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Abstract 

 

Candida glabrata has emerged as the second most prevalent fungal pathogen 

and its ability to form biofilms has been considered one of the most important virulence 

factors, since biofilms present a high tolerance to antifungal agents used in fungal 

infection treatment. The mechanisms of biofilm tolerance to antifungal agents remain 

poorly understood. Thus, the aim of this study was to evaluate the effects of fluconazole 

(FLU) in the formation and control of C. glabrata biofilms, its relation with the 

expression of genes encoding for ABC transporters, CDR1, SNQ2, and PDR1 and how 

the ergosterol biosynthesis may be affected.  

 Additionally to the high amounts of proteins and carbohydrates detected in the 

extracellular matrices in the presence of FLU, this work showed that the overexpression 

of efflux pumps is a possible mechanism of biofilm tolerance to FLU and this 

phenomenon alters the structure of C. glabrata biofilms by creating cell clusters. 

  



vi 
 

  



vii 
 

Resumo 

 

Candida glabrata emergiu como o segundo fungo patogénico mais prevalente e a sua 

capacidade para formar biofilmes tem sido considerado um dos fatores de virulência mais 

importante, uma vez que os biofilmes apresentam elevada tolerância a agentes antifúngicos 

usados no tratamento de infecções fúngicas. Os mecanismos de tolerância dos biofilmes 

continuam por explorar. Por isso, o objetivo deste estudo é avaliar os efeitos do fluconazol 

(FLU) na formação e controlo dos biofilmes de C. glabrata, a sua relação com a expressão de 

genes que encodam os transportadores ABC, CDR1, SNQ2 e PDR1 e como a biossíntese do 

ergosterol pode ser afetada.  

Adicionalmente, para as grandes quantidades de proteínas e hidratos de carbono 

detetados nas matrizes extracelulares, na presença de FLU, este trabalho demonstrou que a 

sobre-expressão de bombas de efluxo é um possível mecanismo de tolerância dos biofilmes 

contra o FLU e este fenómeno altera a estrutura dos biofilmes de C. glabrata pela criação de 

agregados de células. 
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ACT-Actin 

ANOVA - Analysis of variance 
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cDNA - complementary Deoxyribonucleic Acid 
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CHROMagar - Chromogenic media agar 
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NCAC - non-Candida albicans Candida 

PBS - Phosphate Buffer Saline 

RT- PCR – Real-time Polymerase Chain Reaction 

RNA - Ribonucleic Acid 

rpm - rotation per minute 

rRNA - ribosomal Ribonucleic Acid 

SDA - Sabouraud dextrose agar 

SDB - Sabouraud dextrose broth 

SD - Standard deviation 

SEM - Scanning Electron Microscopy 
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I.1. Background 

 

Most cases of candidiasis have been attributed to Candida albicans, but recently, 

non-Candida albicans Candida (NCAC) species, as Candida glabrata, have been 

identified as common pathogens. The incidence of systemic infections caused by C. 

glabrata increased dramatically throughout the 1990s and became the most common 

cause of candidiasis after C. albicans. Candida glabrata systemic infections are a 

subject of considerable concern due to the tendency of this species to rapidly develop 

resistance to azole antifungal agents, especially fluconazole, and polyenes like 

amphotericin B. Moreover, this species is also important due to the high mortality rates 

associated with C. glabrata fungemia. Adherence to host surfaces including medical 

devices, secretion of hydrolytic enzymes and specially biofilm formation are virulence 

factors that are associated with Candida pathogenicity.  

Biofilms formed by Candida isolates have been associated with higher 

morbidity and mortality rates compared with isolates unable to form biofilms, due to the 

significant resistance to antifungal therapy conferred by the complex biofilm structure 

and composition. Despite, the lack of knowledge about the exact mechanism of biofilm 

resistance to antifungals, it is believed that this is a complex multifactorial phenomenon. 

Actually, restricted penetration of drugs through the biofilm matrix, phenotypic changes 

resulting from a decreased growth rate or nutrient limitation, expression of resistance 

genes induced by contact with a surface and the presence of a small number of 

“persister” cells are hypothesized as mechanisms of biofilm resistance.  

At the present, little is known about C. glabrata biofilms resistance, so the aim 

of this project is to study the resistance mechanisms of C. glabrata biofilms to 

antifungal agents. It is expected that these studies will ultimately contribute towards the 

identification of targets for novel therapeutics against C. glabrata infections.  
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I.2. Objective 

 

The comprehension of resistance mechanisms of C. glabrata biofilms is the key 

to succeed on the Candida infections treatment, since the biofilms present much higher 

MICs for the common antifungal agents used, which in most cases, results on treatment 

failure. Thus, the main goal of this project is to study the resistance mechanisms of C. 

glabrata biofilms to fluconazole. To achieve this goal, the effects of FLU in the 

formation and control of C. glabrata biofilms, in the extracellular matrix composition 

was evaluated, as well as on ABC transporter genes expression (CDR1, SNQ2, PDR1) 

and on ERG genes (ERG1, ERG3, ERG6, ERG9, ERG11) that are involved in the 

ergosterol biosynthesis.  

Therefore, under the subject of this project it is expected to provide more 

knowledge for the development of new and more specific therapies for Candida 

infections, thus rising patients health and lowering the costs involved in the wrong 

application of these agents. 
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I.3. Structure of the thesis 

 

This dissertation is divided in six different chapters in order to present the work 

done during the time of investigation:  

 

I. Background and objectives  

This chapter will present the context and the objectives that gave wings to this thesis.  

 

II. Introduction 

This chapter will be focused in the theoretical basis associated to this work.  

 

III. Materials and methodology  

In this chapter the materials and the methods and techniques used in the experiments 

will be presented.  

 

IV. Analysis of the results  

In this chapter all results obtained during the whole experimental work will be included.  

 

V. Discussion of the results 

In this chapter the discussion of all the results obtained will be exposed. 

 

VI. Conclusions  

In this chapter the main conclusions obtained from the realized work will be presented 

and some works will be suggested to the future.  

 

VII. References  

The all bibliography used to the comprehension, execution and written of this 

dissertation will be listed in this chapter.  

 

The work presented in this thesis was developed in the Center of Biological 

Engineering, Department of Biological Engineering of the University of Minho.
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II.1. Candida Discovery 

 

“Thrush” was documented for the first time by Pepys in 1665. However, only in 

1846, a scientific approach to the study of thrush, carry out by Berg, showed the 

presence and relationship of the fungus with the disease. After these studies, the idea 

that the organism could cause several forms of the same disease became clear. In 1792 

and then in 1849, Frank and Wilkinson, respectively, observed that aphthae occurs not 

only in oral cavity but also in sexual organs and that a dimorphic fungus was the 

probable cause (Calderone 2002). 

Even so, the identity of the organism that causes the disease was only approved 

in 1954. Langenbeck was the first one that observed the fungus, in 1839, but the identity 

of the organism was incorrect. Then, in 1842, Gruby studied Langenbeck’s organism 

and concluded that it was a species of Sporotrichum. Five years late, Robin reclassified 

it as Oidium albicans (Calderone 2002)
 

It was only in 1923, that the generic name Candida was proposed to the 

organism responsible for thrush, when Berkhout proved that it was not a species of 

Monilia, but a fungus that grows in plant materials and clearly morphologically 

different from Candida, which was associated until that time. The whitish colonies on 

agar or the oral lesion of aphthae or thrush was probably the reason for the name 

Candida, which derived from the Latin phrase toga candida, which was used to 

describe a special white robe worn by candidates for the Roma Senate (Calderone 

2002).  

In the past 50 years, the number of new species of Candida described increased 

to approximately 150 (Calderone 2002).  

 

II.2. Candida Characteristics 

 

 Candida species are ubiquitous organisms and most of them are not human 

pathogens. The genus Candida is very heterogeneous and its principal characteristics 

will be described below. 
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II.2.1. Cell Biology 

The genus Candida is a genus consisting of yeasts that do not possess a known 

natural sexual cycle. Most Candida species exist as spherical to ovoid budding yeast 

cells or blastospores, typically 4 to 6 μm in diameter. Some Candida species are capable 

of producing chains of elongated  blastospores termed pseudohyphae both in vivo and 

under certain conditions in vitro. Table II.1 summarizes these properties, for some of 

the most relevant species (Calderone 2002). 

 

Table II. 1. Morphological characteristics of Candida albicans, Candida tropicalis, 

Candida parapsilosis and Candida glabrata species. Adapted from (Silva, Negri et al. 

2012). 

Species 
Germ 

tube 
Pseudohyphae 

Yeast size 

(μm) 

CHROM-agar 

colony colour 

C. albicans + +       4-6 x 6-10 Blue-green 

C. tropicalis - +       4-8 x 5-11 Dark blue 

C. glabrata - -            1-4 White, Pink-purple 

C. parapsilosis - +    2.5-4 x 2.5-9 White 

 

The cell wall of pathogens is critical to their interaction with host cells. For 

pathogenic fungi the cell wall represents the primary way in which the organism 

interacts with its host. 

Yeast and hyphal cell walls are similar qualitatively but different quantitatively 

in specific components, as chitin. Thus, the mycelial cell wall exhibited four- to fivefold 

higher level of chitin (Calderone 2002). 

The cell wall of Candida is approximately 80 to 90% carbohydrate and β-glucan 

(branched polymers of glucose), mannan (polymers of mannose) and chitin (polymers 

of β-1,4 N-acetyl-D) are the primary constituents. The most abundant component of 

Candida cell wall is β-glucan (β-1,3 and β-1,6 glucose polymer) that account fot 47 to 

60% of the weight of the cell wall, followed by mannoproteins that account for 

approximately 40% of the total cell wall polysaccharides, chitin that account for 0.5 to 
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3% and glycolipids that account for 1 to 7% by dry weight of the cell wall. 

