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Abstract

Delay-tolerant networks are wireless networks designed to be used in cases where network

infrastructure is nonexistent or not available to be used. Because of this, there are several

problems that need to be addressed in this environment, such as lack of continuous end-to-

end connectivity and increased delay and error rates in data transfer. As such, conventional

routing schemes aren't feasible in providing e�cient solutions for these cases.

Since the nodes present in these kinds of networks usually possess very limited resources,

opportunistic routing protocols should not only try to achieve a good message delivery

probability, but also reduce the number of message replicas present in the network. This

is done so as to avoid an unnecessary waste of storage and energy that comes from storing

and transmitting messages to other nodes.

Some of the recent Delay-tolerant network routing proposals involve using social in-

formation to determine which node has a higher probability of successfully delivering a

message to its intended destination. This seems to be a popular strategy, that achieves a

good delivery probability while reducing the message overhead, when compared to simpler

schemes.

One way to analyze the performance of a routing protocol is to use real opportunistic

contact datasets to simulate a real life environment. This work focuses on providing a

research on opportunistic network traces as a way to determine the contact patterns of

Delay-Tolerant network nodes and their impact on routing algorithm performance, as well

as proposing an architecture for a future data collection experiment.
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Chapter 1

Introduction

Interest in Delay-Tolerant networking can be traced to the beginning of Interplanetary Inter-

net research, which intended to develop a network architecture suitable for communication

across outer space [1]. This environment proved to be often disconnected, error-prone and

having high data transmission delay.

Also, when wireless technologies began to receive widespread usage, research has been

done on terrestrial mobile and vehicular ad-hoc networking in challenging environments,

where the network topology changes frequently due to the mobility of the nodes involved,

while also su�ering from similar problems as those found in interplanetary networking.

Over the last years these subjects have been studied with great interest from the academic

community.

Provided they have access to the Internet, users can easily communicate with devices sit-

uated anywhere on the world; this communication is typically error-free and has a relatively

low delay. That is possible because the Internet nodes use a uniform protocol stack, which

allows for easy communication between them. These protocols, such as TCP, facilitate

end-to-end data transfer by implementing error-free mechanisms, such as packet reordering,

retransmission of lost packets or �ow control. Also, network routers are able to decide the

most e�cient path for a packet to take in order to reach its destination, even if a link in the

network suddenly disconnects.

Additionally, we can state that the Internet operates based on some assumptions, namely

the existence of an end-to-end path between sender and receiver, low error rates and short

round-trip times.
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In a delay-tolerant architecture, we cannot make these assumptions. Nodes in the net-

work may constantly disconnect, packet errors may be frequent and may take a long time to

reach their �nal receiver; furthermore, there is no access to a wired infrastructure, meaning

that the mobile nodes must forward themselves the data in an ad-hoc manner, and only

when they are in range of other devices (we call this opportunistic connections).

Even more so, we may have regions within the network that implement di�erent protocol

sets, which in turn requires the usage of an additional protocol layer in order to homogenize

communication between di�erent regions (the Bundle Protocol Layer).

All of these factors can impair the usability of the network; that's why we are required

to employ a di�erent set of techniques than those used on the Internet, in order to address

these problems.

One of the most important approaches used in delay-tolerant networks is the store-carry-

and-forward mechanism, in which messages are temporarily saved by the device in memory.

When an opportunity arises, the message would then eventually reach its destination. (Note

that since we can never predict when, or even if, the nodes in the network will be connected,

there can be no guarantees that a message will ever arrive to its intended recipient). This

implies further decisions to be made, in terms of the limited bu�er space allocation and

garbage collection, as well as the number of replicas of a message that are propagated

through the network.

We can then conclude that the main problems related to a mobile delay-tolerant net-

working architecture relate to �nding a balance between message delivery ratio and delay,

in addition to the number of copies dispatched and the amount of resource consumption.

1.1 Context

There are several speci�c scenarios that can be considered when studying routing schemes

for Delay-Tolerant Networks.

As discussed above, the Interplanetary Network consists of a network that possesses

nodes spread over the space. As such, high transmission delay and constant disconnections

are to be expected. Nonetheless, routing algorithms in this scenario have the advantage of

being able to predict the periods in which there is available connectivity, by calculating the

distance between nodes based on the planets' orbits.
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Another possible usage for this technology is the vehicular networking scenario, where

nodes are located inside mobile vehicles. These nodes can communicate when they approach

each other, thereby creating a mobile network which can possibly provide tra�c or weather

information to the vehicle's driver. In this case, mobility patterns can be very useful to pre-

dict future encounters, since vehicles can only move in well-de�ned areas. This is especially

true when considering nodes located on trains, which only travel on a �xed track.

In our case, we intend to focus our study on a speci�c delay-tolerant network instance,

where nodes consist of mobile devices carried by humans (designated Pocket Switched Net-

works). Considering this scenario, we can explore the devices' mobility to physically carry

the messages to another location; in this context, such devices are known as Data Mules.

One scenario that can be considered as a real-world application of our work could be

in an urban context, where smartphone users may want to use this type of technology to

communicate with each other, in the case that they are not allowed, cannot a�ord, or simply

do not want to use the existing network infrastructure.

Since the network nodes are carried by people who will probably interact with each

other on a regular basis, we believe social behavior information will be most useful in this

environment. This observation can also allow for a more trusted communication channel,

since the messages passed will usually be forwarded by nodes which have social ties with

each other.

Figure 1.1: A scenario where social connections can be explored to route messages between

mobile devices.
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1.2 Motivation

The number of mobile devices with networking capabilities has increased signi�cantly over

the last years. As such, we have witnessed a growth on the demand for continuous wireless

connectivity. Nonetheless, there are many parts of the world which cannot provide a network

infrastructure that allows their residents to connect to the Internet. Environments such as

developing countries, military zones or sensor networks may not allow for their mobile device

users to use the Internet in a standard manner. Implementing a Delay-Tolerant networking

scheme in these challenging zones can then enable communication where it was previously

unavailable.

Meanwhile, we can observe that social network services are highly popular nowadays,

with websites such as Facebook or Twitter having millions of users logged in at any time.

These services can provide valuable information with respect to the social interactions of

their users, which can then be overlaid on top of physical connection data, so as to explore

possible connection opportunities.

1.3 Objectives

The proposed objectives of this work consist in studying and comparing di�erent Delay-

Tolerant network routing protocols and datasets. It is intended to compare and describe

recent routing proposals in terms of the strategies they use, as well as analyzing their

performance in terms of common metrics such as message delivery probability, delay and

overhead.

The main goal is to perform a thorough analysis of real world opportunistic datasets col-

lected in di�erent scenarios. The idea is that, by trying to �nd common patterns regarding

the contact opportunities of the participating nodes, we can gain a better understanding of

how a scenario with speci�c network characteristics can in�uence the overall connectivity in

that environment. To do so, di�erent statistical analysis methods will be used, with empha-

sis on visualization techniques and the distribution of the nodes' connection opportunities,

for duration the of the experiment.

We expect to also perform a more dynamic dataset analysis, by exploring the possibility

of describing the intermittent connectivity of these environments by means of time-varying

graphs. Since the nodes present in opportunistic networks usually have limited resources,
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it is planned to study the impact of these restrictions in terms of the ability to forward

messages in the network.

It is also intended to propose an opportunistic dataset collection architecture that allows

the retrieval of both physical connection data, as well as user data from a widely used social

network service; in Chapter 2, we will observe that using social information can be an

e�ective method of achieving a good message routing performance.

1.4 Document structure

The document is structured as follows: Chapter 1 introduces the problem of Delay-Tolerant

networks in terms of message routing protocols, the motivation to perform research on this

subject and some possible environments in which this type of network model can be applied,

as well as listing the proposed objectives for this work.

Chapter 2 proposes a classi�cation taxonomy for existing routing protocols. Also, two of

the most referenced protocols on this subject are described. Finally, we analyze and discuss

some recent related proposals on the subject of opportunistic network routing protocols in

terms of their general strategy and performance.

In Chapter 3, di�erent opportunistic network datasets, describing realistic connection

opportunities, are subject to a statistical analysis and comparison. A number of techniques

are applied, focusing on visualization, statistical distribution, and time series analysis.

Chapter 4 presents a time-varying graph model to describe the intermittent connectivity

that is commonly observed on opportunistic networks. It also evaluates the impact of

di�erent network parameters (such as node bu�er size and message time to live) on the

performance of common routing protocols, by means of simulation experiments.

Chapter 5 some discussion is made regarding the problem of planning a data collection

experiment in an opportunistic environment. It proposes an architecture for obtaining

opportunistic network datasets that combine physical and social network information from

a group of nodes. Lastly, a proof of concept example is described, in order to demonstrate

the feasibility of collecting physical and social contact information.

