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aDepartamento de Matemática, Universidade de Aveiro, Portugal
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Abstract

The use of a non-commutative algebra in hypercomplex function theory requires a large va-
riety of different representations of polynomials suitably adapted to the solution of different
concrete problems. Naturally arises the question of their relationships and the advantages or
disadvantages of different types of polynomials. In this sense, the present paper investigates
the intrinsic relationship between two different types of monogenic Appell polynomials. Several
authors payed attention to the construction of complete sets of monogenic Appell polynomi-
als, orthogonal with respect to a certain inner product, and used them advantageously for the
study of problems in 3D-elasticity and other problems. Our goal is to show that, as conse-
quence of the binomial nature of those generalized Appell polynomials, their inner structure
is determined by interesting combinatorial relations in which the central binomial coefficients
play a special role. As a byproduct of own interest, a Riordan-Sofo type binomial identity is
also proved.
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1 Introduction

It is a well known fact that the study of solutions of partial differential equations, particularly of Cauchy-
Riemann type with well adapted algebraic methods can lead to new and important insights in their structure.
Weierstrass noticed in a letter to H. A. Schwarz, October 3, 1875, [1], that

The more I ponder the principles of function theory - and I do so unceasingly - the firmer becomes
my conviction that they have to be built on a foundation of algebraic truths.

Indeed, a natural approach to the treatment of problems in an even number of real variables greater than two,
is the application of several complex variables. This was already done by Weierstrass himself. But immediately
arises the question of how to deal in a similar way with problems, if the number of real variables is odd. In the
work of Moisil and Théodoresco [2] we can find the first example of a systematic approach related to vector
functions of three real variables and relying on the algebra of 3× 3 matrices.

At almost the same time, the article [3] of the Swiss mathematician R. Fueter, being a disciple of D. Hilbert
and well known number theorist, showed also the relevance of the algebra of quaternions in this context. His
advances in direction of a hypercomplex function theory based on quaternions as a generalization of complex
numbers, revealed already the fact that in both cases, i.e. in the case of an odd as well as of an even number
of real variables, the non-commutative algebra of quaternions can advantageously be used. Remarkable is also
the fact that in the last version of his lectures on function theory [4] he already used Clifford Algebras over
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n+ 1 real variables, namely for the representation of the solution of the Dirac equation in higher dimensions
as a generalization of Cauchy-Riemann equations in complex analysis.

Dormant for almost twenty years, R. Delanghe [5] restarted in the beginning of the 70-ies in the spirit
of Fueter a systematic development of what is now called Clifford Analysis. Since that time we can find a
huge number of theoretical as well as application oriented papers published in this field. In what concerns the
representation of polynomials in several real variables by application of Clifford Algebras, different techniques
have been developed. As examples we mention here the use of the Fischer decomposition for harmonic
polynomials as well as the Cauchy-Kovalevskaya extension for real analytic Clifford Algebra valued functions
of n-real variables to those of monogenic functions in n+ 1 variables. Both approaches have been described
in extension in [6]. Also the use of Legendre or Gegenbauer polynomials as starting point is very common
(see [7, 8]). The diversity of polynomial representations can be explained with the fact that composition
and multiplication are not closed operations in the set of generalized holomorphic (monogenic) functions.
Therefore different problems frequently demand different representations of polynomials (cf. [9]).

This became particular evident when two of the authors of this paper solved the question of existence of
homogeneous monogenic polynomials possessing the property of a generalized Appell sequence with respect to
a hypercomplex derivative ([10, 11]). Meanwhile this approach to power-like functions in several hypercomplex
variables has attracted the attention of various authors. It has been considered from different points of view,
including approaches based on representation theoretic methods [12, 13] and in connection with the direct
construction of orthogonal polynomial sequences [14]. The construction of an orthogonal bases as it is described
in [12, 13] (and others), relies on general properties of Gelfand-Tsetlin bases. The approach in [14] plays in a
very clever way with properties of the so-called generalized monogenic constants.

In this paper we look for the intrinsic relationship between a particular sequence of monogenic Appell
polynomials in those complete sets of orthogonal monogenic Appell polynomials and another type of generalized
Appell polynomials which are characterized by the property of being isomorphic to the integer complex powers
zk, z ∈ C, k = 0, 1, . . . , for arbitrary dimensions n. They have been used for the first time in approximation
problems [15] and later on they appeared as examples of Appell polynomials written in terms of several
hypercomplex variables in [16]. The fact that they form a (n−1)-parameter family of generalized holomorphic
Appell sequences allows also to construct complete sets of homogeneous power-like functions of degree k by
variation of the parameters. For simplicity we will concentrate on the simplest case of an odd number of real
variables, i.e. the case of n+1 = 3, which corresponds to the case of two hypercomplex variables depending on
one real parameter. In this case, the investigation of the relationship between the Appell sequence considered
in [15] (which is contained in the complete sets of orthogonal monogenic Appell polynomials considered in
[12] and [14]) and those monogenic power functions reveals an amazing connection with the central binomial
coefficients not studied so far.

