
Real time game field limits recognition for
robot self-localization using collinearity in

Middle-Size RoboCup Soccer

Fernando Ribeiro (1)
Gil Lopes (2)

 (1) Department of Industrial Electronics, Guimarães, University of Minho
 (2) Department of Computer Sciences, Porto, Portucalense University

Keywords: Mobile Robotics, RoboCup; self-localization; collinearity; edge
detection.

Abstract
 Enabling a mobile robot to achieve its self-localization in real-time
with vision only, demands for new approaches and new computer
algorithms. An approach for giving game field self-localization to a Middle
Size RoboCup Soccer robot can be based in two steps: finding the game
field lines and evaluating the obtained coordinates calculating the robot
coordinates. This paper describes a method to achieve the first step. This
approach is based on an algorithm that combines three major features: edge
detection, selection and collinearity search. The final target is to retrieve
the line segments (defined by its two limits coordinates), which identify the
game field boundary lines. These line coordinates will be used on the next
step that is the process to calculate the robot position in the game field.
Since this first step is to find lines in real time, it is an alternative method to
the Hough Transform Method.

1. Introduction
 Computer vision in Middle-Size RoboCup Soccer is greatly
responsible for success in this competition. Apart from other technologies
that some teams use to achieve robot location/orientation (a description is
made by [5], most of them are based on computer vision and recognition.
But robot orientation does not mean robot localization. MINHO team [6]
uses cameras for giving robot orientation even though the robots do not
know where they are on the field. They simply follow a purpose of making

a red ball to be aligned with a goal (blue or yellow) and kick the ball,
avoiding collisions with any obstacles (black or white entities on the field).
Since the robots do not know their location on the field, it is difficult to
play in cooperation with the rest of the team. Moving around the game field
is based only on virtual colour sensors detection that permits also avoiding
obstacles such as the other robots or the game field walls. Recognizing the
game field limits may be the first step for self-localization acquisition.
 Using cameras and grabbing images for post-processing, requires
most of the CPU processing time for this task. The need for using fast
algorithms with minimum processing time makes software developers to
create/develop new ideas for implementing known methods or creating new
ones. One method that achieves the proposed objective, is based on the
Generalization of Hough Transform by Ballard [1]. This is the most used in
line detection, but in a real time environment this implementation could
compromise all system performance [2].
 Indeed, there are lots of tasks that the processor needs to do like
monitor the IR sensors, instruct the robot actions, communicate with the
other robots, grabbing images, process strategy program, watching the
batteries charge, and so on. In each machine cycle, most of these tasks must
be fulfilled. The remaining processing time (very little) is for image
processing. Depending on the type of robot construction and computer
platform, this time may not be long enough to perform all the tasks. That is
the reason why the image processing algorithms must be carefully designed
and implemented.
 For this work the image size used for each frame is 320x200 (256
grey scale) pixels. The image size choice is of extreme importance because
too much resolution brings down the algorithm performance and too low
resolution may raise losses of information. The image size used for the
captured images proved good results output.
 The main reason to use grey scale rather than colours was that, to
find segments or lines in an image, it is only a matter of image transitions
in contrast. There is no advantage in using colours since the grey scale can
give those transitions too with less computer effort. In this way, it is better
to avoid the use of colours for this purpose. Even though, grey scale could
give sharp transitions, making the edge detection more complex.
 The picture below is the original image used all over this paper to
describe the work, and consists of a scene of a robotic football game.

Fig. 1 - The original 320x200 grey scale picture.

2. Edge and point detection
 Finding edges in the picture is the first step for using this method.
Convolution masks [3] are the best way to explain how this was achieved.
These masks give the image contour; unfortunately the calculations have to
be carried out on the whole image.

Fig. 2 – Resulting image after applying the 4x4 convolution mask on the right.

 This task is very time consuming due to the pixel-by-pixel mask
calculation. The algorithm performance can be greatly improved by
calculating only the points needed. The idea is to draw virtual lines
(referred to as detection lines onwards), beginning at a central point on the
[x] axis and with an extreme [y] axis, as described in fig. 3.

1 0 0 1

0 -1 -1 0

0 -1 -1 0

1 0 0 1

Fig. 3 – Original picture with the detection lines.