Finally, Chapter 6 concludes this document with some observations regarding the work

that was done, as well as discussing some possibilities for expanding this work on the future.
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Chapter 2

Delay-Tolerant Routing Protocols

In the last few years, several protocols have been designed to deal with the message routing

decisions used in delay-tolerant networks. In this chapter, some of these proposals will be

discussed and compared, focusing our attention on recent social-aware approaches, since

those are expected to be more closely related to our long term goal for this project.

Firstly, a hierarchical view of the several kinds of protocols that have been proposed for

opportunistic networks will be presented, highlighting the most important aspects of each

of them; afterwards, the Epidemic and PRoPHET routing schemes, the two most widely

referenced protocols in this area, will be brie�y described.

Then, some Delay-Tolerant routing algorithms will be analyzed, discussing the main

concepts they introduce, as well as comparing them in terms of performance with some

metrics obtained from simulations.

2.1 Classi�cation of routing protocols

Routing protocols in this area of research are usually classi�ed as being forwarding-based

(only one copy of a message exists through the entire network), or replication-based (where

multiple replicas of the same message are spread among the nodes) [2]. When a message is

passed in the forwarding scheme, the original holder deletes it from its own memory bu�er;

in a replication scheme, both nodes end up having the same message.

The forwarding-based algorithms have the obvious advantage of wasting fewer resources

in relation to the replication-based approaches, at the expense of usually achieving a lower

message delivery ratio. In the context of Pocket-Switched Networking, one can deduce that
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multiple-copy routing approaches will probably be more adequate, since the connectivity

issues discussed above imply some amount of message loss.

Additionally, there are di�erent variants of the replication algorithm: namely greedy

replication (which consists of passing the message to all of the encountered nodes, much like

the Epidemic Protocol), controlled replication (implying that there is some kind of limit to

the number of replicated messages, like the Spray-and-Wait scheme); or utility-based (where

each node possesses a value that represents its feasibility of being able to carry the message

to its destination).

Utility-based routing algorithms can also be classi�ed as being social aware, meaning

that the nodes have notion of the social relations with each other, like on of the proposals

mentioned in the following section; or mobility aware, if information about the mobility

patterns of the network participants is used in the routing decisions (such as the MobySpace

model [3]). Also, in the social aware approach, we can have a hierarchical algorithm (if the

nodes can be grouped in social communities, or clusters); or �at, if no such grouping is made.

An example of an hierarchical approach is the BUBBLE protocol, while �at algorithms such

as PROPICMAN or SimBet are discussed below.

There exists yet another kind of approach to these protocols, known as message coding

or coding-aware routing : the network nodes, instead of simply forwarding the messages, can

also process the received data in other ways, based on information theory concepts.

Coding-aware proposals possess two variants: in source coding, the sender node changes

the original message to a code with additional information (for example, for error correc-

tion purposes); meanwhile, in network coding schemes, the intermediate nodes are able to

join several received messages into only one, so that increased information output can be

achieved. Once enough encoded messages are sent, the other nodes will then be able to

decode the original message.

Finally, Delay-Tolerant Routing algorithms can be classi�ed as being either centralized

or distributed. A centralized algorithm requires knowledge of the entire network topology,

as opposed to a distributed one, where the nodes update their context information when a

connection is made to one of their neighbors.

Based on the work of [4], we will now expand the proposed routing protocol taxonomy

with some of the characteristics that were discussed above, as shown in Figure 2.1:
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Message Forwarding Message Replication

Utility-based

Social aware

Flat Hierarchical

Mobility aware

Greedy Controlled

Message Coding

Source Network

Figure 2.1: Routing protocols classi�cation taxonomy.

2.2 Reference algorithms: Epidemic and PRoPHET

The Epidemic routing technique [5], in its simplest version, can be generally described as

follows: a sender node propagates a message to all the neighbors that it encounters; each

of the receiving nodes does the same and so on, until the message eventually reaches the

intended receiver; this behavior presents some similarities with the manner in which a virus

spreads through a community.

More speci�cally, each of the network nodes possesses a summary vector, which consists

of a list of messages it currently stores. When a connection opportunity arises between two

nodes, they enter a designated anti-entropy session. In this phase, a node compares its own

summary vector with its pair's and requests the messages it doesn't possess locally, so that

both participants share the same set of messages when this session ends.

Additionally, each message has a hop count �eld, indicating the maximum number of

nodes a message can pass through before it is discarded. Although this approach ensures

the best delivery ratio and minimizes the delay (since one of the copies will inevitably take

the most e�cient route), it may also saturate the network with useless replica overhead,

thus wasting a lot of bandwidth and resources on the mobile devices, a situation that is

undesirable in our scenario.

One proposal that seeks to improve this solution is the Spray and Wait scheme [6]. This

9



protocol is a variation of the Epidemic algorithm, consists of two separate steps: the Spray

phase, in which the sender transmits a �xed number of copies to its adjacent nodes; and

the Wait phase, when all of the message holders will only forward the data directly to the

destination if a direct path exists. This approach aims to lower the amount of messages

present in the network at any given time by halting message propagation, while also trying

to achieve a high transmission ratio and low latency, thus increasing the scalability in regards

to �blind� Epidemic routing.

Another well-known routing scheme in this subject is PRoPHET (Probabilistic Routing

Protocol using History of Encounters and Transitivity) [7]. This protocol's functionality

is based on the assumption that the mobility pattern of the nodes is not entirely random;

hence, it may be possible to determine the probability of a network node meeting another,

by analyzing the history of past physical encounters that recently occurred between them.

PRoPHET achieves this by assigning a delivery predictability to each node pair, a value

that indicates the likelihood of these two nodes meeting again in the future. This metric is

recalculated every time two nodes meet, so that frequent encounters translate to an increased

predictability value. This protocol also possesses the notion of aging (recent meetings are

more important than distant ones), and transitivity (meaning that a node can be considered

a suitable intermediary between two other nodes it usually meets).

Using this information, a node will then forward the message to another if their deliv-

ery probability is higher than the current message holder, in regards to its �nal receiver.

This results in a signi�cant decrease in message overhead, while maintaining comparable

performance in relation to the Epidemic approach.

2.3 Social-aware Routing

The following section describes some recent context-aware routing protocols. These al-

gorithms are able to predict future node encounters by some kind of social information

(social network metrics or information about the owners, for example). In our case, they

are particularly interesting, since they can illustrate some of the ways we can treat context

information as a means to infer social ties between the nodes.
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2.3.1 BUBBLE

The BUBBLE forwarding algorithm [8] operates by grouping the network nodes in terms

of social communities, or bubbles (each node belongs to at least one bubble). Each of

the participants in the community possesses two key attributes: the local ranking, which

quanti�es the node's popularity (or centrality) in relation to the others within the same

community; and a global ranking, indicating the node's centrality value throughout the

whole network.

In order to socially classify the network nodes, this protocol presents two di�erent com-

munity detection approaches: by using existing centralized schemes; or the distributed

version of the algorithm, called DiBuBB.

The centralized approach relies on the usage of two complementary community detection

algorithms: K-CLIQUE [9] and Weighted Network Analysis [10]. These algorithms are

divisive: starting from the whole network graph, they will iteratively split it into smaller

clusters.

K-CLIQUE divides the whole network graph into complete subgraphs (or k-clique com-

munities) that are accessible by a set of other adjacent k-cliques (k-cliques that share all

but one node); here, the value k indicates the number of nodes that belong to a subgraph.

The idea here is that increasing this value means that the detected subgraphs are smaller,

but have stronger social ties (in this scenario). It is also possible to de�ne a minimum value

for link weight, in the case of a weighted graph; links which have a lower weight than the

minimum are discarded, resulting in a similar e�ect to increasing the value of k.

These communities may overlap and so nodes can be part of several di�erent k-cliques.

Each node has a membership number (the amount of communities it is part of); the overlap

size is the number of nodes that are part of two communities simultaneously; the community

degree refers to the number of overlapping communities, while the size is simply the number

of nodes a community has. These values can be used to describe the community structure

of a network, so that is is possible to determine the most relevant connections between the

nodes.

Meanwhile, Weighted Network Analysis assigns weights to the edges of the social graph,

representing the importance of the social relationship between two nodes. By representing

the network in a weighted graph, the betweenness values of all of the existing edges are

calculated; this value is then divided by the weight of the edge it refers to. The edge with
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the highest of these values is then discarded from the graph, and the process is repeated,

with the new network graph being used for the betweenness calculations.

In order to determine the number of splits to be made, the authors also introduce the

network modularity concept [11]: this value represents the fraction of graph edges that

belong to a certain community, subtracted by the fraction of the edges that would belong

to those communities, should such edges be assigned at random. In other words, the higher

the modularity value, the tighter social structure a particular network division o�ers; as

such, the division with the highest modularity value will be the one chosen.