Ultrastructural and biochemical observation revealed a layer arrangement: an inner wall 

composed of structural polysaccharides and an outer layer containing primarily mannan, 

mannoproteins or nonglycosylated proteins (Chauhan, Li et al. 2002).  

The biomolecules of the cell wall that are not found in mammalian cells are 

potential targets for the identification of antifungal agents.  

II.2.2. Growth Forms of Candida  

 The genus Candida is composed of an extremely heterogeneous group of 

organisms that grow as yeast, but most members of the genus also produce a 

filamentous type of growth (pseudohyphae, pseudomycelium). However, C. albicans 

and C. dubliniensis form true hyphae in addition to pseudohyphae. Thus, both species 

are considered polymorphic (Calderone 2002). 

 Pseudohyphae are formed from yeast cells or hyphae by budding, but the new 

cell remains attached to the parent one and elongates, resulting in filaments with 

constrictions at the cell-cell junctions of the filaments (Calderone 2002). 

 True hyphae are formed from yeast cells or as branches of existing hyphae. 

Outgrowths of the yeast cells (germ tubes) grow by apical extension and cross walls 

(septa) are formed behind the growing tip of the hyphae. Budding occurs laterally just 

behind the septa, the latter of which are perpendicular to the main axis of the hyphae 

(Calderone 2002). 

 The pseudohyphae appear to be an intermediate growth form of yeast and hyphal 

morphologies (Calderone 2002). 

Germination can be induced in complex media, chemically defined media and 

serum. Temperatures greater than 35 
o
C, pH of 6.5 to 7.0 or slightly alkaline and 

inoculum of <10
6
 mL

-1
 favor germination, whereas glucose as a sole carbon source, 

lower temperatures and an acid pH favor yeast growth (Calderone 2002). 

II.2.3. Virulence 

 Candida is a sophisticated pathogen. Although there are about 150 species of 

Candida, approximately 65% of Candida species are unable to grow at a temperature of 

37 
o
C, a prerequisite for an organism to be a successful pathogen (Calderone and Gow 

2002). There are several known virulence factors contributing to Candida pathogenicity 

that include adherence to epithelial and endothelial cells, proteinase production, hyphae 
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and pseudohyphae formation, phenotypic switching, phospholipase production and 

antigenic modulation as a result of pseudohyphae formation (Fidel, Vazquez et al. 

1999). 

 Adhesion is one of the most important virulence factors of Candida species. 

Adhesins are cell-surface components of Candida that promote host recognition and 

colonization (Calderone and Gow 2002). 

Most of the medically important species within the genus Candida possess the 

ability to produce pseudomycelium and are otherwise morphologically very similar. The 

interconversion of yeast forms to filamentous growth, a process named by 

morphogenesis, is associated with invasiveness of the organism and also contributes for 

virulence (Calderone and Gow 2002). 

The secretion of digestive enzymes such as the SAPs, a family of secreted 

aspartyl proteinases, and phospholipase B (PLB), is also required for their virulence 

since these hydrolytic enzymes can degrade host tissues and thus contribute for their 

invasion (Calderone and Gow 2002). 

 As opportunistic pathogens, Candida species can invade every tissue of the 

human body, depending on the integrity of the host immune system. Its capacity to live 

both as a commensal and pathogen, to evade the immune system, to overcome drug 

therapy, to invade a variety of body location and to adjust so rapidly to changes in host 

physiology suggests that it has extraordinary phenotypic plasticity and can adapt rapidly 

to environmental changes. “High-frequency phenotypic switching” can generate a 

variety of general phenotypes, occurs spontaneously, moreover can be affected by 

environmental changes and can have a profound effect on pathogenic traits. Switching 

is regulated by a number of phase-specific genes in a combinatorial fashion and a high 

proportion of these genes directly or indirectly have impact on pathogenesis and 

virulence (Soll 2002). 

The development of biofilms, the most prevalent growth form of 

microorganisms, is usually observed after initial attachment of Candida to host or/and 

medical devices. Biofilms are described as surface-associated communities of 

microorganisms embedded within an extracellular matrix and are an important virulence 

factors for a number of Candida species, as they confer significant resistance to 

antifungal therapy by limiting the penetration of substances through the matrix and 

protecting cells from host immune responses. Furthermore, biofilms formed by C. 

albicans, C. parapsilosis, C. tropicalis and C. glabrata isolates have been associated 
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with higher morbidity and mortality rates compared with isolates unable to form 

biofilms (Silva, Negri et al. 2012).
  

 

II.3. Non-Candida albicans Candida species 

 

 Candidiasis remains an important clinical problem, primarily in the 

immunocompromised patient population. Candida albicans initially was the most 

important pathogen but now non-Candida albicans Candida (NCAC) species, as 

Candida tropicalis, Candida parapsilosis, Candida glabrata, Candida krusei and 

Candida dubliniesis, have gained clinical importance (Moran, Sullivan et al. 2002; 

Silva, Negri et al. 2011). 

The apparent increased emergence of NCAC species in human candidiasis may 

be related to improvements in diagnostic methods, such as the use of chromogenic 

media with the ability to differentiate Candida species, as well as the introduction of 

molecular techniques in the routine diagnosis of fungemia. Nevertheless, the high 

prevalence of NCAC species in infections could also be a reflection of their inherent 

higher level of resistance to certain antifungal drugs compared to C. albicans, as this 

would promote their persistence in mixed species infections treated with traditional 

antifungal agents (Silva, Negri et al. 2012). 

NCAC species are a very heterogeneous group of organisms that are 

fundamentally different from each other and from C. albicans at the biological level 

(Table I). The virulence of different NCAC species in human and in animal models of 

infection varies considerably, for example, the ability or the inability to form 

pseudohyphae, the family of adhesins, the kind of hydrolytic enzymes produced 

(Moran, Sullivan et al. 2002). 

In the NCAC species, C. glabrata is considered relatively nonpathogenic in 

animal models, which suggests that it has few virulence attributes. However, high 

mortality rate has been associated to this Candida (Fidel, Vazquez et al. 1999). Few 

studies had been conducted on virulence of C. glabrata, that’s why great importance is 

given to this Candida in this work.  
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II.4. Candida glabrata 

 

Historically, C. glabrata was considered a relatively nonpathogenic saprophyte 

of the normal flora of healthy individuals, rarely causing serious infection in humans 

(Fidel, Vazquez et al. 1999). However, the incidence of systemic infections caused by 

C. glabrata increased dramatically throughout the 1990s and depending on the site of 

infection C. glabrata is often the second or third most common cause of candidiasis 

after C. albicans and is also the NCAC species most commonly recovered from the oral 

cavities of HIV-infected individuals (Fidel, Vazquez et al. 1999; Moran, Sullivan et al. 

2002). 

 Candida glabrata systemic infections are a subject of considerable concern due 

to  the tendency of this species to rapidly develop resistance to azole antifungal agents 

and due to the high mortality rate associated with C. glabrata fungemia (Moran, 

Sullivan et al. 2002). 

II.4.1. Epidemiology 

Data from the 90s show that approximately 31 to 55% of the oral cavity of 

healthy individuals is colonized by Candida species and this colonization increases with 

severity of illness and duration of hospitalization. Initially, C. albicans accounted for 70 

to 80% of the isolates recovered from infected patients, C. glabrata and C. tropicalis 

each accounted for approximately 5 to 8% of isolates, while other NCAC species occur 

only rarely. However, a change in epidemiology was observed. Although C. albicans is 

the most common fungal species isolated from blood, C. glabrata started to appear 

associated with an equally high mortality rate. The incidence of C. glabrata is higher in 

adults than in children and lower in neonates and, despite had being considered a 

relatively nonpathogenic saprophyte of the normal flora of healthy individuals and 

certainly not readily associated with serious infection in humans, it is of special 

importance because of its innately increased resistance to antifungal agents, specifically 

the azoles (Fidel, Vazquez et al. 1999; Hachem, Hanna et al. 2008; Silva, Negri et al. 

2012). 

More recently, in the United States, a study demonstrated that C. glabrata has 

increased as a cause of invasive candidiasis from 18% of all blood stream infection  
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isolates in the time period of 1992-2001 to 25% in 2001- 2007 with a concomitant 

increase in fluconazole resistance from 9% to 14%.
 
Another recent study demonstrated 

that resistance to both azoles and echinocandins was most prominent among isolates of 

C. glabrata with the highest resistance rates to echinocandins (16.7%), fluconazole 

(16.7%), posaconazole (5.0%) and voriconazole (11.0%) among isolates from the 20-

39-year age group (Pfaller 2012).
 
 

 The emergence of multidrug resistant (MDR) in C. glabrata is a real fear since 

that neither azoles nor amphotericin B are an optimal approach for therapy for C. 

glabrata infection (Pfaller 2012). For this reason, future surveillance efforts should 

focus on emergence of these potentially MDR strains of C. glabrata and the knowledge 

of the resistance mechanisms to antifungal agents should be a priority. 

II.4.2. Cell Biology 

Candida glabrata is a nondimorphic yeast that exists as small blastoconidia (1 to 

4 m) under some environmental conditions as a pathogen. In fact, C. glabrata is the 

only Candida species that does not form pseudohyphae at temperatures above 37 °C 

(Table II.1) (Fidel, Vazquez et al. 1999; Calderone 2002). 

On Sabouraud dextrose agar, C. glabrata forms glistening, smooth, cream-

colored colonies, which are relatively indistinguishable from those of other Candida 

species except for their relative size, which is quite small. On Chromagar, a differential 

medium that distinguishes Candida species by color as a result of biochemical 

reactions, C. glabrata colonies appear pink to purple, in contrast to C. albicans 

colonies, which appear green to blue-green (Table II.1) (Fidel, Vazquez et al. 1999; 

Calderone 2002). Among the critical distinguishing characteristics of C. glabrata are its 

haploid genome, in contrast to the diploid genome of C. albicans and several other 

NCAC species and its small-subunit rRNA (Fidel, Vazquez et al. 1999; Ernst and 

Bockmuhl 2002).
 

