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Abstract: The RMR system is still very much applied in rock mechanics engineering context. It is based on the evaluation of six 
weights to obtain a final rating. To obtain the final rating a considerable amount of information is needed concerning the rock mass 
which can be difficult to obtain in some projects or project stages at least with accuracy. In 2007 an alternative classification 
scheme based on the RMR, the Hierarchical Rock Mass Rating (HRMR) was presented. The main feature of this system was the 
adaptation to the level of knowledge existent about the rock mass to obtain the classification of the rock mass since it followed a 
decision tree approach. However, the HRMR was only valid for hard rock granites with low fracturing degrees. In this work, the 
database was enlarged with approximately 40% more cases considering other types of granite rock masses including weathered 
granites and based on this increased database the system was updated. Granite formations existent in the north of Portugal including 
Porto city are predominantly granites. Some years ago a light rail infrastructure was built in the city of Porto and surrounding 
municipalities which involved considerable challenges due to the high heterogeneity levels of the granite formations and the 
difficulties involved in their geomechanical characterization. In this work it is intended to provide also a contribution to improve 
the characterization of these formations with special emphasis to the weathered horizons. A specific subsystem applicable to the 
weathered formations was developed. The results of the validation of these systems are presented and show acceptable 
performances in identifying the correct class using less information than with the RMR system.  
Keywords: rock mass classification system, decision tree, weathered granite formations  
 
 

 

1  Introduction   

The RMR system[1] allows the classification of the 
rock masses into five different classes related to their 
geotechnical properties. For each class it is possible 
to obtain support needs, type and excavation 
sequence, a range for the geomechanical parameters, 
stand-up time, among other information. For the 
classification process, the values of the six weights - 
P1 to P6 - are needed in order to compute the RMR, 
which means that a great amount of geotechnical 
information has to be available and it can be difficult 
and/or expensive to obtain. All the classification 
process is deterministic, since the evaluation of the 
weight values to the final definition of the class. This 
can be a drawback since normally it is only possible 
to obtain approximate values of the weights or a 
possible range for them mainly in the preliminary 
stages of a project or when geological/geotechnical 
information is scarce. In this context, it was intended 
to develop an alternative classification scheme, based 
on the RMR that could overcome the mentioned 
difficulties. 

The first version of the Hierarchical Rock Mass 
Rating (HRMR) was firstly presented by[2] and it was 
developed using a database of 1222 cases of 
application of the RMR system in the scope of the 
construction of a large underground scheme called 
Venda Nova II. This scheme, built in the north of 
Portugal in a predominantly good quality granite rock 

mass, is almost fully composed by underground 
facilities, including caverns and several tunnels and 
shafts with total lengths of about 7.5 km and 750 m, 
respectively[3,2]. To develop the HRMR a decision 
tree algorithm was applied to the database. Decision 
trees are branching structures based on split nodes, 
that test a given feature, and leaves, which assign a 
class label. This structure adapts very well to the 
objectives of this classification problem. 

Hence, the HRMR is a classification system, with a 
decision tree configuration, which uses intervals for 
the weights of the RMR system to classify the rock 
mass. It is called hierarchical because it uses different 
levels of knowledge about the parameters and the 
classification accuracy depends on this knowledge 
level. The HRMR does not need the deterministic 
calculation of the RMR value to obtain a certain 
classification to the rock mass. It adapts to the level 
of knowledge about the parameters of the rock mass 
surpassing the deterministic definition of the 
classification weights used by this system and 
provides a probabilistically-based classification with 
a certain degree of accuracy. It was statistically 
validated using several performance measures. It is 
called hierarchical because it has four levels which 
provide a classification for the rock mass. Each level 
needs a different kind of knowledge about the rock 
mass, i.e. the deeper the knowledge the higher the 
classification accuracy. 
The main limitations of the first version of the 
HRMR were related to the original database. In 



particular, this database was only composed by hard 
granite rocks with low fracturing degrees. In this 
work, the database was enlarged with 529 new cases 
(1751 total) and the HRMR system updated. The new 
cases are applications of the RMR system to granite 
rock masses gathered from different sources, namely 
the underground work of Bemposta II, also a 
hydroelectric scheme built in the North of Portugal in 
the international part of Douro river[4], and the 
already cited case of Metro of Porto. This new 
version of the system considers a broader range of 
conditions of rock masses including some cases of 
weathered granites. Also a subsystem considering 
only the cases of weathered granite rocks from Metro 
of Porto was developed. 