These two algorithms are used in conjunction to cluster the nodes together in communi-

ties with strong social bonds, meaning that contact opportunities will probably be greater

in number within the same community.

On the other hand, the distributed version of this algorithm (DiBuBB) allows each of the

network nodes to �gure which community they belong to, and compute their own centrality

values, without the need of a centralized entity; this means that the distributed version has

a greater practical value, since the network nodes may experience frequent disconnections.

This is achieved by using a distributed version of the K-CLIQUE community detection

algorithm; after that, a node computes the average degree (the number of unique nodes

contacted) from previous, �xed-time windows; the authors call this strategy Cumulative

Window. This degree is then compared to other nodes', when a connection opportunity is

present; as such, a node will eventually be aware of its own centrality value in relation to

the whole network.

The routing algorithm works in the following manner: any time a node wishes to send a

message to another, this message will be forwarded to the other available nodes which own

a higher global ranking than the sender; whenever the receiving node belongs to the same

community as the receiver, the message will then be forwarded using the same logic, but

using the local ranking, instead of the global one, as the value to be compared.

In conclusion, this proposal relies on the reasonable assumption that the more popular

members of a social network are better suited to pass information than the least popular

ones.
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2.3.2 PROPICMAN

The PROPICMAN approach (Probabilistic Routing Protocol for Intermittently Connected

Mobile Ad hoc Network) [12] assumes that a node's mobility isn't entirely random; as such,

it uses information about the device's owner (node pro�le) to predict a device's future

locations, in order to aid in message routing decisions.

This pro�le consists of several hashed key-value pairs (or evidence-value) that represent

all the information available about a particular node (such as the name or residence of its

owner). The routing algorithm is as follows: when a node wishes to send a message to

another, �rst it sends only the message header to its adjacent neighbors.

This header is built by concatenating all of the evidence/value pairs of the receiving

node's pro�le that the sender has; the sender can also attach weights to each of these

attributes, which rank the attribute's relevance in regards to the rest of the evidences.

The message header also possesses the MAC address of the sender and a message sequence

number, in order to avoid duplicates.

Each of the header's receivers then calculates its delivery probability in relation to the

message's destination node, by matching the received header's attributes with the informa-

tion it currently stores about the destination. Then, each of the sender's neighbors will

send this header to their own adjacent nodes (the 2-hop nodes, from the original sender's

point of view, if they exist); the receivers also calculate their own delivery probability to

the destination.

Finally, the sender node will receive all of the 1 and 2-hop node's delivery probabilities;

the node with the highest probability will then be sent the message payload (or more than

one, if we opt to sacri�ce overhead for delay and reliability). This process is repeated until

the destination node receives the message. Note that the intermediate nodes store the

message in memory, in the event of future contact opportunities.

Interestingly, this protocol possesses some degree of in-built security, which cannot be

said about many of the routing protocols in this area. Since the messages are encrypted with

the destination's hashed key-value pairs the sender has, only the destination can decrypt

the message content. As such, someone who can capture a message will not be able to read

the payload, if the message isn't addressed for them.

The destination node's evidences are also somewhat protected, since the intermediate

nodes can only acquire some information about the destination if the header's hashed values
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match their own hashed evidences (as such, only the destination can fully acquire all of the

information, since it will be the only one to match all of the hashed attributes).

These security concerns represent an interesting approach to Delay-Tolerant Routing

protocols; by increasing the security of the protocols, we can validate implementations of

these algorithms in a real world scenario, where security and privacy are major issues in

network communications.

2.3.3 PeopleRank

The PeopleRank forwarding scheme [13] is inspired by the well-know Pagerank algorithm

used in the Google search engine [14], which rates Web pages by their importance based on

the number of pages that link back to them. This approach aims to �nd the relative impor-

tance of the nodes present in an opportunistic network based on their social interactions,

and then choosing the highest ranking nodes to forward a message.

These interactions are represented in a social graph, where the vertexes represent the

network nodes and the edges denote social relationships between them (such as friendships

or common interests). From this graph, we can then rank the nodes based on the number

of edges they have. Nodes with a higher ranking possess more (or stronger) social connec-

tions with others, and so are probably better suited to carry messages across the network.

PeopleRank classi�es the nodes in a centralized or a distributed fashion.

The centralized node ranking is calculated as follows: for each node, its PeopleRank

value is the sum of the ratio of each of its neighbors' own rank to the number of neighbors

they possess. This value is then adjusted by the means of a damping factor, which quanti�es

the social importance a node should have, in relation to others (similar to PageRank's own

damping factor, that denotes the probability that a person will stop browsing the Web).

The centralized approach assumes that the social graph is already de�ned and that

the network topology is known in advance; this may be impossible to achieve in practical

implementations.

In the distributed version of this algorithm, the nodes will update their social ranking

when a connection opportunity arises between them, exchanging information regarding their

own PeopleRank values and the number of neighbors they have; as such, two nodes that meet

often will quickly increase their PeopleRank values, since they will be constantly updating

their information.
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This also means that the distributed approach has the advantage of deciding the best

routing path dynamically, which is an important feature, considering that the topology can

change very quickly in a delay-tolerant environment. If a message is held by one of the

connection participants, it will be forwarded to its pair, if it has a higher PeopleRank value

than the message holder.

2.3.4 SimBet

The SimBet proposal [15] relies in calculating the centrality (or popularity) of a node in

order to determine the nodes which are most likely to successfully carry a message through a

Delay-Tolerant network; a popular node is expected to have more connection opportunities

in the future than one with lower centrality.

To do so, the authors introduce the notion of ego networks [16]: networks which consist

of a central node (the ego) and the nodes which possess a direct path to it (the alters) and

the links between them. This is done so that a node doesn't need to have knowledge of the

whole network structure, which can be infeasible in a Delay-Tolerant scenario.

From this ego network, we can then calculate its betweenness centrality (the number of

times the ego node belongs to a path between two other nodes that aren't directly connected)

by representing the ego network as an adjacency matrix (which we will call A), representing

the existence of a direct path between two nodes (1 if that's the case, 0 otherwise). A2

represents the number of two-hop paths that are available between two nodes; A2[1 − A]

then gives us the amount of two-hop shortest paths for two nodes.

The betweenness centrality is calculated by adding the reciprocal of each value of this

last matrix (since the ego network is an undirected graph, we only add the values above the

matrix diagonal). This calculation is done every time a node encounters new neighbors,so

its centrality value stays updated.

The betweenness centrality value has been shown to possess a strong correlation with

its sociocentric counterpart, meaning that a node with a high betweenness is expected to

possess many social connections and thus be able to forward messages to their destinations

with higher probability.

The other metric involved, called node similarity, is simply the number of shared neigh-

bours between two nodes. In the adjacency matrix, this is equivalent to the sum of each

of the rows, giving us the similarity between the ego and the alter the row refers to. The
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adjacency matrix can also be extended by adding columns representing other nodes that

are accessible by an alter, so that other forwarding paths to non-neighbor nodes may be

considered.

Note that the closeness metric is useless in an ego network model, since all the links

from the ego to its alters have a length of 1.

SimBet then uses this values on SimUtil and BetUtil, which compare two of the nodes

in terms of node similarity and betweenness centrality, respectively. These two parameters

are then added (possibly with di�erent weights) in the SimBetUtil function. SimBetUtil

returns a value between 0 and 1, which represents the �tness (or utility) of a node being

chosen to carry the message. As such, the node with the highest value has the most social

connections.

The SimBet routing algorithm consists of the following steps: when a node encounters

a new neighbor, it delivers any messages it may have, plus an encounter request, if the

neighbor is their destination. The neighbor then sends its own list of previously nodes,

which the �rst node uses to update its own node similarity and betweenness centrality

metrics. Then, the nodes trade their summary vectors, which consist of the nodes they are

carrying messages to, plus their calculated similarity and betweenness values. For every

destination included in the neighbor's summary vector, a node calculates its own SimBet

utility value: if this value is higher than the neighbor's, the neighbor will then forward the

messages associated with that destination to its pair.

2.3.5 CAR

The CAR (Context-aware Adaptive Routing) protocol [17] supports message delivery syn-

chronously (when there is a connected path between the origin and the destination of the

message) or asynchronously (using a store-carry-and-forward approach), using social infor-

mation as the basis for the routing decisions; nodes do not need to be aware of their own

or others' location in order to send messages.

As in the previously mentioned approaches, the main objective is to try to predict which

path a message should take in order to reach the receiver. The next node in the path to carry

the message is chosen based on the calculated probability it has to meet the destination.