 When each line is drawn, the grey value of the current pixel is
subtracted from the grey value of the previous pixel. If the result is greater
than a trigger value, then it is considered a transition on the image, and so,
it means that a relative point was found.
 The trigger value must be user adjustable because it depends on the
environment light intensity at the game field. For this example, a value of
50 was used with good results, as shown on the next figure.

Fig. 4 – Resulting points after the detection lines process

3. Point selection
 The resulting image after applying the detection lines has some
redundant points. Several points detected from the same feature are not to
be selected. These points may be originated by noise on the image or by
sudden variances in the features captured. This amount of points could
compromise the reliability and performance on the next step. Therefore, a
point selection must be carried out. To filter these points, a selection grid

is used which acts like a filter for these disposable points. The grid size
must be user adjustable and it means that in the 320x200 image size, with a
20 pixels size cell, the result would be a 16x10 grid. The grid cells are
composed by Boolean values and cleared each time a new image is
processed. The tests showed good results with a 20 pixels size cells for this
application.
 The selection grid is filled during the process of point detection with
the detection lines. When a new point is found, the [x, y] coordinates are
divided by the size of a cell. The values returned match with one of the
cells in the grid. For example, if a point coordinates are [120,80] with a 20
pixels size cells, the matching cell will be the cell [6,8]. If the Boolean cell
value is false, then this value is toggled and the point is stored in a vector
with the original [x, y] coordinates and the angle from its detection line. If
another point matches the same cell, it will find a Boolean cell value of true
and it will be ignored. At the end, the resulting vector will have just one
point from each matched cell. The next figure shows the resulting points
after applying this filter.

Fig. 5 – Selection grid on the left and the resulting filtered points on the right.

 It is well perceptible a lower density of points that result from this
detection, without great loss of information. After finishing the points
gathering, the resulting vector needs to be sorted. The sort must be made
first on the [y] coordinate and then on the [x] coordinate.

 The following figure describes the whole process.

Fig. 6 – Edge detection and point selection description.

Resulting points before 'Selection'

Initial image
(part of grabbed picture)

Edge Detection and Point Selection

Considering

T1 A - B
T2 B - A
IF T1<0 THEN T1 0
IF T2<0 THEN T2 0
A T1 OR T2 (logic OR)
IF A < Trigger THEN A 0
IF A > Trigger THEN A MAX

Pseudocode

Final points upon grid filtering

Grey value A

Grey value B

Feature

Feature
transitions

Virtual
detection

lines

Selection
Grid

Resulting
points

Final (selected) points
- one point per grid cell -

T1, T2 - Temporary variables
A, B - Grey values from the image

4. Finding collinear points
 To find the collinear points from the resulting vector, the algorithm
makes a search for all the combination of each three points, with different
angles. Points with the same angle very likely belong to the same virtual
detection line, and therefore they are naturally collinear. Even though this
could really happen, it is preferable to ignore the resulting segment, since
the robot is moving constantly and in the next frame, it will most certainly
detect the correct line.
 For each set of three valid points found, a test for collinearity is
made. This test is based on the calculus of the following 3x3 determinant:

 x1 y1 1
 x2 y2 1
 x3 y3 1

where (x1, y1), (x2, y2) and (x3, y3) are the coordinates obtained from the
resulting vector of the three points for the collinearity test. Using the Sarrus
rule [4], the value is given by:

d= (x1*y2)+(x2*y3)+(x3*y1)-(x2*y1)-(x3*y2)-(x1*y3)

 If the matrix determinant (d) is 0 (zero), the three points are
collinear. This is the ideal case, but not always it happens and a tolerance
is accepted. If one of the three points is slightly deviated from the line
where the points are settled, the tolerance considers its deviation. The
tolerance used in these tests (and proved good results) was 5.
 After a positive test of collinearity, the two extremes of the three
coordinates are stored in the final vector, because since the points in the
resulting vector are sorted, the first and the third point are the most distant
ones. They represent one segment that was found.

