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Abstract

The design of efficient, simple, and easy to code, second-order finite volume methods is
an important challenge to solve practical problems in physics and in engineering where
complex and very accurate techniques are not required. We propose an extension of
the original Frink’s approach based on a cell-to-vertex interpolation to compute vertex
values with neighbor cell values. We also design a specific scheme which enables to
use whatever collocation point we want in the cells to overcome the mass centre point
restrictive choice. The method is proposed for two- and three-dimension geometries and
a second-order extension time-discretization is given for time-dependent equation. A
large number of numerical simulations are carried out to highlight the performance of
the new method.

Keywords: convection-diffusion-reaction, finite volume method, cell-vertex
interpolation, second-order accuracy

1. Introduction

The finite volume method for the linear convection-diffusion-reaction equation is an
important building-block to solve more complex models such as the Navier-Stokes equa-
tions and nonlinear coupling problems. In the two last decades, major efforts have been
made to design very high-order schemes up to sixth-order [9, 12, 16, 18, 20, 27] to increase
the accuracy enabling to compute very good approximations even with coarse meshes.
Nevertheless, second-order schemes are still attractive since they are quite simple, easy
to code and, many practical problems in physics and engineering do not require such
complex and accurate methods.

The convection-diffusion-reaction equation contains the three typical operators which
appear in mathematical modelling and each one has its own specificities. The diffusion
and convection terms are computed via flux contributions but the convection requires
some upwind technique to achieve stability while the diffusive term provides a symmetric
contribution. On the contrary, the reactive term is not affected by the divergence operator
and can not be treated through a flux on the interfaces. This term turns to be crucial
when dealing with time discretization for evolution problems and motivate the effort to
design a specific discretization.
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Second-order finite volume schemes are very well developed and there exist several
groups/families of techniques to provide that order of convergence. We shall mention
for example the mimetic method [2] and the finite volume scheme based on primal and
dual meshes (DDFV or DMGR schemes)[1, 14, 15]. We refer to the book of Eymard,
Gallouët, and Herbin, [26] and the references therein for a general overview. A popular
class of second-order finite volume schemes is based on vertex reconstructions using
pointwise approximations in the cells associated to a specific point location (usually the
centroid). Then combining cell and vertex values, gradient approximations are evaluated
to compute the diffusive flux and a second-order approximation for the convective flux is
considered on the interfaces (the so-called diamond scheme). There exist several studies
about the way to provide the nodal values [4, 8, 24, 25, 6, 21] where few of them treat
the Neumann boundary condition [3, 5, 7]. Evaluation of the vertex values ψn from the
cell values φi is based on the simple linear combination ψn “

ř

iPµpnq βniφi, where µpnq
is the index set of the cells in touch with vertex n. First-order approximation using the
inverse-distance between the vertex and the centroids of the cells as the weighting factors
has been first introduced by Frink [22] and [23] in 1991 and 1992. Up to the authors
knowledge, the first document which deals with second-order reconstruction at the vertex
is the paper of Holmes and Connel [17] but is important to mention that in this paper it
is considered vertex to vertex reconstructions. The first paper which considers second-
order cell to vertex reconstruction is the study of Rauch, Batina, and Yang [21] in 1991
through a minimization of a functional based on the coefficients βni with a second-order
constraint: the reconstruction is exact for affine functions. The method has been adapted
for the three-dimensional context by Frink [24] in 1994 (see also the paper of Jawahar
and Kamath [25] for a review in 2000 on cell to vertex reconstructions). At last and very
recently in 2013, Chandrashekar and Garg [8] use the Frink approach introducing some
weights in the minimizer functional to determine the coefficients βni under the affine
constraints. We also would like to mention the work of Shen and Yuan [28] where they
do not use any minimization technique and the coefficients are deduced from geometrical
arguments.

All the previous methods are based on a direct evaluation of the coefficients βni but
Coudière, Vila, and Villedieu proposed in [11] an alternative way to compute the val-
ues on the vertices by minimizing a functional based on coefficients a, b, and c of the
affine reconstruction a ` bx ` cy under some restrictions to preserve the second-order.
Bertolazzi and Manzini proposed several extensions [3, 7], in particular, they introduce
weighted functionals to include the boundary conditions. To sum-up, there exist two
main techniques to determine the values at the vertices from the values associated to the
cells: the Frink-Rauch-Batina-Yang way based on the minimization of the βni and the
Coudière-Vila-Villedieu-Bertolazzi-Manzini way based on the minimization of the poly-
nomial coefficients. From our point of view, the latter one presents a major drawback
since we can not control the positivity of the coefficients βni. Indeed, one checks easily
that the maximum principle is achieved if coefficients βni correspond to a convex com-
bination. This property is mandatory when dealing with physical quantities such as a
concentration, a mass fraction, or a density.

The present paper is dedicated to a new method to perform the cell-to-vertex recon-
struction.

• We adopt the first approach (Frink-like method) where the non-negativity of the
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coefficients is guaranteed. To this end, we consider a more general functional to
minimize introducing the notion of target combination, i.e. a set of coefficients θni
corresponding to a convex combination but that do not, a priori, provide a second-
order approximation. The method is detailed for the two-dimensional situation
with an extension for three-dimensional geometries.

• The second issue we address is that our formulation considers finite volume schemes
where the cell-value is associated to a point which may be not the mass centre still
preserving the second-order. The Dirichlet and Neumann conditions discretization
is performed in the same way to provide an effective second-order scheme.

• The third question we tackle concerns the reactive term where we propose a new
scheme which preserves the second-order even if the cell-value location is not the
mass centre. Such a discretization turns to be essential when dealing with parabolic
problems with an implicit time discretization we shall detail in the context of the
Crank-Nicholson scheme for time dependent cases.

• We present a large set of numerical tests in 2D and 3D geometries for steady and
time dependent regimes in order to prove the accuracy and the stability of the
technique.

We would like to mention that all the problems we shall consider assume that the
solution is smooth and we intentionally avoid the problem of the limiting/stabilization
procedure one has to carry out for irregular solutions. A usual way consists to apply the
MUSCL strategy [3, 4] or to introduce an artificial diffusion to stabilize the scheme [6].
Such a question will be tackled in future studies with the help of the MOOD method
[12].

The paper is organized as follows. After the introduction of the generic finite volume
scheme for for the steady-state convection-diffusion-reaction problem in section 2, we
address the cell to vertex reconstruction issue in the third section. The fourth section is
dedicated to the polynomial reconstructions while section 5 is devoted to the details of
the finite volume discretization. Section 6 is devoted to the extension to time-dependent
problems. The numerical tests are given in the seventh section and the study ends with
a conclusion and some perspectives.

2. Finite volume for the steady-state convection-diffusion-reaction problem

Let Ω be an open bounded polygonal domain of R2 with boundary Γ. We seek
function φ ” φpx, yq, solution of the steady-state convection-diffusion-reaction equation

∇ ¨ pV φ´ κ∇φq ` rφ “ f in Ω, (1)

where the diffusive coefficient κ ” κpx, yq, the velocity V “ pu, vq ” pupx, yq, vpx, yqq, the
reaction coefficient r ” rpx, yq, and the source term f “ fpx, yq are all regular functions
on Ω and the diffusive coefficient satisfies κpx, yq ě κ0 ą 0. Boundary Γ is partitioned
into three subsets ΓD, ΓT, and ΓP in order to prescribe different types of boundary
conditions, namely:

• Dirichlet: φ “ φD, on ΓD;
3



b

b

b

b

b
b

b

b

b

b
ci

cj

qj

qi

mjD

mjT

mij

qk

ck

vn

vk
vm

vℓ

eij
eiT

ejD

nij

njD

niT

b

pki

Figure 1: Mesh notation considering real cells (solid lines) and ghost cells (dashed lines).

• total Neumann: V ¨ nφ´ κ∇φ ¨ n “ gT, on ΓT;

• partial Neumann: ´κ∇φ ¨ n “ gP, on ΓP,

where φD ” φDpx, yq, gT ” gTpx, yq, and gP ” gPpx, yq are given regular functions, and
n denotes the unit normal to Γ outward to Ω.