In order to do so, CAR uses context information, attributes regarding the node that

can be used in routing decisions (like connectivity patterns or availability of resources, for
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example). This information is used by each node to compute its own delivery probability

in regards to its neighbors, which is periodically broadcast to other nodes, for them to

update their own routing tables; these tables, based on the DSDV (Destination-Sequenced

Distance-Vector Routing) scheme, consist of the next hop node, the node with the highest

probability, and the recipient node identi�ers, in addition to the delivery probabilities of

the known destination nodes and the distance to the destination.

After receiving the delivery probability, each of the nodes then regularly updates it,

using local prediction techniques to determine its future value. This technique is interest-

ing because a node can predict the future context information of neighbours that haven't

connected in some time, which may be a frequent occurrence in Delay-Tolerant networks.

Stale entries in the routing tables are periodically removed, if they haven't been updated

after a certain amount of time, in order to save memory.

Similarly to the PROPICMAN protocol discussed above, each of the node's attributes is

attached to a weight that rates the relative importance of each of the attributes. Although

the attribute weights are the same for all of the nodes, such values can be dynamically

tuned for all of them (adaptive weighting), by using three metrics that are able to classify

the available context information: range (a function based on the possible values an attribute

can possess), predictability (if the prediction technique is able or not to determine the future

value of a given attribute) and availability (if current information about a speci�c attribute

can be acquired). The predictability and availability values are binary: 1 means information

is predictable or available, 0 otherwise. These three values are then multiplied for each of

the existing attributes.

Since the goal of this protocol is to calculate the delivery probability of a message in

the future, CAR employs a prediction model to guess the future values of a node's context

information, based on the last known state (based on the Kalman �lter method [18]); this

technique alleviates the need of constant information exchange between neighbors, thus

conserving valuable network and memory resources.

In other words, for a particular destination, the best message carrier is the one whose

sum of its own weighted attributes has the highest predicted value. The carrier is then

chosen to delegate the message asynchronously, until a connection opportunity with the

message's destination is available.
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2.4 Performance evaluation

Table 2.1 summarizes the main characteristics of the aforementioned protocols: the �rst row

shows which speci�c scenario the proposal intends to address; next, we can see what kind

of context information the protocols use for the routing decisions, and how this information

can be acquired (as in a centralized or distributed way).

The fourth row indicates whether the protocol uses or not information from the di�erent

network layers (as speci�ed in the OSI Network Model): for example, an algorithm may use

information collected from the Application Layer (like the device's battery power, or social

data inserted by the device's owner, for example) in addition to the Link or Network Layer

information (such as the MAC identi�er or IP address of the node) in order to calculate the

�tness of a neighbor node being a good message carrier.

The Social clustering entry indicates if the protocols group the Delay-Tolerant Network

nodes in an social hierarchy (or communities); if no such distinction is made, the algorithm

may be classi�ed as being �at, as discussed earlier in this chapter.

The next row identi�es the datasets used for comparison with other routing approaches:

BUBBLE used datasets collected from the Haggle Project (http://www.haggleproject.

org/); more speci�cally, Hong Kong, Cambridge, Infocom05 and Infocom06, in addition

to Reality, gathered from the MIT Reality Mining Project (http://reality.media.mit.

edu/).

The Infocom05 trace was generated on the IEEE Infocom conference, in Grand Hyatt,

Miami. 47 mobile devices were distributed to the participants of the experiment, of which

41 yielded valid contact information, while the data from the remaining ones was discarded,

due to hardware failure or loss of the device. This contact information was collected between

March 7th and March 10th, 2005.

The Infocom06 dataset was collected during Infocom 2006 in Barcelona, from April 24th

to April 26th, with 78 mobile devices (iMotes) being distributed to the attendants of the

conference, in addition to 20 stationary devices installed on di�erent points in the area.

The 70 participants �lled a questionnaire regarding some personal information (namely,

residence, nationality and school attended) and then were given the remote device for com-

munication during the conference. During the conference, all the contacts between the nodes

were collected.

Meanwhile, the PROPICMAN authors used a custom simulation approach to the per-

18

http://www.haggleproject.org/
http://www.haggleproject.org/
http://reality.media.mit.edu/
http://reality.media.mit.edu/


formance tests: a number of nodes were placed in a �xed-size area, with the nodes being

randomly distributed across the partitions of the modeled space; each node has a di�erent

probability of being in one of these partitions and may move freely between them (based on

probability).

PeopleRank uses several di�erent datasets for their performance comparisons: Mobi-

Clique, SecondLife, Infocom06 and Hope, each of these possessing mobility patterns as well

as social contact information.

Simbet used exclusively the MIT Reality dataset, mentioned above. From this informa-

tion, the authors found that the calculated egocentric betweenness values followed closely

the social network information provided by the participants in this project's data collection.

Finally, the CAR protocol authors, like PROPICMAN, used their own simulation models

to analyze their algorithm's e�ciency: network nodes were introduced in �xed spaces; these

nodes followed a Community-based mobility model; additionally, the authors created a social

network based on the Caveman model.

Each of the modeled spaces was split into �xed-size grids, with each social community

being placed in one of them, with each host employing a Random Waypoint model to move

to adjacent the sections.

The table also displays the performance comparison versus PRoPHET, in terms of the

widely used network metrics: message delivery ratio, number of messages and delivery delay

(when such information is available).

For each of the protocols, the average of the value was calculated for all of the datasets

used in the tests. This was done so that we can have a rough estimate of the performance

advantages of using social-aware protocols; since these values are obtained through graphic

observation, we cannot accurately calculate these values. (In the case of the PeopleRank

protocol, there wasn't any data regarding the PRoPHET protocol, so we cannot present

this information).

In order to ensure more reliable information, some of the protocols employed some kind

of statistical measures: namely, the PROPICMAN provides a con�dence level of 95% and

a standard deviation value of 0.975 milliseconds on their delay performance tests. On the

other hand, CAR's performance data possesses a margin of error of 5%.

The table shows us that BUBBLE achieves nearly the same delivery ratio than PRoPHET,

while reducing the number of messages in the network by roughly 50%; while PROPICMAN
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Protocol BUBBLE PROPICMAN PeopleRank SimBet CAR

Context PSN General DTN PSN General DTN General DTN

Context

Information

Clustered node

ranking

Node pro�ling Social Graph

Analysis

Ego network

metrics

Node attribute

prediction

Context

Calculation

Centralized or

distributed

Distributed Centralized or

distributed

Distributed Distributed

Cross Layer No Yes (Layers 2, 7) Yes (Layers 2,

7)

No Yes (Layers 2,

3, 7)

Social Clustering Hierarchical Flat Flat Flat Flat

Datasets Haggle, MIT

Reality Mining

Custom Simulation Multiple sources MIT Reality

Mining

Custom

Simulation

Delivery Ratio

(%)

[90-100] Unavailable Unavailable [95-100] [100-110]

Overhead (%) [45-55] [95-100] Unavailable [95-100] [50-55]

Delivery Delay

(%)

Unavailable [60-70] Unavailable [80-90] [90-100]

Statistics Unavailable 95% con�dence

level, 0.975 ms

standard deviation

Unavailable Unavailable 5% margin of

error

Table 2.1: Comparison of social-aware routing protocols

possesses a similar message overhead compared to PRoPHET, it manages to reduce signi�-

cantly the delay a message su�ers from traveling through the network.

As stated above, performance information comparing PeopleRank to PRoPHET does not

exist, so we cannot make any assumptions on it. Meanwhile, SimBet performs similarly in

terms of delivery ratio and amount of messages passed on the network, while CAR achieves

roughly the same delivery ratio and delay as PRoPHET, while only spending roughly half

of network resources.

We can then observe that social-aware protocols are able achieve a satisfactory per-

formance when compared to a widely referenced Delay-Tolerant forwarding algorithm, in

terms of the usual protocol metrics used in this speci�c environment; therefore, one can as-

sume that exploring social information to aid in routing decisions is indeed an advantageous

approach, while also validating our motivation on researching this subject.
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2.5 Conclusion

In this chapter, an extended classi�cation of Delay-Tolerant routing protocols was presented,

with the aim of helping us understand the current general strategy these proposals follow.

The Epidemic and the PRoPHET protocols were also brie�y described, since these algo-

rithms are widely referenced in this area and thus provide a reasonable basis for comparison

with other Delay-Tolerant routing proposals.

We then characterize some of the recent routing protocols, with information regarding

the routing algorithm itself, as well as other attributes that seem relevant, such as the

kind of context information used, what network layers are used and the datasets used for

comparison and those results.

