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Abstract

A real matrix with positive row sums and all its off-diagonal elements bounded above by their
corresponding row means was called in [4] a B-matrix. In [5], the class of doubly B-matrices
was introduced as a generalization of the previous class. We present several characterizations
and properties of these matrices and for the class of B–matrices we consider corresponding
questions for subdirect sums of two matrices (a general ‘sum’ of matrices introduced in [1] by
S.M. Fallat and C.R. Johnson, of which the direct sum and ordinary sum are special cases), for
the Hadamard product of two matrices and for the Kronecker product and sum of two matrices.
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1 Introduction

A square real matrix A = (aij)
n
i,j=1 with positive row sums is a B–matrix if all its off-diagonal

elements are bounded above by the corresponding row means (see [4]), that is, for all i ∈ {1, . . . , n},

n∑
j=1

aij > 0

and
1

n

n∑
j=1

aij > aik,∀k 6= i.

In [2] it was proved that these matrices have positive determinants and the author provided a first
application to the localization of the real eigenvalues of a real matrix. In [4] the author proved

∗This research was supported by Ministerio de Ciencia y Tecnoloǵıa MTM2011-28636-C02-02.
†This research was financed by FEDER Funds through “Programa Operacional Factores de Competitividade –

COMPETE” and by Portuguese Funds through FCT - “Fundação para a Ciência e Tecnologia”, within the project
PEst-C/MAT/UI0013/2011.
‡Corresponding author

1



that the class of B–matrices is a subset of the class of P–matrices and applied this property to the
localization of the real parts of all eigenvalues of a real matrix.

Given a real matrix A = (aij) we define, for each row i, riA = max{0, aij | j 6= i}. We simply
refer to ri if the context is unambiguous. If A is a square matrix of order n, let A+ be the following
matrix

A+ =


a11 − r1 a12 − r1 . . . a1n − r1
a21 − r2 a22 − r2 . . . a2n − r2

...
...

...
an1 − rn an2 − rn . . . ann − rn

 .
Throughout this paper, Zn will stand for the set of real square matrices of order n whose off-

diagonal entries are nonpositive, that is Zn = {A = (aij) ∈ Mn(R) : aij ≤ 0 if i 6= j, i, j =
1, . . . , n}. If A is in Zn, we say that A is a Z–matrix (of order n).

In [4] Peña derived a characterization of B–matrices using the values ri: he proved that a real
matrix A = (aij)

n
i,j=1 is a B-matrix if and only if, for all i ∈ {1, ..., n},

n∑
k=1

aik > nri. (1)

He also proved (see [4]) that A is a B-matrix if and only if, for all i ∈ {1, ..., n},

(aii − ri) >
∑
k 6=i

(ri − aik).

In [5], the author defined another class of matrices, the doubly B–matrices, containing the
B–matrices: a square real matrix A = (aij)

n
i,j=1 is a doubly B-matrix if, for all i,

aii > ri

and, for all i 6= j in {1, . . . , n},

(aii − ri)(ajj − rj) >
∑
k 6=i

(ri − aik)
∑
k 6=j

(rj − ajk).

In the mentioned paper, Peña showed that doubly B-matrices are also P -matrices and in [4] he
presented the following characterization of B–matrices:

Proposition 1.1. Let A be a matrix in Zn. Then the following properties are equivalent:

1. A is a B-matrix.

2. The row sums of A are positive.

3. A is strictly diagonally dominant by rows with positive diagonal entries.

In Section 2 we will focus on some properties of B–matrices presented by Peña in [4] and [5] and
obtain similar results for the doubly B–matrices. In Section 3 we analyze the concept of B-matrix
under the subdirect sum. Finally, Sections 4 and 5 are devoted to the Hadamard product and the
Kronecker sum of B–matrices.
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2 B–matrices and doubly B–matrices

As it was mentioned above, in Zn the concept of being a B–matrix coincides with the strict diagonal
dominance by rows. This means that a Z–matrix A = (aij) of order n with positive diagonal entries
is a B–matrix if and only if, for each i = 1, . . . , n,

|aii| >
∑
k 6=i
|aik|.

In the next result, we present a similar characterization for doubly B–matrices in Zn.

Proposition 2.1. A matrix A in Zn is a doubly B-matrix if and only if A is strictly doubly
diagonally dominant by rows with positive diagonal entries.

