Case report

Corneal cross-linking for *Acanthamoeba* keratitis in an orthokeratology patient after swimming in contaminated water

Ángeles Arance-Gil, Ángel Ramón Gutiérrez-Ortega, César Villa-Collar, Amelia Nieto-Bona, Daniela Lopes-Ferreira, José Manuel González-Méijome

Clinica Oftalmológica Novovisión, Paseo de la Castellana, Madrid, Spain
Universidad europea de Madrid, Spain
Universidad Complutense de Madrid, Spain
Clinical & Experimental Optometry Research Lab (CEORLab), Center of Physics, University of Minho, Braga, Portugal

A R T I C L E I N F O

Article history:
Received 28 June 2013
Received in revised form 29 October 2013
Accepted 20 November 2013

Keywords:
Acanthamoeba keratitis
CXL
Orthokeratology
Confocal microscopy
Amniotic membrane
Penetrating keratoplasty

A B S T R A C T

Purpose: To report a case of *Acanthamoeba* keratitis diagnosed using confocal microscopy in a patient corrected by orthokeratology and treated with corneal crosslinking (CXL) after failure to respond to medical treatment. **Methods:** After diagnosis, the patient was treated with several medications until CXL was applied during one 30-min session using ultraviolet A radiation and application of riboflavin. The clinical signs of the disease observed using slit-lamp biomicroscopy and confocal microscopy were evaluated and the visual acuity was measured during the course of the infection and treatment over a period of 30 months including 12 months of medical treatment, 9 months after cross-linking and amniotic membrane transplant and 9 months after penetrating keratoplasty and cataract extraction. **Results:** In this case, confocal microscopy facilitated early diagnosis of an *Acanthamoeba* infection even if other signs and symptoms might be confounding. CXL was more effective than aggressive medication against the microorganism. After CXL, the symptoms and the corneal appearance improved significantly but the ulcer did not heal completely. After amniotic membrane transplantation, the patient underwent penetrating keratoplasty (PK) with no rejection, and the visual function substantially improved over 9 months of follow-up. **Conclusions:** Swimming in contaminated water might represent a risk for orthokeratology patients. CXL was effective for treating *Acanthamoeba* keratitis in an orthokeratology patient to eliminate active and cystic forms of the microorganism. Confocal microscopy was useful to confirm the diagnosis in the presence of confounding clinical signs observed during a conventional slit-lamp examination. Both CXL and confocal microscopy are essential to the outcome of PK.

© 2013 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

1. **Introduction**

Acanthamoeba species (spp.), is a unicellular protozoa capable of forming amoeba cysts, are present in air, soil, and fresh water (baths, swimming pools, and stagnant water). In humans they are among the normal oral flora. They are resistant to many disinfecting agents, changes in temperature, and dry environments. The first case of an *Acanthamoeba* ocular infection was reported in 1974 [1]. Since then many cases have been reported, most of which were unilateral. Binocular cases also have been described. In non-contact lens wearers, infection traditionally has been associated with previous trauma and subsequent exposure to contaminated water or soil [2]. This infection is also commonly associated with contact lens wear, particularly disposable soft contact lenses [3,4]. *Acanthamoeba* has demonstrated to adhere to rigid, rigid gas permeable and soft contact lenses and it has been hypothesized as a potential risk for infection [5,6]. In the literature we can find *Acanthamoeba* infection associated also to rigid gas permeable lenses for orthokeratology [7] and also to hybrid lenses [8]. *Acanthamoeba* infection related with contact lens wear use to be associated with poor compliance or contact with contaminated water sources [9,10]. *Acanthamoeba* has been associated to one of the more recent contact lens related infections outbreaks in the USA [11], and continuous efforts are being done by care solutions manufacturers to increase the efficacy against this resistant microorganism [12–14].
The pathophysiology of Acanthamoeba infection includes severe corneal necrosis; establishing the diagnosis is usually difficult and results in delayed administration of appropriate treatment. The outcomes can range from partial loss of corneal transparency to corneal transplant or even enucleation. The differential diagnosis includes herpes simplex, fungal keratitis, or torpid evolution keratitis [15]. Early treatment is essential for appropriate management, and confocal microscopy is a powerful tool in this regard [15].

In 2003, Wollensak et al. [16] introduced corneal cross-linking (CXL), which consists of application of ultraviolet-A (UVA) radiation onto the cornea after epithelial debridement and irradiation with isomolar riboflavin solution at 0.1% at regular intervals to cross-link the corneal stroma and strengthen the corneal tissue. CXL is effective for stabilizing keratoconus and post-refractive surgery ectasia [17]. In vitro studies also have shown the bactericidal effect of UV radiation, which seems to be enhanced with riboflavin. The treatment is effective against Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, multiresistant P. aeruginosa, and drug-resistant Streptococcus pneumoniae [18]. More recently, the combined application of amphotericin B and riboflavin with UV radiation was effective against Candida albicans, Fusarium spp., and Aspergillus fumigatus [19].