The biochemical reactions of C. glabrata are also quite distinct. Candida 

glabrata ferments and assimilates only glucose and trehalose, while C. albicans 

ferments and assimilates a high number of sugars (Fidel, Vazquez et al. 1999; 

Calderone 2002). 
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II.4.3. Virulence 

Candida glabrata is considered less pathogenic than C. albicans and other 

NCAC species, particularly in animal models of infection, although it is being 

associated with virulent infection in several immunocompromised individuals. C. 

glabrata adheres poorly to host surfaces and produces less proteinases than C. tropicalis 

and C. parapsilosis. Adhesins, cell surface proteins that are involved in specific 

adherence, encoded by EPA gene family are major group of adhesins in C. glabrata and 

it is known that EPA1p is a calcium-dependent lectin (Fidel, Vazquez et al. 1999; 

Moran, Sullivan et al. 2002; Silva, Negri et al. 2011; Silva, Negri et al. 2012).  

Haemolysins are considered key virulence factors since they enable pathogen 

grow in the host using haemin or haemoglobin as a source of iron. Luo (Silva, Negri et 

al. 2012) observed that C. glabrata is able to produce haemolysins in vitro, inducing 

partial or total erythrocyte lyses and showed that a haemolysinlike protein (HLP) gene 

was associated with the haemolytic activity of C. glabrata. But other authors only 

observed production of haemolysins by C. albicans (Silva, Negri et al. 2012).
 
 

It is known that C. glabrata is unable to produce filamentous forms (hyphae or 

pseudohyphae) in vivo an important virulence factor required for tissue invasion (Fidel, 

Vazquez et al. 1999; Moran, Sullivan et al. 2002).  

Switching was firstly reported in C. albicans, but it has been demonstrated in 

other Candida species such as C. glabrata, C. tropicalis and C. parapsilosis. Using an 

indicator agar 1 mM CuSO4, reversible switching in C. glabrata is demonstrated at high 

frequency between a white to light brown and dark brown colony phenotype. As in C. 

albicans, switching in C. glabrata is accompanied by the differential expression of 

genes: MT-II metallothionein gene and HLP gene that encodes a hemolysis-like protein. 

These genes are expressed in a graded fashion that correlates with the intensity of 

pigmentation. One of the genes is involved in copper detoxification while the other may 

be involved in red blood cell lysis which suggests that just as in the case of C. albicans, 

switching in C. glabrata is pleiotropic and again may represent a high order of virulence 

trait and play a role in causing symptomatic infections (Fidel, Vazquez et al. 1999; Soll 

2002). 

Biofilm formation is another virulence factor of C. glabrata, since biofilms limit 

the penetration of substances through the matrix and protect cells from host immune 

responses. The formation of mature biofilms and subsequent production of extracellular 
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matrix is strongly dependent on species, strain and environmental conditions (pH, 

medium composition, oxygen) and, in the case of C. glabrata, it was recently showed 

that a higher biofilm biomass is produced on silicone surfaces in the presence of urine, 

compared to C. parapsilosis and C. tropicalis. The opposite was found for biofilms 

formed in Sabouraud dextrose broth. Thus, biofilm formation by C. glabrata is lower 

compared with other NCAC species, when grown in rich culture media. Candida 

albicans biofilm matrix is mainly composed of carbohydrates, proteins, phosphorus and 

hexosamines. However,  Silva (Silva, Negri et al. 2012) reported that the extracellular 

matrix of C. glabrata biofilm is characterized by a high level of both proteins and 

carbohydrates, while the matrix of C. parapsilosis biofilm is mostly composed by 

carbohydrates and the matrix of C. tropicallis biofilm exhibits low levels of both 

proteins and carbohydrates (Silva, Negri et al. 2012). 

II.5. Mechanisms of Resistance to Antifungal Agents  

 

Both the frequency of invasive fungal infections (IFIs) and the resistance to 

antifungal therapy continue to increase, despite the introduction of new antifungal 

agents. In vitro susceptibility testing is often used to study resistance/sensibility to 

specific agents against microorganisms. Standardized methods for reliable in vitro 

antifungal susceptibility testing are now available from the European Committee on 

Antimicrobial Susceptibility Testing (EUCAST) in Europe. Epidemiologic surveys that 

examine local and regional data can be used to develop empiric treatment strategies and 

are essential in tracking resistance trends (Pfaller 2012). 

Various mechanisms can lead to the acquired resistance of Candida species to 

antifungal agents, like the induction of the efflux pumps encoded by the MDR or CDR 

genes and the acquisition of point mutations in the genes encoding for the targeted 

enzymes (Pfaller 2012). Moreover, it has been reported that biofilm formation confers 

significant resistance to the antifungal therapies (Baillie and Douglas 2000).  

Antifungal resistance is associated with elevated minimum inhibitory 

concentrations, poorer clinical outcomes, and breakthrough infections during antifungal 

treatment and prophylaxis (Pfaller 2012). 
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II.5.1. Antifungal Agents and Resistance 

The identification of antifungal drugs began in the late 1940s and continues 

today. 

 Antifungal treatments against Candida infections are hampered by several 

factors including the limited number of active agents, the emergence of refractory 

fungal species and the development of resistance. This situation has triggered the search 

for new antifungal agents with novel modes of action. Different cellular processes 

involved in the biosynthesis of components required for the growth of fungal cells have 

been targeted by antifungal agents (Sanglard and Bille 2002). Actually, the 

classification of these antifungal agents is based on their target of activity (Figure II.1).  

 

  

 

Ergosterol biosynthesis is specific to fungi and is necessary for their growth and 

this feature has been largely exploited for the design and isolation of antifungal agents 

such as polyenes and azoles (Sanglard and Bille 2002). Moreover, components of the 

fungi cell wall are also targets for some antifungal agents as for example echinocandins 

(Silva, Negri et al. 2012). 5-fluorocytosine (5-FC) is another drug currently used against 

Candida, which can be incorporated into RNA molecules and subsequently interferes 

with the synthesis of proteins (Sanglard and Bille 2002) (Figure II.1). 

Figure II. 1. Mechanisms of action of antifungal 

agents: target molecules. 
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Antifungal resistance can be defined as in vitro or clinical resistance. In vitro 

resistance can be subdivided into primary resistance and secondary resistance. Primary 

resistance (intrinsic or innate resistance) occurs when the organism is naturally resistant 

to the antifungal agent (e.g., C. krusei, which is known to be universally resistant to 

fluconazole). Secondary resistance (acquired resistance) is said to occur when the 

infecting organism or pathogen becomes resistant to the antifungal agent, in others 

words, its growth is inhibited by an antimicrobial agent concentration higher than the 

range seen for wild-type strains (Fidel, Vazquez et al. 1999). Clinical resistance is 

defined by the situation in which the infecting organism is inhibited by an antimicrobial 

concentration that is higher than could be safely achieved with normal dosing (Pfaller 

2012).  

Table II.2 presents the Minimum Inhibitory Concentrations (MICs) of 

amphotericin B, fluoconazole and voriconazole in C. albicans, C. glabrata, C. krusei, 

C. parapsilosis and C. tropicalis, data collected from EUCAST. 

 

Table II. 2. Minimum Inhibitory Concentration (MIC) of amphotericin B, 

fluoconazole and voriconazole (mg/L) in Candida spp. 

 C. albicans C. glabrata C. krusei C. parapsilosis C. tropicalis 

Amphotericin B 0.032 – 1 0.032 – 2 0.12 –  2 0.032 – 2 0.032 –  2 

Fluoconazole 0.12 – 128 2 – 128 8 – 128 0.12 – 8 0.12 – 128 

Voriconazole 0.004 – 0.25 0.016 – 4 0.016 –  2 0.008 – 0.12 0.008 – 16 

 

The action of antifungal agents (Figure 1) and the mechanisms of resistance 

against these antifungal agents in C. glabrata are described in the sections below. 

II.5.1.1. Polyenes 

 In 1950, Hazen and Brown (Sanglard and Bille 2002)  identified the first 

antifungal agent, a polyene called nystatin. Then, other polyene antifungal agents, as 

amphotericin B (AmB) (Figure II.2), were isolated by Vandeputte and Gold from 

Streptomyces nodosus. AmB can form soluble salts in both basic and acidic 

environments, is not orally nor intramuscularly absorbed, and is virtually insoluble in 

water. Systemic and renal problems are often encountered with AmB and to reduce its 

unwanted side effects, AmB has been formulated in liposomes, lipid complexes and 
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colloidal suspensions to allow the use of higher doses of AmB and reduce its toxic 

effects to mammalian cells.  

 

 

  

 

 

 

 

 

Polyenes bind to ergosterol (Figure II.3) in the bilayer membrane of susceptible 

fungi. Aqueous pores result from the interaction of polyene molecules linked to the 

membrane sterols, leading to altered permeability, leakage of vital cytoplasmic 

components and death of the organism. Polyenes can also bind to cholesterol, which 

accounts for much of their human toxicity. However, AmB has much higher affinity for 

ergosterol than for cholesterol (Sanglard and Bille 2002). 

 

 

 

 

 

 

 

Figure II. 2 Structure of amphotericin B (AmB). Adapted from (Doctor 

Fungus 2010 [http://www.doctorfungus.org/thedrugs/Ampho_Deoxycholate.htm] 

Figure II. 3. Mechanism of action of amphotericin B. Adapted from Doctor 

Fungus 2010 [http://www.doctorfungus.org/thedrugs/antif_pharm.htm]. 
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One of the mechanisms of resistance to polyenes is believed to result from the 

alteration of sterol content or composition in the cell membrane. It has been described 

that among Candida species, polyene resistance was usually due to defective ergosterol 

biosynthesis and most likely resulted from mutation in the ERG3 gene that produces 

altered 5,6-sterol desaturase activity. Mutation in ERG11 (gene encoding for lanosterol 

14α-demethylase, required for sterol biosynthesis) and in ERG6 (a gene that is required 

for normal membrane function, but is not essential for sterol biosynthesis) may generate 

polyene resistance. In C. glabrata isolates mutations in the ERG6 gene were observed 

(Silva, Negri et al. 2012). 