Proof. Let A = (aij) be a matrix in Zn. Recall that A is a doubly B–matrix if and only if, for all
i, aii > ri and, for all i 6= j in {1, . . . , n},

(aii − ri)(ajj − rj) >
∑
k 6=i

(ri − aik)
∑
k 6=j

(rj − ajk).

Given that A is a matrix in Zn, ri = 0 for all i. Therefore, we can assert that A is a doubly
B–matrix if and only if, for all i, aii > 0 and, for all i 6= j in {1, . . . , n},

aiiajj >
∑
k 6=i

(−aik)
∑
k 6=j

(−ajk),

or, equivalently, since all diagonal elements are positive and all off-diagonal entries are nonpositive,

| aii || ajj |>
∑
k 6=i
| aik |

∑
k 6=j
| ajk |.

In the next two results, we establish a relation between a matrix A and the corresponding
matrix A+ in terms of belonging to the classes of B–matrices and doubly B–matrices.

Proposition 2.2. A is a B-matrix if and only if A+ is a B-matrix.

Proof. Let A = (aij) be a square matrix of order n and consider A+. It is clear that A+ is in Zn.
Moreover, for each i ∈ {1, ..., n}, the ith-row sum in A+ is given by

n∑
j=1

(aij − riA) =

n∑
j=1

aij − nriA .

Using Peña’s characterization (1), we know that A is a B–matrix if and only if, for all i ∈ {1, ..., n},

n∑
j=1

aij − nriA > 0,

which is equivalent to say that the row sums of A+ are positive.
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Proposition 2.3. A is a doubly B-matrix if and only if A+ is a doubly B-matrix.

Proof. Let A = (aij) be a square matrix of order n and consider A+ = (bij). We have that A is a
doubly B–matrix if and only if, for all i, aii > riA and, for all i 6= j in {1, . . . , n},

(aii − riA)(ajj − rjA) >
∑
k 6=i

(riA − aik)
∑
k 6=j

(rjA − ajk).

Hence, A is a doubly B–matrix if and only if, for all i, bii > 0 and, for all i 6= j in {1, . . . , n},

biibjj >
∑
k 6=i

bik
∑
k 6=j

bjk,

which is equivalent, taking into account that A+ is in Zn, to bii > riA+ , for all i, and, for all i 6= j
in {1, . . . , n},

(bii − riA+ )(bjj − rjA+ ) >
∑
k 6=i

(riA+ − bik)
∑
k 6=j

(rjA+ − bjk).

The next theorem is due to Peña and it characterizes B–matrices in terms of sums of two
matrices in certain classes.

Theorem 2.1. Let A be an n× n matrix. Then the following conditions are equivalent:

1. A is a B-matrix.

2. A = B+C, where B is a strictly diagonally dominant by rows M -matrix and C is a nonneg-
ative matrix of the form

C =


c1 + ε c1 . . . c1
c2 c2 + ε . . . c2
...

...
...

cn cn . . . cn + ε

 ,
with ε > 0.

3. A = B + C, where B is a Z-matrix and a B-matrix and C is a nonnegative B-matrix.

For doubly B–matrices, we derive a similar result.

Theorem 2.2. Let A be an n× n matrix. Then the following conditions are equivalent:

1. A is a doubly B-matrix.

2. A = B + C, where B is a strictly doubly diagonally dominant by rows M -matrix and C is a
nonnegative matrix of the form

C =


c1 + ε c1 . . . c1
c2 c2 + ε . . . c2
...

...
...

cn cn . . . cn + ε

 ,
with ε > 0.
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To prove this theorem we need the following two simple lemmas.

Lemma 2.1. Let A be a doubly B–matrix of order n and C a nonnegative matrix of the form

C =


c1 c1 . . . c1
c2 c2 . . . c2
...

...
...

cn cn . . . cn

 .
Then A+ C is a doubly B–matrix.

Proof. Note that, for each i ∈ {1, ..., n}, riA+C = riA + ci. Moreover, (A+ C)+ = A+. Since A+ is
a doubly B–matrix by Proposition 2.3, it follows that (A+C)+ is also a doubly B–matrix and, by
the same result, A+ C is a doubly B–matrix.

Lemma 2.2. If A is an n × n doubly B–matrix and D is a nonnegative diagonal matrix of the
same order then A+D is a doubly B–matrix.