We recall that in enumerative combinatorics, the sequence of Catalan numbers Cm defined as weighted
central binomial coefficients in the form

Cm =
1

m+ 1

(
2m

m

)
, for m ≥ 0,

occurs in many counting problems, interesting combinatorial identities, as well as in several important applica-
tions in number theory and other fields. The use of the weight 1

22m instead of 1
m+1 leads to another interesting

sequence of numbers constructed with the help of the central binomial coefficient, namely

c2m =
1

22m

(
2m

m

)
=

1

22m−1

(
2m− 1

m− 1

)
, for m ≥ 0. (1)

Relation (1) shows that in the case of this weight, it makes sense to combine the designation of both terms
in (1), by using the so-called generalized central binomial coefficient

(
k
b k2 c
)

and defining

ck :=
1

2k

(
k

bk2 c

)
, (2)

where b.c is the usual floor function and k ≥ 0. At the same time (1) shows that the sequence
(
ck
)
k≥0 is

completely defined by the ordinary central binomial coefficients
(
2m
m

)
, since c2m−1 = c2m. It seems to us
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an interesting fact that in an huge number of combinatorial identities involving the sequence of the central
binomial coefficients, they occur just in the form of

(
ck
)
k≥0 (see, for example, [17, 18, 19, 20]).

One of those central binomial coefficient identities, which has resisted for many years a typical combinatorial
proof by “two ways of counting”, is the famous Reed-Dawson Identity, first mentioned and proved in 1968 by
using a recurrence relation (see [20]; also mentioned as Knuth’s Old Sum in [21]):

2m∑
k=0

(−1)k

2k

(
2k

k

)(
2m

k

)
=

1

22m

(
2m

m

)
= c2m.

In the case of an odd upper limit the sum simply vanishes, i.e.

2m+1∑
k=0

(−1)k

2k

(
2k

k

)(
2m+ 1

k

)
= 0.

Another example is the Riordan-Sofo Identity, proved in [18] together with one more proof of the Reed-Dawson
Identity and closely related to it:

m∑
u=0

(−1)u

22u

(
2u

u

)(
m

u

)
=

m∑
u=0

(−1)u
(
m

u

)
c2u =

m∑
u=0

(−1)m−u
(
m

u

)
c2m−2u = c2m. (3)

In this paper we will show that the sequence (2) and a generalization of the Riordan-Sofo Identity (3) play
a significant role in the context of hypercomplex function theory. As could been shown for the first time in
[10], the explicit representation of a sequence of hypercomplex generalized Appell polynomials is essentially
determined by those ck.

The paper is organized in the following way. Section 2 introduces the necessary fundamental definitions of
Hypercomplex Function Theory needed for use in the subsequent sections. Section 3 is dedicated to properties
and relations of generalized Appell polynomials of two hypercomplex variables. In particular, two different
types of this class of polynomials with binomial expansion are presented, which have been recently proved to
play an important role in Hypercomplex Function Theory [22].

Section 4 starts with two auxiliary results of own interest. The first fills in a gap in the explicit expression
of the coefficients of the standard Appell polynomials in terms of two hypercomplex variables, while the second
one presents auxiliary relations deduced from properties of primitive roots of unity.

The subsequent proof of a binomial identity is the last step to the main result. As already mentioned
before, it is the proof of a generalization of a result by A. Sofo in [18] with a strong relationship to the
Reed-Dawson Identity. Indeed, both identities are two special cases of a generalized binomial sum studied by
A. Sofo in [18].

Theorem 3 at the end of Section 4 can be considered as the main result, showing the importance of
combinatorics in hypercomplex function theory and vice verse, i.e. the possibility of using hypercomplex function
theory as an analytic tool for obtaining new combinatorial identities.

2 Hypercomplex Function Theory toolbox

Let {1, e1, e2, e3} be an orthonormal basis of the Euclidean vector space R4 with the (quaternionic) product
given according to the multiplication rules

e21 = e22 = e23 = −1, e1e2 = −e2e1 = e3.

Considering the subset A := spanR{1, e1, e2} of the quaternion algebra H (isomorphic to the special Clif-
ford Algebra C`0,2), the real vector space R3 can be embedded in A by the identification of each element
(x0, x1, x2) ∈ R3 with the paravector

x = x0 + x1e1 + x2e2 ∈ A.
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Here x0 = Sc(x) and x = Vec(x) = e1x1 + e2x2 are the so-called scalar and vector part of the paravector
x ∈ A, respectively. The conjugate of x is given by x̄ = x0 − x and its norm by |x| =

√
xx̄. Observe that x2

is a nonpositive real number and we can write |x|2 = x20 + x21 + x22 = x20 − x2.
To call attention to its relation to the complex Wirtinger derivatives, we use for a generalized Cauchy-

Riemann operator in R3 the notation

∂ :=
1

2
(∂0 + ∂x), ∂0 :=

∂

∂x0
, ∂x := e1

∂

∂x1
+ e2

∂

∂x2
.