II.5.1.2. 5-fluorocytosine 

5-fluorocytosine (5-FC) belongs to the class of pyrimidine analogs that was 

developed in the 1950s as a potential antineoplastic agent. It is highly water soluble so it 

can be administrated by oral or intravenous routes (via) (Sanglard and Bille 2002).  

 

  

 

 

 

 

 

 

 

 

5-FC is taken up by fungal cells (Figure II.5) by a cytosine permease and is 

deaminated by a cytosine deaminase to 5-fluorouracil (5-FU). 5-FU is a potent 

antimetabolite that can be converted to a nucleoside triphosphate and when incorporated 

into RNA causes miscoding. In other hand, 5-FU can be converted to a deoxynucleoside 

which inhibits thymidylate synthase and thereby, DNA synthesis. 5-FC has low toxicity 

in mammalian cells, since cytosine deaminase is absent or poorly active in these cells. 

However, the conversion of 5-FC to 5-FU is possible by intestinal bacteria and therefore 

5-FC can show toxicity in oral formulation and 5-FU, despite being a potent anticancer 

agent, it is impermeable to fungal cells (Sanglard and Bille 2002). 

 

Figure II. 4. Structure of 5-fluorocytosine (5-FC). Adapted from Doctor 

Fungus 2010 [http://www.doctorfungus.org/thedrugs/Flucytosine.htm].
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Mechanisms of resistance to 5-FC are possible due to the multiple intracellular 

enzymatic steps required for its action. These include alterations in the target enzymes 

UMP pyrophosphorylase, cytosine permease and cytosine deaminase, or increased 

production of pyrimidines. Due to the multiple steps in its mode of action, including 

transport into the cell and deamination of the active compound, and due to its extremely 

narrow spectrum of action 5-FC is normally used only in combination with other agents, 

including amB and fluconazole (Silva, Negri et al. 2012). 

II.5.1.3. Azoles 

Since pharmaceutical industry attributed great importance to fungal diseases, 

more drugs have been developed, and the azoles are a good example. Miconazol was the 

first azole developed against fungus, followed by the discovery of the triazoles such as 

fluconazole (Figure II.6) and itraconazole that are less toxic than amphotericin B, 

although being fungistatic (Sanglard and Bille 2002). 

 

Figure II. 6. Structure of fluconazole (FLU). 

Adapted from (Doctor Fungus  2010 

[http://www.doctorfungus.org/thedrugs/Fluconazo

le.htm]) 

Figure II. 5. Mechanism of action of 5-fluorocytosine. Adapted from Doctor 

Fungus 2010 [http://www.doctorfungus.org/thedrugs/antif_pharm.htm].
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Azoles have a cytochrome P450 as a common cellular target in yeast or fungi. 

Cytochrome P450 is involved in the 14α-demethylation of lanosterol. The unhindered 

nitrogen of the imidazole or triazole ring of azole antifungal agents binds to the heme 

iron of the cytochrome P450 as a sixth ligand, thus inhibiting the enzymatic reaction 

(Figure II.7). As a result ergosterol content in the cell membrane is depleted, membrane 

structure and functions are altered, and fungal growth is inhibited
 
(Fidel, Vazquez et al. 

1999; Sanglard and Bille 2002; Pfaller 2012). 

 

 

 

 

 

 

 

 

 

 

 

There are four principal mechanisms of azole resistance that have been described 

in Candida species. The first mechanism is the induction of efflux pumps that lead to 

decreased drug concentration at the enzyme target within the fungal cell. In C. glabrata 

the efflux pumps are encoded by CgCDR1 and CgCDR2 genes and the up-regulation of 

these genes has been associated to azole resistance. The second mechanism common in 

Candida species is the acquisition of point mutation in ERG11. Thus, an altered enzyme 

is synthesized with reduced affinity for or incapacity to bind azoles. The third 

mechanism, which can be associated with the second one, is the overexpression of the 

altered target enzyme. However, the up-regulation of altered target enzymes does not 

appear to be a major cause of azole resistance in Candida. Finally, the last mechanism 

Figure II. 7. Mechanism of action of azoles. Adapted from Doctor 

Fungus  2010 [ http://www.doctorfungus.org/thedrugs/antif_pharm.htm]. 
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of azole resistance in Candida species involves the development of bypass pathways, 

which negate the membrane-disruptive effects of azole drugs that are associated with 

inhibited fungal growth. This has been linked with mutation of the ERG3 gene in certain 

resistant strains of Candida. A study (Pfaller 2012) in C. albicans demonstrated an 

additive nature of resistance mechanisms in Candida species for azoles: the control 

strain with basal expression of CDR and WT ERG11 genes in both alleles, as expected, 

has low MICs for both fluconazole and voriconazole by comparison with MICs for both 

azoles in the strain with overexpression of CDR and point mutations in both ERG11 

alleles that are much higher. In addition the MICs for fluconazole and voriconazole are 

approximately twice as high in the strain with basal CDR expression and point 

mutations in both ERG11 alleles as in the strain with basal CDR expression and a point 

mutation in only one of the ERG11 alleles. 

II.5.1.4. Echinocandins 

The first echinocandin isolated was anidulafungin in 1974. Later, in 1989, 

caspofugin (Figure II.8) was discovered and micafugin was the last to be synthesized in 

1990 (Cortés and Russi 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II. 8. Structure of caspofugin. Adapted 

from Doctor Funfus 2010 

[http://www.doctorfungus.org/Thedrugs/Caspofu

ngin.htm]. 
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The echinocandins – anidulafungin, caspofugin and micafungin – are 

lipopeptides that bind to 1,3-β-D-glucan synthase, enzyme responsible for the 

biosynthesis of 1,3--D-glucan (a component of the cell wall), causing the formation of 

a defective cell wall associated with cellular instability and lysis in yeasts and aberrant 

hyphal growth in molds (Figure II.9)  (Cortés and Russi 2011; Pfaller 2012). 

 

 

 

Reduced susceptibility or resistance of Candida to echinocandins has been 

linked with point mutations in two “hot-spot” regions (HS1 and HS2) of FKS1, the gene 

encoding for the major and presumed catalytic subunit of 1,3- -D-glucan synthase. 

This resistance mechanism has been demonstrated in C. albicans and NCAC species as 

C. glabrata, C. krusei, C. tropicalis, and C. dubliniensis. In C. glabrata, echinocandin 

resistance has also been associated with mutations in the FKS2 gene (Pfaller 2012
)
. 

Figure II. 9. Mechanism of action of echinocandins. Adapted from Doctor 

Fungus 2010 [http://www.doctorfungus.org/thedrugs/antif_pharm.htm]. 
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II.5.2. Biofilms 

The biofilm state is the preferred mode of growth of microorganisms in natural 

environments. In the past years, several reports have associated biofilms with over 65% 

of hospital-acquired infections. It has also been suggested that Candida strains with a 

high ability to form biofilms are generally more virulent than others (Williams, 

Kuriyama et al. 2011). 

The exact mechanism of biofilm resistance to antifungals remains unclear, but it 

is probably multifactorial. There are three possible mechanisms of biofilm resistance: 

restricted penetration of drugs through the biofilm matrix; phenotypic changes resulting 

from a decreased growth rate or nutrient limitation; expression of resistance genes 

induced by contact with a surface. It has also been suggested that a small number of 

“persister” cells are responsible for resistance (Douglas 2003). 

Regarding the restricted penetration, it has long been supposed that the matrix of 

extracellular polymeric material might exclude or limit the access of drugs to organisms 

in the deeper part of the biofilm.  To investigate if the matrix plays a role in the 

resistance of biofilms to antifungal agents, the susceptibility profiles of biofilms where 

compared between biofilms of C. albicans which have relatively little matrix and 

biofilms of C. albicans which produce much more matrix. No significant differences in 

susceptibility to any of the drugs tested were found, indicating that drug resistance is 

unrelated to the extent of matrix formation (Baillie and Douglas 2000). However, it had 

been shown, in another study (Baillie and Douglas 1999), that resuspended cells (which 

presumably had lost most of their matrix) were some 20% less resistant to amphotericin 

B than intact biofilms, suggesting that the matrix might play a minor role in drug 

resistance. 

Biofilm cells are known to grow slowly because of the limited availability of 

nutrients, particularly at the base of the biofilm. A slow growth rate is often 

accompanied by changes in cell surface composition, which could affect the 

susceptibility of the microorganisms to antifungal agents. To investigate if growth rate 

is an important modulator of drug activity in biofilms, the susceptibility of C. albicans 

biofilms to ampB was compared with that of planktonic cells, the both cases with 

several growth rates. It has been demonstrated that biofilms were resistant to the drug at 

all growth rates tested whereas planktonic cells were resistant only at low growth rates 

(Baillie and Douglas 1998). Another study (Baillie and Douglas 1998) demonstrated 
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that not only the low growth rates, but also other conditions of growth, like glucose and 

irion availability, can interfere with drug susceptibility. Glucose-limited and iron-

limited biofilms, grown at the same low rate, were equally resistant to amphotericin B. 

Iron-limited biofilms probably resemble the most to biofilms growing in vivo, as to the 

fact there is an abundance of iron in the human body, most of it is located intracellularly 

or tightly complexed to iron-binding glycoproteins, thus being relatively inaccessible to 

microorganisms.  

Microorganisms that form biofilms express an altered phenotype. To investigate 

the surface-induced expression of resistance genes, it had been identified genes that are 

activated or repressed in Candida biofilms compared with planktonic cells. Genes 

coding for multidrug efflux pumps are of particular interest, since the upregulation of 

these genes results in a multidrug-resistant phenotype. Candida albicans possesses two 

different types of efflux pump, ATP-binding cassette (ABC) transporters and major 

facilitators, which are encoded by CDR and MDR genes, respectively (Douglas 2003). 

