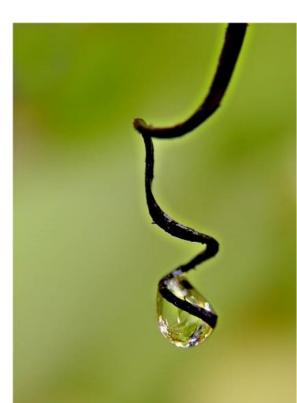


Universidade do Minho

International Symposium of Ecohydrology and Water Security Wuhan and Yichang, Hubei, China October 18-22, 2013

Research Institute for Water Security Wuhan University


Sefficiency

(Sustainable efficiency)

a Systemic Framework for

Advancing Water Security

Naim HAIE Director, Executive Board of International Water Resources Association (IWRA) Civil Engineering Department, University of Minho, Portugal <u>naim@civil.uminho.pt</u>

Outline

Introduction Why Efficiency Classical Efficiency (flawed) Background Water Hierarchy Efficiency and Water Security Efficiency requirements **New Efficiency Framework** Water Balance Water Quality Water Benefits **Usefulness** Criterion Sefficiency / 3ME Example Reference

Why Efficiency

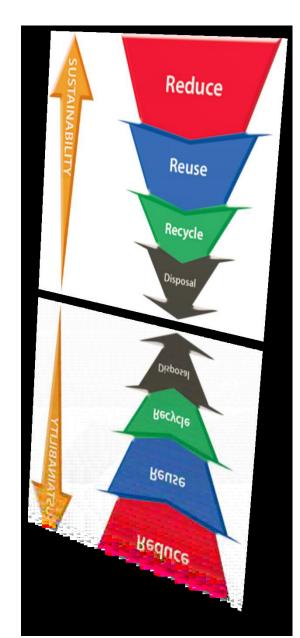
"Efficiency is thus not a goal in itself. It is not something we want for its own sake, but rather because it helps us attain more of the things we value." Stone (2002)

Concept vs Computation

Classical Efficiency (CE)

CE = (ET – PP)_b / **VA** (or similar variations)

much used: UN, China, EU, USA, etc.


CE is flawed

i. Lack of generalized application of Usefulness Criterion
ii. Mixing up of hydrology and agronomy
iii. Incompleteness of water flow considerations
iv. Objectives and scale mismatches

The Water Hierarchy

Demand side measures:

- Efficiency and water saving (i.e., eliminate, reduce, reuse, recycle)
- Pricing policies (effective water pricing policy and cost-effective alternatives)
- Supply side measures (options):
- Infrastructures for "producing" water (dams, water transport between regions, desalinization, ...) (EC 2007)

Efficiency and Water Security

- Aiming "at increasing water security through increased water efficiency"
- "Addressing this security nexus [Water, Energy, Food] in a holistic manner will allow for greater efficiency based on systems thinking and prevent unintended negative externalities"
- Ensuring "equitable flow of benefits"

UN Water (2013) Water Security & the Global Water Agenda. A UN-Water Analytical Brief

Water Security: a working definition (UN-Water 2013)

The capacity of a population to safeguard sustainable access to

adequate quantities of acceptable quality water

for [the following benefits]

- sustaining livelihoods
- human well-being
- socio-economic development
- protection against water-borne pollution
- protection against water-related disasters
- preserving ecosystems

in a climate of peace and political stability.

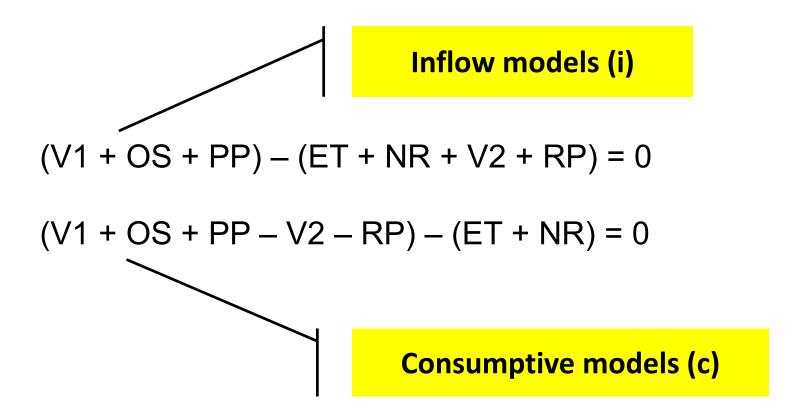
Efficiency expressions in water resources need certain requirements