2. Case report

A 34-year-old woman, who had been wearing corneal refractive therapy lenses for myopia correction for 3 years, presented with the complaints of tearing, burning, photophobia, and moderate pain of 4 days duration after having bathed in a swimming pool that was poorly maintained. The patient wore the current lenses for 9 months at the time of the event and was compliant with the care regime consisting of a multipurpose care solution for gas permeable lenses (Boston Simplus, Bausch & Lomb), a monthly protein removal (Progent, Menicon) and preservative free artificial tears to apply with lens insertion and immediately after waking every morning (Aquify, Ciba Vision). When she was informed that she might have an oculcular infection, the patient spontaneously reported that other users of the swimming pool she used to attend had recently developed ocular infections and other adverse events potentially related to the quality of the pool water.

Slit-lamp examination confirmed a mild inferior superficial keratitis. Considering the suspicion of an inflammatory adverse event, a topical antibiotic (Tobrex, Tobramycin, Alcon, Spain) (1 drop, 4 times/day) was prescribed, and cessation of contact lens wear was recommended until resolution of the infection. After 5 days of treatment, the pain and photophobia increased, and an examination revealed infiltration with a dendritic fluorescein pattern compatible with a herpetic infection. Acyclovir ointment (GloxsmithKline, Spain) five times daily was prescribed. The lack of improvement within the next 72 h and increasing pain led us to consider the possibility of Acanthamoeba keratitis. Suspect of polymicrobial infection was considered and epithelial specimens were collected for culture assays of bacteria, fungi, and Acanthamoeba. The solution in the contact lens case also was analyzed. The diagnosis of Acanthamoeba was confirmed by confocal microscopy (Fig. 1) based on the presence of subepithelial cysts [20,21]. All other laboratory cultures were negative.

Treatment consisting of topical chlorhexidine (0.02%), polymyxin, neomycin, gamicidin (Ophthalmowell, Farmasiera Manufacturing SL, Madrid, Spain), and polymyxin isethionate 0.1% (Brolene, Sanofi Aventis, Surrey, UK); the medications were instilled hourly during the day and every 4 h at night. Cyclopleptolate 0.1% (Colircusi Cicloplejico, Alcon, Barcelona, Spain) was prescribed every 8 h and systemic ketoconazole (Panfungol, Laboratorrios Dr. Esteve SA, Barcelona) 100 mg every 12 h.

After a few weeks of treatment, perineuritis was present, and the typical ring-shaped infiltrative characteristic of Acanthamoeba keratitis was observed at a later stage.

After 4 months of intensive treatment with no substantial improvement, propamidine isethionate 0.1% was replaced with hexamidine 0.1% (Desomede, Pharma Intenacional, Spain), and chlorhexidine 0.02% was replaced with polyhexamethylene biguanide (PHMB) from Moorfields Eye Hospital, London, UK.

After 1 year, the corneal conditions worsened with ulceration and recurrent uveitis, and CXL was performed. Topical anesthesia of the cornea was obtained using oxybuprocaine and tetracaine drops, alternating every 3 min for 9 min. During this time period, pilocarpine 2% eye drops were also instilled twice. After a lid speculum was inserted, a 0.0-mm diameter corneal abrasion was created. Riboff avin 0.1% drops were instilled every 3 min for 30 min. The riboff avin drops were prepared immediately before treatment by mixing aqueous riboff avin 0.5% solution with dextran T-500 20% solution. UVA radiation was applied at a rate of 3 mW/cm² with a CMB XLINKER (Ophthaltec, Barcelona, Spain), and riboflavin solution was applied every 5 min for 30 min. During irradiation, the cornea was moistened every 5 min with riboff avin 0.1% drops and oxybuprocaine drops every 10 min.

After CXL, the corneal appearance improved significantly and the symptoms resolved. The signs of inflammation also resolved almost immediately, although Acanthamoeba treatment was interrupted only 3 months later. Confocal microscopy at this stage showed no cysts in the area of analysis.

Six months after CXL, amniotic membrane implantation was performed to resolve the deficient corneal re-epithelization. Fig. 2 shows the ocular condition at different time points after CXL.

After this stage, corneal melting developed about 8 months after CXL and 20 months after first onset of the infection with resultent glaucoma and a triple procedure that included glaucoma and cataract surgeries and penetrating keratoplasty (PK) was scheduled. The surgeries were performed when no Acanthamoeba cysts were seen on confocal microscopy. The triple procedure was uneventful and the patient has had no signs of rejection of the implant or other complications. Fig. 3 shows the current appearance of the eye with recovery of the best-corrected visual acuity to 20/60.