A study (Ramage, Bachmann et al. 2002) has demonstrated that genes encoding both 

types of efflux pump are upregulated during biofilm formation and development. 

However, mutants carrying single or double deletion mutations in some of these genes 

were highly susceptible to fluconazole when growing planktonically but still retained 

the resistant phenotype during biofilm growth. These results strongly suggest that drug 

resistance in C. albicans biofilms is a complex process that cannot be explained by a 

single molecular mechanism. 

However, it has been demonstrated in vitro that caspofungin is effective against 

C. albicans and C. glabrata biofilms (Cateau, Berjeaud et al. 2001). Caspofungin 

inhibits the synthesis of 1,3--D-glucan, the major structural component of Candida cell 

walls, suggesting that glucan synthesis might be a particularly effective target for 

biofilms if the biofilm matrix also contains this polysaccharide (Kuhn, George et al. 

2002). 

 

II.6. Drug Efflux pumps 

 

There are two main drug efflux pumps classes, the ATP-binding cassette (ABC) 

transporters and the Major-Facilitator Superfamily (MFS) transporters that are involved 
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in the resistance to antifungal agents, particularly azoles (Richard D. Cannon, Erwin 

Lamping et al. 2009). 

II.6.1. Major-Facilitator Superfamily (MFS) 

The MFS transporters are proteins with transmembrane domains (TMD) subtract 

specific. These transporters uses an electronic gradient as driving force to efflux the 

drugs out of the cell (Figure II.10) (Richard D. Cannon, Erwin Lamping et al. 2009). 

 

  

 

 

 

 

 

 

 

 

 

 

 

However, there is a more evident relation with the resistance to azoles and the 

ABC transporters than with the MFS transporters. 

II.6.2. ATP-Binding Cassette (ABC) 

The ABC transporters are proteins localized in the cellular membrane and in the 

organelles membranes that contain TMD substrate-specific and nucleotide-binding 

domains (NBD). These transporters use the ATP hydrolyses to efflux the drug out of the 

cell (Figure II.11) (Richard D. Cannon, Erwin Lamping et al. 2009). 

Figure II. 10. Representation of a MFS 

transporter: efflux of drugs with influx of 

protons into the cell. Adapted from 

(Richard D. Cannon, Erwin Lamping et al. 

2009). 
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Regarding the  resistance to FLU acquired by C. glabrata cells, the 

transcriptional induction and upregulation of genes encoding  ABC transporters (CDR1, 

CDR2 and SNQ2) have been reported (Tscherner, Schwarzmüller et al. 2011; 

Samaranayake, Cheung et al. 2013). The Figure II.12 illustrates the CDR1 transporter: 

two identical halves, each with a hydrophilic N-terminal domain which contains 

units of the ATP-binding (Walker A and Walker B), followed by a C-terminal 

hydrophobic domain with six transmembrane segments (Richard D. Cannon, Erwin 

Lamping et al. 2009).   

 

 

 

 

 

 

 

  

 

  

Figure II. 11. Representation of an ABC 

transporter: efflux of drugs with ATP 

hydrolyses. Adapted from (Richard D. Cannon, 

Erwin Lamping et al. 2009). 

Figure II. 12. Representation of the hydrophilic N-terminal 

and the hydrophobic C-terminal domains. Adapted from 

(Richard D. Cannon, Erwin Lamping et al. 2009). 
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 On other hand, a mutation in the gene that encodes a regulator of multidrug transporter 

genes, PDR1, was associated with its upregulation. This fact contributes to upregulation of 

CDR1 and SNQ2 genes (Vermitsky and Edlind 2004). However, little is known about the 

mechanisms of C. glabrata biofilms resistance.  

 

II.7. Ergosterol 

 

  Ergosterol is a biomolecule that is one of the main components of fungus 

cellular membrane. Candida grown in presence of azoles has a reduction in the 

ergosterol content of membranes and also an accumulation of toxic ergosterol 

precursors, such as 14-α-methylergosta-8,24(28)-dien-3β,6α-diol (Richard D. Cannon, 

Erwin Lamping et al. 2009).  

 

Figure II. 13. Ergosterol biosynthesis pathway. Adapted from Wikipathways 2010 

[http://www.wikipathways.org/index.php/Pathway:WP343]. 
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  It was been reported an overexpression and mutation of several genes involved 

in the ergosterol biosynthesis pathway (Figure II.13) as ERG1, ERG3, ERG6, ERG9 and 

ERG11 (Antonia Geber, Hitchcock et al. 1995; Patrick Vandeputte, Guy Tronchin et al. 

2007; Richard D. Cannon, Erwin Lamping et al. 2009). 
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III.1. Organisms and growth conditions 

 

A total of four different Candida glabrata strains were used in this work. The 

reference strain C. glabrata 2001 from the American Type Culture Collection (ATCC), 

two oral isolate (AE2 and D1) from the biofilm group of the Centre of Biological 

Engineering, originally isolated from Clinic of Dentistry, Congregados, Portugal, two 

urinary (562123 and 513100) and two vaginal (534784 and 585626) tract isolates, both 

isolated from patients of the Hospital of S. Marcos, Braga, Portugal. The identity of all 

isolates was confirmed using CHROMagar Candida (CHROMagar, France) and by 

PCR-based sequencing using specific primers (ITS1 and ITS4) against the 5.8S subunit 

gene reference. Genomic DNA was extracted following previously described 

procedures (Williams, Wilson et al. 1995). The PCRs products were sequenced using 

the ABI-PRISM Big Dye terminator cycle sequencing kit (Perkin Elmer, Applied 

Biosystems, Warrington, UK). All Candida strains were subcultured on Sabouraud 

dextrose agar medium (SDA; Merck, Germany) at 37 
o
C for 48 h. 

 

III.2. Antifungal susceptibility tests 

 

Minimum inhibitory concentrations (MICs) for fluconazole (FLU; Sigma-

Aldrich, USA) were determined using the microdilution method, in accordance with the 

guidelines of the Clinical Laboratory Standards Institute (CLSI) (M27-A2). 

The FLU concentrations tested were of 5, 50, 312.5, 625 and 1250 mg ml
-1

 and were 

prepared in RPMI 1640 (Sigma-Aldrich, USA). Thus, a small colony of each strain 

cultured on SDA was suspended in 5 ml of saline solution (NaCl 0.85%) and the 

cellular density adjusted to turbidity equivalent to a 0.5 McFarland standard in saline 

buffer. The yeasts suspensions were diluted (1:100) in saline solution and afterward 

diluted (1:20) in RPMI 1640, according to the standard.   

Each Candida suspension (100 l) was added to the respective well of microtiter 

plates (Orange Scientific, Braine-l’Alleud, Belgium) containing 100 l of each specific 

concentration of FLU solutions. Controls without antifungal agents were also 

performed. The microtiter plates were incubated at 37 
o
C, and the MICs values 
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determined visually as the lowest concentration of FLU showing no yeast growth after 

48 h. Additionally, a volume (50 l) of each cell suspension treated with FLU was 

recovered to a new well and serial decimal dilutions (in phosphate-buffered saline; PBS 

0.1 M pH 7.5: NaCl 0.8%, KCl 0.02%, K2HPO4 0.02%, NaHPO412H2O 0.285%) were 

plated onto SDA. Agar plates were incubated for 24 h at 37 
o
C, and the total number of 

colony forming units (CFUs) was determined. The results were presented per Log10 

CFU per milliliter (Log10 CFU ml
-1

). The assays were performed in triplicate and on 

three separate occasions. 

 

III.3. Biofilm formation 

 

An inoculum of each yeast strain, obtained from SDA plates, was suspended in 

20 ml of Sabouraud dextrose broth (SDB; Merck, Germany) and incubated at 37 
o
C for 

18 h under agitation (120 rpm). Then, the cells were harvested by centrifugation at 3000 

g for 10 min at 4 
o
C and washed twice with 15 ml of PBS pH 7.5. Pellets were 

suspended in SDB and the cellular density adjusted to 2x10
7
 or 1x10

7
 cells ml

-1
 using a 

Neubauer counting chamber, to use according with each experiment. 

 

III.4. Fluconazole effect against pre-formed Candida glabrata biofilms 

 

In order to test biofilms resistance to FLU, C. glabrata biofilms were pre-formed 

during 24 h in SDB. For that, 200 l of each Candida suspension containing 1x10
7
 cells 

ml
-1

 was added to the respective well of microtiter plates (Orange Scientific, Braine-

l’Alleud, Belgium) and incubated at 37 
o
C under agitation (120 rpm). After this time, 

the medium was totally aspired and the biofilm washed once with 200 l of PBS to 

remove non-adherent cells. At this time, the solutions of FLU (at 50, 625 and 1250 mg 

ml
-1

) were added to the specific wells and incubated at 37 
o
C for extra 24 h. Controls 

devoid of FLU were also incubated. The assays were repeated in triplicate on three 

different occasions. 

 



Chapter III – Materials and Methodology 

 

37 
 

III.5. Fluconazole effect on Candida glabrata biofilm formation 

 

In order to study the effect of FLU in the biofilm formation, FLU was added in 

the beginning of the formation process. For that 96-wells microtiter plates (Orange 

Scientific, Braine-l’Alleud, Belgium) were filled with increased concentrations of FLU 

(at 50, 625 and 1250 mg ml
-1

) diluted in SDB. At each well containing 100 l of each 

specific concentration of FLU was added 100 l of Candida suspension containing 

2x10
7
 cells ml

-1
. The microtiter plates were incubated at 37

o 
C under agitation (120 

rpm). Controls with Candida cells and without FLU were also performed. The assays 

were repeated in triplicate on three different occasions. 

