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Abstract: According to the 2011 ERMCO statistics, only 11% of the
production of ready-mixed concrete relates to the high performance
concrete (HPC) target. This percentage has remained unchanged since at
least 2001 and appears a strange choice on the part of the construction
industry, as HPC offers several advantages over normal-strength
concrete, specifically those of high strength and durability. It allows for
concrete structures requiring less steel reinforcement and offers a longer
serviceable life, both of which are crucial issues in the eco-efficiency

of construction materials. Despite the growing importance of
nanotechnology, investigations into the incorporation of nanoparticles
into concrete are rare (100 out of 10,000 Scopus concrete-related articles
published in the last decade). It therefore remains to be seen how
research in this area will contribute to concrete eco-efficiency. This
chapter summarizes the state of current knowledge in the field and
considers the influence of nanoparticles on the mechanical properties

of concrete and its durability. It also includes the control of calcium
leaching. The problem of efficient dispersion of nanoparticles is analyzed.

Key words: Portland cement, nanoparticles, calcium leaching, concrete
durability, high performance concrete (HPC).

3.1 Introduction

Concrete is the most widely used of all construction materials. Its produc-
tion currently stands at around 10 km®/year (Gartner and Macphee, 2011).
For purposes of comparison, the amount of fired clay, timber, and steel used
annually is around 2, 1.3 km® and 0.1 km®, respectively (Flatt et al., 2012).
Portland cement, which acts as the main binder in concrete, represents
almost 80% of the total CO, emissions associated with concrete, which
contribute 6-7% of the planet’s total CO, emissions (Shi et al., 2011;
Pacheco-Torgal et al., 2012). This is of particular concern in the context of
climate change.

The demand for Portland cement is expected to increase by almost 200%
over 2010 levels by 2050, reaching 6,000 million tons per year. According
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to the ERMCO 2011 statistics, ready-mixed concrete production lies essen-
tially between C25/30 and C30/37. In addition, only 11% of the concrete
production corresponds to the high performance concrete (HPC) strength
class target. As ERMCO 2001 statistics showed a 10% figure for this type
of concrete, it appears that high strength concrete demand has remained
unchanged during the last decade. Normal strength concrete produces less
durable structures which require frequent maintenance and conservation
operations or even complete replacement, with the associated consumption
of additional raw materials and energy. Many degraded concrete structures
were built decades ago at a time when little attention was given to durability
(Hollaway, 2011). It is not therefore surprising that worldwide concrete
infrastructure rehabilitation costs are extremely high.

For example, in the USA, around 27% of all highway bridges are in need
of repair or replacement. In addition, the cost of deterioration caused by
deicing and sea salt is estimated at over US$150 billion (Davalos, 2012). In
the European Union, nearly 84,000 reinforced and pre-stressed concrete
bridges require maintenance, repair and strengthening. This results in an
annual cost of £215 million, not including traffic management costs (Yan
and Chouw, 2013). Beyond the durability problems caused by imperfect
concrete placement and curing operations, the real problem with the dura-
bility of ordinary Portland cement concrete (OPC) is the intrinsic proper-
ties of the material which has a high degree of permeability. This allows the
ingress of water and other aggressive elements, leading to carbonation and
chloride ion attack, which ultimately result in corrosion (Bentur and Mitch-
ell, 2008; Glasser et al.,2008). The importance of durability for eco-efficiency
in construction materials has been described by Mora (2007). The author
stated that increasing concrete durability from 50 to 500 years would reduce
its environmental impact by a factor of 10. It is also worth noting that
according to Hegger et al. (1997), the increase of compressive strength in
concrete would mean a reduction of as much as 50% in the use of reinforced
steel. These are crucial issues in materials efficiency (Pacheco-Torgal and
Jalali, 2011a; Allwood et al., 2011), highlighting the need for investigation
into the future production of concretes with high mechanical strength and
high durability.