Proof. By Proposition 2.3, we can assume, without loss of generality, that A = (aij) is a Z–matrix.
We have aii > 0 and riA = 0, for i = 1, ..., n, and

aiiajj >
∑
k 6=i

aik
∑
k 6=j

ajk,

for all i 6= j.
Let D = diag(d1, d2, ..., dn) and write A+D = (bij). It is trivial that bii = aii+di, for i = 1, ..., n,

and bij = aij if i 6= j. Besides, riA+D = 0, for all i ∈ {1, ..., n}.
For each i ∈ {1, ..., n}, bii > 0 = riA+D and, for all i, j ∈ {1, ..., n}, i 6= j,

biibjj = (aii + di)(ajj + dj) ≥ aiiajj >
∑
k 6=i

aik
∑
k 6=j

ajk =
∑
k 6=i

bik
∑
k 6=j

bjk.

Hence, A+D is a doubly B–matrix.

We are now in conditions to prove Theorem 2.2.

Proof. (of Theorem 2.2) Let A = (aij). Suppose A is a doubly B–matrix. Recall that, for all
i ∈ {1, ..., n}, aii > riA . Given ε > 0, define

B =


a11 − r1A − ε a12 − r1A . . . a1n − r1A
a21 − r2A a22 − r2A − ε . . . a2n − r2A

...
...

...
an1 − rnA an2 − rnA . . . ann − rnA − ε


and C as described in the statement of the theorem taking ci = riA for all i ∈ {1, ..., n}. B is
obviously a Z–matrix and it has positive diagonal entries when ε < aii − riA , for i = 1, ..., n. Our
aim is to choose ε so that B is a doubly B–matrix. Let i, j ∈ {1, ..., n} such that i 6= j. We have

(aii − riA)(ajj − rjA) >
∑
k 6=i

(aik − riA)
∑
k 6=j

(ajk − rjA).
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It is trivial that there exists εij > 0 such that

(aii − riA − εij)(ajj − rjA − εij) >
∑
k 6=i

(aik − riA)
∑
k 6=j

(ajk − rjA).

Take ε such that
0 < ε < min{εij , aii − riA | i, j ∈ {1, ..., n}, i 6= j}.

For such ε, B is a doubly B–matrix by Proposition 2.1. Therefore B is a P–matrix (see [5]) and
hence an M–matrix. Let us now prove that C = (cij) is also a doubly B–matrix. Note that

cii = riA + ε > riA = max{0, cij | j 6= i} = riC .

It is clear that

C+ =


ε 0 . . . 0
0 ε . . . 0
...

...
...

0 0 . . . ε


is a doubly B–matrix. By Proposition 2.3, C is also a doubly B–matrix.

Conversely, admit that A = B + C, where B is a strictly doubly diagonally dominant by rows
M -matrix and C is a nonnegative matrix of the form

C =


c1 + ε c1 . . . c1
c2 c2 + ε . . . c2
...

...
...

cn cn . . . cn + ε

 ,
with ε > 0.

Since B is an M–matrix, B is, in particular, a Z–matrix. By Proposition 2.1, we can assert
that B is a doubly B–matrix.

Note that

A = B + C = B +


c1 c1 . . . c1
c2 c2 . . . c2
...

...
...

cn cn . . . cn

+ εIn.

By Lemma 2.1 and Lemma 2.2, we can conclude that A is a doubly B–matrix.

When comparing Theorem 2.1 and Theorem 2.2, the natural question that arises is whether the
two conditions in the latter are equivalent to a third condition, similar to the third one of Peña in
Theorem 2.1. That is, are the two conditions in Theorem 2.2 equivalent to condition

3. A = B + C, where B is a Z-matrix and a doubly B-matrix and C is a nonnegative doubly
B-matrix?

It is not difficult to show that condition 2. implies 3., but condition 1. does not follow from 3. as
the following example illustrates.
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Example 2.1. Let B and C be the following doubly B-matrices

B =

 1 −3 −2
0 1 0
0 0 1

 , C =

 1 0.1 0.1
3 4 2

0.1 0.1 1

 .
B is obviously a Z–matrix and C ≥ 0. Since

(B + C)+ =

 2 −2.9 −1.9
0 2 −1
0 0 1.9


and 2× 2 6> −4.8× (−1), A = B + C is not a doubly B-matrix.

3 Sub-direct sums of B–matrices

It is well known that a direct sum is a P–matrix if and only if each of the direct summands is
a P–matrix. This statement remains true for many other classes of matrices, including positive
semidefinite, doubly negative, completely positive, totally nonnegative and M–matrices. It is easy
to check, however, that this is not true for the case of B–matrices. Fallat and Johnson considered,
for several classes of matrices, corresponding questions for a more general ‘sum’ of two matrices, of
which the direct sum and ordinary sum are special cases - the subdirect sum ([1]).