2.1. Mesh

To design the numerical scheme, we denote by T a mesh of Ω consisting of I non-
overlapping convex polygonal cells ci, i “ 1, . . . , I, and N vertices vn, n “ 1, . . . , N . We
adopt the following conventions (see Fig. 1) we detail hereafter:

• for any cell ci, Bci represents its boundary and |ci| its area; we denote by qi, bi,
and mi a generic point, the centroid, and the mass centre of ci, respectively;

• two cells ci and cj share a common edge eij whose length is |eij | and the midpoint
is mij ; nij is the unit normal vector to eij outward to ci, i.e. nij “ ´nji; if an
edge of ci belongs to the boundary Γ, we replace the index j by D, P, or T if eij
belongs to ΓD, ΓP, or ΓT, respectively;

• for any cell ci we associate the index set νpiq Ă t1, ¨ ¨ ¨ , Iu Y tD,T,Pu such that
j P νpiq if eij is a common edge of ci and cj or with the boundary Γj if j “ tD,T,Pu;

• if ci shares an edge with ΓP or ΓT, ck is the symmetric ghost cell and qk is the
symmetric point of qi with respect to the common edge with k P tI` 1, . . . , I`Ku
(K being the number of ghost cells).

Remark 2.1. If vn is a vertex at the intersection of ΓD and ΓP, or ΓD and ΓT, we assume
that vn belongs to ΓD and will be treated as a Dirichlet point.
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2.2. Generic finite volume scheme

To provide the finite volume scheme, equation (1) is integrated over each cell of the
mesh

ż

ci

∇ ¨ pV φ´ κ∇φqdA`

ż

ci

rφdA “

ż

ci

fdA,

and applying the divergence theorem we get

ÿ

jPνpiq

|eij |

|ci|

1

|eij |

ż

eij

pV ¨ nijφ´ κ∇φ ¨ nijqds`
1

|ci|

ż

ci

rφdA´
1

|ci|

ż

ci

fdA “ 0. (2)

Let φi be an approximation of φ at qi and let gather all the approximations in vector
Φ “ pφiqi“1,...,I . We then substitute the exact scheme (2) by a second-order accuracy
numerical scheme, with respect to the mesh parameter h, and depending on vector Φ,

ÿ

jPνpiq

|eij |

|ci|
FijpΦq `RipΦq ´ fipΦq “ Oph2q, (3)

where Fij is an approximation of the convective and diffusive fluxes through the edge
eij , Ri is an approximation of the mean value of the reactive part over ci, and fi is an
approximation of the mean value of f over ci.

3. The interpolation method at the vertices

We want to design a second-order finite volume scheme using both approximations
at the reference cell points and at the vertices where the unknowns are only located in
the cells. Approximations of the gradient in the cells and at the edges are then obtained
with the Green-Gauss theorem (diamond scheme [11, 26, 25, 4] or diamond-path scheme
[10]). It results that an accurate evaluation of the vertex values with respect to the cell
values must be implemented. Let ψn, n “ 1, . . . , N , be an approximation of φ at the
vertex vn and let gather all these approximations in vector Ψ “ pψnqn“1,...,N . The goal
of this section is to design a procedure to compute Ψ from Φ.

3.1. The stencils and the data

For each vertex vn, we associate two stencils: the first one µpnq Ă t1, . . . , Iu consisting
of the neighbor cells of the mesh (real cells) and the second one γpnq Ă t1, . . . , I `Ku
composed both of real cells and ghost cells if necessary. In practice, for an inner vertex
(a vertex which does not belong to the boundary), we choose γpnq “ µpnq and ` P µpnq
if vn is a vertex of cell c` (Fig. 2-left). For a vertex on ΓD, the two index sets are not
necessary since the value is prescribed by the Dirichlet condition. For a vertex on ΓT or
ΓP (Neumann conditons), µpnq consists of the neighbor real cells c` (Fig. 2-centre) while
γpnq also includes the ghost cells which share the vertex vn (Fig. 2-right).
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Figure 2: Stencils (colored cells) for the vertices in different situations: µpnq “ γpnq for an inner vertex
(left), µpnq for a vertex on ΓT or ΓP (centre), and γpnq for a vertex on ΓT or ΓP (right).

Vector Φ “ pφiqi“1,¨¨¨ ,I corresponds to the values associated to the real cells but
approximations at the ghost cells must be evaluated in order to use index set γ. To
this end, we seek a combination of the values associated to the real cells to provide an
approximation at the reference cell points of the ghost cells. Let ck, k “ I`1, . . . , I`K,
be a ghost cell and ci its symmetric real cell. We denote by pki the midpoint of the
line segment defined by qi and qk and by eiT and eiP the edges that belong to the total
Neumann boundary and the partial Neumann boundary, respectively (see Fig. 1). To
determine φk as an approximation of φ at qk, two situations arise:

• if ck shares an edge with ΓP, then we use the approximation

gP ppkiq “ ´κ ppkiq
φk ´ φi
|qkqi|

(4)

from which we deduce φk;

• if ck shares an edge with ΓT, then we use one of the following approximations:

gT ppkiq “ V ppkiq ¨ niT
φk ` φi

2
´ κ ppkiq

φk ´ φi
|qkqi|

, (5a)

gT ppkiq “ rV ppkiq ¨ niTs
`
φi ` rV ppkiq ¨ niTs

´
φk ´ κ ppkiq

φk ´ φi
|qkqi|

, (5b)

with the notations rvs` “ maxp0, vq and rvs´ “ minp0, vq, v P R, from which we compute
φk.

Remark 3.1. Point pki is the midpoint between qi (the real cell) and qk (the ghost cell)
hence formula (4) is a second-order centered scheme since we evaluate gP and κ at pki.
The same property holds for (5a) and (5b). All the numerical experiences with Neumann
condition confirm that all these approximations are second-order.

3.2. The interpolation method

We shall present the interpolation procedure when considering the stencils µpnq since
the technique for the stencils γpnq is identical. Let consider the vertex vn and its asso-
ciated stencil µpnq. We then define ψn as

ψn “
ÿ

iPµpnq

βniφi, (6)
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where we gather in vector Bn “ pβniqiPµpnq the coefficients of the linear combination of
the cell data.

3.2.1. P0 interpolation

Following Frink [22], we choose Bn such that

ÿ

iPµpnq

βni “ 1, (7)

which implies that constant functions satisfy equation (6). For instance, the inverse
cell-vertex distance is proposed by [23] but other choices such as

βni “
|ci|

ř

jPµpnq

|cj |
(8)

can also be considered. Unfortunately, it is well-known that constraint (7) only provides
an effective first-order scheme (see [7] p. 19).

3.2.2. P1 interpolation

As observed in [11] and [21], one has to reinforce the restriction such that equation (6)
is consistent for first-degree polynomials. Let us define the operators

f1pB
nq “

ÿ

iPµpnq

βni,

f2pB
nq “

ÿ

iPµpnq

βnixni,

f3pB
nq “

ÿ

iPµpnq

βniyni,

where pxni, yniq “ pqix ´ vnx, qiy ´ vnyq “ vnqi. We aim to choose vector Bn such that

f1pB
nq “ 1, (9a)

f2pB
nq “ 0, (9b)

f3pB
nq “ 0. (9c)

The linear system (9a)-(9c) has a unique solution in very particular situations (#µpnq “
3 for instance, where # denotes the cardinal of the set) hence one has to design a strategy
to determine a solution in the general case. We propose here a new method based on the
minimization of a functional.

Let θn “ pθniqiPµpnq be a set of target coefficients such that
ř

iPµpnq θni “ 1. We
define the quadratic functional

EpBnq “
1

2

ÿ

iPµpnq

ωnipβni ´ θniq
2 (10)
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where ωni are positive weights. We seek the unique vector Bn which minimizes the
quadratic functional (10) under constraints (9a)-(9c). Using the classical minimiza-
tion method with the Lagrange multipliers, the problem turns to find vectors Λn “
pλn1, λn2, λn3q and Bn such that

∇EpBnq ` λn1∇f1pBnq ` λn2∇f2pBnq ` λn3∇f3pBnq “ 0.

We deduce that

βni “ θni ´
1

ωni
pλn1 ` λn2xni ` λn3yniq, i P µpnq. (11)

Taking in consideration (9a)-(9c) and (11), we obtain the linear system

λn1
ÿ

iPµpnq

1

ωni
` λn2

ÿ

iPµpnq

xni
ωni

` λn3
ÿ

iPµpnq

yni
ωni

“ 0,

λn1
ÿ

iPµpnq

xni
ωni

` λn2
ÿ

iPµpnq

x2ni
ωni

` λn3
ÿ

iPµpnq

xniyni
ωni

“
ÿ

iPµpnq

θnixni,

λn1
ÿ

iPµpnq

yni
ωni

` λn2
ÿ

iPµpnq

xniyni
ωni

` λn3
ÿ

iPµpnq

y2ni
ωni

“
ÿ

iPµpnq

θniyni.

