Biocompatible peptide-based hydrogels as nanocarriers for a new antitumoral drug

Ana C. L. Hortelão¹, Bruno F. C. Hermenegildo¹, Helena Vilaça², Goretí Pereira², Bing Xu³, Maria-João R. P. Queiroz², José A. Martins⁵, Paula M. T. Ferreira³, Elisabete M. S. Castanheiro¹

¹Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
²Centro de Química (CQ/UM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
³Department of Chemistry, Brandeis University, Waltham, MA, 02454 USA

alchortelao@gmail.com

The biocompatibility of peptide-based hydrogels make them ideal for biomedical applications such as drug delivery, biosensing, tissue engineering and wound healing [1-3]. However, the enzymatic hydrolysis of these materials can be regarded as a serious disadvantage. One way to increase the biostability of this type of hydrogels consists in using non-proteinogenic amino acids. In this work, several new hydrogelators were developed, containing a Naproxen or a Naphthalene group (Table 1), and their critical aggregation concentrations were determined by fluorescence. The influence of pH in the aggregation of these molecules was also investigated. TEM images revealed that these hydrogels contain entangled nanofibers with width ranging from 9 nm to 18 nm (Figure 1).

The ability of these hydrogels to act as nanocarriers for an antitumoral drug was investigated. For that purpose, FRET (Förster Resonance Energy Transfer) assays were performed between the several hydrogels (acting as energy donors) and the new antitumoral fluorescent thieno[3,2-b]pyridine derivative 1 [4] (acting as energy acceptor). Donor-acceptor distances between 2.5nm and 3.5nm were determined.

![Antitumoral thieno[3,2-b]pyridine derivative 1](image_url)

The interaction between the new hydrogels and models of biological membranes was also confirmed by FRET. Lipid vesicles composed of egg lecithin/cholesterol 7:3 were used as membrane models, containing both the antitumoral compound 1 (as energy donor) and the lipid probe Nile Red (as energy acceptor). In this system, efficient energy transfer is observed. Upon interaction with the several hydrogelators, FRET vanishes, indicating a strong increase of the donor-acceptor distance.

As the antitumoral compound tested here is especially active against human melanoma cell lines (GI₅₀=3.5 µM) [4], the results obtained here confirm the ability of these hydrogels to act as drug nanocarriers, being promising to the development of formulations for topical application.

Acknowledgements: Foundation for the Science and Technology (FCT, Portugal), FEDER and QREN for financial support to the Research Centers, CFUM [Strategic Project PEst-C/FIS/UI0607/2013 (FCOMP-01-0124-FEDER-037291)] and CQ/UM [Strategic Project PEst-C/QUI/UI0686/2013 (FCOMP-01-0124-FEDER-037302)]. FCT is also acknowledged for the PhD grant of H. Vilaça (SFRH/BD/7265/2010).

References
Table 1. Structure of the several hydrogelators

<table>
<thead>
<tr>
<th>Hydrogelator</th>
<th>Structure</th>
<th>Hydrogelator</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Npx-Phe-ΔPhe-OH</td>
<td></td>
<td>1-Naph-Phe-ΔPhe-OH</td>
<td></td>
</tr>
<tr>
<td>Npx-Phe-ΔAbu-OH</td>
<td></td>
<td>2-Naph-Phe-ΔPhe-OH</td>
<td></td>
</tr>
<tr>
<td>Npx-Trp-ΔPhe-OH</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Npx: Naproxen
Phe: Phenylalanine
Abu: Aminobutyric acid
Trp: Tryptophan
Naph: Naphthalene

Figure 1. TEM images of Npx-Phe-ΔPhe-OH (A) and Npx-Phe-ΔAbu-OH (B).

Figure 2. Normalized emission spectra of Naproxen hydrogels in the presence of compound 1, exciting the hydrogels ($\lambda_{exc}=290$ nm) and exciting only compound 1 ($\lambda_{exc}=360$ nm).