Let 0 ≤ k ≤ m,n and suppose that

A =

[
A11 A12

A21 A22

]
∈Mm(C) and B =

[
B22 B23

B32 B33

]
∈Mn(C),

in which A22, B22 ∈Mk(C). Then

A⊕k B =

 A11 A12 0
A21 A22 +B22 B23

0 B32 B33


is called the k–subdirect sum of A and B. We simply refer to a subdirect sum when the value of
k is irrelevant or unambiguous. When k = 0 we have the familiar direct sum and we abbreviate
⊕0 to ⊕. In many key positive classes of matrices, we have that the direct sum lies in the class if
and only if each direct summand lies in the class. As we mentioned above, this does not hold for
B-matrices. On the other hand, when k = n = m, we have the ordinary sum of two B–matrices,
which we know it is still a B–matrix. It is also true that any B–matrix can be written as a sum of
two B–matrices. In their paper, Fallat and Johnson address four natural questions: (I) If A and B
lie in the class must a 1-subdirect sum C lie in the class?; (II) If

C =

 C11 C12 0
C21 C22 C23

0 C32 C33


lies in the class, may C be written as C = A⊕1 B, such that A and B lie in the class when C22 is
1× 1?; (III) and (IV) the corresponding questions with 1 replaced by k > 1.
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As we have mentioned above, regarding B–matrices, these questions have affirmative answers
when k = n = m.

The following examples illustrate, however, that, in general, question (I) has negative answer
when B–matrices are considered.

Example 3.1. Let A =

[
4 1
2 2.5

]
and B =

[
1 0
0 1

]
. It is clear that both matrices A and B are

B–matrices. However,

A⊕1 B =

 4 1 0
2 3.5 0
0 0 1


is not a B–matrix.

Moreover, if we consider question (I) for the particular case B = A, we still have a negative
answer, as the following example shows.

Example 3.2. Let A =

[
4 3

0.5 1

]
. It is easy to see that A is a B–matrix. Nevertheless,

A⊕1 A =

 4 3 0
0.5 5 3
0 0.5 1


is not a B–matrix.

Even if we add the condition of A being symmetric, the answers to questions (I) and (III)
remain negative as we can see in the next example.

Example 3.3. Let

A =

 4 2 0.5
2 5 0.2

0.5 0.2 1

 ,
A is a B-matrix, but, for k ∈ {0, 1, 2}, A⊕k A is not.

Even if we add the condition of A being symmetric, the answers to the last referred problems
remain negative and examples are easy to find.

It is not difficult, however, to set necessary and sufficient conditions.

Theorem 3.1. Let

A =

[
A11 A12

A21 A22

]
= (aij), B =

[
B22 B23

B32 B33

]
= (bij)

be B-matrices, with A of order n, B of order m and A22, B22 of order k (0 ≤ k ≤ n,m). A ⊕k B
is a B-matrix if and only if the following conditions hold

(C1) For i = 1, . . . , n− k, 1
n+m−k

n∑
j=1

aij > air, for all r = 1, . . . , n, r 6= i;

(C2) For i = k + 1, . . . ,m, 1
n+m−k

m∑
j=1

bij > bir, for all r = 1, . . . ,m, r 6= i;
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(C3) For i = n− k + 1, . . . , n, 1
n+m−k

( n∑
j=1

aij +
m∑
j=1

bi−n+k,j

)
> air, for all r = 1, . . . , n− k;

(C4) For i = n − k + 1, . . . , n, 1
n+m−k

( n∑
j=1

aij +
m∑
j=1

bi−n+k,j

)
> air + bi−n+k,r−n+k, for all r =

n− k + 1, . . . , n, r 6= i;

(C5) For i = n − k + 1, . . . , n, 1
n+m−k

( n∑
j=1

aij +

m∑
j=1

bi−n+k,j

)
> bi−n+k,r−n+k, for all r = n +

1, . . . ,m.

Proof. Let A⊕kB = (cij)
n+m−k
i,j=1 . Since the row sums of A and the row sums of B are both positive,

it is obvious that the row sums of A⊕k B are also positive.
For i = 1, . . . , n− k,

1

n+m− k

n+m−k∑
j=1

cij =
1

n+m− k

( n∑
j=1

aij +
n+m−k∑
j=n+1

0
)

=
1

n+m− k

n∑
j=1

aij .