After having analyzed some of the most widely referenced protocols in this area, as well

as some of the state-of-the-art social-aware proposals for Delay-Tolerant routing, we can now

conclude that algorithms which are able to use this kind of information about the nodes

can, in fact, be useful in terms of calculating the most adequate path a message should take,

usually presenting some kind of performance increase in regards to more oblivious schemes,

whether in terms of message delivery ratio or delay, or in the amount of resources that the

nodes have to use.
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Chapter 3

Opportunistic Dataset Comparison

Opportunistic networking di�ers from more conventional architectures by the lack of existing

network infrastructure, which can cause intermittent connectivity or increased communica-

tion delay between nodes. From a message routing perspective, solving these problems

require a di�erent set of techniques than those used in more traditional network schemes.

Forwarding algorithms in this area usually aim to improve performance metrics such as

the ratio of successfully delivered messages, while trying to decrease the time a message

takes to reach the destination node, as well as the number of copies replicated throughout

the network.

A common approach used for testing the performance of opportunistic protocols relies on

existing opportunistic contact traces. These datasets are widely available on the Internet,

and provide a convenient way of simulating realistic usage scenarios. As such, studying

the contact patterns between nodes can lead to useful observations to take into account on

future experiments.

This chapter presents the results of a study on four di�erent datasets [19]. First, we

describe the main characteristics of each trace. Then, we propose a graphical representation

of the contact behavior for each pair of nodes.

The next step was to perform an analysis in terms of the distribution of connectivity

among nodes, having found that the contacts follow a roughly lognormal distribution and

noting that a small group of nodes is usually much more popular than the rest. Lastly,

we have made a temporal analysis over the duration of each collection experiment. It was

noticeable that individual nodes have very similar contact patterns over time, as well as

23



revealing some cyclic variation over time (namely over weekends).

3.1 Introduction

Opportunistic networks are usually characterized by the lack of conventional network in-

frastructure. As such, end-to-end paths between two nodes may not be always available,

while also being prone to increased delay and error rates during data transfer, among other

challenges. These problems motivate the need to design routing algorithms without guar-

antees of continuous connectivity, since traditional forwarding proposals do not usually take

these constraints into account.

Several opportunistic routing protocols use context information (i.e., information that

a node can acquire of its surrounding environment) in order to determine which of the

available neighbors has the best chance of delivering a message to a destination node. For

example, the PRoPHET protocol [20] uses the past contact history of a node to predict

future connection opportunities, while other approaches explore social relationships between

nodes in the network, for example. In recent years, this area has been subject of extensive

research among the academic community, with a great number of proposals being made in

regards to routing protocols and data dissemination strategies [21] [22] [23].

The performance of a routing protocol is an extremely important issue in these envi-

ronments, as suggested by the challenges mentioned above. Some of the most important

metrics in this subject include the delivery ratio, delay and message overhead.

One of the most popular tools to test the performance of opportunistic routing algorithms

is the use of existing contact datasets, which consist of a record of all of the contacts made

between the participants, during a data collection experiment. This information is then

used to design more e�cient forwarding schemes, based on real usage scenarios.

Contact traces are available for widely di�erent scenarios, ranging from groups of uni-

versity students, to bus systems in a city, among others. Nevertheless, several questions

arise when comparing di�erent datasets. Do the traces have any similar statistical charac-

teristics? Do contact patterns between individual participants show signi�cant variation?

Would it be interesting to collect other types of information? Some of these concerns can

be considered while planning future dataset collection experiments.

In order to test these kinds of proposal in terms of performance, several datasets are
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available online, which contain contact information between nodes collected during di�erent

experiments. These datasets can then be used to simulate a real-world application of the

proposed algorithms.

This means that performing an analysis of existing opportunistic connection traces can

be useful to determine what kind of connection patterns exist between the nodes, which can

then be possibly used by new opportunistic network routing strategies.

The main objective of this work is to provide a comparison of di�erent opportunistic

contact traces, in order to determine what kind of information can be extracted from them,

that is not immediately noticeable. Many of the datasets on this subject do not seem to

justify some traits which characterize the experiments in which the traces were collected (for

example, the number of nodes or the duration of the experiment); on the other hand, some

amount of statistical information also could potentially be useful to plan future experiments,

in order to produce a dataset with more relevant information.

In order to answer some of these questions, we apply a methodology consisting of sta-

tistical analysis regarding di�erent subjects, such as data distribution, correlation between

di�erent metrics, and temporal analysis. We also present visual representations of the

datasets in question, which can be used to summarize the interactions among the nodes in

the network.1

The remainder of this chapter is organized as follows. Section 3.2 describes some recent

proposals that were made related to this subject. Section 3.3 presents a description of

the di�erent datasets used on this work. Section 3.4 presents visual representations of

each node's contact patterns. Section 3.5 explores the statistical distribution of the data.

Section 3.6 provides an analysis of the data over the duration of each experiment. Section

3.7 presents our conclusions on the work that was made, in addition to proposing future

work on this subject.

3.2 Related work

As seen before, the performance of Delay-Tolerant routing algorithms is usually tested by

means of simulations. By using real-world connection traces, it is possible to simulate a

1Due to space constraints, it is not possible to present all of the generated �gures on this document.

Additional images are available at http://marco.uminho.pt/projectos/oppdatasets/home/.
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realistic opportunistic network scenario. Here, some recent dataset analysis proposals are

discussed.

Belblidia et al. [24] propose the surround indicator metric, which describes the spacial

dimension of a contact in wireless networks; in other words, it indicates the density of nearby

nodes in the network. This metric could be used in conjunction to the more widely used

temporal dimension metric as information for opportunistic routing protocols.

Xu et al. [25] present a social community detection strategy for opportunistic datasets;

this algorithm groups the nodes in di�erent communities (or clusters), based on the duration

and frequency of contacts a node has with others. Community information can then be used

by routing protocols to forward messages more e�ciently (for example, two nodes from the

same community may have a higher chance of meeting again in the near future than two

nodes of di�erent communities). This algorithm was proven, in fact, to detect the social

structure, as well as changes in the network structure over time, which can be frequent when

considering opportunistic networks.

Yoneki [26] also uses di�erent community detection algorithms, namely K-CLIQUE,

Weighted Network Analysis, and Fielder Clustering to visually present the existing com-

munity structure of the datasets [27]. This work demonstrates the use of distributed and

centralized techniques to group the participating nodes in social communities based on their

contact patterns. Besides showing both �at and hierarchical community structure for some

connection traces, the authors also exhibit how the hub nodes (the most in�uential nodes

on the network) change position over a period of time.

Chen et al. [28] propose an algorithm to recover censored contacts (contacts that start

during the measured time but end after the end of the measurement); these contacts were

shown to imply a skewed statistical distribution if ignored. Using the recovered contact

information, the authors then provide a thorough statistical and graphical analysis of dif-

ferent opportunistic network traces, noting the existence of strong self-similarity (meaning

that a subset of the data possesses the same statistical properties as the whole trace).

Ristanovic et al. [29] observe that opportunistic contact simulations may not adequately

re�ect the characteristics found in datasets with more realistic scenarios. As such, the

authors develop a data collection experiment with real users and compare the collected trace

with simulated contact information. One of the main conclusions is that simulations tend

to be more optimistic than real opportunistic network applications, regarding performance
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metrics such as delivery ratio (percentage of messages that successfully reach the destination)

and the delay (the time it takes for a message to reach the �nal node); one fact that may

justify this conclusions is the assumption of in�nite cache sizes in the simulation experiments.

The authors also note that using a network backbone can result in increased performance.

3.3 Dataset description

This section describes the four studied datasets that illustrate the contact opportunities, usu-

ally between users of mobile devices, during di�erent data collection experiments, which can

prove useful in �nding relevant metrics applicable to opportunistic routing protocols. The

datasets used in this work are: unimi/pmtr [30], collected at the University of Milano, Italy;

upmc/rollernet [31], obtained from a rollerblade tour in Paris, France; st_andrews/sassy

[32], from Scotland; and upmc/content [33], collected around Cambridge, England.

These datasets were obtained from the CRAWDAD repository2, which provides a vast

collection of wireless network traces for analysis, as well as providing a number of tools to

process and analyze the o�ered traces. This data consists of experiments made on diverse

kinds of scenarios, and provide useful information regarding the contact patterns between

the participants.

The collected datasets are presented in tabular form, each row representing one contact

between two nodes. The �rst two columns denote the identi�er of the nodes involved in

the contact, while the following two values represent the beginning and ending of a contact

opportunity, respectively. The upmc/content dataset splits the nodes into separate �les, so

it only possesses a single node identi�er in each �le (that is, the node contacted by n, in the

�le n.dat).

Some of the datasets also have two more columns: the �fth one indicates the number

of previous contacts made between those two nodes, while the sixth column presents the

time interval between the end of the last contact and the beginning of the current contact

between the nodes. Appendix A presents some examples of the format used in the datasets.