2  Granite formations from metro of Porto 

The rock mass formations existing in the North of 
Portugal are predominantly granites. The most 
common minerals are quartz, feldspars and 
plagioclases, containing as major minerals micas 
(biotite and muscovite). These granite rock masses 

are characterized by high heterogeneity, which has 
significant implications in the design and 
characterization. Moreover, they have often very 
complex structures which provide a unique 
mechanical behavior and increased difficulties in the 
characterization process. In these granite formations 
there is a gradation from unaltered and sound rock to 
weathered rocks and stiff soils. Despite this typical 
gradation, frequently appear regions with stiff 
deformability materials completely separate from the 
global matrix. 

Metro of Porto is a major light rail infrastructure 
built in the city of Porto and surrounding 
municipalities. In Porto’s downtown, classified by 
UNESCO as World Heritage, the metro was built 
underground. The rock mass involved by 
metropolitan region of Porto city is in general a 
granite formation. A geomechanical classification was 
proposed for the granite formations adopting 7 groups, 
with the following design values presented at Tables 
1 and 2[5]. 
 

 

Table 1  Design geomechanical parameters for groups G1, G2, G3 and G4 

Geomechanical Groups UCS (MPa) γ (kN/m3) mb s E (GPa) 

G1 90-150 25-27 7,45 6,9E-2 35 

G2 30-90 25-27 3,2 7,5E-3 10 

G3 10-35 23-25 0,98 7,5E-4 1,5 

G4 1-15 22-24 0,67 0 0,5 

 
 

Table 2  Design geomechanical parameters for groups G5, G6, and G7 

Geomechanical Groups γ (kN/m3) c’ (MPa) φ' (º) E (GPa) 

G5  19-21  0,03-0,05  34-36  0,15  

G6  18-20  0,01  32  0,03-0,05  

G7  18-20  0  28  0,02-0,03  

G5  19-21  0,03-0,05  34-36  0,15  

 
 
 

From a technical point of view, the most 
challenging problems were related with the unique 
heterogeneous characteristics of the granite rock mass 
due to weathering. The thickness of the weathered 
parts varies very quickly from several meters to zero. 
Weathered material, either transported or in situ, also 
occurs in discontinuities. A particularly striking 
feature is that, due to the erratic weathering of the 
granite, weathered zones of considerable size could 
be found under zones of sound granite[6]. A typical 
situation is Heroismo station where weathered granite 
with floating cores of granite occurs under a surficial 
part of a sound granitic rock mass (Fig. 1), the first 
underground station to be built. This station is located 
between the Campanhã and the Campo 24 de Agosto 
stations, which are inserted in the C line of Metro do 
Porto[7]. 

Another important station is the Bolhão station. In 

Fig. 2 is presented a geological section that shows 
different geological groups distributed in depth since 
G2 (granite of excellent geomechanical quality) to G6 
(residual soil granite). There is a zone of shallow 
landfill (G7) of small thickness and a large zone of 
G5, existing in these zone areas with stiff granite 
formations G2. It is apparent that the quality of the 
rock mass increases with depth, but beneath 
Fernandes Tomás street there is a probable fault zone 
consisting of material G5[5]. 

During construction of Porto Metro collapses 
occurred between 2000 and 2001. The project 
included two lines (Line C and S) that included 
tunnels under the centre of the city. The tunnels were 
excavated by EPB shields and the heterogeneity was 
in the base of the accidents that occurred[8]. A typical 
section of weathered granite in the face of a TBM is 
illustrated in Fig. 3. 



 
 

 
Fig. 1  Predicted geology for the Heroísmo station[6] 

 
 
 
 
 
 

 
Fig. 2  Geological cross-section of Bolhão station[5] 

 
 



 
Fig. 3  As typical distribution of weathered granite in the face of the EPB tunnel[6] 

 
 

3  Data and models 

As stressed in the Introduction, in this work is an 
updating of the HRMR system is carried out aiming 
to develop a rock classification system with higher 
domain of applicability and also the development of a 
subsystem applicable to the weathered granites of 
Metro of Porto. Thus, based on new data meanwhile 
collected a new database with 1751 records was 
compiled covering soft and hard rocks, even though 
the later are still predominant.  

The number of records of each class contemplated 
in this updated database is depicted in Fig. 4, where it 
is possible to observe that a significant number of 
records are classified as II and III (almost 85% of the 
records). On the other hand, for class V there are only 
13 records, which certainly will influence the model 
performance in the identification of this class. 