Hence, for these values of i, it is trivial that all the off-diagonal elements cir are bounded above
by the corresponding row means when r ∈ {n + 1, ..., n + m − k}. For r ∈ {1, ..., n}, with r 6= i,
the off-diagonal elements cir are bounded above by the corresponding row means if and only if
condition (C1) holds.

For i = n+ 1, . . . , n+m− k,

1

n+m− k

n+m−k∑
j=1

cij =
1

n+m− k

(n−1∑
j=1

0 +
n+m−k∑
j=n−k+1

bi−n+k,j−n+k

)
=

1

n+m− k

m∑
j=1

bi−n+k,j .

It becomes clear that, for i = n + 1, . . . , n + m − k, all the off-diagonal elements cir are bounded
above by the corresponding row means when r ∈ {1, ..., n− k}. For r ∈ {n− k + 1, ..., n+m− k},
all the off-diagonal elements cir are bounded above by the corresponding row means if and only if

1
n+m−k

m∑
j=1

bi−n+k,j > cir. This is equivalent to condition (C2).

For i = n− k + 1, . . . , n,

1

n+m− k

n+m−k∑
j=1

cij =
1

n+m− k

( n∑
j=1

aij +
n+m−k∑
j=n−k+1

bi−n+k,j−n+k

)
=

1

n+m− k

( n∑
j=1

aij +
m∑
j=1

bi−n+k,j

)
.

Therefore, for these values of i, all the off-diagonal elements cir, with r ∈ {1, ..., n−k}, are bounded
above by the corresponding row means if and only if condition (C3) holds, all the off-diagonal
elements cir, with r ∈ {n−k+1, ..., n} and r 6= i, are bounded above by the corresponding row means
if and only if condition (C4) holds, and all the off-diagonal elements cir, with r ∈ {n+1, ..., n+m−k},
are bounded above by the corresponding row means if and only if condition (C5) holds.
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From the previous result we can derive some necessary conditions in which the elements of
matrix A do not depend on the elements of matrix B and vice versa.

Corollary 3.1. Let A and B be matrices as in Theorem 3.1. A⊕kB is a B-matrix if the following
conditions hold

(S1) For i = 1, . . . , n, 1
n+m−k

n∑
j=1

aij > air, for all r = 1, . . . , n, r 6= i;

(S2) For i = 1, . . . ,m, 1
n+m−k

m∑
j=1

bij > bir, for all r = 1, . . . ,m, r 6= i.

Corollary 3.2. Let A and B be matrices as in Theorem 3.1. If A and B are Z-matrices then
A⊕k B is a B-matrix.

Let us now focus on question (II) for B–matrices: If

C =

 C11 C12 0
C21 C22 C23

0 C32 C33


is a B-matrix, may C be written as C = A⊕1 B, with A and B B-matrices, when C22 is 1× 1?

In general, the answer is negative, as the following example shows.

Example 3.4. Let us consider the B–matrix

C =

 1 0.4 0
1 2 1
0 0.4 1

 .
It is not possible to write C = A⊕1 B with A,B B-matrices. In fact, we would have

C = A⊕1 B =

[
1 0.4
1 a

]
⊕1

[
b 1

0.4 1

]
,

with a+ b = 2. If A and B were B–matrices, we would have (1 +a)/2 > 1 and (1 + b)/2 > 1, which
imply a, b > 1, a contradiction.

However, the answer is positive if C is a Z–matrix.

Proposition 3.1. If C is a B-matrix in Zn of the form

C =

 C11 C12 0
C21 C22 C23

0 C32 C33

 ,
with C22 of size 1× 1, then C can be written as A⊕1 B with A,B B-matrices.

Proof. Being C = (cij) a B-matrix, we know C22 = −cm1 − . . .− cmm−1 − cmm+1 − . . .− cmn + δ
where m− 1 is the order of C11, and δ > 0. Take

A =

[
C11 C12

C21 a

]
and B =

[
b C23

C32 C33

]
,

where a = −cm1 − . . . − cmm−1 + δ
2 and b = −cmm+1 − . . . − cmn + δ

2 . It is easy to prove that A
and B are B–matrices.
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This last result can be extended and we also have a positive answer to question (IV) in case C
is a Z–matrix.

Theorem 3.2. If C is a B-matrix in Zn of the form

C =

 C11 C12 0
C21 C22 C23

0 C32 C33

 ,
with C22 of size k × k (0 ≤ k ≤ n), then C can be written as A⊕k B with A,B B-matrices.