Nanotechnology involves study at the microcospic scale (1 nm= 1 X
10 m). Some estimates predict that products and services related to nano-
technology could reach 1,000,000 million euros per year beyond 2015
(Pacheco-Torgal and Jalali, 2011b). The use of nanoparticles to increase the
strength and durability of cementitious composites was predicted by the
report RILEM TC 197-NCM, ‘Nanotechnology in construction materials’
(Zhu et al., 2004), as a research area with high nanotechnology potential.
Since that time, several dozen papers have been published by the Society
of Chemical Industry (SCI) in the field. However, the majority of these
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publications were written by materials science investigators and were prin-
cipally concerned with materials performance with a lesser focus on civil
engineering short-term commercial applications. For instance, the ‘bottom-
up’ multiscale modeling approach (Pellenq et al., 2009), could be an excel-
lent strategy which ‘has been spectacularly successful in fields ranging from
metallurgy to medicine’ (Jennings and Bullard, 2011) but, unfortunately,
relies on tools that ‘require years of training and considerable computa-
tional expense to operate’, neither of which are traditionally associated with
the construction industry. The importance of the present review lies in the
need to redirect future investigations in this field to a precise target capable
of serving a clear short-term civil engineering goal.

3.2 Concrete with nanoparticles

Nanoparticles may be obtained either through high milling energy (Sobolev
and Ferrada-Gutierrez, 2005) or by chemical synthesis (Lee and Kriven,
2005). They have a high surface area to volume ratio (Fig. 3.1) which pro-
vides high chemical reactivity. Most investigations use nano-silica (nano-
Si0;), and nano-titanium oxide (nano-TiO,), while a few use nano-Fe,04
(Sanchez and Sobolev, 2010).

Specific surface area (m?/kg)

<«— Nano-engineered concrete >
) High-strength/High-performance concrete —>{
<—— Conventional concrete ——>
1,000,000+
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0 S
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3.1 Particle size and specific surface area related to concrete materials
(Sanchez and Sobolev, 2010).
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3.2.1 Mechanical properties

Porro et al. (2005) refers to the use of nano-silica particles as increasing the
compression strength of cement pastes. The same authors state that this
phenomenon is not due to pozzolanic reaction, as the calcium hydroxide
consumption is very low, but rather to the increase of silica compounds
which contribute to a denser micro-structure.

According to Lin er al. (2008), the use of nano-silica on sludge/fly ash
mortars, compensates for the negative effects associated with sludge incor-
poration in terms of the setting time and initial strength. Sobolev et al.
(2008) reported that the addition of nano-silica produced an increase in
strength of 15-20%. Other authors (Gaitero, 2008; Gaitero et al., 2009)
believe that nano-silica causes an increase in the C-S-H chain dimension
and stiffness. Nasibulin ez al. (2009) reported a twofold increase in strength.
Chaipanich et al. (2010) records that 1% of carbon nano-fibers (by binder
mass) can compensate for the strength reduction associated with the
replacement of 20% fly ash. Konsta-Gdoutos et al. (2010a) also studied the
effect of carbon nano-fibers on cement pastes (0.08% by binder mass) and
observed an increase in strength.

Nazari and Riahi (2011a) used ZrO, nanoparticles with an average par-
ticle size of 15 nm and reported an improvement in the flexural strength of
self-compacting concrete up to 4 wt%. Increasing the nanoparticle content
caused a reduction in flexural strength because of the inadequate dispersion
of nanoparticles within the concrete matrix. Givi et al. (2010) studied the
effects of different particle sizes of nano-SiO, (15 and 80 nm) and reported
that the optimal replacement level of nano-SiO, particles was gained
at 1.0% and 1.5%. respectively. The effect of nanoparticle addition is
threefold:

1. As the average diameter of C-S-H gel is approximately 10 nm, the
nanoparticles fill the voids in the CHS structure, so producing a denser
concrete.

2. The nanoparticles act as nucleation centers, contributing to the develop-
ment of hydration in Portland cement.

3. Nanoparticles react with Ca(OH);, crystals and produce C-S-H gel. They
also act as kernels in the cement paste which reduces the size of Ca(OH),
crystals.