This linear system has a unique solution Λn from which we determine the coefficients of
vector Bn with equation (11). Several sets of target coefficients θni and weights ωni will
be proposed. For instance, a simple example may be

θni “
|ci|

ř

jPµpnq

|cj |
, ωni “ 1, i P µpnq. (12)

Notice that the Rauch, Batina, and Yang [21] method corresponds to the case θni “
1

#µpnq
and ωni “ 1.

Remark 3.2. In [7] pp. 19-20, the authors also propose a method to determine the coeffi-
cients such that (9a)-(9c) hold, based on an initial set of coefficients (target coefficients)
which only satisfy constraint (7), but the method does not guarantee the non-negativity
of the new coefficients.

3.3. Positivity principle preserving

Positivity preserving is a mandatory property when dealing with physical quantities
such as concentration or density. We aim that the reconstructions guarantee such proper-
ty and one easily deduces that a necessary and sufficient condition is the non-negativity
of coefficients βni ě 0, i P µpnq, for vertex vn. The P0 interpolation preserves this pro-
perty when, for instante, equation (8) is considered but the P1 interpolation does not
guarantee the positivity principle preservation. To overcome this problem, for a given
vertex vn we consider all the subsets of three elements µkpnq Ă µpnq, k “ 1, . . . ,

`

#µpnq
3

˘

,
and the associated vector αnk P R3 formed by the barycentric coordinates of vertex vn
with respect to points qi, i P µkpnq. For each set of barycentric coordinates αnk, we
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denote by mnk the smallest coordinate. There exists at least one configuration µKpnq

which maximizes mnk, i.e. mnK ě mnk, k “ 1, . . . ,
`

#µpnq
3

˘

. We then set βni equal to
the corresponding barycentric coordinate if i P µKpnq and zero elsewhere. One can easily
check that the positivity preserving principle is achieved if vn is a point strictly inside
the triangle with vertices qi, i P µKpnq as shown in Fig. 3. Notice that this technique
does not require any minimization functional like (10).

b

b

b

b

b
b

Figure 3: A combination of three cells of µpnq are gathered in µkpnq and corresponds to a set of positive
barycentric coordinates.

Remark 3.3. The extension for the three-dimension case is straightforward. Based on
relation (6), we adapt the restrictions (9a)-(9c) adding one more condition with respect
to the z component. Applying the same minimization with constraints procedure, we
then get a very similar relation as (11) involving four Lagrange multipliers. The target
coefficients can be given by relation (12) where, this time, |ci| is the volume of the cell.

Remark 3.4. The non-negativity of the coefficients avoids the clipping technique where
negative coefficients are set to zero (see [13], p. 12) which may dramatically reduce the
scheme order.

4. Polynomial reconstructions

We now build the local polynomial approximations of the underlying solution invol-
ving the two vectors Φ and Ψ. As a first stage, we associate a stencil of vertices for each
cell and edge: Si stands for the index set of the vertices of cell ci while Sij is the index
set of vertices of edge eij , j P t1, . . . , I,Du. The second stage, detailed in the following
subsections, consists in defining the polynomial reconstructions based on the entries of
vectors Φ and Ψ associated to the appropriated stencils.

4.1. Polynomial reconstructions in the cells

For each cell ci we define the conservative polynomial (see [9]) of degree 1 by

φφφipXq ” φφφipx, yq “ φi ` Ci,x px´ qixq ` Ci,y py ´ qiyq ,

where Ci,x and Ci,y are the coefficients to be determined. For a given stencil Si we
consider the quadratic functional

rEipCi,x, Ci,yq “
ÿ

nPSi

pφφφipvnq ´ ψnq
2

(13)
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and we denote by rCi,x and rCi,y the unique coefficients that minimize the quadratic func-

tional (13) with rφφφi ”
rφφφipx, yq the associated polynomial function (see Fig. 4, left) which

corresponds to the best approximation in the least squares sense of the data of the stencil.

b
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Figure 4: First-degree polynomials for cells (left) and for edges (centre and right). The red dots corre-
spond to the values used in the polynomials reconstructions.

4.2. Polynomial reconstructions at inner edges and Dirichlet boundary

For a given inner edge eij , we define the polynomial of degree 1 by

φφφijpx, yq “ φi ` Cij,xpx´ qixq ` Cij,ypy ´ qiyq,

where Cij,x and Cij,y are the coefficients to be determined. We denote by rCij,x and
rCij,y the unique coefficients such that the associated polynomial function rφφφij ”

rφφφijpx, yq
interpolates φi, defined at qi, and ψn, defined at vn, n P Sij (see Fig. 4, centre). Notice

that we also define the polynomial rφφφji ”
rφφφjipx, yq using the reference cell point qj and

the associated value φj (see Fig. 4, right).

For an edge eiD Ă ΓD, we proceed in the same way to provide polynomial rφφφiD ”

rφφφiDpx, yq.

Remark 4.1. For the three-dimensional case, we shall consider polynomial function as

φφφijpx, y, zq “ φi ` Cij,xpx´ qixq ` Cij,ypy ´ qiyq ` Cij,zpz ´ qizq.

For tetrahedron cells, the faces are triangles hence the polynomial reconstructions are
straightforward as in the bidimensional case. For more complex faces (with more vertices)
one has to introduce a least-square approximation to provide the polynomial approxima-
tion.

5. Second-order scheme

In section 3 we compute Ψ from Φ (and eventually from φk, k “ I ` 1, . . . , I `K)
and in section 4 we provide the local polynomial reconstructions based on vectors Ψ and
Φ. We are now ready to return to the generic finite volume scheme (3) and compute the
numerical approximations Fij , Ri, and fi.
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5.1. Convective and diffusive terms

Having all the polynomial reconstructions in hand, we detail the numerical fluxes Fij
with respect to the interfaces of the cells of the mesh.

First, for an inner edge eij we define the polynomials

qφφφij “
qφφφji “ σij rφφφij ` σji

rφφφji. (14)

We choose σij “
|ci|

|ci|`|cj |
and σji “

|cj |
|ci|`|cj |

for the sake of simplicity but situations with

discontinuous diffusion coefficients for instance may require other expressions.

Remark 5.1. Let denote by rqi, vn, qj , vss the diamond cell associated to edge eij . There
exists a unique discrete gradient ∇φ̄ij defined by ∇φ̄ij ¨ qiqj “ φj ´ φi and ∇φ̄ij ¨ vnvs “
ψn ´ ψs. It is not possible to obtain such a gradient with the combination (14) except
for the case when the intersection of segment rqi, qjs with eij exactly corresponds to the
midpoint.

Remark 5.2. Consider the pure diffusive problem with Dirichlet boundary condition.
In [4] (see also [11]), the authors show that the choice of σij does not guarantee the
maximum principle property for the discrete solution and one has to combine the left
and right one-sided gradients in a nonlinear way, namely σij depends on the function φ
[4] p. 2183. Nevertheless, all the numerical tests have been performed with the constant
σij and no maximum principle violation has been reported.

We have four situations:

• for an inner edge eij , the numerical flux at the midpoint mij writes

Fij “ rV pmijq ¨ nijs
`
rφφφipmijq ` rV pmijq ¨ nijs

´
rφφφjpmijq ´ κpmijq∇qφφφijpmijq ¨ nij ;

• for a Dirichlet boundary edge eiD, the numerical flux at the midpoint miD writes

FiD “ rV pmiDq ¨ niDs
`
rφφφipmiDq`rV pmiDq ¨ niDs

´
φDpmiDq´κpmiDq∇rφφφiDpmiDq¨niD;

• for a partial Neumann boundary edge eiP, the numerical flux at the midpoint miP

writes
FiP “ V pmiPq ¨ niPrφφφipmiPq ` gPpmiPq;

• for a total Neumann boundary edge eiT, the numerical flux at the midpoint miT

writes
FiT “ gTpmiTq.

5.2. Reactive and source terms

Second-order approximations Ri and fi of the reactive and source terms require an
extra effort because these expressions do not derive from a flux. To derive second-order
approximations, we split the cell ci into #νpiq triangular subcells denoted by cij , j P νpiq,
associated to edge eij (see Fig. 5).
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Figure 5: Representation of two subcells, cij and cji.