Systemic Comprehensive Levels

> Quantity Quality Benefits

Climate Change

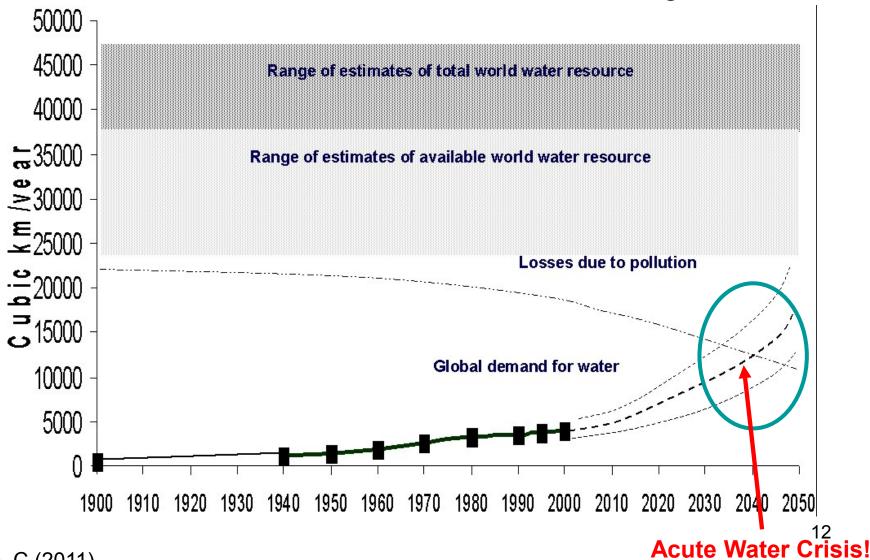
Stakeholder


Cartoon is published in the Journal Nature; from Luiz Gylvan Meira Filho (2013)

Law of Mass Conservation or Water Balance

Water System (WS)

Water Balance



[(V1 + OS + PP) - c (V2 + RP)] - [(ET + NR) + i (V2 + RP)] = 0

i, c = 0 or 1 with i + c = 1

Water Quality

Water Crisis even without climate change!

Nobre, C (2011)

Possible Efficiency Benefits

- Protect environment
- Reduce new infrastructure
- Save energy
- Decrease cost (individual consumers pay less)
- Rationalize investments
- Support economic growth
- Create jobs
- Improve cost effectiveness of water service
- Adapt to uncertainty (e.g., climate change)
- Lessen impact of severe conditions
- Allocate water better
- Minimize the risks of water scarcity
- Enhance conditions for recreation

Possible beneficial and non-beneficial uses of FPTs

	ET	NR	R
Beneficial	 ET (crop, landscape) Evaporation for climate control 	 Non-reusable deep percolation for salt control (leaching) Virtual water 	 Reusable deep percolation for salt control (leaching)
Non- beneficial	 ET (Phreatophyte) Evaporation (sprinkler, reservoir, excess wet soil) 	 Non-reusable excess deep percolation Runoff or spills to salt sinks 	 Reusable excess deep percolation Reusable runoff Reusable canal spills

Usefulness Criterion

$$X_q = W_q X * X$$

$$X_b = W_b X * X$$

$$X_{S} = W_{S}X * X$$

 $W_{S}X = W_{q}X * W_{b}X$

 W_q = quality weight

 W_{b} = beneficial weight

W_s = usefulness weight

X = an FPT

<u>Sefficiency</u>

Macro, Meso, and Micro-Efficiency (3ME)

Efficiency (%) defined:

ratio of useful outflow to its corresponding total flow

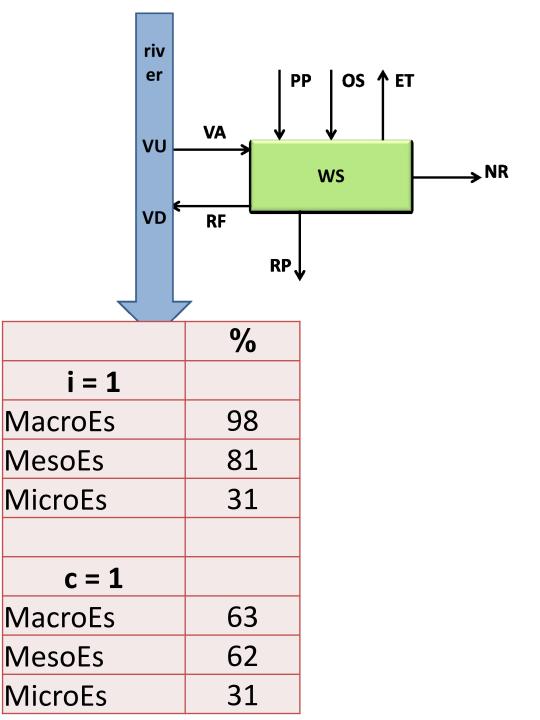
Applying Usefulness Criterion to the combined Water Balance equation would give efficiency.

(mathematical proof in the paper)

$$MacroE_{S} = \left[\frac{ET + NR + i(VD + RP)}{VU + OS + PP - c(VD + RP)}\right]_{S}$$

$$MesoE_{s} = \left[\frac{ET + NR + i(RF + RP)}{VA + OS + PP - c(RF + RP)}\right]_{s}$$

$$MicroE_{S} = \left(\frac{ET + NR}{VA + OS + PP}\right)_{S}$$


Haie and Keller (2012 or 2014)

- Macro-Efficiency (MacroE): indicates the impact of a WS on a basin, e.g., the major river where water was abstracted.
- Meso-Efficiency (MesoE): indicates, for example, the impact of return flows generated by a WS.
- Micro-Efficiency (MicroE): indicates the useful outflow generated by a WS for itself.

Simple Example

	quantity	Wq	Wb
ET	185000	1	0.87
NR	0	1	0
OS	0	0	1
PP	0	1	0
RF	420000	0.63	1
RP	0	0	1
VA	605000	0.86	1
VD	4815000	0.84	1
VU	500000	0.86	1

(ha-m/yr)

Thank you!

More info: https://sites.google.com/site/naimhaie5