C1(Ω,A)-functions f , defined in a domain Ω, satisfying the equation ∂f = 0 (resp. f∂ = 0) are called left
monogenic (resp. right monogenic). We suppose that f is hypercomplex differentiable in Ω in the sense of
[23] and [24], i.e. has a uniquely defined areolar derivative f ′ in each point of Ω. Then f is real differentiable
and f ′ can be expressed by real partial derivatives as f ′ = ∂f where analogously to the generalized Cauchy-
Riemann operator we use ∂ := 1

2 (∂0−∂x) for the conjugate Cauchy-Riemann operator. Since a hypercomplex

differentiable function belongs to the kernel of ∂, it follows that in fact f ′ = ∂0f = −∂xf similar to the
complex case.

Using the general approach to Clifford Algebra valued monogenic functions ([8, 24]) restricted to our case
of n = 2, a second hypercomplex structure of R3, different from the one given by the set of paravectors A,
consists in the following isomorphism:

R3 ∼= H2 = {(z1, z2) : zk = xk − x0ek; x0, xk ∈ R, k = 1, 2}.

Throughout this paper we consider A-valued monogenic functions f of the form

f(z1, z2) = f(x0, x1, x2) = f0(x0, x1, x2) + f1(x0, x1, x2)e1 + f2(x0, x1, x2)e2,

where fk, k = 0, 1, 2 are real valued functions in a domain Ω ⊂ R3. We point out that in such a case a left
monogenic function is also right monogenic.

We can now introduce the notion of generalized power, an important tool in this work.

Definition 1 Let V+, · be a ring and vk ∈ V (k = 1, . . . , n). The symmetric “×”-product is defined by

v1 × v2 × · · · × vn =
1

n!

∑
π(k1,...,kn)

vk1vk2 · · · vkn ,

where the sum runs over all permutations of all (k1, . . . , kn).

Definition 2 The function z1
k−s × z2s, for k = 0, 1, . . . , s = 0, 1, . . . , k, where by convention

zk−s1 × zs2 = z1 × · · · × z1︸ ︷︷ ︸
k−s

× z2 × · · · × z2︸ ︷︷ ︸
s

, (4)

is called a generalized power of degree k.

The generalized powers defined by (4) have important properties, namely they are homogeneous monogenic
polynomials with values in A (see [25]). Moreover, an integer power of the variables z1 and z2 is a monogenic
function. A variable with such a property is called, in [5], a totally regular variable.

In addition, applying convention (4), the following binomial formula (see, e.g. [24]) can be derived:

(αz1 + βz2)k =

k∑
s=0

(
k

s

)
αk−sβszk−s1 × zs2, with α, β ∈ R. (5)

The description of the series development of monogenic functions is made here in terms of the totally regular
variables z1 and z2. In [25] it is proved that the set of all the k+ 1 generalized powers of degree k = 0, 1, . . .
defined by (4) forms a basis for the Taylor series of a monogenic function in R3. More precisely, we have

h(z1, z2) =

∞∑
k=0

1

k!

k∑
s=0

(
k

s

)
∂kh(0)

∂xk−s1 ∂xs2
zk−s1 × zs2, (6)



Carla Cruz, M.I. Falcão and H.R. Malonek 5

where h is defined in the bicylinder V = {(z1, z2) ∈ H2 : |zj | < rj , rj > 0, j = 1, 2}.
On the other hand, we recall that the Taylor series expansion of an analytic function of two complex

variables (w1, w2) ∈ C2 is ([26])

f(w1, w2) =

∞∑
k=0

1

k!

k∑
s=0

(
k

s

)
∂kf(0)

∂wk−s1 ∂ws2
wk−s1 ws2, (7)

where f is defined in the bicylinder U = {(w1, w2) ∈ C2 : |wj | < rj , rj > 0, j = 1, 2}.
Both expansions (6) and (7) show the deep analogy between functions of two hypercomplex variables and

of two complex variables. The only one formal difference of both Taylor series expansions is the use of the
symmetric product instead of the ordinary complex product. Notice that the convergence domain of (6) is
the intersection of two cylinders in R3 and therefore allows a direct visualization, which is not the case of
functions defined in C2.

3 Appell polynomials in R3

Some years ago, two of the authors constructed special homogeneous monogenic polynomials with the behavior
of power-like functions under hypercomplex differentiation ([10, 11]). More precisely, based on Appell’s concept
(cf. [27]) the following definition was introduced:

Definition 3 A sequence of homogeneous monogenic polynomials
(
Qk
)
k≥0 of degree k is called a generalized

Appell sequence with respect to ∂ if

1. Q0(x) ≡ 1,

2. ∂Qk = kQk−1, k = 1, 2, . . . .

Based on this definition, the following A-valued generalized Appell polynomials, expressed in terms of the
totally regular variables z1 and z2, were obtained:

Pk(z1, z2) := ck

k∑
s=0

zk−s1 × zs2
(
k

s

)
ek−s1 × es2, (8)

where the coefficients ck are the weighted central binomial coefficients defined by (2). To be brief, we call here
these homogeneous Appell polynomials the standard Appell polynomials, since they appear also in a natural
way in the set of orthogonal Appell polynomials constructed in [12] and [14].