The reactive part Ri will be evaluated using one of the following approximations:

Ri “ rpqiqφi, (15)

Ri “
1

|ci|

»

–

ÿ

jPνpiq

|cij |

3

¨

˝

ÿ

nPSij

rpvnqψn ` rpqiqφi

˛

‚

fi

fl . (16)

If ci is a triangle, equation (16) turns into

Ri “
1

3

ÿ

nPSi

rpvnqψn.

The source term is evaluated with

fi “
1

|ci|

»

–

ÿ

jPνpiq

|cij |

3

¨

˝

ÿ

nPSij

fpvnq ` fpqiq

˛

‚

fi

fl ,

which can be simplified if ci is a triangular cell to

fi “
1

3

ÿ

nPSi

fpvnq.

Remark 5.3. For the particular qi “ mi, one can use the very simple quadrature rule
fi “ fpqiq to derive a second-order approximation of the mean value of f over the cell ci.
It is important to note that this simple quadrature rule does not provide a second-order
approximation for a generic point qi.

Remark 5.4. One has to slightly modify formula (16) for the three-dimensional case
setting

Ri “
1

|ci|

»

–

ÿ

jPνpiq

|cij |

4

¨

˝

ÿ

nPSij

rpvnqψn ` rpqiqφi

˛

‚

fi

fl , (17)

where Sij is the set of the vertices of the face fij . If ci is a tetrahedron, equation (17)
turns into

Ri “
1

4

ÿ

nPSi

rpvnqψn.
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5.3. Residual scheme

Since Fij , Ri, and fi linearly depend on vector Φ, we define the affine operator
Φ Ñ GipΦq for each cell ci, i “ 1, . . . , I, as

GipΦq “
ÿ

jPνpiq

|eij |

|ci|
FijpΦq `RipΦq ´ fipΦq,

which corresponds to the finite volume scheme cast (3) in the residual form.
Gathering all the components GipΦq of the residual in vector GpΦq, we obtain an

affine operator from RI into RI such that vector Φ‹, solution of the problem GpΦq “ 0I ,
provides a constant piecewise approximation of the problem. We obtain a matrix-free
scheme and the affine problem is solved by applying a GMRES procedure as explained
in [9].

6. Extension to time-dependent problems

We dedicate this section to the adaptation of the presented cell-vertex scheme to
solve time-dependent convection-diffusion-reaction problems. As for the steady-state
problems, let denote the spatial domain by Ω, an open bounded polygonal domain of R2

with boundary Γ “ ΓD Y ΓT Y ΓP, and let
“

t0, tf
‰

be the time domain. We denote by
φ ” φpx, y, tq the solution of the time-dependent convection-diffusion-reaction equation,
given by

Bφ

Bt
`∇ ¨ pV φ´ κ∇φq ` rφ “ f, in Ωˆ

“

t0, tf
‰

, (18)

where the velocity V “ pu, vq ” pupx, y, tq, vpx, y, tqq, the diffusion coefficient κ ”

κpx, y, tq, the reaction coefficient r ” rpx, y, tq, and the source term f ” fpx, y, tq
are given regular functions. Equation (18) is equipped with φD ” φDpx, y, tq on ΓD,
gP ” gPpx, y, tq on ΓP, and gT ” gTpx, y, tq on ΓT with respect to Dirichlet, partial
Neumann, and total Neumann time-dependent boundary conditions, respectively (see
section 2). An initial condition is also required,

φp¨, ¨, t0q ” φ0, in Ω,

where φ0 ” φ0px, yq is a given function.
We introduce vector Φptq “ pφiptqqi“1,...,I where φiptq is an approximation of φpqix, qiy, tq

while ψnptq, n “ 1, . . . , N , is computed from Φptq using the cell to vertex interpolation
time-parameterized method explained in section 3. To design the finite volume scheme
for time-dependent problems, we apply the method of lines starting by integrating equa-
tion (18) over cell ci to provide the semi-discretization in space

d

dt
Mipt,Φptqq `

ÿ

jPνpiq

|eij |

|ci|
Fijpt,Φptqq `Ript,Φptqq ´ fiptq “ Oph2q, (19)

where Mipt,Φptqq is an approximation of the mean value of φ over cell ci at time t, and
Fijpt,Φptqq, Ript,Φptqq, and fiptq are computed as explained in section 5 considering a
fixed time value t.
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We compute Mipt,Φptqq using one of the following approximations:

Mi “ φiptq, (20)

Mi “
1

|ci|

»

–

ÿ

jPνpiq

|cij |

3

¨

˝

ÿ

nPSij

ψnptq ` φiptq

˛

‚

fi

fl , (21)

following the notations already introduced in section 5.
Note thatMipt,Φptqq corresponds to the reactive part when the reaction coefficient is

r “ 1 and relations (20) and (21) derive from (15) and (16), respectively, (see section 5.2).
In the same way, equation (21) can be substituted by

Mi “
1

3

ÿ

nPSi

ψnptq.

when cell ci is a triangle.
We rewrite equation (19) in the residual form considering an extension of operator

GipΦq to a time-dependent situation,

d

dt
Mipt,Φptqq ` Gipt,Φptqq “ Oph2q, (22)

where

Gipt,Φptqq “
ÿ

jPνpiq

|eij |

|ci|
FijpΦptqq `RipΦptqq ´ fiptq.

To proceed with the time discretization, let K be a positive integer and consider

the time subdivision tk “ k∆T , k “ 0, . . . ,K, where ∆t “ tf

K . We now apply the
Crank-Nicholson method to equation (22) which leads to

MipΦ
k`1q ´MipΦ

kq

∆t
`
Giptk`1,Φk`1q ` Giptk,Φkq

2
“ Oph2q, (23)

where vector Φk, k “ 1, . . . ,K, gathers the approximations φki , i “ 1, . . . , I of φ at
the reference cell point qi at time tk. Note that we substitute vector Φptq with Φk in
equations (20) and (21) to compute MipΦ

kq.
Since Gi andMi linearly depend on vector Φk, we define the affine operator pΦk,Φk`1q Ñ

HipΦk,Φk`1q, k “ 0, . . . ,K ´ 1, for each cell ci, i “ 1, . . . , I, and for each time interval
“

tn, tn`1
‰

as

Hiptk, tk`1,Φk,Φk`1q “
MipΦ

k`1q ´MipΦ
kq

∆t
`
Giptk`1,Φk`1q ` Giptk,Φkq

2
,

which corresponds to the finite volume scheme cast (23) in the residual form. Gathering
all i componentsHiptk, tk`1,Φk,Φk`1q provides the residual operatorHptk, tk`1,Φk,Φk`1q.

We consider the affine operator from RI into RI such that for tk, tk`1, and vector Φk

we associate the operator Φ Ñ Hptk, tk`1,Φk,Φq, and we seek vector Φ “ Φk`1 solution
of Hptk, tk`1,Φk,Φq “ 0I . For t0 vector Φ0 is given by the initial condition φ0 setting
φ0i “ φ0pqix, qiyq, i “ 1, . . . , I.

We would like to highlight that for each time step we obtain a matrix-free scheme
and the affine problem is solved by applying a GMRES procedure as explained in [9].

14



7. Numerical tests

In this section we present several tests to quantitatively and qualitatively assess the
robustness and accuracy of the proposed method. In order to test the implementation
of the method we check situations for which we manufacture a solution. All the simula-
tions have been carried out on the academic domain Ω “ s0, 1r

2
(expect when explicitly

mentioned).
Given the numerical approximation Φ‹ “ pφ‹i qi“1,...,I of φ at the reference cell points

of a given mesh T , we evaluate the error using the L1- and the L8-norms, given by

E1pT q “
I
ÿ

i“1

|φ‹i ´ φpqiq||ci| and E8pT q “
I

max
i“1

|φ‹i ´ φpqiq|, (24)

respectively. We also compute the convergence rate of the Lγ-norm error, γ “ 1,8,
obtained with two different meshes T1 and T2 consisting of I1 and I2 cells, respectively,
as

OγpT1, T2q “ 2
| logpEγpT1q{pEγpT2qq|

| logpI1{I2q|
.

The notation P0 and P1 means that we employ the P0 and the P1 interpolations,
respectively, to compute Ψ (see sections 3.2.1 and 3.2.2). In all tests (except when
explicitly mentioned), we assume that q` “ m`, ` “ 1, . . . , I`K, the weights are ωni “ 1,
and the target coefficients θni are given by (12).