Fig. 5 shows the data distribution of the six RMR 
parameters in the database used in this work for 
model training and test. From its analysis, particularly 
based on P1 values (weight related with the 
unconfined compressive strength), it is possible to 
observe that the number of records related to 
medium/soft rocks is still limited but in the original 
HRMR they were almost totally absent. Even though 
high values of RQD are predominant (P2), in terms of 
joint spacing (P3) and conditions (P4) almost all 
range of values are covered. In terms of underground 
water (P5) slightly wet to dry conditions prevail and 
in terms of joint orientation (P6) a considerable broad 
band of situations are covered considering that most 

of the cases were gathered from underground works 
projects. 

 
Fig. 4  Histogram of class frequencies in the 

database 
 
Fig. 6 illustrates the correlation between all six 

parameters of RMR system, as well as its correlation 
with the RMR value. From its analysis, it is possible 
to conclude that the RMR has a strong correlation 
with P4. Moreover, P3 and P2 also present a good 
correlation with RMR. This facts point out to a good 
relation between the parameters related with joints 
and the overall rock mass condition. 
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Fig. 5  Histogram of the six RMR parameters in the database 
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Fig. 6  Correlation matrix between all parameters in RMR system 
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Concerning the algorithm used to develop the 
HRMR a decision tree is a direct and acyclic flow 
chart that represents a set of rules distinguishing 
classes or values in a hierarchical form. These rules 
are extracted from the data, using rule induction 
techniques, and appear in an "If-Then" structure 
expressing a simple and conditional logic. Source 
data is split into subsets, based on the attribute test 
value and the process is repeated in a recursive 
manner. Graphically they present a tree structure and 
are formed by three main components. 

• The top node or root that represents all the data. 
• Branches which connect nodes. Each internal 

node represents a test to an attribute while the 
branches denote the outcome of the test. 

• Leafs which are terminal nodes represent classes 
or values. 

After a tree is learned it can be used to classify or 
calculate the value of a new object. There are two 
types of decision trees, namely classification and 
regression trees[9]. These two types of trees use the 
same structure. The only difference is the type of the 
target variable. Classification trees are used to predict 
the class to which data belongs while regression trees 
are used to estimate the value of a continuous 
variable based on induced mathematical expressions. 

The CART algorithm, the acronym for 
Classification And Regression Trees, developed by 
Breiman et al.[10], is one of the most popular 
algorithms used for inducing decision trees and was 
used in this work. It splits the data using a predictor 
that can be used several times at different levels. At 
each stage data is partitioned so that the cases of the 
two created subsets are more homogeneous than the 
previous one. It grows only binary trees (i.e., trees 
where only two branches can attach to a single root or 
node) so, even though its high flexibility, it can 
sometimes be unreliable and computationally slow. 

CART algorithm is capable to construct trees 
which can be applied to analyze regression or 
classification problems with good results. 
Nevertheless, the fully automated process may result 
in an over structured inefficient tree. Moreover, many 
of the branches may reject noise or outliers in the 
training data. Tree pruning attempts to identify and 
remove such branches and simplify the tree, with the 
goal of improving accuracy on new data. The greatest 
benefits of decision trees approach are that they are 
easy to understand and interpret. They use a "white 
box" model, i.e. the induced rules are clear and easy 
to explain as they use a simple conditional logic. The 
main drawback is that they get harder to manage as 
the complexity of data increases leading to a higher 
number of branches in the tree. 

The model generalization performance was 
accessed by 6 runs under a cross-validation 
(k-fold=10) approach[11], where the data (P) are 
randomly sampled into k mutually exclusive subsets 

(��, ��, … , ��), with the same length. Training and 
testing is performed k times and the overall error of 
the model is taken as the average of the errors 
obtained in each iteration. Under this scheme, all of 
the data are used for training and testing. Yet, this 
method requires approximately k (the number of 
subsets) times more computation, because k models 
must be fitted. Based on the confusion matrix the 
overall accuracy was calculated. Moreover, for each 
level and for each class, the model sensibility was 
also determined. All experiments were implemented 
in the R tool[12], using rminer library[13]. 

4  Results and discussion 

4.1  Update of the HRMR system 

Fig. 8 shows the present version of the HRMR 
system. The decision tree is composed by four levels 
of classification. Each level provides the class of the 
rock mass with different accuracy degrees. The upper 
levels of the tree need less information but also have 
lower accuracy when compared with the lower levels. 

The results of the classification are presented in the 
rectangular boxes in accordance to the RMR system 
(class I, II, ..., V). These boxes contain the class with 
higher probability to be correct. The decisions criteria 
are in the elliptical box (if true goes to the left side). 