3.2.2 Durability

Investigations carried out by Ji (2005) showed that concrete containing
nano-silica particles has lower water permeability. This is due to the reduc-
tion of the amount of Ca(OH), which produces a denser inter-facial transi-
tion zone (ITZ). A reduction of chloride ion permeability as a result of
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using 1% of nanoparticles per cement mass was reported by He and Shi
(2008). Li er al. (2006) showed that nanoparticles are more favorable to
producing abrasion resistance in concrete than are polypropylene (PP)
fibers. They also recorded that the abrasion resistance of concrete decreases
with its nanoparticle content and that the abrasion resistance of concrete
containing nano-TiO, is higher than that containing the same amount of
nano-SiO,. Chen and Lin (2009) used nano-silica particles to improve the
performance of sludge/clay mixtures for tile production. The results show
that nanoparticles improve the reduction of water absorption and lead to
an increase in abrasion and impact strength. A reduction in water absorp-
tion was reported by Givi er al. (2011). Ozyildirim and Zegetosky (2010)
used 4% nano-Fe,O; per cement mass and reported a reduction in the
permeability of the concrete. A reduction in permeability was also reported
for concrete in which 45% Portland cement was replaced by GGBFS con-
taining 4% nano-TiO, per cement mass (Khoshakhlagh et al.,2012). Shekari
and Razzaghi (2011) compared the mechanical performance and the dura-
bility of concretes containing 1.5% of distinct nanoparticles (nano-ZrO,,
nano-TiO,, nano-Al,Os, nano-Fe;O,). They concluded that the nano-Al,O4
is the most effective, but offered no explanation for the finding.

Nazari and Riahi (2011b) studied the performance of concrete in which
Portland cement was replaced by up to 2% nano-AlL,O; with an average
particle size of 15 nm. They reported that the optimum level of nano-Al,O;
particle content was 1.0%. Jalal et al. (2012) showed that concretes contain-
ing 2% SiO, nanoparticles underperformed when compared to those pre-
pared with a mixture of 2% SiO, nanoparticles with the addition of 10%
micro-silica. This composition showed enhanced mechanical strength (Fig.
3.2) as well as improved durability. This was assessed by water absorption,
capillary water absorption, Cl ion percentage and electric resistivity (Fig.
3.3). According to Zhang and Li (2011), the pore structure of concrete
containing nano-TiO, is finer than that of concrete containing the same
amount of nano-SiO,. The resistance to chloride penetration of concretes
containing nano-TiO, is higher than that of concretes containing the same
amount of nano-SiO,.

This is explained by the particle diameter of nano-SiO, being smaller than
that of nano-TiO,, and the specific surface area of nano-SiO, being much
larger than that of nano-TiO, The water requirement of concrete containing
nano-SiO, is therefore higher than that of concrete containing the same
amount of nano-TiO,. The authors also reported that the pore structure
refinement increases with the content of nanoparticles (5% < 3% < 1%)
while chloride penetration decreases (5% < 3% < 1%). These results par-
tially confirm those previously obtained by Li et al. (2006). In their view,
the increased content of nanoparticles weakens the refinement of the pore
structure of concrete. This may be attributed to the reduction of the distance
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3.2 Compressive strength of HPSCC samples with binder contents of
(a) 400, (b) 450, and (c) 500 (Nazari and Riahi, 2011b).

© Woodhead Publishing Limited, 2013



44 Nanotechnology in eco-efficient construction

+- HPSCC,400 - HPSCC,450 ¢ HPSCC,500
720 J_ HPSCC,400,MS10% HPSCC,450,MS10% HPSCC,500,MS10% _"
—a— HPSCC,400,NS 2% - a- HPSCC,450,NS 2% -.x- HPSCC,500,NS 2%
—e— HPSCC,400,NS 2%MS10% -®- HPSCC,450,NS 2%MS10% -®- HPSCC,500,NS 2%MS10%
620
e d
£ 5201
<)
> 4207 -
=
B
B 320
()]
am
220+
1201
20 T T T T T T T T T
0 0 20 30 40 50 60 70 80 90 100

Time (days)

3.3 Resistivity versus time for different mixtures (Nazari and Riahi,
2011b).

between nanoparticles existing in higher concentration, so limiting the for-
mation and growth of Ca(OH), crystals due to space limitations. In this
situation, the ratio of crystals to C-S—H gel is reduced and the shrinkage
and creep of the cement matrix tend to increase. In consequence, the pore
structure of the cement matrix is relatively more coarse (Zhang and Li,
2011).