 The final vector has three fields for storing the segments:

1- Start point
2- End point
3- Counter

 The counter field gives the number of collinearity values found for
that segment. In other words, when a segment is ready to be stored, it has to
be checked whether it is not a part of another segment already stored. This
is carried out with the first point of the new segment. If it is already in the
vector, it means that the third point is a more distant point than the second
stored in the final vector. In this case it is only replaced the second point

and incremented the counter. This means that the segment is bigger than
the one stored before. This is only possible because in this stage the
resulting vector is sorted and this searching process for collinear point
starts from the beginning of the vector. If the first point does not belong to
the final vector, the first and the third points are inserted in the vector and
the counter is reset to 1 (one) if they are not collinear with the other points
already there. This is a test that needs to be carried out point-by-point.
 The following picture describes the steps to implement this
procedure.

Fig. 7 – A demonstration example of the algorithm.

Resulting vector
(after sorting)

x y angle 100 41 145 42 1
 88 45 84 52 1

Final vector

x1 y1 counterx2 y2

 88 45 115
 85 51 135
 84 52 145
 12 53 135
 90 53 115

172 169 85

IF [B(1)<>B(2)] AND [B(2)<>B(3)] AND [B(1)<>B(3)] THEN
 d determinant(A(1),A(2),A(3))

IF d < tolerance THEN
IF final_vector = empty THEN

insert_points(A(1),A(3))
ELSE

IF exists_in_final_vector(A(1)) THEN
replace_x2y2_by(A(3))
increment(counter)

Pseudocode

A(i) B(i)

d < tolerance

 After seeking the collinearity points, the resulting vector could be
demonstrated in the following figure.

Fig. 8 – Detected segments after processing the algorithm

 In this case, the counter could give the major segments, since this
value means the number of small segments that comprises the final
segment. The greater the value, the greater the segment. This means that
the field limits or the game field lines are the segments with the greatest
counter. The next step would be the translation of these segment
coordinates to robot localization. This will be discussed in future papers.

Conclusion
 This method proved to be promising with good results, and demands
less effort in calculation and memory consumption from the computer. All
the calculi were optimised to the maximum to minimize or even avoid the
use of trigonometric functions and other kind of time consuming
mathematical functions. These functions take from the processor too many
machine clocks delaying the whole process. Using an Intel® x86 platform
with a Pentium II at 350MHz, a Brooktree® BT848 PCI frame grabber
board and MS-DOS® operating system, with the development environment
in C and Assembly, the final achieved performance was 12 images/sec
processed. This could be significantly improved with better processor
clocks, but could also mean higher power consumption. There are always
several commitments that the developer must be careful for and this
method could help in some decision taking.
 Processing captured frames in a real time basis is a task that has to be
accomplished as quickly as possible because time is critical. Speeding the
process or having more time for the process described, means increasing
the quality of the output generated. Since this paper only describes the first
step for achieving robot localization, this output must be passed to the next
step with substantial information and although there must be enough spare
time to process the next localization tasks.

References
[1] D. H. Ballard, "Generalizing the Hough Transform to Detect Arbitrary
Shapes," Pattern Recognition, Vol. 13, No. 2, pp. 111-122, 1981.
[2] Markus Ulrich, C. S., Albert Baumgartner, Heirich Ebner (1998).-
“Real-Time Object Recognition in Digital Images for Industrial
Applications.” - http://wwwradig.informatik.tu-
muenchen.de/papers/2001/Optical-3D-2001-Ulrich-etal.abstract.html
[3] Young, D. (1993). - “CONVOLUTION.”: -
http://www.cogs.susx.ac.uk/users/davidy/teachvision/vision2.html
[4] Chambers, Trevor (2001) – “MATHEMATICS FOR COMPUTER
SCIENTISTS” – University of Warwick -
http://www.dcs.warwick.ac.uk/people/academic/Trevor.Chambers/sarrus.p
df
[5] Sérgio Monteiro, Fernando Ribeiro, Paulo Garrido, "Problems,
Solutions and Trends in Middle-Size Robot Soccer - A review",
Robotica'2001 - Festival Nacional de Robótica, 25-28 Abril 2001,
Guimarães, Portugal.
[6] Carlos Machado, Sérgio Sampaio, Bruno Martins e António Ribeiro,
“Image Processing Applied to a robotic Football Team”, Workshop on
EuRoboCup’2000, Amsterdão, Holanda, 28 Maio – 2 Junho, proceedings
em CD-Rom, Springer.