7.1. Convection-diffusion problem with Dirichlet condition

We consider the simple linear convection-diffusion problems with homogeneous Dirich-
let condition (see Fig. 6, left). For the sake of simplicity, we assume a constant diffusion
coefficient κ “ 1 and a constant velocity V “ pu, vq where we set V “ p1, 2q for the low
Péclet number case (diffusive regime) and V “ p100, 100q for the large Péclet number
case (convective regime). The exact solution is given by φpx, yq “ Cαpxqβpyq with C P R
and

αpxq “
1

u

ˆ

x´
exppuxq ´ 1

exppuq ´ 1

˙

, βpyq “
1

v

ˆ

y ´
exppvyq ´ 1

exppvq ´ 1

˙

,

while the right-hand side is fpx, yq “ Cpαpxq ` βpyqq with the Dirichlet boundary con-
dition φDpx, yq “ 0 on ΓD “ Γ. In order to normalize the exact solution such that the
maximum of φ in Ω̄ is 1, we take C “ 65 for the low Péclet case and C “ 11236 for the
large Péclet case (see Fig. 6, centre and right).
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Figure 6: Domain and boundary partitions (left) and exact solutions for the low Péclet number case
(centre) and for the large Péclet number case (right) with fine meshes.

To perform the simulations and compute the convergence rates, we consider successive
finer unstructured meshes considering triangular Delaunay meshes and deformed quadri-
lateral meshes. For the low Péclet number case the meshes are regular (see Fig. 7, left
and centre) while we use locally refined triangular Delaunay meshes for the simulations
with the large Péclet number case in order to suit well the boundary layer induced by
the homogeneous Dirichlet condition (see Fig. 7, right). Scheme robustness and accu-
racy assessment with deformed meshes are important to check the method capacity to
handle complex meshes still preserving second-order convergence rates. These meshes
were computed from structured meshes where we randomly moved each inner vertex
with a specific deformation factor (see [9]). In the present experience, we choose a 30%
deformation.
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Figure 7: Uniform triangular Delaunay mesh (left), deformed quadrilateral mesh (centre), and locally
refined triangular Delaunay mesh (right).

7.1.1. Low Péclet number with mi as the reference cell point

We report in Table 1 (Delaunay mesh) and Table 2 (deformed mesh) the errors and
the convergence rates for the low Péclet number case using the P0 and P1 interpolations.
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Table 1: Errors and convergence rates for the low Péclet case using regular triangular Delaunay meshes.

I P0 P1

E1 O1 E8 O8 E1 O1 E8 O8

944 1.06E´03 — 3.43E´03 — 6.70E´04 — 3.01E´03 —

4038 7.55E´04 0.46 2.17E´03 0.63 1.44E´04 2.12 7.89E´04 1.84

16374 7.48E´04 0.01 1.98E´03 0.13 3.61E´05 1.98 2.18E´04 1.84

44050 7.05E´04 0.12 1.79E´03 0.21 1.30E´05 2.06 7.94E´05 2.04

Table 2: Errors and convergence rates for the low Péclet case using deformed meshes.

I P0 P1

E1 O1 E8 O8 E1 O1 E8 O8

1600 2.63E´02 — 6.55E´02 — 3.22E´04 — 1.99E´03 —

6400 2.72E´02 — 6.68E´02 — 8.44E´05 1.93 5.50E´04 1.85

16900 2.75E´02 — 6.66E´02 — 3.16E´05 2.03 2.23E´04 1.86

44100 2.79E´02 — 6.74E´02 — 1.23E´05 1.97 8.80E´05 1.94

For the Delaunay meshes, an effective second-order accuracy is achieved with the P1

interpolation whereas the P0 method does not converge. When dealing with deformed
meshes, the second-order convergence with the P1 reconstruction is preserved but no
convergence with the P0 is achieved. These two examples demonstrate that the P1

technique guarantees the second-order convergence and definitively disqualify the P0

interpolation.

7.1.2. Low Péclet with random reference cell points

We now consider simulations with a random location of the reference cell point, i.e.
any point in ci is an admissible location of qi. To do so, an aleatory displacement of the
mass centre is performed, controlled by a given deformation factor. More precisely, for
each cell ci, let the point pi P ci be a random point given by

pi “

ř

nPSi

ξinvn

ř

nPSi

ξin
,

where ξin P r0, 1s is a random variable following the uniform law. We then define qi “
mi ` α ppi ´miq, with α P r0, 1s the deformation factor. Notice that α “ 1 gives qi “ pi
and the point qi can belong to the boundary of the cell, leading to an ill-conditioned
problem.

We consider the low Péclet solution with triangular Delaunay meshes and deformed
meshes but with random locations qi taking α equals to 0.5, 0.7, and 0.9 to avoid ill-
conditioned situations (see Fig. 8).
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Figure 8: Reference cell points with random locations obtained with α “ 0.9 for a triangular Delaunay
mesh (left) and a deformed quadrilateral mesh (right).

Tables 3 and 4 provide the convergence rates for Delaunay and deformed meshes,
respectively, using the P1 interpolation. We get an approximated second-order accuracy
even with 90% of deformation (α “ 0.9) for the L1-norm. The convergence rates are not
so straightforward since the cell collocation point qi randomly changes from cell to cell
and from mesh to mesh. Additionally, we obtain more accurate approximations with low
deformation factors as expected.

Table 3: Errors and convergence rates for the low Péclet case using triangular Delaunay meshes and
random locations of the reference cell points.

I α “ 0.5 α “ 0.7 α “ 0.9

E1 O1 E8 O8 E1 O1 E8 O8 E1 O1 E8 O8

944 1.63E´03 — 1.28E´02 — 2.44E´03 — 2.12E´02 — 3.75E´03 — 3.44E´02 —

4038 4.63E´04 1.73 2.69E´03 2.14 6.99E´04 1.72 4.90E´03 2.02 1.07E´03 1.73 8.89E´03 1.86

16374 1.19E´04 1.95 7.61E´04 1.81 1.86E´04 1.89 1.33E´03 1.86 2.92E´04 1.85 2.35E´03 1.90

44050 4.53E´05 1.95 3.53E´04 1.56 6.90E´05 2.01 6.23E´04 1.54 1.05E´04 2.07 1.23E´03 1.31
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Table 4: Errors and convergence rates for the low Péclet case using deformed meshes and random
locations of the reference cell points.

I α “ 0.5 α “ 0.7 α “ 0.9

E1 O1 E8 O8 E1 O1 E8 O8 E1 O1 E8 O8

1600 4.64E´04 — 2.37E´03 — 5.80E´04 — 4.04E´03 — 7.42E´04 — 6.92E´03 —

6400 1.33E´04 1.80 8.09E´04 1.55 1.76E´04 1.72 1.16E´03 1.80 2.31E´04 1.68 1.61E´03 2.11

16900 6.48E´05 1.48 3.70E´04 1.61 8.55E´05 1.48 5.05E´04 1.71 1.13E´04 1.48 7.05E´04 1.70

44100 2.36E´05 2.11 1.66E´04 1.67 3.14E´05 2.09 2.19E´04 1.74 4.14E´05 2.09 2.89E´04 1.86

7.1.3. Low Péclet number with weighted reconstructions

The quadratic functional (10) depends on two sets of coefficients: the target coef-
ficients θni and the weights ωni. The questions we tackle now is the impact of target
coefficients and weights for a very simple situation such as the Low Péclet problem. To
this end, we test several sets of weights and target coefficients and assess the accuracy
sensitivity with respect to these parameters. We recall that all the previous numerical
tests have been carried out with ωni “ 1 and the target coefficients θni were given by
(12). We first consider the weighted vertex reconstruction setting

ωni “

1
|vnci|

ř

jPµpnq

1
|vncj |

(25)

and the target coefficients θni as (12). We report in Table 5 the errors and the convergence
rates using regular Delaunay meshes with qi “ mi. The left panel presents the errors
with a uniform distribution of the weights (ωni “ 1), unweighted case, whereas the right
panel gives the results with the weighted interpolation. In the same way, we report in
Table 6 the results using deformed meshes with random locations qi taking α “ 0.9.

Table 5: Errors and convergence rates for the low Péclet case with uniform (left panel) and non-uniform
(right panel) weights using the mass centre as the location of the reference cell points.

I unweighted weighted

E1 O1 E8 O8 E1 O1 E8 O8

944 6.70E´04 — 3.01E´03 — 6.71E´04 — 3.01E´03 —

4038 1.44E´04 2.12 7.89E´04 1.84 1.44E´04 2.12 7.89E´04 1.84

16374 3.61E´05 1.98 2.18E´04 1.84 3.61E´05 1.98 2.18E´04 1.84

44050 1.30E´05 2.06 7.94E´05 2.04 1.30E´05 2.06 7.94E´05 2.04
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Table 6: Errors and convergence rates for the low Péclet case with uniform (left panel) and non-uniform
(right panel) weights using random reference cell points taking α “ 0.9.