The st_andrews/sassy dataset provides slightly more information regarding the con-

tact opportunities (in addition to the aforementioned data). The �fth column indicates

the timestamp of the information upload for that contact, the sixth value is the signal

2http://crawdad.cs.dartmouth.edu/
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strength of the device (RSSI ) and the last column presents the maximum possible di�er-

ence between the upload timestamp and the actual start of the contact opportunity (due

to unsynchronized clocks after a device resets or battery failure). st_andrews/sassy also

presents an additional �le illustrating the participants' Facebook social information (named

self-reported social network, as opposed to the detected social network that lists the physical

contacts between the mobile devices). In other words, it simply lists the node pairs that

are friends on Facebook. Even though there seems to be a good correlation between the

physical connections and the social network, there isn't enough information to allow us to

perform a more complete analysis. As such, we believe that it would be interesting to have

access to other kinds of social data, such as the number or the date and time of the contacts

between the pairs of nodes featured in the data collection experiment.

Table 3.1 displays the most important information about the observed datasets. The

�rst row shows the name of the dataset. The second row indicates the scenario in which the

experiment was conducted. The third row indicates the number of participants3 involved

in each experiment. The fourth row shows the total duration of the experiment, while the

�fth row denotes the total number of connections in each of the traces (which is the same as

the number of entries present in the �le). The sixth row presents the average pairwise (that

is, each di�erent pair of nodes) of the number of contacts a node establishes with others.

The seventh row shows us the average pairwise time duration of connections between two

nodes, and the eight row the average interval between contacts for each pair of nodes.The

ninth row denotes the average degree of each node (in other words, the average number of

di�erent nodes that have contacts with a single node). The last row displays the number

of articles that reference the dataset (this information was collected from the CiteULike4

scienti�c reference service, by searching for articles that are tagged with the trace's name).

We believe that these traces provide su�cient variation in terms of sample size, duration

and number of contacts to be able to provide a meaningful comparison between them.

Moreover, we have used the ONE simulator [34] to generate 4 additional datasets, with

the same number of nodes and duration as each of the traces mentioned above, using the

Random Waypoint movement model. We number these simulations from 1 to 4, following

the same order as the aforementioned datasets. This will allow us to make more relevant

3We do not consider contacts with nodes that don't belong to the experiment, since the generated

heatmaps would become too big and sparse for visual interpretation.
4http://www.citeulike.org/
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Name unimi/pmtr upmc/rollernet st_andrews/sassy upmc/content

Scenario University of

Milano mobility

traces

Rollerblade tour

contacts

St. Andrews

University contacts

Cambridge City

traces

Number of nodes 44 62 27 54

Duration 19 days 3 hours 79 days 54 days

Number of

contacts

11895 132511 112265 40164

Average pairwise

contacts

10.7727 31.8065 319.8405 7.5982

Average pairwise

duration (seconds)

4905.3 205.1988 1458.4 8064.2

Average pairwise

interval (seconds)

393022 6330 943376 182907

Average node

degree

27.5909 60 11.4815 23.8519

Number of

references

3 11 6 13

Table 3.1: Comparison of opportunistic contact datasets

comparisons between real and simulated traces.

It is only possible to present information regarding the connection times of the nodes,

since that is the only type of data we have access to. We believe that additional informa-

tion (such as connection bandwidth or location data) could be explored to provide a more

thorough analysis.

3.4 Dataset visualization

Based on the work of Phanse et al. [35], we rank the network nodes of each dataset in

regards to their degree (the number of di�erent nodes contacted) and connection time

(the total connection time with other nodes). Figure 3.1 presents the node rankings for

upmc/rollernet.

We observed that that the degree distribution of the nodes is approximately linear, while

the connection time distribution is heavy-tailed across all of the datasets. This implies that
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Figure 3.1: Degree and connection time node ranking for upmc/rollernet.

there are generally a few nodes that are much more popular than the remaining ones. This

assumption seems reasonable, since in real life people have di�erent amounts of popularity

and may spend more or less time communicating with their peers, depending on the social

bond between them. All of the simulations seem to generate a perfectly linear degree

distribution, given enough time (such was not the case for the upmc/rollernet experiment,

which only had a 3 hour duration); in terms of the connection time distribution, the results

were similar to the real traces.

Additionally, for each of the referenced datasets, three additional n-by-n matrices were

generated (n being the number of nodes in the dataset), which contain the total number of

connections between nodes i and j, and the total connection time between two nodes, and

the accumulated time interval between contacts, respectively. These matrices are symmetric

because the we consider that connections between nodes are bidirectional. The matrices

refer to the number of connections, accumulated contact duration and accumulated interval

between contacts for each node pair, for the four datasets presented.

From these matrices graphical heatmaps were generated, with black and white squares

being the ones with the most and the least intensity, respectively. These images provide

a graphical representation of the connection patterns of the network, and can be useful to

provide visual information regarding the datasets, namely the number of nodes (related to

the number of squares in the image) or the distribution of connectivity among nodes (a

higher image contrast implies a bigger di�erence).

Figure 3.2 shows the generated heatmaps for the number of contacts for each pair of

30



nodes in unimi/pmtr and its simulated counterpart. From these �gures, we observed that

the connectivity rate is more evenly distributed among the �rst two datasets than in the

last two, since the heatmaps from the last two datasets are much sparser (for example,

upmc/content possesses very few contacts for nodes with IDs greater than 36). It is clearly

noticeable that the simulations show much more homogeneous interactions between pairs of

nodes than the real datasets. We can also deduce that the connection time may be evenly

distributed among all of the connections, since the connection time heatmaps show similar

patterns in regards to the heatmaps representing the number of contacts.

Figure 3.3 shows a heatmap representing the self-reported social network for the dataset

st_andrews/sassy. When compared to the number of contacts heatmap for the same data,

it is observable that the detected social network has more information than the self-reported

one: that is because the self-reported social network only gives binary information regarding

the relationship between two nodes. Also, these two sets of information do not appear to

present a strong correlation, judging by the contact heatmap patterns. Given kind of data

provided it may not be possible to further elaborate on this case.

Figure 3.2: Heatmaps for the number of contacts on the unimi/pmtr dataset and its re-

spective simulation.

The image energy (average of the squared values of the pixels) corresponding to the

heatmaps is presented in table 3.2.
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Figure 3.3: st_andrews/sassy self-reported social network.

Table 3.2: Image energy for the heatmaps.

Name unimi/pmtr upmc/rollernet st_andrews/sassy upmc/content

Number of contacts heatmap energy 1.3789 2.8743 0.3205 1.1438

Contact time heatmap energy 0.6035 0.7706 0.3243 1.0693

3.5 Statistical distribution

We have generated histograms for the number of contacts on each data trace. The his-

tograms visually represent the distribution of the data; for this case, the x axis represents

the number of contacts between two nodes, and the y axis shows the number of occurrences

for that number of contacts. The histograms clearly attest to the sparsity of contacts; it is

also observable that there are much more nodes that possess few contacts than those that

have many contacts, for all of the datasets. Again, this conclusion seems reasonable, since

each node probably contacts a small number of its peers much more frequently than others.

Figure 3.4 shows the contact histogram for the unimi/pmtr trace.

The probability distribution can be de�ned as a function that denotes the probability

of occurrence of a certain variable. This can be useful to generally describe the expected

distribution of values present in a dataset.

For each of the datasets (using both the number of contacts and the total contact time,

for each node), we have performed the one-sample Kolmogorov-Smirnov and the Lilliefors
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Figure 3.4: unimi/pmtr contact histogram.

tests to determine the validity of the null hypothesis that the data follows a standard

normal distribution, also using the logarithms of the values to test for �tness of a lognormal

distribution, which was not the case for both evaluations (with 5% signi�cance level). We

have also used the two sample variant of the Kolmogorov-Smirnov test to compare the

datasets with di�erent values randomly generated from a continuous distribution (normal,

lognormal, Weibull and exponential) to �nd if these two di�erent kinds of data followed the

same distribution; also, in this case, the test rejected the null hypothesis.

Finally, we have generated probability plots to visually compare the data to a number

of distributions (normal, lognormal, exponential, extreme value, Rayleigh and Weibull).

These plots draw a reference line to aid in determining the closeness of the data to one of

the mentioned distributions; if the data points are close to the line, the data can be assumed

to �t appropriately the distribution in question. From the generated plots, we found that

the data follows more closely the lognormal distribution than others, which may be assumed

to �t the actual data reasonably well. This is true for the 4 di�erent datasets. Similar results

were observed for the simulations (with the exception of the upmc/rollernet simulation).

This distribution assumes that the natural logarithms of the observed values follow a normal
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distribution. Image 3.5 shows the probability plots of the st_andrews/sassy dataset for

the lognormal distribution.