Proof. Let m be the order of block C11 and C = (cij). Since C is a B–matrix, we know that, for
each i ∈ {m+ 1, ...,m+ k}, cii = −ci1 − ...− ci,i−1 − ci,i+1 − ...− cin + δi for some δi > 0.

Consider A = (aij) of order m+ k given by aij = cij for all i 6= j, aii = cii if i ∈ {1, ...,m} and
aii = −ci1 − ... − ci,i−1 − ci,i+1 − ... − ci,m+k + δi

2 if i ∈ {m + 1, ...,m + k} and B = (bij) of order
n−m given by bij = 0 for all i, j ∈ {1, ..., k} such that i 6= j, bij = ci+m,j+m if i ∈ {k+ 1, ..., n−m}
or j ∈ {k + 1, ..., n −m}, and bii = −ci+m,m+k+1 − ... − ci+m,n + δi+m

2 if i ∈ {1, ..., k}. It is not
difficult to prove that A and B are B–matrices such that A⊕k B = C.

As for question (II), in general the answer to question (IV) is negative. In the next example we
consider k = 3 but it is easy to extend this to any value of k > 1.

Example 3.5. Let us consider the B–matrix

C =



2 0.2 0 0 0 0
1 2 1 1 1 1
1 1 2 1 1 1
1 1 1 2 1 1
0 0 0 0.2 2 0
0 0 0 0 0.2 2

 .

It is not possible to write C = A⊕3 B with A,B B-matrices. In fact, we would have

C = A⊕3 B =


2 0.2 0 0
1 a1 a2 a3
1 a4 a5 a6
1 a7 a8 a9

⊕3


b1 b2 b3 1 1
b4 b5 b6 1 1
b7 b8 b9 1 1
0 0 0.2 2 0
0 0 0 0.2 2

 ,
with a1+a2+a3+b1+b2+b3 = 4. If A and B were B–matrices, we would have 1+a1+a2+a3 > 4
and 2 + b1 + b2 + b3 > 5, which imply a1 + a2 + a3 + b1 + b2 + b3 > 6, a contradiction.

4 Hadamard product

It is known that the Hadamard product of two real square matrices A = (aij) and B = (bij),
denoted by A ◦ B, is a new matrix C = (cij) such that cij = aijbij (see [3]). In this section we
analyze when the Hadamard product of two B–matrices lies in the class of B–matrices.

The following example illustrate that, in general, this question has a negative answer.
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Example 4.1. Let matrix A =

 4 −3 0
0 1 0
0 0 1

. It is clear that A is a B–matrix. However,

A ◦A =

 16 9 0
0 1 0
0 0 1

 is not a B–matrix.

Theorem 4.1. If A = (aij) and B = (bij) are nonnegative B–matrices, then A ◦ B is also a
B–matrix.

Proof. It is easy to observe that riA◦B ≤ riAriB , for all i = 1, 2, . . . , n. From (1) we only need to
prove that, for all i,

aiibii > (n− 1)riA◦B −
∑
r 6=i,l

airbir,

where riA◦B = ailbil. Let i ∈ {1, 2, . . . , n}. We distinguish two cases:
(I) riA◦B = riAriB
In this case we may assume, without loss of generality, that riA = ain, riB = bin and so, riA◦B =
ainbin.

We know that

aii > (n− 1)ain −
∑
r 6=i,n

air ≥ 0 and bii > (n− 1)bin −
∑
r 6=i,n

bir ≥ 0,

so

aiibii >

(n− 1)ain −
∑
r 6=i,n

air

(n− 1)bin −
∑
r 6=i,n

bir


=

ain +
∑
r 6=i,n

(ain − air)

(n− 1)bin −
∑
r 6=i,n

bir


= (n− 1)ainbin −

∑
r 6=i,n

ainbir +
∑
r 6=i,n

(ain − air)

bin +
∑
r 6=i,n

(bin − bir)


= (n− 1)ainbin −

∑
r 6=i,n

ainbir +
∑
r 6=i,n

(ain − air)bin +
∑

r 6= i, n
k 6= i, n

(ain − air)(bin − bik)

= (n− 1)ainbin +
∑

r 6= i, n
k 6= i, n

(ain − air)(bin − bik) +
∑
r 6=i,n

(ain − air)bin −

−
∑
r 6=i,n

(ain − air)bir −
∑
r 6=i,n

airbir

= (n− 1)ainbin +
∑

r 6= i, n
k 6= i, n

(ain − air)(bin − bik) +
∑
r 6=i,n

(ain − air)(bin − bir)−

−
∑
r 6=i,n

airbir.
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Taking into account that all terms of the form (ain − air) or (bin − bir) (r 6= i, r 6= n) are
nonnegative, we can conclude that

aiibii > (n− 1)ainbin +
∑

r 6= i, n
k 6= i, n

(ain − air)(bin − bik) +
∑
r 6=i,n

(ain − air)(bin − bir)−

−
∑
r 6=i,n

airbir

≥ (n− 1)ainbin −
∑
r 6=i,n

airbir.