I unweighted weighted

E1 O1 E8 O8 E1 O1 E8 O8

1600 7.42E´04 — 6.92E´03 — 7.48E´04 — 6.76E´03 —

6400 2.31E´04 1.68 1.61E´03 2.11 2.30E´04 1.70 1.63E´03 2.05

16900 1.13E´04 1.48 7.05E´04 1.70 1.13E´04 1.46 7.35E´04 1.64

44100 4.14E´05 2.09 2.89E´04 1.86 4.14E´05 2.10 2.92E´04 1.92

The tables clearly demonstrate that the parameters of the reconstruction procedure
have no impact on the accuracy since we exactly obtain the same errors for the Delaunay
mesh case and very few differences with the deformed mesh case. Due to this negative

result, we have tested an alternative choice to (25) setting ωni “
|ci|

ř

jPµpnq |cj |
but the

numerical simulations provide exactly the same errors. The weights ωni “
|vnqi|

ř

jPµpnq |vnqj |

also produce the same results both for the Delaunay and the deformed meshes in com-
parison with the unweighted case. In complement with this negative result, several
experiences with different choices of the target coefficients θni have been carried out
(using the cell centroid-vertex distance for instance) and also provide the same errors.
We conclude that for homogeneous problem (diffusion and convection are constant) and
regular meshes, the original choice is appropriated.

Remark 7.1. For anisotropic problems for instance, the weighted reconstruction might
be of interest to integrate the anisotropic effects but such a question is out of the scope
of the present study.

Remark 7.2. The values of the weights may be of crucial importance when dealing with
highly stretched meshes with surface curvature (see [19] and [13]).

7.1.4. Large Péclet number

We now turn to the large Péclet number case with refined triangular Delaunay meshes
to carry out the simulations (see Fig. 7, right). We use the mass centre qi “ mi as the
location of the reference cell point and the P1 reconstruction method for the vertices.
Table 7 shows that the second-order accuracy is achieved even with a high convective
regime and a thin boundary layer. In particular no oscillations are detected, even for
coarse meshes, due to the upwind scheme used in the convective contribution. No sta-
bility condition with respect to the space parameter is required to guarantee an eligible
solution.
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Table 7: Errors and convergence rates for the large Péclet test using refined triangular Delaunay meshes.

I E1 O1 E8 O8

3448 1.40E´03 — 8.00E´03 —

8918 3.94E´04 2.67 3.03E´03 2.04

23110 1.67E´04 1.81 1.22E´03 1.92

67872 5.57E´05 2.03 5.42E´04 1.50

7.2. Convection-diffusion problem with Dirichlet and Neumann conditions

In this subsection we check the method capacity to handle essential and natural
boundary conditions for convection-diffusion problems. In particular, the impact of the
total Neumann and the partial Neumann boundary conditions is studied in function of
the velocity direction (inflow or outflow convective flux). Assuming the solution φpx, yq “
4yp1´yq
x`1 (see Fig. 9, right), a normalized diffusive coefficient κ “ 1, and a constant velocity

vector V “ pu, 0q, the source term is given by

fpx, yq “
2

x` 1
´ yp1´ yq

ˆ

u

px` 1q2
`

2

px` 1q3

˙

.

We prescribe the homogeneous Dirichlet conditions φDpx, 0q “ 0 and φDpx, 1q “ 0,
x P r0, 1s, while we impose the partial flux condition gPp1, yq “ yp1 ´ yq, y P s0, 1r, on
the right side and the total flux condition gTp0, yq “ 4ypy ´ 1qp1` uq, y P s0, 1r, on the
left side (see Fig. 9, left). Successive regular triangular Delaunay meshes are used (see
Fig. 7, left) to carry out the simulations and to compute the convergence rates.
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Figure 9: Domain and boundary partitions (left) and the exact solution with a fine mesh (right).

We recall that for the inner vertices vn we have chosen γpnq “ µpnq and the vertices
on ΓD do not require any polynomial reconstruction. When dealing with vertices on ΓP

or ΓT three different strategies are proposed:

(i) to use µpnq, i.e. no ghost cells;

(ii) to use γpnq and the approximations (4) and (5a);

(iii) to use γpnq and the approximations (4) and (5b).
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In the next two subsections we assess the convergence rates depending on the velocity
direction such that an inflow condition is prescribed on the right boundary and an outflow
condition is prescribed on the left boundary and vice-versa.

7.2.1. Negative velocity

We first assume the velocity V “ p´80, 0q such that the partial Neumann condition
is prescribed on the inflow boundary and the total Neumann condition is prescribed on
the outflow boundary.

Table 8: Errors and convergence rates with an inflow condition on the right boundary and an outflow
condition on the left boundary.

I (i) (ii) (iii)

E1 O1 E8 O8 E1 O1 E8 O8 E1 O1 E8 O8

944 1.88E`00 — 9.98E`01 — 2.66E`00 — 2.57E`02 — 5.62E´01 — 3.04E`01 —

4040 9.45E´01 0.94 7.32E`01 0.43 3.04E´01 2.98 3.55E`01 2.72 2.00E´01 1.42 1.55E`01 0.93

16364 2.87E´01 1.70 2.58E`01 1.49 4.17E´02 2.84 4.03E`00 3.11 4.24E´02 2.22 3.80E`00 2.01

44050 1.02E´01 2.09 1.01E`01 1.89 1.72E´02 1.79 1.71E`00 1.73 1.73E´02 1.81 1.72E`00 1.60

We report in Table 8 the results considering the three strategies and using the P1

interpolation. We obtain very low accurate results in all the cases and the errors are
concentred close to the boundaries where the natural conditions are prescribed. To ex-
plain such a negative result, let us consider the extreme case where the viscosity vanishes
(the Péclet number is infinite). Imposing the total Neumann condition leads to impose
the flux at the boundary for an outflow condition which is not compatible for this hy-
perbolic situation. For large Péclet number, the total Neumann condition still provides
an ill-conditioned problem and fine enough meshes are necessary such that the viscosity
discrete term compensates the convective discrete term. On the other hand, to prescribe
the partial Neumann condition for an inflow boundary with zero viscosity corresponds
to skip the boundary condition and the problem is not well-posed. Moreover, the dis-
cretization of the convective flux gives rise to a downwind scheme which also generates
instabilities. To sum up, one must not prescribe the partial Neumann condition for an
inflow situation and total Neumann condition for an outflow situation.

7.2.2. Positive velocity

We now assume the velocity V “ p80, 0q so that the total flux is prescribed on the
left boundary with an inflow condition and the partial flux is prescribed on the right
boundary with an outflow condition.
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Table 9: Errors and convergence rates with an inflow condition on the left boundary and an outflow
condition on the right boundary.

I (i) (ii) (iii)

E1 O1 E8 O8 E1 O1 E8 O8 E1 O1 E8 O8

944 1.06E´03 — 2.23E´03 — 1.17E´03 — 6.21E´03 — 1.05E´03 — 1.79E´03 —

4040 2.54E´04 1.96 5.30E´04 1.98 2.66E´04 2.03 1.63E´03 1.84 2.53E´04 1.96 4.16E´04 2.00

16364 6.35E´05 1.98 1.35E´04 1.96 6.53E´05 2.01 6.68E´04 1.28 6.34E´05 1.98 1.02E´04 2.01

44050 2.42E´05 1.95 6.19E´05 1.57 2.42E´05 2.01 2.54E´04 1.95 2.40E´05 1.96 4.00E´05 1.89

Table 9 shows that we obtain a second-order approximation with very accurate results.
Moreover, the three techniques show very similar results for the L1-norm error but we
observe that the option (iii) provides the most accurate approximation compared to the
other techniques. Given that, we conclude that more accurate approximations of φ at the
vertices on ΓT are then achieved when we use equation (5b) rather than equation (5a).