 

III.6. Biofilm analysis 

 

III.6.1. Biofilm biomass determination 

Total biofilm biomass was quantified by crystal violet staining methodology 

(Silva, Henriques et al. 2009). For that, the medium was totally aspirated and the 

biofilms washed once with 200 l of PBS to remove non-adherent cells. The biofilms 

were fixed with 200 μl of methanol and removed after 15 min. The microtiter plates 

were allowed to dry at room temperature. Then, 200 μl of crystal violet (CV; 1%, v/v) 

were added to each well. After 5 min, the excess of CV was removed and for that, the 

biofilms were gently washed twice with water. Lastly, 200 μl of acetic acid (33%, v/v) 

were added to each well to release and dissolve the CV stain.  The absorbance of 

suspensions was measured at 570 nm and the results were presented as absorbance per 

unit area (Abs/cm
2
). The assays were performed fivefold and on three separate 

occasions. 

 

III.6.2. Biofilm cultivable cells determination 

The number of cultivable cells on biofilms was determined by the enumeration 

of colony forming units (CFUs). For both cases, the medium was aspired and the 

biofilms washed once with 200 l of PBS to remove non-adherent cells. Then, biofilms 
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were scraped from the wells and the suspensions were vigorously vortexed for 2 min to 

disaggregate cells from matrix. Serial decimal dilutions in PBS were plated on SDA and 

incubated for 24 h at 37 
o
C. The results were presented as total of CFUs per unit area 

(Log10 CFUs cm
-2

). The assays were performed in triplicate and on three separate 

occasions. 

 

III.6.3. Biofilm matrix composition 

In order to analyze the matrices composition, polysaccharides and proteins were 

quantified. For that, 250 l of C. glabrata suspensions (2x10
7
 cells ml

-1
 in SDB) were 

placed into 24-wells microtiter plates (Orange Scientific, Braine-l’Alleud, Belgium) 

containing 250 l of FLU solutions diluted in SDB to a final concentration of 0, 50 and 

1250 mg ml
-1

. The biofilms were formed during 24 h at 37 
o
C under agitation (120 

rpm). Then, the medium was totally aspired and the biofilms washed once with PBS to 

remove non-adherent cells. Biofilms were scraped from the wells, concentrated in PBS 

and their dry weights were determined by weighting 1 ml of the suspensions. In order to 

separate the cells from the biofilm matrices, the suspensions were sonicated (Ultrasonic 

Processor, Cole-Parmer, Illinois, USA) for 30 s at 30 W and centrifuged at 8000 g for 5 

min at 4 
o
C to recover the supernatants containing the biofilm matrices (Silva, 

Henriques et al. 2009). Therefore, supernatants were filtered using 0.2 μm filters and 

used for polysaccharides and proteins quantification. For polysaccharides 

quantification, 0.5 ml of phenol (50 g l
-1

) and 2.5 ml of sulfuric acid (95-97%) were 

added to 0.5 ml of each supernatant, the mixtures were vortexed and the reaction was 

extended by 15 min at room temperature, according the Dubois method (Dubois, Gilles 

et al. 1956). The absorbance was read at 490 nm and the total of polysaccharides 

quantification was determined by extrapolation with a standard curve, using glucose as 

the standard. For protein quantification, BCA Kit (Bicinchoninic Acid, Sigma-Aldrich, 

St Louis, USA) was used according to the manufacturer’s instructions. The absorbance 

was read at 562 nm and the proteins quantified by extrapolation by standard curve, 

using bovine serum albumin (BSA) as the standard. The assays were repeated in 

triplicate on three different occasions. 
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III.6.4. Biofilm structure 

In order to examine the structure of biofilms, after formation in the presence or 

absence of FLU, they were observed by scanning electron microscopy. For that,  

biofilms formed as described above were dehydrated with ethanol (using 70% ethanol 

for 10 min, 95% ethanol for 10 min and 100% ethanol for 20 min) and air dried for 20 

min. Samples were kept in a desiccator until the base of the wells was removed for 

analysis. Prior to observation, the base of the wells were mounted onto aluminum stubs, 

sputter coated with gold and observed with an S-360 scanning electron microscope 

(Leo, Cambridge, USA). 

 

III.7. Gene expression analysis 

 

For the molecular approach only two Candida strains were selected, C. glabrata 

ATCC 2001 and C. glabrata 562123, the highest and the lowest resistant to FLU, 

respectively. 

 

III.7.1. Gene selection and primers design for quantitative real-time PCR 

Three genes (CDR1, SNQ2 and PDR1) were selected to study their expression in 

planktonic and biofilm cells in the absence and presence of FLU concerning ABC 

transporters and five genes (ERG1, ERG3, ERG6, ERG9 and ERG11) were selected to 

study their expression in planktonic and biofilm cells in the absence and presence of 

FLU concerning the ergosterol biosynthesis pathway. The gene sequences of interest 

were obtained from Candida Genome Database (CGD) and the primers for quantitative 

real-time PCR (qRT-PCR) were designed using Primer 3 (http://simgene.com/Primer3) 

web-based software and are listed in Table III. 1. In order to verify the specificity of 

each primer pair for its corresponding target gene, PCR products were first amplified 

from C. glabrata ATCC 2001 and C. glabrata 562123 genomic DNA.  
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Table III. 1. Primers used for quantitative RT-PCR analysis 

Sequence (5’→ 3’) Primer Target 
PCR product size 

(bp) 

TTGTTGGTGTTCCTGGTGAA Forward 
CDR1 142 

ATGGACCATGCTGTTTGTGA Reverse 

CGATGCACCAACCAAGTATG Forward 
SNQ2 130 

ACCACCGACAGTCATCAACA Reverse 

CGGTGAGTTGGCCCTTACAA Forward 
PDR1 171 

TTTAATGTCGGCGGTTTCGC Reverse 

CACCGGTTACACCGTCTTCT Forward 
ERG1 121 

CAGGACCTTGTCGTTACCGT Reverse 

CACCCAGTCGACGGTTACTT Forward 
ERG3 158 

TTGACAACTGGGTTGTTGGA Reverse 

CTTCGACAAAGTGTACGCGA Forward 
ERG6 108 

TAAACGGCGAAAGTACCACC Reverse 

ATTGTCCTTGCAGGTTTTGG Forward 
ERG9 119 

TCCTCGGCGTAGTCTCTGAT Reverse 

CTCCATACTTGCCATTCGGT Forward 
ERG11 123 

CTTCAGTTGGGTAACGCCAT Reverse 

GTTGACCGAGGCTCCAATGA Forward 
ACT1 164 

CACCGTCACCAGAGTCCAAA Reverse 

 

III.7.2. Biofilm and planktonic cells preparation 

Biofilms of the selected strains were grown in 96-wells microtiter plates (Orange 

Scientific, Braine-l’Alleud, Belgium) in three different conditions – 0 (control), 50 and 

1250 mg ml
-1

 of FLU – with a final concentration of 1x10
7
 cells ml

-1
 during 24 h (as 

described above). After, biofilm formation the medium was aspired and the wells were 

washed with PBS pH 7.5 to remove non-adherent cells. Biofilms were then scraped 

from wells with 1 ml of PBS and sonicated (Ultrasonic Processor, Cole-Parmer, Illinois, 

USA) for 30 s at 30 W to separate the cells from the biofilm matrix. Cells were 

harvested by centrifugation at 8000 g for 5 min at 4 
o
C. Additionally, planktonic cells 

were grown in 25 ml Erlenmeyers in the presence of 0, 50 and 1250 mg ml
-1

 of FLU 
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with a final concentration of 1x10
7
 cells ml

-1
 also during 24 h.  Cells were harvested by 

centrifugation at 8000 g for 5 min at 4 
o
C and were washed once with 10 ml of 

phosphate buffered saline (PBS; pH 7.5). 

 

III.7.3. RNA extraction 

RNA extraction was performed using PureLink® RNA Mini Kit (Invitrogen, 

Carlsbad, USA). 

Prior to RNA extraction, a lysis buffer (PureLink® RNA Mini kit) was prepared 

adding 1% of ß-mercaptoethanol. Then, 500 l of lysis buffer and glass beads (0.5 mm 

diameter) were added to each pellet. These mixes were homogenized twice for 30 s 

using a Mini-Bead-Beater-8 (Stratech Scientific, Soham, UK). After cells disruption, 

the PureLink® RNA Mini Kit (Invitrogen, Carlsbad, USA) was used for total RNA 

extraction according to the manufacturer’s recommended protocol. To avoid potential 

DNA contamination samples were treated with RNase-Free DNase I (Invitrogen, 

Carlsbad, USA). The RNA extraction was performed at three different independents 

assays. 

 

III.7.4. Synthesis of cDNA 

To synthesize the complementary DNA (cDNA) the iScript cDNA Synthesis Kit 

(Bio-Rad, Berkeley, USA) was used according to the manufacturer’s instructions. For 

each sample 10 l of the extracted RNA was used at a final volume of 50 l of reaction. 

cDNA synthesis was performed firstly to 70 
o
C for 5 min and then 42 

o
C for 1h. The 

reaction was stopped by heating for 5 min at 95 
o
C. 

 

III.7.5. Quantitative Real-Time PCR (qRT-PCR) 

Real-time PCR (CF X96 Real-Time PCR System; Bio-Rad, Berkeley, USA) was 

used to determine the relative levels of CDR1, SNQ2 and PDR1 mRNA transcripts in 

the RNA samples, with ACT1 used as a reference candidal housekeeping gene. Each 

reaction mixture consisted of a working concentration of SsoFast EvaGreen Supermix 

(Bio-Rad, Berkeley, USA), 50 M of forward and reverse primers, and 4 l cDNA, in a 
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final reaction volume of 20 l. Negative controls (water), as well as, non-transcriptase 

reverse controls (NRT) were included in each run. The relative quantification of genes 

expression was performed by the Pfaffl method (Pfaffl 2001). Each reaction was 

performed in triplicate and mean values of relative expression were determined for each 

gene. 