Of special interest for the following is now a remarkable property of the first degree standard Appell
polynomial, as one of the two basis polynomials, necessary for the representation of any arbitrary monogenic
polynomial of degree one1.

P1(z1, z2) :=
1

2
(z1e1 + z2e2) = x0 +

1

2
(x1e1 + x2e2). (9)

The possibility of decomposing it additively in the form

P1(z1, z2) :=
1

2
(z1e1 + z2e2) =

1

2

[
(z1 + z2)√

2

(e1 + e2)√
2

+
(z1 − z2)√

2

(e1 − e2)√
2

]
(10)

leads to two different and linearly independent first degree monogenic polynomials of the form

R(z1, z2) := (z1i1 + z2i2)(i1e1 + i2e2) (11)

where (i1, i2) = ( 1√
2
, 1√

2
), respectively (i1, i2) = ( 1√

2
,− 1√

2
), are unit vectors of real parameters. This can be

easily verified by inspection.

1The dimension of the space of homogeneous polynomials of degree k in Rn+1 is equal to
(n+k−1

k

)
, cf. [8].
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The same reasoning can be applied in the case of Rn+1 for arbitrary n ≥ 2 where the corresponding first
degree standard Appell polynomial is given by

P
(n)
1 (z1, . . . , zn) :=

1

n
(z1e1 + . . .+ znen) = x0 +

1

n
(x1e1 + . . .+ xnen). (12)

In this general case an analogously additive decomposition of P
(n)
1 leads to 2n−1 summands of the form

R(n)(z1, . . . , zn) := (z1i1 + . . .+ znin)(i1e1 + . . .+ inen) (13)

where (i1, . . . , in) are the corresponding unit vectors of n real parameters. A difference to the case n = 2
consists in the following. Whereas for n = 2 the decomposition process results in the number of two basis
polynomials just needed, we have for n ≥ 3 that n < 2n−1 and the resulting number 2n−1 of basis polynomials
is bigger than the dimension and therefore they cannot anymore be linear independent. Of course, this is a
minor problem and can be solved by a proper choice of the linear independent set of basis polynomials for
every degree k = 1, 2, . . ..

We mentioned here the described procedure as a way of deriving from the structure of the standard Appell
polynomials by decomposition a connection to a simple general set of homogeneous polynomials of first degree.

Moreover, recently in [22], it has been proved that beyond (8) there is just one type of Appell polynomials
with values in A, based on the totally regular variable (11), namely,

Rki (z1, z2) = (z1i1 + z2i2)k(i1e1 + i2e2)k (14a)

= [x0 + (i1e1 + i2e2)(i1x1 + i2x2)]
k
, (14b)

where i := (i1, i2) is a unit vector of real parameters and k = 0, 1, . . ..
It is easy to recognize in expression (14b) the isomorphism between these polynomials and the complex

powers z = (x+ iy)k. This observation suggests the designation of (14a) or (14b) as pseudo-complex powers.
Most striking is the fact that with these type of Appell polynomials we have for every value of k and any
number n of hypercomplex variables one and the same structure of basis polynomials which allows, in the
hypercomplex case, a new series representation.2 It means that we can consider homogeneous monogenic
polynomials of the form

S
(n)
k (z1, z2) =

k∑
l=0

αkilR
k
il

(z1, z2), (15)

with coefficients αkil ∈ A depending on the chosen parameter set {il = (i1l, i2l), l = 0, 1, . . . k}. What
concerns a difference to the one complex variable case is the fact that the m-fold hypercomplex derivative
applied to all the elements of a pseudo-complex power basis for homogeneous polynomials of degree k yields
only a system of not linear independent pseudo-complex powers of degree (k−m), i. e. does not reproduce a
basis, since there is no reduction of the overall quantity of basis elements to the necessary number for degree
(k −m). In the one complex variable case the m-fold complex derivative reproduces again a basis element.

Notice now that (14a) is the n = 2 case of the Appell polynomials used in [16]. There, one can find the
following result concerning the use of pseudo-complex powers as a basis of homogeneous monogenic paravector
valued polynomials different from {zk−s1 × zs2}ks=0.

Theorem 1 The set of polynomials {Rk
iks
}ks=0 of the form (14) is a basis for the space of homogeneous

monogenic paravector valued polynomials of degree k in R3, provided that the k + 1 unit vectors iks =
(iks1, i

k
s2) ∈ R2, with s = 0, . . . , k, are pairwise noncollinear.

The importance of Appell sequences in hypercomplex context together with the fact that the polynomials
(8) show interesting properties, motivated us to ask for the bijection between the representation (8) of Pk
and its representation in terms of elements of a particular basis of the form

{Rkik0 ,R
k
ik1
, . . . ,Rkikk−1

,Rkikk}. (16)

2Compare (6) and (7) where the strong similarity of both Taylor series expansions in C2 for two complex variables, resp. in
H2 for two hypercomplex variables, is mentioned.
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It is clear that the conditions referred in Theorem 1 still allow a wide choice of parameter-vectors, leading to
different sets in (16). In fact, each unit vector iks can be written in the form

iks = (cosαks , sinα
k
s ),

where αks are real numbers. It is clear that the parameter set Ak = {αk0 , αk1 , . . . , αkk} defines completely the

set of unit vectors {ik0 , i
k
1 , . . . , i

k
k}.