Figure 3.5: Probability plots for st_andrews/sassy.

Moreover, it may also be interesting to inspect the distribution of values among indi-

vidual nodes, rather than for each pair of nodes. Figure 3.6 exhibits the box plot graph

for unimi/pmtr and the respective simulation. Each box denotes the distribution of con-

tacts for an individual node summarizing the following statistics: the height of the box

ranges from the 25 to the 75th percentiles (splitting the data through the lower and the

upper quantiles, respectively); the center marker denotes the median (the middle value from

an ordered set of observations), and the whiskers indicate the range of values that aren't

considered outliers. The data outliers are marked individually, above the boxes.

We can see unimi/pmtr has a few nodes that possess much more contacts than others. It

is also clearly noted that some traces possess nodes with a similar contact distribution, like

upmc/rollernet, while others have nodes with very few contacts (as in st_andrews/sassy),

even of there are a number of outliers that are located well beyond the expected range of

values. Lastly, for upmc/content, the last nodes possess almost no contact with others. The

individual nodes in each the 4 simulation experiments show little variation between them

in terms of the number of contacts.
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Figure 3.6: Box plot for unimi/pmtr (blue) and its simulation (red).

3.5.1 Correlation coe�cient

The Pearson product-moment correlation coe�cient measures the correlation between two

sets of data, in order to identify and rate the magnitude of statistical relationship between

two variables. In other words, it assigns a value that represents the linear dependence be-

tween two variables (1 if the variables show a perfect correlation, -1 if there is a perfectly

inverse correlation, and 0 if there is no relation whatsoever). Table 3.3 presents the correla-

tion coe�cients for the data acquired from the datasets, based on the statistical information

mentioned above.

It was observed that the number of contacts and the duration of those contacts has a

generally strong correlation, as expected (with the exception of unimi/pmtr), so we can

conclude that these values may be related in some way. The same cannot be said for

the contact duration and the time between contacts, so it is not possible to make any

Table 3.3: Correlation coe�cients for the datasets.

Name unimi/pmtr upmc/rollernet st_andrews/sassy upmc/content

Number of contacts vs Contact time 0.5912 0.8786 1 0.9110

Contact time vs Time interval 0.4467 0.2772 0.5297 0.6312
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assumptions regarding the relationship between these two sets of data.

3.6 Time series analysis

A time series is an ordered sequence of values measured in successive times; these values

are then grouped in uniform time intervals. By arranging the available data in time series,

one can have a better understanding of the contact patterns throughout the total dura-

tion of the experiments that resulted in these datasets. Figure 3.7 presents a graphical

representation of the number of contacts during each time interval, for the unimi/pmtr

and st_andrews/sassy traces, and their respective simulations with the same duration and

number of nodes.

Since each dataset was collected during experiments with di�erent time durations, the

time interval was adjusted in order to scale the graphics along the x-axis, enabling a

more complete view of the data (the intervals are 12 hours for unimi/pmtr, 5 minutes

for upmc/rollernet, 24 hours for st_andrews/sassy and 12 hours for upmc/content). The

blue line indicates the actual number of contacts during a time interval, while the black line

represents a simple moving average of the last 7 values, in order to minimize the short-term

�uctuations and to simplify the visual analysis of the general data trends. The simulated

dataset results are marked in red.

The unimi/pmtr experiment �gure clearly demonstrates that the number of contacts

drops to almost zero on two days, which were observed to correspond to the weekend periods.

The upmc/rollernet data shows a noticeable increase in contacts during the �rst hour of

the experiment; the number of contacts then starts to steadily decrease after that point.

st_andrews/sassy possesses a signi�cant variation over time, regarding the contacts

made; nonetheless, it is also clearly observable that the contacts drop signi�cantly during

the weekends. The contacts also practically cease after about 45 days, which can probably

be explained by the beginning of the Spring vacation in the St. Andrews University. The

number of contacts in the upmc/content dataset also signi�cantly drops starting at the

middle of November.

Since additional information about the experiments is not available, we cannot guarantee

that these assumptions are correct; on the other hand, the idea that people have less contacts

during weekends and holidays seems to make sense, since they probably spend less time with
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their colleagues or friends in their usual workplace environments.

The time series also presents a noticeable descending trend for all of the traces, mean-

ing that the total number of contacts by interval usually decreases over time; this may be

explained by the fact that the attendants usually become less and less interested in partici-

pating on the experiment. Also, there seems to exist a certain degree of seasonality in some

of the traces (most notably on the decrease on contacts during weekends), even though the

data was collected during a relatively short period.

The simulations present much more stable time series; the data varies less between

di�erent points in time, and the range of observed values is much shorter when compared

to the real traces. Moreover, the �rst 2 simulations show a growing trend, while the other

two do not present a signi�cant trend at all. Furthermore, there are no clearly identi�able

signs of seasonal patterns, as observed in some of the real traces.

Figure 3.8 shows the correlogram for unimi/pmtr. It is possible to clearly identify a

high degree of similarity for successive time intervals, especially during the �nal half of the

experiments. These plots are also useful for determining the randomness of a data; the fact

that some of the observed autocorrelation values aren't close to zero leads us to believe that

the data in question is not completely random (following the same logic as the correlation

coe�cient explained above ).

We have also made time series plots for individual nodes; for each dataset, 3 di�erent

nodes were selected : one with high, other with medium and another with a low number

of contacts.5 The node numbers chosen were 39, 19 and 42 for unimi/pmtr, 45, 21 and

27 for upmc/rollernet, 9, 7 and 20 for st_andrews/sassy, and �nally 19,30 and 54 for

upmc/content, listed from highest to lowest number of contacts.

In comparison to the plots for all the participating nodes, presented above, we have

observed that the visual shape of the graphs bear a strong resemblance between them. This

means that the contacts patterns between nodes are usually similar, independently of the

popularity of the node in question. Again, the correlation coe�cients can probably reinforce

this observation. It was observed that the correlation coe�cients for some of these pairs is

close to 1, hinting that the contact patterns these nodes possess may be related. However,

the nodes with low number of contacts might not have enough data to be statistically

5This approach was not used on the simulations, since the individual nodes are extremely similar in

terms of number of contacts.
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signi�cant.

Finally, for each trace, an additional plot was generated, but this time the y-axis has

the degree (number of di�erent nodes contacted during a period) of a singular node, in-

stead of the number of contacts that node has made with others. In this case, it is possible

to conclude that the degree of the node can have much variation for a su�ciently small

time window. Naturally, the degree plots share a similar pattern to the previous number of

contacts graphics referenced above; however, having a large number of contacts doesn't nec-

essarily imply a great number of di�erent nodes were contacted (this is especially noticeable

on the st_andrews/sassy trace, where higher nodes have thousands of contacts, but with

barely over a dozen of other nodes). The simulated experiments tend to have individual

nodes with lesser variation of degree, both over the course of time and between individual

nodes.

3.7 Conclusions and Future Work

This chapter analyzes four di�erent datasets collected during opportunistic network ex-

periments. It summarizes the main characteristics of the experiments and presents some

insights about them. It also shows visual representations of the contact patterns between

the various devices present in the experiments. One of the main objectives of this work is

to identify some characteristics that can be useful to consider during the planning of a new

data collection experiment.

After describing the main characteristics of each trace, the next step was to calculate

some average metrics regarding contact patterns contained in each dataset, namely the

number of contacts, the duration of contacts and the time interval between them. Then, we

ranked the nodes in terms of degree and connection time, based on related work that has

been done previously; along with the generated histograms for the number of contacts, we

were able to make some observations regarding the social behavior of the nodes; namely,

the existence of a few nodes much more popular than the majority.

The heatmaps for the number of contacts and their duration for each pair of nodes

visually summarizes the distribution of contacts, while also attesting to the sparsity of

contacts.

Afterwards, some statistical analysis has been done, in terms of correlation between
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these metrics (a strong correlation was found between the number of contacts and the total

duration of contacts between two nodes), as well as the data distribution that seems to have

the best �t for the contact information, which was found to be the lognormal distribution.

Additionally, some time series analysis has been made; the plots presented can give us

some information about how the contact patterns seem to behave over the duration of the

data collection experiments. It was noted that the contacts share a descending trend for all

traces, while in some cases seasonal patterns were clearly observable (the autocorrelation

plots also seem to imply that there is a periodic pattern over time).

One of the main conclusions reached during this work is that the scenarios in which these

experiments have been done seem to be one of the determining factors regarding the contact

behavior of the majority of the nodes. In other words, the overall population of participants

seems to be somewhat homogeneous in terms of contacts made over the duration of the data

collection.

