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Abstract This study presents a new two-swarm cooperative �sh intelligence algorithm for solving the bound
constrained global optimization problem. The master population is moved by a Lévy distribution
and cooperates with the training population that follows mainly the classical �sh behaviors. Some
numerical experiments are reported.
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1. Introduction

In this study we are interested in solving the bound constrained global optimization (GO)
problem using a swarm intelligence algorithm that is able to converge to the globally best point
in the feasible region and requires a limited computational e�ort. The problem to be addressed
has the form

glob min
x∈Ω

f(x), (1)

where f is a continuous nonlinear, possibly nonconvex function, and Ω is the hyperrectangle
{x ∈ Rn : l ≤ x ≤ u}. When solving complex optimization problems, like NP-hard prob-
lems, metaheuristics are able to perform rather well and generate good quality solutions in
less time than the traditional optimization techniques [3]. Besides the variety of applications
in some engineering areas, the motivation for the present study is the pressing and ongoing
need to develop e�cient algorithms for solving a sequence of problems, like (1), that emerge
from a penalty function technique or an augmented Lagrangian based multiplier algorithm for
constrained nonconvex global optimization, in reasonable time.

The arti�cial �sh swarm (AFS) algorithm has been previously implemented within augmented
Lagrangian paradigms [2, 10], which in turn have been compared with other metaheuristic-based
penalty like algorithms to solving constrained GO problems. The numerical results have been
shown that the �sh swarm intelligence is a promising metaheuristic but further research is
demanded so that e�ciency can be improved.
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PEst-OE/MAT/UI0013/2014 and PEst-OE/EEI/UI0319/2014.
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2. Two-swarm cooperative paradigm

The present proposal for solving the problem (1) is a variant of the AFS algorithm. This
metaheuristic relies on a swarm intelligence based paradigm to construct �sh/point movements
over the search space while converging to the optimal solution [2, 9, 10]. The new algorithm is
termed two-swarm cooperative AFS (2S-AFS) and the crucial idea is to use two swarms (instead
of just one) where each one has its own task and supplies information to the other swarm, when
attempting to converge to optimality. Other multi-swarm cooperative algorithms based on a
master-slave model can be found in [6, 7]. Hereafter, the terms `point' and `population' (of
points) will be used to represent (the position of) a �sh and the swarm respectively. The
position of a point in the space is represented by xj ∈ Rn (the jth point of a population) and
m is the number of points in the population. The component i of a point xj is represented
by (xj)i.

2.1 Classical AFS algorithm

The initial procedure of AFS algorithm consists of randomly generating the points xj , j =
1, . . . ,m of the population, in Ω. Then, each current point xj produces the trial point yj
according to the number of points inside its `visual scope' (VS). This is a closed neighborhood
centered at xj with a positive radius which varies with the maximum distance between xj and
the other points. When the VS is empty, a Random Behavior is performed, and when it is
crowded, one of the behaviors, Searching or Random, is performed. However, when the VS is
not crowded, one of the four following behaviors is selected: Chasing, Swarming, Searching or
Random. The selection depends on the objective function values of xj when compared with the
function value of the best point inside the VS, the central point inside the VS, or a randomly
chosen point of the VS. To choose the population for the next iteration, the current xj and the
trial yj are compared in terms of f . The pseudo-code for the AFS algorithm is presented below.

AFS algorithm
{

randomly generate the population xj ∈ Ω, j = 1, . . . ,m and select xbest;
while stopping condition is not met {

for each xj , j = 1, . . . ,m {
if (`visual scope' is empty)
{compute yj by Random Behavior}

else if (`visual scope' is crowded)
{compute yj by Searching/Random Behavior}

else
{compute yj by Chasing/Swarming/Searching/Random Behavior}.

if (f(yj) ≤ f(xj)) {set xj = yj} }
select xbest and perform random local search around it; }

}

2.2 Two-swarm cooperative AFS algorithm

In order to improve the capability of searching the space for promising regions where the
global minimizers lie, this study presents a new �sh swarm-based proposal that de�nes two-
populations, each one with its task goal but always sharing information with the other: one is
the master and the other is the training population. The master population aims to explore
the search space more e�ectively, thus de�ning trial points from the current ones throughout
a stable stochastic distribution. Depending on the number of points inside the VS of xj of
the training population, the trial point is mainly produced by the classical AFS behaviors,
although in some cases � when the VS is empty and when it is crowded � the stochastic distri-
bution borrowed from the master population is used. The overall best point is shared between
both populations. The algorithm is called 2S-AFS. To be able to produce a trial yj , from the
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current xj , ideas like those of Bare-bones particle swarm optimization in [4] and the model for
mutation in evolutionary programming [5], may be used:

(yj)i = γ + σYi (2)

where γ represents the center of the distribution that may be given by (xj)i or ((xj)i+(xbest)i)/2
(the average of (xj)i and the best point (xbest)i), σ may represent an adaptive mutation de�ned
by the distance between (xj)i and (xbest)i, and each Yi is an identically distributed random
variable from the Gaussian distribution with mean 0 and variance 1. We note that Y may be
the random variable of another probability distribution. The standard Lévy distribution is used
since it can search a wider area of the search space and generate more distinct values in the
search space than the Gaussian distribution. The Lévy distribution, denoted by Li(α, β, γ, σ),
is characterized by four parameters. The parameter β gives the skewness (β = 0 means that the
shape is symmetric relative to the mean). The shape of the Lévy distribution can be controlled
with α. For α = 2 it is equivalent to the Gaussian distribution, whereas for α = 1 it is equivalent
to the Cauchy distribution. The distribution is stable for α = 0.5 and β = 1. σ is the scale
parameter and is used to describe the variation relative to the center of the distribution. The
location parameter γ gives the center. When γ = 0 and σ = 1, we get the standard form, simply
denoted by L(α) when β = 0.

Hence, the proposal for further exploring the search space and improve e�ciency is the fol-
lowing. The points from the master population always move according to the Lévy distribution,
i.e., each trial point yj is generated component by component i = 1, . . . , n as follows:

(yj)i =

{
(xj)i + (σj)iLi(α) if rand() ≤ p
(xbest)i + (σj)iLi(α) otherwise

(3)

where (σj)i = |(xj)i − (xbest)i|, Li(α) is a random number generated for each i from the standard
Lévy distribution with the parameter α = 0.5, rand() is a random number generated uniformly
from [0, 1] and p is a user speci�ed probability value for sampling around the best point to occur.
On the other hand, each point in the training population either moves according to classical
AFS behaviors if its VS is not crowded, or it moves using a Lévy distribution, as shown in
(3), with p = 0 if the VS is empty, and p = 1 if the VS is crowded. Cooperation from the
master population is also required if the best point belongs to the master population. The
below presented algorithm is the pseudo-code for 2S-AFS algorithm.

2S-AFS algorithm
{

randomly generate xj ∈ Ω, j ∈ P ≡ {1, . . . ,m} and select xbest;
randomly choose xj , j ∈M ⊂ P , where #M = bm

3
c, and move them according to (3) with p = 0;

while stopping condition is not met {
for each xj , j = 1, . . . ,m {

if (j ∈M � point in master population)
{compute yj according to (3) with p = 0.5}

else if (`visual scope' is empty)
{compute yj according to (3) with p = 0}

else if (`visual scope' is crowded)
{compute yj according to (3) with p = 1}

else
{compute yj by Chasing/Swarming/Searching/Random Behavior}.

if (f(yj) ≤ f(xj)) {set xj = yj} }
select xbest and perform random local search around it; }

}

The algorithm stops when |f(xbest)− f∗| ≤ 0.001 or NFeval > 20000 where f(xbest) is the
best solution found thus far, f∗ is the known optimal solution, and NFeval gives the number
of function evaluations.
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3. Results and Conclusions

This section aims to compare the results of the proposed 2S-AFS with those of two AFS-based
algorithms on benchmark problems with acronyms BR, CB6, GP, H3, H6, SBT, S5, S7 and S10
(with n ranging from 2 to 6) [1]. The algorithm was coded in C and the results were obtained
on a PC with a 2.8 GHz Core Duo Processor P9700 and 6 Gb of memory. Each problem was
solved 30 times and m = 10n points are used. Table 1 summarizes the results obtained in
terms of the average number of function evaluations (`Nfeavg') required by the algorithms to
reach the optimal solution with the above de�ned accuracy. `DbAFS' is a distribution-based
AFS algorithm with the random local search (RLS) (see in [8]) and `AFS' is the classical AFS
with the same RLS (see also Figure 1). From the results we may conclude that 2S-AFS is quite
e�cient in converging to the optimal f∗ on six problems but reached the maximum number of
evaluations in some runs when solving problems S5, S7 and S10. These behaviors need further
investigation and new strategies to enforce convergence.

f∗ 2S-AFS DbAFS AFS

BR 0.39789 362 690 815
CB6 -1.0316 241 293 639
GP 3.00000 494 710 830
H3 -3.86278 206 911 1273
H6 -3.32237 657 3864 6534
SBT -186.731 415 1256 2803
S5 -10.1532 8382 1611 4568
S7 -10.4029 5793 1818 2931
S10 -10.5364 5837 1889 3067

Table 1: Comparison of AFS-based algorithms.
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Figure 1: Bars of Nfeavg for the tested algorithms.
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