We use throughout this work the parameter set

Ak = {αk0 , αk1 , . . . , αkk}, (17a)

with

αk0 = α0
0 =π

2 , (17b)

αks = αss =π
2 −

(2n′+1)π
2n , for s = 1, . . . , k, (17c)

where n and n′ are integers such that s = 2n−1 + n′, for 0 ≤ n′ ≤ 2n−1 − 1. According to Theorem 1,
this parameter set defines a basis for the space of homogeneous monogenic paravector valued polynomials
{Rk

iks
}ks=0 of degree k, since the corresponding k + 1 unit vectors iks , s = 0, . . . , k are obviously pairwise

noncollinear.

Remark 1 It is clear that (17) defines a family of sets satisfying the condition Ak−1 ⊂ Ak, i.e. Ak =
Ak−1 ∪ {αkk}. Moreover these sets (17) can be written explicitly as

Ak =
{

lπ
2n−1

}2n−2

l=−2n−2+1
∪
{
π
2 −

(2l+1)π
2n

}n′
l=0

.

The last expression reveals a block structure of length 2n−1. Each block starts with n′ = 0, i.e.

A2n−1

=
{

lπ
2n−1

}2n−2

l=−2n−2+1
∪
{
π
2 −

π
2n

}
,

and ends with n′ = 2n−1 − 1, where

A2n−1 =
{

2lπ
2n

}2n−2

l=−2n−2+1
∪
{

(2l+1)π
2n

}2n−2−1

l=−2n−2
=
{
lπ
2n

}2n−1

l=−2n−1+1
. (18)

From now on we denote, for simplicity, the pseudo-complex powers associated with the choice (17) by

Rks = (z1 cos(αks ) + z2 sin(αks ))k(cos(αks )e1 + sin(αks )e2)k. (19)

Table 1 illustrates the structure of the parameter set (17), while Table 2 presents the first pseudo-complex
powers Rks .

k αkk Ak k αkk Ak

0 π
2

{
π
2

}
4 3π

8

{
π
2 , 0,

π
4 ,−

π
4 ,

3π
8

}
1 0

{
π
2 , 0
}

5 π
8

{
π
2 , 0,

π
4 ,−

π
4 ,

3π
8 ,

π
8

}
2 π

4

{
π
2 , 0,

π
4

}
6 −π8

{
π
2 , 0,

π
4 ,−

π
4 ,

3π
8 ,

π
8 ,−

π
8

}
3 −π4

{
π
2 , 0,

π
4 ,−

π
4

}
7 − 3π

8

{
π
2 , 0,

π
4 ,−

π
4 ,

3π
8 ,

π
8 ,−

π
8 ,−

3π
8

}
Table 1: Parameter sets of the form (17).
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R0
0 = 1

R1
0 = z2e2 R1

1 = z1e1

R2
0 = −z22 R2

1 = −z21 R2
2 = − 1

2 (z1 + z2)2

R3
0 = −z32e2 R3

1 = −z31e1 R3
2 = − 1

4 (z1 + z2)3(e1 + e2) R3
3 = − 1

4 (z1 − z2)3(e1 − e2)

Table 2: First pseudo-complex powers associated with (17).

4 A new combinatorial identity and the bijection between two types
of Appell polynomials

In this section we express the polynomials Pk(z1, z2) in terms of the basis {Rks}ks=0 with the parameter
set given by (17). Table 3 contains the coordinates of the first Pk in terms of the referred basis. These
results suggest that the special form of the polynomials Pk associated with the block structure of (17a), and
consequently of {Rk0 , Rk1 , . . . , Rkk}, leads to an interesting representation of the standard Appell polynomials
in terms of pseudo-complex powers.

k Coordinates of Pk k Coordinates of Pk

0 (1) 4
(
1
4 ,

1
4 ,

1
4 ,

1
4 , 0
)

1
(
1
2 ,

1
2

)
5
(
1
4 ,

1
4 ,

1
4 ,

1
4 , 0, 0

)
2
(
1
2 ,

1
2 , 0
)

6
(
1
4 ,

1
4 ,

1
4 ,

1
4 , 0, 0, 0

)
3
(
1
4 ,

1
4 ,

1
4 ,

1
4

)
7
(
1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8

)
Table 3: Coordinates of Pk in the basis {Rks}ks=0.

Previously to the main theorems we prove two results of own interest. The first proposition fills in a gap in
the explicit expression of the coefficients of the standard Appell polynomials (8), while the second one presents
auxiliary relations deduced from properties of primitive roots of unity.

Proposition 1 Let [zk−s1 × zs2]P denote the coefficient of Pk associated with the generalized power zk−s1 ×zs2,
for each k = 0, 1, . . . and s = 0, 1, . . . , k.