Since l = n, we can conclude that

aiibii > (n− 1)riA◦B −
∑
r 6=i,l

airbir.

(II) riA◦B < riAriB .
In this case, let j, k ∈ {1, 2, . . . , n} be such that riA = aij and riB = bik. Note that, by definition,
j 6= i and k 6= i. If j = k, we would have riA◦B = riAriB . Therefore, j 6= k. Let l ∈ {1, 2, . . . , n} be
such that riA◦B = ailbil (l 6= i).

We know that

aii > (n− 1)aij −
∑
r 6=i,j

air ≥ 0 and bii > (n− 1)bik −
∑
r 6=i,k

bir ≥ 0,

so

aiibii >

(n− 1)aij −
∑
r 6=i,j

air

(n− 1)bik −
∑
r 6=i,k

bir


=

aij +
∑
r 6=i,j

(aij − air)

(n− 1)bik −
∑
r 6=i,k

bir


= (n− 1)aijbik −

∑
r 6=i,k

aijbir +
∑
r 6=i,j

(aij − air)

bik +
∑
r 6=i,k

(bik − bir)


= (n− 1)aijbik −

∑
r 6=i,k

aijbir +
∑
r 6=i,j

(aij − air)bik +
∑

r 6= i, j
s 6= i, k

(aij − air)(bik − bis)

=
∑

r 6= i, j
s 6= i, k

(aij − air)(bik − bis)−
∑
r 6=i,k

(aij − air)bir −
∑
r 6=i,k

airbir +

+
∑
r 6=i,j

(aij − air)bik + (n− 1)aijbik

=
∑

r 6= i, j
s 6= i, k

(aij − air)(bik − bis) +
∑
r 6=i,j,k

(aij − air)(bik − bir) + (aij − aik)bik +

+(aij − aij)bij −
∑

r 6=i,r 6=k
airbir + (n− 1)aijbik
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=
∑

r 6= i, j
s 6= i, k

(aij − air)(bik − bis) +
∑
r 6=i,j,k

(aij − air)(bik − bir)−
∑
r 6=i,k

airbir +

+(n− 1)aijbik + aijbik − aikbik
=

∑
r 6= i, j
s 6= i, k

(aij − air)(bik − bis) +
∑
r 6=i,j,k

(aij − air)(bik − bir)− ailbil −

−
∑
r 6=i,l

airbir + naijbik

= (n− 1)ailbil −
∑
r 6=i,l

airbir +
∑

r 6= i, j
s 6= i, k

(aij − air)(bik − bis) +

+
∑
r 6=i,j,k

(aij − air)(bik − bir) + naijbik − nailbil. (2)

Observe that each term of the form (aij − air) or (bik − bir) that occurs in the last expression is
nonnegative. In addition, aij ≥ ail ≥ 0 and bik ≥ bil ≥ 0 and so naijbik − nailbil ≥ 0. Therefore,

aiibii > (n− 1)ailbil −
∑
r 6=i,l

airbir,

that is
aiibii > (n− 1)riA◦B −

∑
r 6=i,l

airbir.

We have proved that, for all i ∈ {1, 2, . . . , n},

aiibii > (n− 1)riA◦B −
∑
r 6=i,l

airbir,

where riA◦B = ailbil. Hence, A ◦B is a B–matrix.

We can generalize the previous result in the following terms:

Theorem 4.2. Let A = (aij), B = (bij) be B–matrices. Let us suppose that if ars < 0, then
brs ≥ 0. Then A ◦B is a B–matrix.