Table 4 shows the overall performance of the 
HRMR system based on the overall accuracy and 
sensitivity for each class and level. Sensitivity or 
recall is the percentage of cases that belong to a 
certain class that were classified as being of that 
particular class and accuracy is the percentage of 
correct predictions. These metrics range from 0 to 
100%, where low values indicate problems with the 
classifier and can be calculated as follows: 

 

Table 3  Basis for accuracy and sensitivity calculation 

 Reference  

Predicted Event No Event 

Event A B 

No Event C D 

 

	
��
�
�
�� = � (� + �)⁄  

�������� = (� + �) (� + � + � + �)⁄  
 
From Table 4 and following what was expected, 

the overall accuracy increases with the number of 
levels, i.e. as more specific knowledge about the 
weights is available. The highest increase is observed 
from Level 2 to Level 3 where the overall accuracy 
increases almost 6%. However, if we perform a 
detailed analysis to the decision tree depicted in Fig. 
8, we can observe that the required information to 
apply Level 3 is the same for Level 4, i.e. all RMR 
parameters except P5. Therefore, we can conclude 
that Level 3 is redundant and thus the highest 



increase observed between two consecutives levels is 
from Level 2 to Level 4 (around 8%). When 
compared to Level 1, Level 4 is around 12% more 
accurate. From Level 1 to Level 2 it is observed the 
lower accuracy increase (approximately 4%). An 
overall assessment to the proposed HRMR system 
leads to the conclusion that Level 1 and Level 2 lacks 
of some accuracy and therefore should be used with 
caution. On the other side, Levels 3 and 4 present 
accuracy levels higher than 80% and this is possible 
using only an interval range for some of the weights. 

Analyzing the results for each class, a performance 
increase is observed for every class with the number 
of levels.  Class II and III are those with best 
performance. They have the highest values of 
sensitivity for almost all levels. This is closely related 
to the high number of cases classified as class II and 
III in the database, which represent almost 85% of the 
total number (Fig. 4). In contrast, class V has a very 
low number of cases (13). Therefore the algorithm 
has difficulties to learn its main features and the 
classification tree performs poorly for this class. In 
fact, sensitivity values are null for class V in every 
level. This means that the system is unable to classify 
as class V and should be used with caution for very 
poor rock masses. This may not be a decisive issue 
since very poor rock masses can be more easily 
classified as such in practice by experts than other 
classes. 
 

Table 4  Performance measures for the HRMR system 

 Class Sensitivity (%) Overall Accuracy (%) 

 I 72.95  

 II 68.24  

Level 1 III 80.47 72.82 

 IV 74.25  

 V 0.00  

 I 72.13  

 II 90.59  

Level 2 III 62.10 76.40 

 IV 64.07  

 V 0.00  

 I 72.13  

 II 90.24  

Level 3 III 80.13 82.35 

 IV 64.07  

 V 0.00  

 I 72.13  

 II 87.06  

Level 4 III 91.32 84.64 

 IV 64.07  

 
In a decision tree, the top nodes represent the most 

important data for classification. Fig. 7 shows the 
relative importance of each parameter in the HRMR 
system for classification matters (correspondent to 
level 4 which is more explanatory). It is interesting to 
observe that P4 is the most relevant parameter, 
although this parameter is not in the root node. The 

second most important parameter is P3 with an 
impact around 22%. Both, P3 and P4 have an impact 
around 50%. It is also interesting to observe that the 
three parameters most relevant are those considered 
by almost decisions nodes, i.e. P3, P4 and P6. This 
means that the parameters related with joints are the 
main predictors of the overall conditions of the rock 
mass. 

 

 
Fig. 7  Relative importance of the parameters in the 

HRMR system 
 

4.2  Specific subsystem for the weathered granite 
rock masses of Metro of Porto 

In order to develop a model specifically applicable 
for the weathered granites of Metro of Porto, only the 
records of correspondent to this project and with 
UCS<20MPa were selected. In these conditions, a 
total of 118 records were used to train and test the 
model. In this set of examples there are no records 
classified as Class I.  

Fig. 9 shows the HRMR system for these rocks. 
The decision tree is composed by two levels of 
classification. Each level provides the class of the 
rock mass with different accuracy degrees. The first 
level requires only P3 information but also have 
lower accuracy when compared with level 2. 

Table 5 shows the overall performance of this 
subsystem, based on the overall accuracy and 
sensitivity for each class and level. From its analysis 
it can be concluded that when compared to level 1, 
level 2 is around 10% more accurate. Moreover, 
additionally to the information required by level 1, 
level 2 requires only additional information conveyed 
by the P4 parameter, which eventually justifies an 
additional effort in obtaining such data. An overall 
assessment of the HRMR system proposed for these 
weathered rocks, lead us to underline that level 2 
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present an interesting accuracy (higher than 84%) and 
that level 1 should be applied with some caution. 