I. If k is even then

[zk−s1 × zs2]P =

(−1)
k
2 ck

(k
2
s
2

)
, if s even;

0, if s odd.

(20)

II. If k is odd then

[zk−s1 × zs2]P =


ck(−1)

k−1
2

(k−1
2
s
2

)
e1, if s even;

ck(−1)
k−1
2

(k−1
2
s−1
2

)
e2, if s odd.

(21)

Proof. Consider the polynomial Fk(λ) of degree k in the real parameter λ,

Fk(λ) = (e1 + λe2)k =

k∑
s=0

(
k

s

)
λsek−s1 × es2

and note that F
(s)
k (0) = s!

(
k
s

)
ek−s1 × es2. Then, based on (8) we have

[zk−s1 × zs2]P =
ck
s!
F

(s)
k (0), (22)
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which means that the expected result can be deduced by direct inspection of F
(s)
k (0).

We observe that Fk(λ) is a power of a pure vector and therefore

Fk(λ) =

(−1− λ2)
k
2 , if k even;

(−1− λ2)
k−1
2 (e1 + λe2), if k odd.

In order to obtain the higher order derivatives of Fk we make use of a formula of T. Abadie which is an
early version of Faà di Bruno’s formula for the derivative of a composite function (see [28] and [29]). It reads
as follows:

If f and g are real functions of λ, with a sufficient number of derivatives, then

(g ◦ f)(s)(λ) =

s∑
l=0

(
s

l

)
g(l)
(
f(λ)

){ ds−l

dhs−l
(
∆hf(λ)

)l}
h=0

, (23)

where ∆hf(λ) := f(λ+h)−f(λ)
h is the difference quotient of f .

We proceed now with the proof, considering the two cases corresponding to the parity of k.

I. k even

We observe that Fk(λ) can be written as Fk(λ) = (g ◦ f)(λ), with g(λ) = (−1− λ)
k
2 and f(λ) = λ2.

Since

g(l)(λ) =
k
2 !

(k2 − l)!
(−1)l(−1− λ)

k
2−l, l = 0, 1, . . . , k2 ,

and
ds−l

dhs−l
(
∆hf(λ)

)l
=

{
l!

(2l−s)! (2λ+ h)2l−s, for s− l ≤ l;
0, otherwise,

formula (23) results in

F
(s)
k (λ) =

s∑
l≥ s2

(
s

l

)
(k2 )!

(k2 − l)!
(−1)l(−1− λ2)

k
2−l
{ l!

(2l − s)!
(2λ+ h)2l−s

}
h=0

=

s∑
l≥ s2

s!

(s− l)!
(k2 )!

(k2 − l)!
(−1)l(−1− λ2)

k
2−l(2λ)2l−s.

Therefore

F
(s)
k (0) =

(−1)
k
2 s!

(k
2
s
2

)
, s even;

0, s odd.

and from (22), the final result follows.

II. k odd
The relation Fk(λ) = Fk−1(λ)(e1 + λe2) together with Leibniz’s differentiation rule leads to

F
(s)
k (0) = F

(s)
k−1(0)e1 + F

(s−1)
k−1 (0)e2.

The final result (21) can now easily be deduced from the even case. �

Proposition 2 If N and p are integers such that N ≥ 0 and p 6= kN , for odd k, then the following equalities
are true:

2N∑
l=1

(−1)l cos(lp πN ) =

2N∑
l=1

(−1)l sin(lp πN ) = 0.
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Proof. Let ω = cos( πN ) + i sin( πN ) be a 2N -th primitive root of unity. Since ω 6= 1 we have

2N∑
l=1

ωl = 0. (24)

We note that the assumption p 6= kN , for odd k, is equivalent to assume that ωp 6= −1. In this way, replacing
ω by −ωp in formula (24), we obtain

2N∑
l=1

(−ωp)l = 0,

or equivalently,
2N∑
l=1

(−1)l cos(lp πN ) + i

2N∑
l=1

(−1)l sin(lp πN ) = 0.

�

The next theorem refines the central binomial coefficient identity (3) proved by J. Riordan in [20] and
recently studied by A. Sofo ([18]), as already mentioned in the Introduction.

Theorem 2 (Riordan-Sofo type identity) If m is a positive integer and s = 0, 1, . . . ,m, then

s∑
u=0

(−1)s−u
(
s

u

)
c2(m−u) =

(
m

s

)(
2m

2s

)−1
c2m. (25)

Proof. The function

Sm(s) :=

s∑
u=0

(−1)s−u
(
s

u

)
c2(m−u)

can be written, for s = 1, 2, . . . ,m, as

Sm(s) =

s−1∑
u=0

(−1)s−u
(
s− 1

u

)
c2(m−u) +

s−1∑
u=0

(−1)s−u
(
s− 1

u

)
c2(m−1−u)

and therefore verifies the recurrence relation

Sm(s) = −Sm(s− 1) + Sm−1(s− 1), for s ≥ 1;

Sm(0) = c2m.