7.3. Pure convection problem

To check the scheme capacity to deal with a pure convective problem we consider an
inviscid fluid with a constant velocity V “ p´y, xq. On the bottom side, we prescribe
the Dirichlet boundary condition φDpx, 0q “ expp´50px ´ 0.5q2q, x P r0, 1s, whereas on
the right side we prescribe the homogeneous Dirichlet boundary condition φDp1, yq “ 0,
y P r0, 1s. On the top and on the left sides, we assume the outflow condition is the
partial flux (see Fig. 10, left). We obtain the exact solution φpx, yq “ expp´50pr´0.5q2q,
where r2 “ x2` y2, from the quarter of revolution deriving from the Dirichlet boundary
condition on the bottom side (see Fig. 10, right). To compute the numerical solution and
the convergence rate, we use successive finer triangular Delaunay meshes with a local
refinement around the circumference of radius r “ 0.5 (see Fig. 10, centre).
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Figure 10: Domain and boundary partitions (left), refined triangular Delaunay mesh (centre), and exact
solution with a fine mesh.

Table 10 shows that we get an effective second-order accuracy with P1 even when
dealing with a pure convective case. No oscillations are reported even in the large gradient
area due to the upwinding of the convective flux and we get a second-order accuracy. The
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numerical experiment demonstrates the ability of the scheme to handle pure convective
equations without artificial diffusion to stabilize the solution. Of course, such a scheme
is not adapted to compute discontinuous solutions and stabilization procedures such as
MUSCL method have to be activated.

Table 10: Errors and convergence rates for the pure convection case.

I E1 O1 E8 O8

970 2.87E´03 — 1.86E´02 —

4344 4.13E´04 2.58 4.57E´03 1.87

14722 1.29E´04 1.91 1.27E´03 2.10

41922 3.86E´05 2.30 4.54E´04 1.96

7.4. Diffusion-reaction problem

The question of the diffusion-reaction problem is tackled in this section in order to
check the scheme ability to provide a second-order of convergence even when dealing
with stiff reactive problems. We recall that the treatment of the reactive term is not the
same of the diffusive and convective terms since it does not derive from a flux expression.
We consider the exact solution φpx, yq “ 3.41xypexppxq ´ expp1qqpexppyq ´ expp1qq with
κ “ 1, r “ 1 ˆ 106, and homogeneous Dirichlet boundary conditions (see Fig. 11, left
and right). The source term is given by

fpx, yq “ 3.41
´

exppx` 1qpx` 2qy ` exppy ` 1qpy ` 2qx´ 2 exppx` yqpxy ` x` yq
¯

` 3.41ˆ 106xypexppxq ´ expp1qqpexppyq ´ expp1qq.
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Figure 11: Domain and boundary partitions (left), hour-glass mesh (centre), and exact solution with a
fine mesh.

We study here the impact of the two proposals (15) and (16) to compute the reactive
part and we consider different scenarios for the location of the reference cell points. To
this end, we use a regular hour-glass mesh (see Fig. 11, centre) composed of trapezoidal
cells whose mass centres do not match with the centroids (see Fig. 12). In fact, we state
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that the longer base is 10 times larger than the smaller base in order to get a relevant
difference between the mass centres and the centroids.
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Figure 12: Trapezoidal cells from the hour-glass meshes.

We first consider successive finer hour-glass meshes where the reference cell points
are random points which we compute as explained in section 7.1.2 with 50%, 70%, and
90% of deformation. To compute the reactive part we use the approximations (15) and
(16) and we report in Tables 11 and 12 the errors and the convergence rates.

Table 11: Errors and convergence rates for the diffusion-reaction problem with random reference cell
points using equation (15).

I α “ 0.5 α “ 0.7 α “ 0.9

E1 O1 E8 O8 E1 O1 E8 O8 E1 O1 E8 O8

100 2.24E´02 — 7.88E´02 — 2.81E´02 — 1.02E´01 — 3.42E´02 — 1.31E´01 —

400 1.16E´02 0.95 8.92E´02 0.18 1.57E´02 0.84 1.29E´01 0.34 1.98E´02 0.79 1.70E´01 0.37

1600 5.00E´03 1.21 2.93E´02 1.61 6.93E´03 1.18 4.00E´02 1.69 8.85E´03 1.16 5.07E´02 1.74

6400 2.41E´03 1.05 1.65E´02 0.83 3.35E´03 1.05 2.31E´02 0.79 4.27E´03 1.05 2.95E´02 0.78

Table 12: Errors and convergence rates for the diffusion-reaction problem with random reference cell
points using equation (16).

I α “ 0.5 α “ 0.7 α “ 0.9

E1 O1 E8 O8 E1 O1 E8 O8 E1 O1 E8 O8

100 7.49E´03 — 2.61E´02 — 8.23E´03 — 3.79E´02 — 1.11E´02 — 6.64E´02 —

400 1.95E´03 1.94 6.89E´03 1.92 2.22E´03 1.89 9.72E´03 1.97 3.10E´03 1.84 1.92E´02 1.79

1600 4.61E´04 2.08 2.45E´03 1.49 5.09E´04 2.13 4.55E´03 1.10 7.04E´04 2.14 1.07E´02 0.85

6400 1.15E´04 2.00 5.17E´04 2.24 1.23E´04 2.05 9.56E´04 2.25 1.52E´04 2.21 2.11E´03 2.34

We only achieve first-order convergence when we use relation (15) whereas we get an
optimal and effective second-order convergence with the approximation (16). Indeed, in
the finite volume context, Ri is supposed to be an approximation of the mean value of rφ
over cell ci, that is, Ri « 1

|ci|

ş

ci
rφdA. For random locations of the reference cell points,

relation (15) does not provide, in the general case, a second-order approximation of the
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mean value and the global method order is reduced to a first-order one. On the contrary,
the integration technique with the vertices proposed in relation (16) always provide a
second-order approximation of the mean value, whatever points qi are located.

We now analyse two more cases with equation (15): we consider qi “ bi and qi “ mi.
We report the results in Table 13.

Table 13: Errors and convergence rates for the diffusion-reaction problem with centrods and mass centres
using equation (15).

I qi “ bi qi “ mi

E1 O1 E8 O8 E1 O1 E8 O8

100 2.74E´02 — 7.48E´02 — 1.68E´02 — 3.59E´02 —

400 1.15E´02 1.25 3.90E´02 0.94 4.01E´03 2.07 8.32E´03 2.11

1600 5.31E´03 1.12 1.93E´02 1.02 9.77E´04 2.04 2.00E´03 2.05

6400 2.46E´03 1.11 9.14E´03 1.08 2.41E´04 2.02 4.90E´04 2.03

Equation (15) provides a first-order method when using centroids. Indeed, for the
particular case of hour-glass meshes, the distance between the mass centres and the
centroids are larger than Oph2q. We recover an effective second-order scheme when the
location of the reference cell points are the mass centres since it provides a second-order
approximation of the mean values. The two last examples highlight that the one Gauss
point formula only provides the correct order with the mass centres and not with the
centroids. Of course, for triangular cells the mass centre and the centroid is the same
point.

7.5. 3D convection-diffusion-reaction problems

We dedicate this section to assess and evaluate the robustness and the capacity of the
scheme to provide second-order accuracy when handling three-dimensional convection-
diffusion-reaction problems. To this end, given the numerical approximation Φ‹ “
pφ‹i qi“1,...,I of function φ in a mesh T composed of thetrahedron cells, we evaluate the
L1- and the L8- norm errors between the numerical and the exact solution, given by

E1pT q “
I
ÿ

i“1

|φ‹i ´ φpqiq||ci| and E8pT q “
I

max
i“1

|φ‹i ´ φpqiq|,

respectively, where |ci| is now the volume of cell ci. We also compute the convergence
rate of the Lγ-norm error, with γ “ 1,8, obtained with two different meshes T1 and T2
consisting of I1 and I2 cells, respectively, as

OγpT1, T2q “ 3
| logpEγpT1q{pEγpT2qq|

| logpI1{I2q|
.

7.5.1. Convection-diffusion with Low Péclet number

We consider a low Péclet number flow in the domain Ω “ s0, 1r
3

with a constant
velocity V “ p1, 2, 3q and a constant diffusion coefficient κ “ 1. The exact solution is
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given by φpx, y, zq “ Cαpxqβpyqγpzq with C P R and

αpxq “ x´
exppxq ´ 1

expp1q ´ 1
, βpyq “

1

2

ˆ

y ´
expp2yq ´ 1

expp2q ´ 1

˙

, γpzq “
1

3

ˆ

z ´
expp3zq ´ 1

expp3q ´ 1

˙

,

which implies the source term fpx, y, zq “ Cpαpxqβpyq ` βpyqγpzq ` αpxqγpzqq. We
prescribe the homogeneous Dirichlet boundary condition φDpx, y, zq “ 0 on ΓD “ Γ. In
order to normalize the exact solution such that the maximum of φ in Ω̄ is close to 1, we
take C “ 625 (see Fig. 13, right).