 

III.8. Statistical Analysis 

 

Results were compared using a two-way ANOVA with the Bonferroni test, 

using GraphPad Prism 5 software. All tests were performed with a confidence level of 

95%.  
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IV.1. Fluconazole minimum inhibitory concentrations and its effect against 

Candida glabrata biofilms 

 

Minimum inhibitory concentrations (MICs) were determined using the 

microdilution method and by CFUs counts (Table IV.1). The results showed that all 

strains were resistant to FLU according to the MIC breakpoint of EUCAST which is 32 

mg l
-1 

(EUCAST), and that fungistatic activity was strain dependent (Table IV.1). The 

lowest values of MIC (40-50 mg l
-1

 and 50-312.5 mg l
-1

), were obtained for C. glabrata 

562123 and C. glabrata 513100, respectively, both isolated from urinary tract. On the 

other hand, C. glabrata ATCC 2001 exhibited the highest resistance, with MIC values 

equal or superior to 1250 mg l
-1

. It was also possible to observe that C. glabrata AE2, 

D1 and 585626 are extremely resistant to FLU, with MIC values ranging from 625 to 

1250 mg l
-1

. Candida glabrata 534784 presented an intermediate value of FLU 

resistance. 

 

Table IV. 1. Minimum Inhibitory Concentrations (MICs) of 

fluconazole against Candida glabrata strains 

Strains MIC (mg l
-1

) 

C. glabrata ATCC 2001 ≥ 1250 

C. glabrata AE2 625 - 1250 

C. glabrata D1 625 - 1250 

C. glabrata 534784 312.5 - 625  

C. glabrata 585626 625 - 1250 

C. glabrata 513100 50 – 312.5 

C. glabrata 562123 40-50 

 

To determine the susceptibility of biofilms to FLU 24 h biofilms were treated 

with different concentrations of this agent. Figures IV.1 A and B presented the mean 

and standard deviation (SD) values of the Log10 CFU cm
-2

 and its correspondent total 

biomass values (Abs570 cm
-2

),
 
for C. glabrata biofilms. As expected FLU concentration 

below the MIC values (50 mg l
-1

) did not cause any cell reduction and concentrations 

above the MIC values were also ineffective in controlling the biofilm population 
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(Figure IV.1 A). The same results were obtained when measuring biofilm total biomass, 

the exceptions were the strains ATCC 2001 and AE2 that showed a significant biomass 

reduction (P<0.01) in the presence of FLU of 1250 mg l
-1

. These data demonstrated that 

biofilms in general are much more resistant to FLU than their planktonic counterpart’s 

cells. 

 

 

In order to determine if FLU could prevent biofilm formation, biofilms were 

formed in the presence different concentrations of FLU (Figure IV.2 A and B). No 

significant reductions in the number of viable cells were observed for the lower 

concentration of FLU tested (Figure IV.2 A). Conversely, for higher values of FLU 

(range 625 mg l
-1

 to 1250 mg l
-1

), C. glabrata ATCC 2001 presented the highest 

reduction in presence of higher values of FLU applied (range 625 mg l
-1

 to 1250 mg l
-1

) 

(Figure IV.2 A). Nevertheless, only a 1.5-log10 of reduction was obtained in comparison 

to the control (P>0.05). Figure 2B presents the total biomass values of biofilms of 24 h 

formed in the presence of different concentrations of FLU. The data showed that higher 

concentrations of FLU led to lower values of total biomass for all C. glabrata strains 

Figure IV.1. Effect of fluconazole on C. glabrata pre-formed biofilms. Mean values 

of the logarithm of colony forming units normalized by unit of area (Log10 CFU cm
-2

) 

presented on pre-formed biofilms treated for additional 24 h with different FLU 

concentrations (A); Mean values of the absorbance at 570 nm normalized by unit of area 

(Abs570 cm
-2

) of C. glabrata biofilms treated for additional 24 h with different FLU 

concentrations (B). Error bars indicate the standard deviations. ** Indicates P<0.01 and 

statistically different from the control. 
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tested, with exception of C. glabrata 585626 and C. glabrata ATCC 2001. Curiously, 

biofilms of C. glabrata ATCC 2001 presented a significant increase in the total biomass 

values (P<0.01) at FLU concentration 50 mg l
-1

 comparatively to the controls (biofilms 

without FLU). Nevertheless, for the higher concentrations of FLU, 625 and 1250 mg l
-1

, 

it was observed a drastic and significant biomass reduction (P<0.001). Biofilms of AE2 

and 562123 strains presented a significant biomass reduction (P<0.01 and P<0.001, 

respectively) at FLU concentrations of 625 and 1250 mg l
-1

. The total biomass of C. 

glabrata 585626 biofilms was also significantly reduced (P<0.001) in presence of FLU 

concentration of 625 mg l
-1

.  

 

 

From the data presented it can be concluded that FLU does not impair biofilm 

cell viability but causes a reduction in biofilm total biomass assessed by CV method. 

So, it can be hypothesized that FLU might influence the production of biofilm matrix 

that accounts for the total biofilm biomass. To test that hypothesis, the matrices of the 

biofilms formed in the presence of FLU were extracted and analyzed. Furthermore the 

biofilm structures were observed by SEM.   

 

Figure IV.2. Effect of fluconazole on the control of C. glabrata biofilms. Mean values 

of the logarithm of colony forming units normalized by unit of area (Log10 CFU cm
-2

) 

(A); Mean values of the absorbance at 570 nm normalized by unit of area (Abs570 cm
-2

) 

(B), on 24 h C. glabrata biofilms formed in the presence of different FLU 

concentrations. Error bars indicate the standard deviations. **and *** indicates P<0.01 

and P<0.001, and consequently statistically different from its controls. 
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IV.2. Biofilm matrix composition and its structure 

 

For the study of biofilm composition and its structure only the most resistant (C. 

glabrata ATCC 2001) and the least resistant (C. glabrata 562123) strains were selected. 

The polysaccharides composition was determined by the phenol/sulfuric acid method 

(Figure IV.3A) and the protein content was determined with the BCA Kit (Figure 

IV.3B). In fact, for both strains, the quantities of polysaccharides increased significantly 

(P<0.001) in presence of the two FLU concentrations (Figure IV.3A). Moreover, the 

most FLU resistant strain had significantly (P<0.001) more polysaccharides than the 

lowest one. Regarding the presence of proteins in biofilm matrices, a significant 

increase was only observed for the highest FLU concentration tested, in both strains 

(p<0.001). Interestingly, it was in the lowest FLU resistant strain biofilm matrix that it 

was found more proteins (P<0.001), approximately twice, comparing with the most 

resistant one, in the presence of 1250 mg l
-1

 of FLU. 

 

 

 

 

 

 

 

 

 

 

 

SEM analysis was used to examine C. glabrata biofilms structure in the 

presence of FLU, and it is visible that C. glabrata biofilms are exclusively formed by 

Figure IV. 3. Effect of fluconazole on matrices composition of C. glabrata biofilms. Mean 

values of polysaccharides quantity (A); Mean values of proteins quantity (B), in milligrams 

per grams of biofilm (mg/gbiofilm) of dry biofilm grown for 24 h in the presence of different 

FLU concentrations. Error bars indicate the standard deviations. *, ** and *** indicates 

P<0.05, P<0.01 and P<0.001, and consequently statistically different from its controls. 
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yeasts (Figure IV.4), however with different biofilm structures. The biofilm formed by 

the reference strain presented a more continuous carpet (Figure IV.4I A), comparatively 

to C. glabrata 562123 (Figure IV.4II A). Interesting, it was observed that, when the 

biofilms were grown in the presence of FLU, the morphology of biofilms appears like 

clusters of cells (Figures IV.4I B, IV.4II B).It is also important to refer, that for the 

maximum FLU concentration, biofilm cells have a more concave aspect and seems to 

have a reduction on the extracellular matrix (Figure IV.4I C). As it happened with the 

reference strain biofilm, the formation of cell clusters is seen in the presence of FLU as 

well as an extracellular matrix reduction (Figures IV.4II B, C). However, the 

extracellular matrix of the two different biofilms in the presence of FLU seems to be 

different. This may be explained by the differences in polysaccharides and proteins 

contents, as showed above. 

 

IV.3. Gene expression of ABC transporters 

 

To study the influence of the biofilm phenotype in the expression of genes 

encoding for ABC transporters, the same two strains were used (the most and the least 

resistant).  

Figure IV.5 presents the mean n-fold expression levels of SNQ2, CDR1 and 

PDR1 in C. glabrata ATCC 2001 and in C. glabrata 562123 grown as planktonic cells 

and as biofilm, respectively, in the presence of two concentrations of FLU. In each 

graph the control bar is the absence of FLU. 

The overexpression of genes SNQ2, CDR1 and PDR1 was observed in 

planktonic cultures of the strains ATCC 2001 following the application of high 

concentrations of FLU (Figure IV.5A). This result might explain the high levels of FLU 

resistance that this strain exhibited (Figure IV.2). Conversely, the levels of expression 

these genes by C. glabrata 562123 planktonic cultures were not affected by FLU. This 

strain exhibited a 20-fold less resistance to FLU than ATCC 2001 (Table IV.1). 

Interestingly overexpression of genes SNQ2, CDR1 and PDR1 was observed in biofilms 

formed by both C. glabrata strains after treatment with FLU, which suggests that FLU 

might be inducing the expression of ABC transporter genes in the biofilm phenotype of 

both strains. 
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Figure IV. 4. Scanning electron microscopy images of C. glabrata. C. glabrata ATCC 2001 (I) and C. glabrata 562123 (II) biofilms formed in SDB 

for 24 h in the absence of FLU (A) or in the presence of 50 mg l
-1

 of FLU (B) or 1250 mg l
-1

 (C). The bar in the images corresponds to 20 μm for the 

magnification 1000x and 10 μm for the magnification of 3000x. 
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Figure IV. 5. Expression of ABC transporter genes. Mean values of n-fold 

expression levels of SNQ2 (I), CDR1 (II) and PDR1 (III) genes in C. glabrata ATCC 

2001 grown as planktonic cells (A) and as biofilm (B) and in C. glabrata 562123 grown 

as planktonic cells (C) and as biofilm (D) treated with 50 and 1250 mg l
-1

 of FLU. 