Since the weighted central binomial coefficients ck satisfy

c2m =
2m− 1

2m
c2m−2,

(cf. (1)) we can write

Sm(1) =
1

2m− 1
c2m;

Sm(2) =
3

2m− 3
Sm(1) =

1

2m− 1

3

2m− 3
c2m;

...

Sm(s) =
2s− 1

2m− (2s− 1)
Sm(s− 1) =

1

2m− 1

3

2m− 3
· · · 2s− 1

2m− (2s− 1)
c2m.

Using now induction on s we can prove that Sm(s) = d(m, s) c2m, where
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d(m, s) :=

s−1∏
l=0

2l + 1

2m− (2l + 1)
=

(2s− 1)!!(2(m− s)− 1)!!

(2m− 1)!!
.

Finally, recalling relation (2k − 1)!! = (2k)!
2kk!

, we obtain

d(m, s) =
m!(2m− 2s)!(2s)!

(m− s)!s!(2m)!
=

(
m

s

)(
2m

2s

)−1
and the desired result follows. �

Remark 2 If s = m, then relation (25) reduces to the identity (3), thus justifying its designation as a
Riordan-Sofo type binomial identity.

Finally, we are able to prove the main result of this paper concerning the relationship between two types
of Appell polynomials in R3, namely (8) and a special case of (14).

Theorem 3 The standard Appell polynomials Pk can be written in terms of the pseudo-complex powers Rkl
as

Pk(z1, z2) =
1

2n

2n−1∑
l=0

Rkl (z1, z2), (26)

where n is the integer for which 2n − 1 ≤ k ≤ 2(2n − 1).

Proof. Denote by Rk(z1, z2) the right-hand side of (26). The proof consists in comparing [zk−s1 × zs2]P with

[zk−s1 × zs2]R, i.e. the coefficients of zk−s1 × zs2 of Pk with those of Rk. We first note that due to (18) and
(19) we can write

Rk(z1, z2) = 1
2n

2n−1∑
l=−2n−1+1

(
z1 cos( lπ2n ) + z2 sin( lπ2n )

)k(
e1 cos( lπ2n ) + e2 sin( lπ2n )

)k
. (27)

We continue the proof by considering again two cases, depending on the parity of k.

I. k even
Since an even power of a pure vector is real valued, (27) simplifies for k = 2m to

R2m(z1, z2) = (−1)m
2n

2n−1∑
l=−2n−1+1

(
z1 cos( lπ2n ) + z2 sin( lπ2n )

)2m
,

which means that only even powers of z1 and z2 are present in the last expression (cf. (5)) and therefore

R2m(z1, z2) = (−1)m
2n

(
z2m1 + z2m2 + 2

2n−1−1∑
l=1

m∑
s=0

(
2m
2s

)(
cos( lπ2n ))2m−2s(sin( lπ2n )

)2s
z2m−2s1 × z2s2

)
.

After simple manipulation and direct inspection we obtain

[z2m−2s1 × z2s2 ]R =
(−1)m

2n

(
2m

2s

)
S̃m(s), (28)

where

S̃m(s) :=

2n∑
l=1

(
cos( lπ2n )

)2m−2s(
sin( lπ2n )

)2s
. (29)

This last sum can be written as

S̃m(s) =

2n∑
l=1

(
cos( lπ2n )

)2m−2s(
1− cos2( lπ2n )

)s
=

s∑
u=0

(−1)u
(
s

u

) 2n∑
l=1

(
cos( lπ2n )

)2m−2(s−u)
.
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Then we use the well known identity

(cos θ)2N =
1

22N

(
2N

N

)
+

1

22N−1

N−1∑
t=0

(
2N

t

)
cos(2(N − t)θ),

written in terms of the weighted central binomial coefficients (2) as

(cos θ)2N = c2N +
1

22N−1

N−1∑
t=0

(
2N

t

)
cos(2(N − t)θ),

in order to obtain

S̃m(s) =

s∑
u=0

(−1)u
(
s

u

)
2nc2(m−s+u) +A(m, s), (30)

where

A(m, s) =

s∑
u=0

(
s

u

)
(−1)u

22(m−s+u)−1

m−s+u−1∑
t=0

(
2(m− s+ u)

t

) 2n∑
l=1

cos
(
2(m− s+ u− t) lπ2n

)
.

Since 2n − 1 ≤ 2m ≤ 2(2n − 1) we can write 2m = 2n + 2m′, for 0 ≤ m′ ≤ 2n−1 − 1 and conclude
that

2n∑
l=1

cos
(
2(m− s+ u− t) lπ2n

)
=

2n∑
l=1

(−1)l cos
(
(m′ − s+ u− t) lπ

2n−1

)
.

