination of each three points, with different 
angles. Points with the same angle very likely belong to the same virtual 
detection line, and therefore they are naturally collinear. Even though this 
could really happen, it is preferable to ignore the resulting segment, since 
the robot is moving constantly and in the next frame, it will most certainly 
detect the correct line. 
 For each set of three valid points found, a test for collinearity is 
made. This test is based on the calculus of the following 3x3 determinant: 
 
 x1 y1 1 
 x2 y2 1 
 x3 y3 1 
 
where (x1, y1), (x2, y2) and (x3, y3) are the coordinates obtained from the 
resulting vector of the three points for the collinearity test. Using the Sarrus 
rule [4], the value is given by: 
 

d= (x1*y2)+(x2*y3)+(x3*y1)-(x2*y1)-(x3*y2)-(x1*y3) 
 
 If the matrix determinant (d) is 0 (zero), the three points are 
collinear. This is the ideal case, but not always it happens and a tolerance 
is accepted. If one of the three points is slightly deviated from the line 
where the points are settled, the tolerance considers its deviation. The 
tolerance used in these tests (and proved good results) was 5. 
 After a positive test of collinearity, the two extremes of the three 
coordinates are stored in the final vector, because since the points in the 
resulting vector are sorted, the first and the third point are the most distant 
ones. They represent one segment that was found. 
 
 The final vector has three fields for storing the segments: 
 

1- Start point 
2- End point 
3- Counter 

 
 The counter field gives the number of collinearity values found for 
that segment. In other words, when a segment is ready to be stored, it has to 
be checked whether it is not a part of another segment already stored. This 
is carried out with the first point of the new segment. If it is already in the 
vector, it means that the third point is a more distant point than the second 
stored in the final vector. In this case it is only replaced the second point 



and incremented the counter. This means that the segment is bigger than 
the one stored before. This is only possible because in this stage the 
resulting vector is sorted and this searching process for collinear point 
starts from the beginning of the vector. If the first point does not belong to 
the final vector, the first and the third points are inserted in the vector and 
the counter is reset to 1 (one) if they are not collinear with the other points 
already there. This is a test that needs to be carried out point-by-point. 
 The following picture describes the steps to implement this 
procedure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 – A demonstration example of the algorithm. 
 

Resulting vector
(after sorting)

x y angle 100   41 145 42 1
  88   45   84 52 1

Final vector

x1 y1 counterx2 y2

  ...   ... ...
 88  45 115
 85  51 135
 84  52 145
 12  53 135
 90  53 115
  ...   ...  ...
172 169   85

IF [B(1)<>B(2)] AND [B(2)<>B(3)] AND [B(1)<>B(3)] THEN
   d       determinant(A(1),A(2),A(3))

IF d < tolerance THEN
IF final_vector = empty THEN

insert_points(A(1),A(3))
ELSE

IF exists_in_final_vector(A(1)) THEN
replace_x2y2_by(A(3))
increment(counter)

Pseudocode

A(i) B(i)

d < tolerance



 After seeking the collinearity points, the resulting vector could be 
demonstrated in the following figure. 
 
 
 
 
 
 
 
 
 
 
Fig. 8 – Detected segments after processing the algorithm 
 
 In this case, the counter could give the major segments, since this 
value means the number of small segments that comprises the final 
segment. The greater the value, the greater the segment. This means that 
the field limits or the game field lines are the segments with the greatest 
counter. The next step would be the translation of these segment 
coordinates to robot localization. This will be discussed in future papers. 
 
Conclusion 
 This method proved to be promising with good results, and demands 
less effort in calculation and memory consumption from the computer. All 
the calculi were optimised to the maximum to minimize or even avoid the 
use of trigonometric functions and other kind of time consuming 
mathematical functions. These functions take from the processor too many 
machine clocks delaying the whole process. Using an Intel® x86 platform 
with a Pentium II at 350MHz, a Brooktree® BT848 PCI frame grabber 
board and MS-DOS® operating system, with the development environment 
in C and Assembly, the final achieved performance was 12 images/sec 
processed. This could be significantly improved with better processor 
clocks, but could also mean higher power consumption. There are always 
several commitments that the developer must be careful for and this 
method could help in some decision taking. 
 Processing captured frames in a real time basis is a task that has to be 
accomplished as quickly as possible because time is critical. Speeding the 
process or having more time for the process described, means increasing 
the quality of the output generated. Since this paper only describes the first 
step for achieving robot localization, this output must be passed to the next 
step with substantial information and although there must be enough spare 
time to process the next localization tasks. 
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