Figure 13: Cross section of a regular tetrahedral Delaunay mesh (right) and exact solution with a fine
mesh (right).

To carry out the simulations we use successive finer regular tetrahedral Delaunay
meshes (see Fig. 13, left) and we report the errors and the convergence rates in Table 14.

Table 14: Errors and convergence rates for the 3D low Péclet number case.

I E1 O1 E8 O8

8191 5.29E´03 — 2.46E´02 —

26795 2.25E´03 2.34 9.91E´03 2.49

65496 1.15E´03 2.88 5.06E´03 2.91

144043 6.67E´04 2.38 4.14E´03 0.88

We get an effective second-order accuracy and no oscillations are reported. Such an
example demonstrates the capacity of the method to be adapted to the three dimensional
context and to provide accurate approximations. A lot of numerical experiences (which
we do not report here for the sake of simplicity) have been performed with high Péclet
number and pure convective flows, where we obtained the same order of convergence of
the 2D counterparts.
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7.5.2. Diffusion-reaction case

In this test the domain Ω is a pipe with 0.3 ď
a

x2 ` y2 ď 1 and z P r0, 1s. The exact
solution is

φpx, y, zq “ ´7.16pz ´ z2q

ˆ

lnpx2 ` y2q

ln 0.3
`

200

91
px2 ` y2 ´ 1q

˙

,

the diffusion coefficient is κ “ 1, and the reactive coefficient is r “ 106 (see Fig. 14, left
and right). The source term is given by

fpx, y, zq “ ´14.32

ˆ

lnpx2 ` y2q

ln 0.3
`

200

91
px2 ` y2 ´ 1q ´

400

91
pz ´ z2q

˙

` 106φpx, y, zq,

and we prescribe the homogeneous Dirichlet boundary condition φDpx, y, zq “ 0 on ΓD “

Γ.

Figure 14: Transversal (left) and longitudinal (right) cross sections of the exact solution with a fine
mesh.
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Figure 15: Transversal (left) and longitudinal (right) cross sections of a uniform tetrahedral Delaunay
mesh.

To carry out the simulations we use successive finer regular tetrahedral Delaunay
meshes (see Fig. 15, left and right) and we consider two situations. In the first one we
locate the reference cell points at the mass centres of the cells (which match with the
centroids) and we report in Table 15 the errors and the convergence rates. As expected,
we get an effective second-order accuracy and no oscillations are reported. Notice that
in this situation the use of equation (15) guarantees the second-order accuracy since we
are dealing with reference cell points located at the mass centres. In the second run, we
consider reference cell points with random locations extending the use of equation (16)
to the three-dimensional case given by equation 17. We consider α “ 0.5, 0.7, 0.9 and
we report the results in Table 16. We still obtain a second-order accuracy even with a
stiff source term which proves the robustness of the method. We highlight that in this
experiment the use of equation (17) to compute the reactive term is crucial to achieve
second-order approximations of the underlying solution.

Table 15: Errors and convergence rates for the 3D diffusion-reaction case using reference cell points
located at the mass centres.

I E1 O1 E8 O8

7589 3.37E´02 — 1.35E´01 —

24936 1.58E´02 2.07 6.04E´02 2.19

61565 8.04E´03 2.91 3.30E´02 2.61

130058 4.64E´03 2.38 2.10E´02 1.96
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Table 16: Errors and convergence rates for the 3D diffusion-reaction case using reference cell points with
random locations.

I α “ 0.5 α “ 0.5 α “ 0.9

E1 O1 E8 O8 E1 O1 E8 O8 E1 O1 E8 O8

7589 3.74E´02 — 3.15E´01 — 3.91E´02 — 3.92E´01 — 4.31E´02 — 5.54E´01 —

24936 1.75E´02 2.07 1.45E´01 2.13 1.84E´02 2.06 1.79E´01 2.14 2.04E´02 2.04 3.05E´01 1.63

61565 8.97E´03 2.90 7.55E´02 2.82 9.43E´03 2.90 8.24E´02 3.36 1.04E´02 2.90 1.20E´01 4.03

130058 5.16E´03 2.40 4.45E´02 2.28 5.41E´03 2.40 5.14E´02 2.05 5.97E´03 2.42 8.06E´02 1.73

7.6. Time-dependent convection-diffusion test

We now check the capacity of the scheme to handle time-dependent problems and
provide a second-order accuracy. To this end, we consider a time-dependent convection-
diffusion problem where we slightly modify the low Péclet number steady-state test so-
lution presented in section 7.1 adding the time derivative term. We assume a constant
diffusion coefficient κ “ 1 and a constant velocity V “ p1, 2q with t0 “ 0 and tf “ 1. The
exact solution is given by φpx, y, tq “ 65αpxqβpyq cosp2πtq in Ωˆ r0, 1s with

αpxq “ x´
exppuxq ´ 1

exppuq ´ 1
, βpyq “

1

2

ˆ

y ´
expp2yq ´ 1

expp2q ´ 1

˙

,

and the source term is fpx, y, tq “ 65pαpxq`βpyqq cosp2πtq´ 130παpxqβpyq sinp2πtq. We
consider the homogeneous Dirichlet boundary condition φDpx, y, tq “ 0 on ΓD ˆ r0, 1s
with ΓD “ Γ, and the initial condition φ0px, yq “ φpx, y, 0q.

To perform the simulations and compute the convergence rates, we consider a fixed
mesh while successive finer time steps ∆t “ 1

K are used with K the number of subdivi-
sions. Given the numerical approximation ΦK “ pφKi qi“1,...,I of a function φ at the final
time tK , we evaluate the error using the L1- and the L8-norms given by equation (24).
We also compute the convergence rate of the Lγ-norm error, with γ “ 1,8, obtained
with two different time steps, K1 and K2, as

OγpK1,K2q “
| logpEγpK1q{pEγpK2qq|

| logpK1{K2q|
.

In a first run, we use a triangular Delaunay mesh with 44050 cells and a deformed
quadrilateral mesh with 44100 cells (see Fig. 7, right and centre), and for both cases the
reference cell point is the mass centre. The errors and convergence rates are reported
in Table 17. As expected, we obtain an second-order accuracy in time scheme, uncondi-
tionally stable which proves the robustness and the accuracy of the method. Notice that
the scheme performs very well even with deformed meshes.
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Table 17: Errors and convergence rates for the time-dependent convection-diffusion test using reference
cell points located at the mass centres.

K Delaunay mesh Deformed mesh

E1 O1 E8 O8 E1 O1 E8 O8

10 2.02E´02 — 4.57E´02 — 2.02E´02 — 4.57E´02 —

20 4.90E´03 2.04 1.11E´02 2.04 4.91E´03 2.04 1.11E´02 2.04

40 1.21E´03 2.02 2.74E´03 2.02 1.22E´03 2.01 2.75E´03 2.01

80 2.98E´04 2.03 6.65E´04 2.04 3.08E´04 1.99 6.83E´04 2.01

160 6.95E´05 2.10 1.56E´04 2.09 8.02E´05 1.94 1.76E´04 1.96

In a second run, we use only a deformed quadrilateral mesh with 44100 cells and the
reference cell points in a random location with 90% of deformation. We report the results
in Table 18. As in the previous test, the scheme manages well very crude situations where
the location of the reference cell points are far from the mass centres and second-order
convergence rates in time are achieved.

The same simulations were carried out with triangular Delaunay meshes and similar
results were achieved.

Table 18: Errors and convergence rates for the time-dependent convection-diffusion test using reference
cell points with a random location.

K E1 O1 E8 O8

10 2.02E´02 — 4.58E´02 —

20 4.92E´03 2.04 1.13E´02 2.03

40 1.23E´03 2.00 2.96E´03 1.93

80 3.14E´04 1.97 9.22E´04 1.68

8. Conclusion

An extension of the original Frink’s method has been proposed and implemented to
perform the cell-to-vertex reconstruction both for two- and three-dimensional geome-
tries. The vertex values are computed via linear combinations of the closest cell values
where the coefficients are determined by a functional minimization. The method ena-
bles to associate the cell value at any location point inside the cell still preserving both
the second-order accuracy and the robustness, even for pure convection equations. In
particular, efficient discretizations of the reactive term or time-dependent problems are
proposed to achieve a second-order approximation, even if the location of the reference
cell points are far from the mass centre. Several numerical experiences have been carried
out to assess the method performance and demonstrate the capacity to handle a wide
range of situations in the context of the convection-diffusion-reaction equation.
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