3.2.3 Control of calcium leaching

High durability concrete requires the reduction of calcium leaching. This
degradation process consists of a progressive dissolution of the cement
paste caused by the migration of calcium atoms to the aggressive solution.
Cement paste phases have different rates of degradation. While Portlandite
dissolves completely in an aggressive solution, C-S-H gel undergoes only a
slight increase in porosity (Carde et al., 1996; Kamali et al., 2003; Haga
et al., 2005; Gaitero et al., 2012). Calcium leaching is responsible for an
increase in concrete porosity and consequently in increased permeability.
This allows water and other aggressive elements to enter the concrete which
causes carbonation and corrosion problems. Gaitero et al. (2008) studied
the influence of silica nanoparticles on the reduction of calcium leaching.
Concrete mixtures containing 6% (by weight of cement) of four different
types of commercial silica nanoparticles (Table 3.1) were used.

Figure 3.4 shows that the addition of silica nanoparticles to the cement
paste favors the growth of silicate chains. This is advantageous as longer
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Table 3.1 Main physico-chemical properties of the commercial additions used
as stated by the manufacturer (Gaitero et al., 2008)

Particle size Stabilizing SiO, content
Name (nm) pH agent (wt%) Presentation
Cs1 30 10 Na,O 45 Colloid
Cs2 20 10 Na,O 20 Colloid
CS3 120 9.5 NH; 40 Colloid
ADS 1400 - - 95 Powder

All the colloids were dispersed in water, being the amount of the stabilizing
agents <0.1 wt%.

JT:! 28 days B 28+9 days 7 28+21 days W 28+42 days
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3.4 Evolution of the average segment length. The results were
obtained from the relative areas of the 2957 MAS-NMR spectra (Gaitero
et al., 2008).

chains correspond to greater C-S-H stability. The authors concluded that
the addition of nano-silica to cement-based materials can control C-S-H
degradation induced by calcium leaching. However, the benefits depend on
the conditions under which nanoparticles are used. Colloidal dispersions
proved much more effective than dry powders in reducing the effects of
degradation.

3.3 The problem of efficient nanoparticle dispersion

The most significant issue in the use of nanoparticles is that of effective
dispersion. Vera-Agullo et al. (2009) stated that the use of nanoparticles will
cause a higher degree of hydration in cementitious compounds if higher
nanoparticle dispersion can be achieved. Givi et al. (2010) recorded that a
proper dispersion of nano-SiO, particles was achieved by stirring with part
of the mixing water at high speed (120 rpm) for one minute and then adding
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to the mixture. Zhang and Li (2011) used a water-reducing agent (UNF-5,
a type of b-naphthalene sulfonic acid and formaldehyde condensates) to
help disperse the nanoparticles in the cement paste and to achieve a good
degree of workability in the concrete. A de-foamer (tributyl phosphate) was
also used to decrease the number of air bubbles. To prepare concrete con-
taining nanoparticles, a water-reducing agent was first mixed with water in
a mortar mixer. The nanoparticles were then added and stirred at high
speed for five minutes. A de-foamer was added during stirring. Following
this, the cement, sand and coarse aggregate were mixed at low speed for
two minutes in a centrifugal concrete blender. The mixture of water, water-
reducing agent, nanoparticles, and de-foamer was then slowly added and
stirred at low speed for a further two minutes to achieve good
workability.

Dispersion difficulties also occur when carbon nanotubes or carbon
nanofibers are used because of their strong Van der Waals self-attraction
(Xie et al., 2005). Sanchez and Ince (2009) confirmed that Van der Waals
forces hold the carbon nanofibers together in clumps (Fig. 3.5).

These authors found that silica fume facilitated the dispersion of carbon
nanofibers due to its small particle size when compared to that of anhydrous
cement particles (around 100 times smaller). Figure 3.6 shows silica fume
particles intermixed with carbon nanofibers. The authors recorded that even
when carbon nanofiber dispersion was facilitated by silica fume, a significant
number of carbon nanofiber pockets still remained. Konsta-Gdoutos et al.
(2010b) used an aqueous surfactant and ultrasonic energy to achieve a high
degree of carbon nanofiber dispersion. They found that a constant surfac-
tant to carbon weight ratio of 4.0 achieved effective dispersion. Nochaiya
and Chaipanich (2011) also found that homogeneous dispersion can be
obtained if carbon nanotubes are mixed with water and then subjected to
ultrasound for one hour. Nasibulina et al. (2012) suggest that high-quality
dispersion of carbon nanotubes may be achieved by a two-step method:

0 wt% CNF 0.5 wt% CNF 2 wit% CNF

: I\
SF agglomerates
-~ O s FR)
/ @)

e
LL¥

2U.Bkv x4p. 8]

3.5 Scanning electron micrographs of the fracture surface of hybrid
CNF/SF cement composites, revealing the presence and distribution of
SF agglomerates and CNF pockets at a magnification of 40x (Sanchez
and Ince, 2009).
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3.6 Scanning electron micrograph showing silica fume particles
intermixed with carbon nanofibers after dry mixing (Sanchez and Ince,
2009).