Comparisons are made with planktonic and biofilm grown in the absence of FLU. Error 

bars indicate the standard deviations. *, ** and *** correspond to P<0.05, P<0.01 and 

P<0.001, respectively. 

 

IV.4. Gene expression of ERG genes 

To study the influence of the biofilm phenotype in the expression of genes 

involved in the ergosterol biosynthesis, the same two strains were used (the most and 

the least resistant).  
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Figure IV. 6. Expression of ERG genes. Mean values of n-fold expression levels of 

ERG1, ERG3, ERG6, ERG9 and ERG11 genes in C. glabrata ATCC 2001 grown as 

planktonic cells (A) and as biofilm (C) and C. glabrata 562123 grown as planktonic 

cells (B) and as biofilm (D) treated with 50 and 1250 mg l
-1

 of FLU. Comparisons are 

made with planktonic and biofilm grown in the absence of FLU. Error bars indicate the 

standard deviations. *, ** and *** correspond to P<0.05, P<0.01 and P<0.001, 

respectively 
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Figure IV.6 presents the mean n-fold expression levels of ERG1, ERG3, ERG6, 

ERG9 and ERG11 in C. glabrata ATCC 2001 and in C. glabrata 562123 grown as 

planktonic cells and as biofilm, respectively, in the presence of two concentrations of 

FLU. In each graph the control bar is the absence of FLU. 

In the most resistant strain (ATCC 2001) no overexpression was observed in 

planktonic cultures when high concentrations of FLU were added (Figure IV.6A). 

Interestingly the overexpression of genes ERG3, ERG9 and ERG11 was observed in 

planktonic cultures of C. glabrata 562123 after treatment with FLU (Figure IV.6B). As 

the strain 562123 is 20-fold less resistant than the strain ATCC 2001 (Table IV.1), this 

suggests that the overexpression of ERG genes is not the key factor for FLU resistance 

in planktonic cells. 

Additionally, the expression levels of the ERG3, ERG6 and ERG11 genes in 

biofilms of C. glabrata ATCC 2001 were significantly affected by FLU concentrations 

(Figure IV.6C). ERG1, ERG9 and ERG11 genes in biofilms of C. glabrata 562123 were 

also overexpressed (Figure IV.6D). 
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V. 1. Discussion of the results 

  

The present study evaluated the effect of FLU on C. glabrata biofilm formation 

and control, through the quantification of cultivable cells, total biomass and matrix 

composition, and through the evaluation of the expression of genes involved in FLU 

resistance.  

To reach the goal of this study, antifungal susceptibility tests were performed 

according to CLSI methodology in order to select the most resistant and sensible strains. 

For that, the susceptibility of seven strains to FLU was determined and all exhibited 

resistance to FLU (Table IV.1), however the MIC values were strain dependent. The 

lowest resistant strain presented a MIC value ranging from 40 to 50 mg l
-1

. However, a 

concentration of 1250 mg l
-1

 was required to reduce all visible planktonic cells for three 

of the seven strains tested. These results are in agreement with other authors, who 

reported high variability on susceptibility of C. glabrata planktonic cells. In a recent 

study by De Luca (Luca, Guglielminetti et al. 2012) C. glabrata strains, presented lower 

MIC values of 0.25 to 32 mg l
-1

, while Grandesso (Grandesso, Sapino et al. 2012) 

reported that the MIC90 of C. glabrata was a little higher, 64 mg l
-1

. These differences, 

which highlight the strain variations, may be due to the strains used, with origin in 

different clinical isolates recovered from patients submitted to different dose therapies.  

It is well known that biofilms are much more resistant to antifungal agents than 

planktonic cells (Donlan and Costerton 2002), and biofilms are particularly resistant to 

FLU. Biofilms are the preferred mode of growth of microorganisms in natural 

environments (Williams, Kuriyama et al. 2011), and are described as surface-associated 

communities of microorganisms embedded within an extracellular matrix (Silva, Negri 

et al. 2012). Moreover, it has been reported that clinical isolates are able to form 

biofilms and have been implicated in high morbidity and mortality rates compared with 

clinical isolates unable to form biofilms (Silva, Negri et al. 2012). All strains used in 

this study were able to form biofilms and FLU had no effect on the biofilm cells 

viability. In fact FLU was not able to reduce cell viability when applied directly on 

biofilms (Figure IV.1A), and was not able to reduce biofilm formation (Figure IV.2A). 

These results were in agreement with those reported by other authors (Costerton, 

Lewandowski et al. 1995; Donlan and Costerton 2002), that showed that the biofilms 

need about 10 to 100 times more quantity of antifungal agent to be eradicated. Although 
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FLU did not impair biofilm cell viability it caused a reduction in biofilm total biomass 

specially when applied in high concentrations, this reduction is probability due to a loss 

in biofilm matrix (Figure IV.1B and Figure IV.2B). However, despite the reduction of 

total biomass, the quantities of polysaccharides and proteins undergo a significant 

increase in the presence of FLU (Figure IV.3). In this way, SEM was use to study the 

structure and the morphologies of biofilm cells (Figure IV.4). Notwithstanding the 

inherent destructive nature of the technique, by the possible loss of some cells and 

matrix during the dehydration process, SEM images demonstrated that the C. glabrata 

biofilms in the presence of FLU, for both strains, results on biofilms structure 

modifications. Namely, the formation of cell clusters in opposite to biofilms formed in 

the absence of FLU. This is in accordance with the high levels of polysaccharides and 

proteins in the extracellular matrix, which was proven to increase cell clustering in 

biofilms (Mack, Nedelmann et al. 1994; Koo, Xiao et al. 2010). The results point out to 

the fact that FLU might induce changes in C. glabrata biofilm structure and matrix 

composition. It can be speculated that FLU might be triggering the production and 

secretion of polysaccharides and proteins that make the biofilm structure more cohesive 

and less hydrated contributing to a lower uptake of crystal violet, and thus indicating a 

lower biomass. On the other hand, FLU might be stimulating the expression of genes 

involved in the efflux pumps, a well-known mechanism of FLU resistance (Vermitsky 

and Edlind 2004; Tscherner, Schwarzmüller et al. 2011; Samaranayake, Cheung et al. 

2013) that contributes to increasing the flow rate inside the biofilm leading to a biofilm 

structure in cluster form. To test this hypothesis the expression of ABC transporter 

genes (SNQ2 and CDR1) as well as the zinc finger transcription factor (PDR1) that 

regulates drug efflux pumps was measured in planktonic in biofilm cultures after being 

treated with FLU. 

Indeed, FLU induced the overexpression of the ABC transporter genes of the 

biofilm cells. It is important to emphasize that these genes were not overexpressed in 

the planktonic cultures of the less resistant strain. These transporter genes are associated 

with the mechanism of FLU resistance in C. glabrata.  Indeed,  studies of Burn (Brun, 

Bergès et al. 2004) and Vermitsky & Edlind (Vermitsky and Edlind 2004) had 

demonstrated an overexpression of both CDR1 and CDR2 (PDH1) in C. glabrata FLU 

resistant mutants, although the FLU resistance in C. glabrata planktonic cells was 

mainly due to CDR1 upregulation (Brun, Bergès et al. 2004). Sanguinetti (Sanguinetti, 

Posteraro et al. 2005) had also demonstrated the upregulation of CDR1 and CDR2 and, 
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a slight upregulation of SNQ2 in C. glabrata clinical isolates in the presence of FLU. 

Moreover, Sanglard (Sanglard, Ischer et al. 2001) showed that expression of SNQ2 was 

little affected by azole resistance in clinical mutant strains of C. glabrata. In our study, 

an upregulation of SNQ2 was detected but only in C. glabrata ATCC 2001 planktonic 

cells. Nevertheless, SNQ2 was express seven times less than CDR1, which is in 

accordance with Sanglard et al. 2001 evidences. Conversely to what has been described 

in literature, one of to the strains (C. glabrata 562123, the least resistant strain) was not 

able to increase CDR1 expression in the presence of high concentration of FLU in the 

planktonic state. Moreover, the expression of SNQ2 and PDR1 was downregulated, 

demonstrating incapacity of the planktonic clusters to respond to FLU by increasing the 

efflux pumps. Nevertheless, and as said above, these genes were overexpressed in the 

biofilm phenotype, rendering the biofilm much more resistant to FLU. This fact can be 

due to the diffusional limitation of FLU inside the biofilm matrix decreasing the amount 

of FLU that enters in contact with the biofilm cells. This way cells receive less 

concentration of FLU and have time to develop the mechanisms of resistance.  

Regarding the expression of ERG genes, the ERG11 gene plays an 

unquestionable role in FLU resistance of C. glabrata biofilms (Figure IV.6) (Antonia 

Geber, Hitchcock et al. 1995; Patrick Vandeputte, Guy Tronchin et al. 2007; Richard D. 

Cannon, Erwin Lamping et al. 2009) and, depending on the strain and in the FLU 

concentration, some of the other ERG genes may be overexpressed to increase 

resistance of the biofilm.  
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VI.1. Conclusions 

 

This study showed that the pattern of resistance to FLU is strain dependent. 

Moreover it was also demonstrated that biofilms of C. glabrata are much more resistant 

to FLU than planktonic cultures. One of the possible mechanisms of resistance is the 

overexpression of efflux pumps. The upregulation of the genes encoding for the efflux 

pumps influences the biofilm structure maybe by creating water channels through the 

biofilm structures creating cell clusters. This work showed for the first time that ABC 

transporter genes are implicated in C. glabrata biofilm tolerance to high FLU 

concentrations and influences biofilm structure and that the overexpression of some 

ERG genes is crucial to the resistance of these biofilms. 
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