![Fig. 1. Ulcer formation and follow-up after CXL treatment. Top left, the ulcer after CXL treatment; top right, the ulcer after CXL stained with sodium fluorescein; bottom left, progression of the ulcer after CXL covered with a therapeutic contact lens; bottom right, after an amniotic transplantation procedure. Images obtained at 10× (top right) and 12× magnification.](image-url)
3. Discussion

Fortunately, *Acanthamoeba* keratitis is rare, but clinicians must consider it in the differential diagnosis, particularly in patients who wear contact lenses and present with pain that is incompatible with inflammation and/or an epithelial defect. Suspects of non-compliance with care regimes, use of tap water to rinse contact lenses or exposure to potentially contaminated sources of water are relevant to suspect the presence of the infection. Swimming in lenses is considered a risk factor for *Acanthamoeba* eye infection [22]. Orthokeratology represents a different situation in which the lenses are not worn during the water exposure as the lenses are worn overnight. New techniques allow now an earlier identification of *Acanthamoeba* infection [23–25], but diagnosis is still difficult and most cases of *Acanthamoeba* keratitis are misdiagnosed initially as herpetic keratitis and less frequently as bacterial or fungal keratitis because the symptoms and sometimes the signs are non-specific [26]. Care should be taken with negative cultures for bacteria and fungi that do not improve with medical treatment. Confocal microscopy was useful to confirm the diagnosis considering that the *Acanthamoeba* culture is negative in most cases [20,24]. Early diagnosis and appropriate treatment are essential for a good outcome in these infections and physicians need to be aware of history of contact lens wear or other suspicious signs as dendritic keratitis [15]. In this case, despite the relatively early treatment (15 days after the first visit and about 20 days after the initial symptoms), the final outcome was unsatisfactory. Treatment included the drugs of choice for these cases (diamine and biguanide-derived drugs) neomycin to avoid induction of bacterial infection, and a cycloplegic agent to relieve pain due to iris spasms and prevent synechiae. Oral antifungal drugs 200 mg every 12 h also have been effective against amoeba [27].

Considering the possibility of the presence of propamidine-resistant *Acanthamoeba* strains, a change in medication also was considered in this case. PHMB has been effective against the cystic form of *Acanthamoeba* even at low concentrations [28,29]. Despite these considerations, the different medical strategies failed, so a conservative surgical solution was considered rather than a penetrating corneal transplant. In addition, penetrating keratoplasty was not possible while the infection was active. Additional suspects of polymicrobial infection were also considered at this point.

The use of UV light as an antimicrobial agent has been long recognized. However, recently the benefit of the combined application of UV light and riboflavin-A in CXL was found to be more effective than UV light alone against different strains of bacteria such as *S. epidermidis*, *S. aureus*, and *P. aeruginosa* [30]. The current report is not the first on the use of CXL against the collagenolytic activity of microorganisms such as *Acanthamoeba*. Moren et al. performed CXL to treat a case of presumed *Acanthamoeba* infection in a contact lens wearer with good wound healing and visual rehabilitation [31]. Conversely, Rama et al. were unsuccessful when performing CXL in a patient with keratoconus who developed corneal melting with a positive culture for *Acanthamoeba* [32]; corneal perforation developed 5 days after treatment. The effectiveness of CXL also may be limited by the depth of the treatment, which usually is limited to the anterior 300 μm. If the microorganisms penetrate below this level, the treatment might be unsuccessful. Other cases have been also recently described in the literature although none was related with orthokeratology lenses.

To the best of our knowledge, the current study is the first to report the use of CXL to treat an infection caused by corneal refractive therapy. The safety of orthokeratology has been questioned after several cases of microbial keratitis developed in children [7,33], and a review of the potential risks was published recently by the American Academy of Ophthalmology [34]. Nevertheless, most cases of infection reported until now presumably were associated with potentially risky practices such as poor contact lens
care systems. The current patient reported swimming daily and that, at the time of diagnosis, other swimmers in the same pool had developed ocular infections. The use of lenses in this environment has been recognized as a potential risk for ocular infection [22,35]. Despite orthokeratology lenses are not worn while swimming, Acanthamoeba keratitis should not be ruled out in these patients as the organisms might also be present on the eye when the lenses are wearing, and this might increase the risk of corneal attachment and infection as these lenses have been related with higher retention of other bacteria as P. aeruginosa [36]. Some studies have reported similar or higher adhesion of Acanthamoeba to gas permeable and soft contact lens materials [5,6]. Due to the close relationship between the cornea and orthokeratology lenses, this might be a potential risk [36]. Early diagnosis and aggressive treatment are the approaches in such cases. However, when the patient does not respond to treatment, other alternatives such as CXL might be considered. Confocal microscopy has been useful for diagnosis and for ensuring that the cornea is free of residual infection in the form of trophozoites or cysts before proceeding with penetrating keratoplasty.

In summary, the use of confocal microscopy was essential in the current case to establish the diagnosis and initiate an early specific treatment. The use of CXL, although it seems to be effective in stopping the progress of the infection, cannot always result in a successful definitive treatment. Furthermore, patients corrected with orthokeratology should be warned that under certain adverse conditions a contaminated swimming pool may pose a potential risk of severe adverse events.

References