Proof. With similar reasoning to the previous result we obtain the expression (2). In order to
obtain the same conclusion that in Theorem 4.1, that is, for all i ∈ {1, 2, . . . , n}

aiibii > (n− 1)ailbil −
∑
r 6=i,l

airbir,

we only need to analyze the sign of the term naijbik − nailbil. We consider the following cases:

a) If aij and bik are positive, then naijbik ≥ nailbil.

b) If aij = 0, then ail ≤ 0 since aij = riA , bil ≥ 0 by hypothesis, and bik ≥ 0 since bik = riB .
Therefore, naijbik − nailbil = −nailbil ≥ 0.
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c) If bik = 0, then bil ≤ 0, ail ≥ 0 and aij ≥ 0. So, naijbik − nailbil ≥ 0.

Therefore, A ◦B is a B–matrix.

From this theorem we can establish the following result.

Corollary 4.1. Let A be a Z-matrix and B a nonnegative matrix. If A, B are B–matrices, then
A ◦B is a B–matrix.

Let us note that if there exists a position (i, s) such that ais < 0 and bis < 0, it is possible to
construct B–matrices A and B such that A ◦B is not a B–matrix. The row i of A can be defined
as aii = 4, ais = −3 and aij = ±ε, for j 6= i, s and ε sufficiently small. In analogous way, bii = 4,
bis = −3 and bij = ±ε, for j 6= i, s and ε sufficiently small. The remaining rows of matrices A
and B may be the corresponding rows of the identity matrix. We can show that A and B are
B–matrices, but if we analyze the B-conditions of the row i of A ◦B

1

n
(16 + 9 + qε2) ≈ 25

n
< 9, for n ≥ 3.

So, A ◦B is not a B–matrix for n ≥ 3.

5 Kronecker product and sum of B–matrices

If A = (aij) is an m×n matrix and B = (bij) is a p× q matrix, then the Kronecker product A⊗B
is the mp× nq matrix

A⊗B =

 a11B . . . a1nB
...

...
am1B . . . amnB

 .
If m = n and p = q, we define the Kronecker sum of A and B as SAB = (Ip ⊗ A) + (B ⊗ Im) (see
[3]).

In this section we consider the Kronecker product and the Kronecker sum of two B–matrices
and we analyse whether they lie in the same class.

The following example illustrates that the Kronecker product of two B–matrices is not neces-
sarily a B–matrix.

Example 5.1. Let A =

[
3 1
1 3

]
, B =

[
3 2
2 3

]
, C =

[
3 −1
−1 3

]
and D =

[
3 −2
−2 3

]
. These

matrices are B–matrices. Nevertheless, A⊗B, C ⊗B and C ⊗D are not B–matrices.

Observe that the example above shows that even the Kronecker product of two B–matrices in
Zn is not, in general, a B–matrix, and that if one of the matrices is nonegative and the other a
Z-matrix, we can not conclude that the Kronecker product is also a B–matrix.

When it comes to the Kronecker sum of two B–matrices, it is also not true, in general, that the
resulting matrix is a B–matrix, as we can conclude from the next example.
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Example 5.2. Let A =

[
1.25 1

1 1.25

]
and B =

 1.25 1 1
1 1.25 1
1 1 1.25

. It is clear that both A and

B are B–matrices. However,

SAB = (I3 ⊗A) + (B ⊗ I2) =



2.5 1 1 0 1 0
1 2.5 0 1 0 1
1 0 2.5 1 1 0
0 1 1 2.5 0 1
1 0 1 0 2.5 1
0 1 0 1 1 2.5


is not a B–matrix.

In the next result we establish a sufficient condition for the Kronecker sum of two B–matrices
to be also a B–matrix.

Proposition 5.1. Let A and B be B–matrices of order n and m, respectively. If, for all i ∈

{1, ..., n} and all k ∈ {1, ...,m},
n∑
j=1

aij > nmriA and
m∑
j=1

bkj > nmrkB , then SAB is a B–matrix.

Proof. Write Im ⊗A = (cij) and B ⊗ In = (dij). It is clear that for each i ∈ {1, ..., nm} there exist
t ∈ {1, ..., n} and s ∈ {1, ...,m} such that

nm∑
j=1

cij =

n∑
j=1

atj and

nm∑
j=1

dij =

m∑
j=1

bsj .

Hence, for each i ∈ {1, ..., nm},

nm∑
j=1

cij > nmrtA = nmriIm⊗A and
nm∑
j=1

dij > nmrsB = nmriB⊗In
.

Therefore, Im ⊗ A and B ⊗ In are B–matrices and, since the sum of two B–matrices is also a
B–matrix, we can conclude that SAB is a B–matrix.

From this result we can derive the following.

Corollary 5.1. Let A and B be B–matrices in Zn and Zm, respectively. Then SAB is a B-matrix.
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