Now, in order to be able to apply Proposition 2, we need to ensure that m′ − s + u − t is not an odd
multiple of 2n−1. Based on the fact that 0 ≤ t ≤ m−s+u−1 and u−s ≤ 0, we are led to the relation

m′ −m+ 1 = −2n−1 + 1 ≤ m′ − s+ u− t ≤ m′ ≤ 2n−1 − 1

and consequently, by the use of Proposition 2, the aforementioned sum vanishes and therefore also the
sum A(m, s) in (30). Finally, comparing now (30) with the the Riordon-Sofo type identity (25), we see
that

S̃m(s) =

s∑
u=0

(−1)u
(
s
u

)
2nc2(m−s+u) = 2n

(
m

s

)(
2m

2s

)−1
c2m. (31)

Replacing S̃m(s) in (28) and comparing with (20) we obtain

[z2m−2s1 × z2s2 ]R = (−1)m
(
m

s

)
c2m = [z2m−2s1 × z2s2 ]P

and the even case is proved.

II. k odd
If k is of the form k = 2m− 1 then (27) simplifies to

R2m−1(z1, z2) = (−1)m−1

2n

2n−1∑
l=−2n−1+1

(
z1 cos( lπ2n ) + z2 sin( lπ2n )

)2m−1(
e1 cos( lπ2n ) + e2 sin( lπ2n )

)

= (−1)m−1

2n

2n−1∑
l=1

(
z1 cos( lπ2n ) + z2 sin( lπ2n )

)2m−1(
e1 cos( lπ2n ) + e2 sin( lπ2n )

)

+ (−1)m−1

2n

2n−1−1∑
l=0

(
z1 cos( lπ2n )− z2 sin( lπ2n )

)2m−1(
e1 cos( lπ2n )− e2 sin( lπ2n )

)
.
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Developing the last expression in terms of symmetric powers (see (5)) we obtain

[z2m−1−2s1 × z2s2 ]R =
(−1)m−1

2n
(
2m−1
2s

)
S̃m(s)e1

and

[z
2m−2(s+1)
1 × z2s+1

2 ]R =
(−1)m−1

2n
(
2m−1
2s+1

)
S̃m(s+ 1)e2,

where S̃m is the sum (29). The result follows by using (31) and comparing with (21). �

The block structure presented in Theorem 3 implies that, for each block, i.e. for 2n − 1 ≤ k ≤ 2(2n − 1),
the number of pseudo-complex powers necessary for the expression of each standard Appell polynomial does
not vary along the block and corresponds to 2n (see Table 3). This means that the degree k = 2n − 1 is
the one for which only k + 1 polynomials are needed. For all the other values of k in the block, there is a
considerable reduction of the number of basis elements, specially if we look at the final value k = 2(2n − 1),
where only k

2 + 1 polynomials are used.

5 Final remarks

Appell polynomials can play an important role in applications, namely in 3D-mapping problems (see [30, 31])
or in the construction of classes of generalized classical polynomials (cf. [32, 33]).

In this work we consider a basis of 3D monogenic Appell polynomials isomorphic to the complex powers,
which is particularly easy to handle, from the computational point of view. It is rather surprising that, using the
parameter set (17), each standard Appell polynomial Pk is obtained as the arithmetic mean of 2n polynomials
Rkl , for k = 2n − 1, 2n, . . . , 2(2n − 1), with one and the same parameter-vectors. In addition, the use of (17)
led to a link between combinatorics and hypercomplex function theory, by means of a new Riordan-Sofo type
binomial identity.

Finally, we point out that, apart from the concrete parameter choice, the pseudo-complex polynomials
Rki obey all the same principle structure, isomorphic to the complex powers zk. This fact allows to develop
efficient algorithms for the construction of bases for the space of homogeneous monogenic paravector valued
polynomials in R3. Here we concentrated on the structural aspects of pseudo-complex powers due to their
relevance in combinatorics, but more details on the numerically and algorithmically benefit of pseudo-complex
powers can be found in [34].

Acknowledgments

This work was supported by FEDER founds through COMPETE – Operational Programme Factors of Compet-
itiveness (“Programa Operacional Factores de Competitividade”) and by Portuguese funds through the Center
for Research and Development in Mathematics and Applications (University of Aveiro) and the Portuguese
Foundation for Science and Technology (“FCT – Fundação para a Ciência e a Tecnologia”), within project
PEst-C/MAT/UI4106/2011 with COMPETE number FCOMP-01-0124-FEDER-022690. The research of the
first author was also supported by FCT under the fellowship SFRH/BD/44999/2008.

References

[1] K. Weierstrass, Math. Werke, Bd. 2, p. 235, Berlin 1897.
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Birkäuser Verlag, Basel, 2008.

[9] I. Cação, M. I. Falcão, H. R. Malonek, Matrix representations of a special polynomial sequence in arbitrary
dimension, Computational Methods and Function Theory 12 (2) (2012) 371-391.

[10] M. I. Falcão, H. R. Malonek, Generalized exponentials through Appell sets in Rn+1 and Bessel functions,
AIP Conference Procedings 936 (2007) 738-741.

[11] M. I. Falcão, J. F. Cruz, H. R. Malonek, Remarks on the generation of monogenic functions, in: K.
Gürlebeck and C. Könke (Ed.), 17th Inter. Conf. on the Appl. of Computer Science and Mathematics on
Architecture and Civil Engineering, Weimar, (2006).
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