Performing an analysis of the results by class, it is 
possible to observe that level 1 predicts very well 
classes III and IV, but is unable to classify correctly 
classes II and V. Using level 2, we achieved a very 
interesting accuracy for classes III and IV (87% and 
93% respectively) and an average performance for 
class V (77%). For class II, the classification tree was 
able to predict accurately just over half of the records 
(55%). In both levels, class I cannot be predicted by 
the proposed HRMR system, which is closely related 
with the database used for model training as above 
underlined. However, since the proposed system is 
intended to be applied only to weathered granite 
rocks, the number of cases of class I rock masses 
should be low. 

 

Table 5  Performance measures for the HRMR subsystem for 
the weathered rocks of Metro of Porto 

 Class Sensitivity (%) Overall Accuracy (%) 

 I NA  

 II 0.00  

Level 1 III 90.74 75.42 

 IV 100.00  

 V 0.00  

 I NA  

 II 54.55  

Level 2 III 87.04 84.75 

 IV 92.50  

 V 76.92  

 
 

 

 
Fig. 8  The HRMR system 

 
 

 

 
Fig. 9  HRMR subsystem for the weathered rocks of Metro of Porto 

 
 

 
 



5  Final considerations 

In this work an update of the HRMR system was 
carried out by increasing the initial database in more 
than 40% of the cases. The initial system was 
applicable only for hard granite rocks and low 
fracturing degree. The present version considers a 
broader band of granite rock mass conditions. The 
system can be continuously improved as new data is 
gathered and the same approach can be adopted for 
other rock types. 

This system tries to overcome some practical 
problems, namely in what concerns the difficulties to 
obtain some of the data needed for the RMR system 
application. As well as for other important 
classification systems, the RMR needs a precise 
definition of several parameters which involve the 
assembly of a considerable amount of geotechnical 
information. Some of this information can be difficult 
or expensive to obtain in the different design and 
construction stages. 

The HRMR was developed by applying a decision 
tree algorithm. It is called hierarchical because it has 
four levels which provide a classification for the rock 
mass. Each level needs a different kind of knowledge 
about the rock mass, i.e. the deeper the knowledge the 
higher the classification accuracy. 

The granite rock mass formations existent in the 
North of Portugal and in particular in Porto region are 
predominantly granites characterized by high levels of 
heterogeneity. In the Metro of Porto project this was a 
main feature and had a significant impact in 
geomechanical characterization, design and 
construction process. Therefore, it was intended in this 
work to contribute to the characterization of such 
formations by developing a specific tool that can be 
used in future projects. 

The overall accuracy of the broader HRM is about 
73% for level 1 whereas for level 4 it reaches almost 
85%. These results translate a very acceptable 
performance of the model in identifying the correct 
class with different levels of data. The results are 
better for Classes II and III due to the higher number 
of cases classified as such in the database. On the 
other hand the system is unable to classify class V 

rock masses. The most important parameters in the 
identification process are the ones related with joints 
(P3, P4 and P6) meaning that the parameters related 
with joints provide good indications concerning the 
overall quality of the rock mass.  

The subsystem applicable to the weathered granites 
presents only two levels and level 2 presents 10% 
higher accuracy, approximately 84%, than level 1 
using only the additional information about parameter 
P4. Level 1 predicts very well classes III and IV, but is 
unable to classify correctly classes II and V. Level 2 
provides a very interesting accuracy for classes III and 
IV (87% and 93% respectively) an average 
performance for class V (77%) and a medium to poor 
performance for class II (55%). In both levels, class I 
cannot be predicted due to limitations of the database. 

The main characteristics of the HRMR are resumed 
in the following items. 

• Does not need the deterministic definition of the 
weights of the RMR classification but only a range of 
values. 

• Adaptation to the level of knowledge about the 
rock mass. 

• Mainly uses data concerning the joints. 
• It is based on a large number of cases and a solid 

statistical validation. 
• Presents a good overall performance except in 

the prediction of poor rock mass conditions (class V). 
In conclusion, the HRMR system can constitute as 

an interesting classification tool. It adapts to the level 
of knowledge about the rock mass providing a 
classification with different accuracy levels. It is based 
on a large database of cases and was properly 
validated in statistical terms. automatically, 
continuously and accurately, visualize the surface and 
underground structures vividly.  

3) The system could calculate the location, area, 
coal column of coal pillars rapidly and accurately, 
which is valuable for calculating ore reserves and 
safeguarding the mining activity underground. 
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