1. Carbon nanotubes are functionalized in a mixture of nitric and sulfuric
acids (70 wt% and 96 wt%, respectively) at 80°C.

2. Functionalized carbon nanotubes are washed with acetone to remove
carboxylated carbonaceous fragments formed during oxidation of the
nanotubes.

Metaxa et al. (2012) developed an ultracentrifugation concentration
process for the production of highly concentrated suspensions of carbon
nanotubes. Ultracentrifugation is used to reduce the amount of water in the
nanotube water/surfactant suspension, thus increasing the concentration of
nanotubes (Figs 3.7 and 3.8).

The process involves the dispersion of carbon nanotubes in an aqueous
surfactant solution by ultrasonication and ultracentrifugation of the suspen-
sion, followed by decantation and ultrasonication of the remaining suspen-
sion. Absorbance spectroscopy results confirmed a fivefold increase in the
concentration of carbon nanotubes in the suspensions. Another important
issue in the dispersion of nanoparticles is its quantitative characterization.
To date, three common methods have been used to analyze the dispersion
of CNTs or CNFs in aqueous solutions. These are optical microscopy, elec-
tron microscopy (using both scanning electron microscopes (SEM) and
transmission electron microscopes (TEM)), and ultraviolet-visible (UV-
Vis) spectroscopy (Tyson et al., 2011). These authors developed a method
for quantifying the dispersion and agglomeration of both carbon nanofibers
and carbon nanotubes within an aqueous solution. The dispersion quantity,
D, is measured by the free-path spacing between particles; the agglomera-
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Ultracentrifugation time
3.7 Schematic figure showing the progression of the sedimentation of

nano-materials inside a tube during ultracentrifugation (Metaxa et al.,
2012).

(@)

3.8 Suspensions of carbon nanotubes ultracentrifuged for (a) 30 min,
(b) 45 min and (c) 60 min (Metaxa et al., 2012).

tion quantity, A, is measured by the particle size. The agglomeration per-
centage is critical because, in certain cases, dispersion between two images
can be identical, although the agglomeration percentage will have changed.
In both cases, a quantifiable percentage is calculated based on the statistical
probability that either the free-path spacing or particle size will fall within
a certain percentage above and below /, where [ is either the mean spacing
or the particle size. A high value of D indicates a better dispersion. A lower
value of A indicates a reduction in agglomeration.
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3.4 Conclusions

A review of the literature on the contribution of nanoparticles in HPC
shows the following.

» Nanoparticles may contribute to a dramatic increase in the mechanical
strength of cementitious composites, thus helping the production of
HPC. The related mechanisms are as follows:

_ The filling of voids in the C-H-S structure, so enabling the production
of concrete of greater density.

— Acting as nucleation centres and contributing to the development of
hydration in Portland cement.

_ Reaction with Ca(OH), crystals to produce C-S-H gel. The nanopar-
ticles also act as kernels in the cement paste and reduce the size of
the Ca(OH), crystals.

o The optimal quantity of nanoparticles will depend upon their type and
average dimension.

e Further investigations are needed to determine which nanoparticles are
most effective in enhancing concrete durability.

e Nano-silica appears to control calcium leaching. Colloidal dispersions
are more effective in reducing the effects of degradation than dry
dispersions.

¢ One of the most significant issues in the use of nanoparticles is that of
effective dispersion. Different authors have used different methods in
order to achieve a high dispersion. However, there is still a need to
search for improved methods. The tools used to assess uniformity of
distribution are largely quantitative (optical microscopy, electron
microscopy and transmission electron microscopy). The validity of the
methods used to date must therefore be confirmed using quantitative
characterization tools.
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