On the other hand, it has proven di�cult to determine other metrics that di�erentiate

these distinct traces; this challenge can be explained by the lack of other kinds of data

associated with network connections; for example, information related to the movement

patterns or the energy levels of the mobile devices could prove useful for a more detailed

analysis.

Another di�culty relates to the widely di�erent variables present in each dataset, namely

the number of nodes, total duration of the experiments, and number of contacts, which ham-

per the ability to �nd relevant metrics which di�erentiate each collection of data. Therefore,

it would be interesting to analyze other real datasets that were collected in a similar time

frame, which would make statistical comparisons much more relevant.

Even so, this work has managed to determine some meaningful observations related

to the datasets. The participants usually possess a narrow group of other nodes which

they frequently contact. The number of contacts and the duration of these contacts are

probably related in some way; the same observation also seems to holds true for the amount

of contacts between some of the individual nodes.

The same observation also seems to be valid in terms of the duration of the experiments,

which again appear to be strongly related to the speci�c experiment scenario in question:

some of the datasets provide little to no relevant information past a certain point in time;

on the other hand, it is possible to identify seasonal patterns for the time series graphs,
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which can be used to determine a su�cient amount of time periods for future data collection

experiments after which the amount of information provided would be somewhat redundant.

The inclusion of simulated contact traces allows us to verify that the contact behavior of

their nodes is much less diverse than their real counterparts. One possible explanation for

this fact is that a simulation only allows us to adjust a strict number of parameters; naturally,

some other possible social factors cannot be accurately portrayed on these environments.

Future work includes expanding our analysis to a greater number of datasets, as well

as studying additional ways of visually representing the data contained in them, such as

community detection techniques. Another interesting approach would be to continue analyz-

ing contact traces using opportunistic network simulators, to better identify the di�erences

between a computer-generated datasets and real ones, collected from human participants.
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Figure 3.7: Time series plots for unimi/pmtr and st_andrews/sassy.
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Figure 3.8: Autocorrelation plot for the number of contacts on unimi/pmtr.
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Chapter 4

Dynamic Dataset Evaluation

Delay-tolerant networks are characterized by intermittent connectivity and increased delay

and error rates, when compared to more conventional networking schemes. Due to the lack

of dedicated network equipment, the nodes themselves have the responsibility to decide to

whose neighbors shall it forward a message to. This scenario implies additional challenges,

since the network topology tends to be highly dynamic, and the nodes possess limited

resources, such as energy and bu�er sizes.

Because the operation of forwarding messages can be relatively costly to the mobile

nodes, it is important to restrict the number of messages that a node replicates to its

neighbors. As such, several routing algorithms have been researched, with many of them

using context information to determine which nodes possess a higher probability of delivering

a message to a speci�c receiver.

Performance of opportunistic routing algorithms is usually tested via simulation of a

real-world scenario. To this end, several opportunistic connection datasets are available

online, collected in widely varied circumstances. Because of the aforementioned problems

associated with this kind of networking scheme, the main goal of this work consists using

realistic connection traces in order to perform a series of simulations and analyze the impact

of di�erent network parameters in Delay-tolerant routing algorithms.

4.1 Introduction

The scarcity of contact opportunities in Delay-tolerant networks mean that it is infeasible

to assume that direct paths between are usually available. To overcome this challenge,
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Delay-tolerant network nodes usually employ the store-and-forward technique: when a node

generates or receives a new message, it is stored in memory. The node will then physically

carry the message until it eventually forwards it to another node (or discards it, if another

node isn't found within a predetermined period of time).

Due to the limited resources possessed by the nodes, routing performance is an extremely

important factor in Delay-Tolerant networks. Not only it is desirable to achieve a high

delivery ratio (percentage of messages that successfully reach their destination) and a low

delay (the time it takes for a message to arrive at the destination), but also message overhead

(the ratio of replicated messages) should be kept to a minimum.

As an example, the Epidemic routing algorithm achieves a good delivery ratio and

usually small delays, but the amount of generated message replicas increases exponentially

with the number of neighbor nodes, leading to an unnecessary waste of resources that is not

acceptable in a practical application.

It then makes sense to restrict the number of replicas generated by a node, when it wants

to forward a message. One common approach is to use context information (information that

nodes exchange between themselves when there exists a connection opportunity between

them) to evaluate the �tness of a given node to meet the receiver of a message. Context-

aware forwarding algorithms frequently achieve good message delivery ratios, while imposing

a much smaller burden on the nodes' resources, when compared to more oblivious strategies.

Performance evaluation of Delay-tolerant network routing algorithms is mainly done by

simulating a realistic usage environment, where a number of nodes experience contact oppor-

tunities over time. To do this, a number of di�erent tools are available: network simulation

software, such as the ONE (Opportunistic Network Environment simulator) or Ns (Network

Simulator) allow us to generate a network environment and con�gure its parameters without

the need of a fully-featured test bed.

On the other hand, several opportunistic contact traces are obtainable on the Internet.

These consist of a record of all the contact opportunities the nodes possess with each other

for the duration of the data collection experiment. Connection datasets are collected in a

variety of di�erent scenarios, providing a realistic example of how an opportunistic network

behaves under signi�cantly di�erent circumstances.

The main objective of this chapter is to evaluate di�erent opportunistic network char-

acteristics and study their importance in regards to performance in routing algorithms. In
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order to do so, we will use a number of di�erent opportunistic connection datasets, as well

as performing network simulations using some of the tools mentioned before.

4.2 Time-Varying graphs

Usually, communication networks can be modeled as a graph structure, where vertexes

represent the nodes and the edges denote the connections between them. The edges may

also possess a weight, which represents the cost (or distance) between two nodes. Since

opportunistic networks are known to have a highly dynamic topology, it is possible to

represent the changes in the network structure by using a time-varying graph [36]. This

graph is undirected since connections are considered to be bidirectional. In this case, a

journey represents a path that exists over time between two nodes. Figure 4.1 illustrates a

simple example of a time-varying graph.

Node  2

t  =  0 t  =  1

Node  2

Node  4

Node  1
Node  2Node  1

Node  4

Node  3

Node  5

Node  3

Node  5

Figure 4.1: Variations in the network topology on two di�erent periods.

We have also used the DTNTES (Delay Tolerant Network Trace Evaluator System) tool

[37] to obtain a number of network metrics related to the evolution of the connectivity of

the networks, as presented in table 4.1. Besides the usual metrics, such as number of nodes

and edges present over the duration of the traces, there also exists information regarding the

foremost journeys (the journey that reaches the destination at the earliest possible time)

and shortest journeys (that is, the journeys with the least number of hops), for a given pair

of nodes.

It is observable that thousands of connections between nodes are made over the du-
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Table 4.1: Time-varying graph metrics for the studied datasets.

Name unimi/pmtr upmc/rollernet st_andrews/sassy upmc/content

Number of nodes 39 62 25 52

Number of edges 1214 3720 310 1288

Number of

connections

20382 119204 82328 5180

Last working time 1632795 10141 6413284 987530

Average foremost

transit time

154647.79 208.11 151963.66 64989.66

Average shortest

journey size

1.15 1 1.44 1.58

Maximum foremost

transit time

1259918 1504 3719348 646033

Maximum shortest

journey size

4 2 3 4

ration of the experiments, which con�rms the extremely dynamic topology of these kinds

of networks. There also seems to be a signi�cant di�erence between the average and the

maximum values of the foremost journey times, which reinforces the idea that the paths

between two nodes may take a long time to be formed. However, the hop count of the paths

is very low, with the average value being usually between 1 and 1.5.

4.2.1 Static Subgraph Model

In this work, each dataset was modeled as a sequence of footprints. In other words, each

experiment was split into intervals with a �xed duration (the same duration described in

Section 3.6); for each of these intervals, a static subgraph aggregating all of the contacts

between nodes during that period was calculated, with the edge weights being the inverse

of the aggregated number of contacts between the two nodes in question, during that time

frame. The logic behind this is that two nodes that have a high number of contacts between

them will probably have a high chance of meeting again in the future. Once again, granular-
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ity is an important issue: a time window that covers the entire duration does not provide us

with any meaningful information; on the other hand, choosing a duration which corresponds

to the smallest time unit (in our case, one second) would provide a realistic model of the

network. It is important to realize that this approach is a clear simpli�cation of the reality,

since there is no notion of the order of contacts inside a given period; nonetheless, it is a

simple method that can be used to calculate relevant network metrics.

4.3 Performance analysis

By modeling an opportunistic network as a time-varying graph, it is then relevant to study

di�erent scenarios via simulations.

After generating the subgraphs, 50 di�erent messages with random source and destina-

tion node identi�ers, originating on a random time interval, were created. For each message,

we use Dijkstra's algorithm to �nd the shortest path between the source and destination, if it

exists; otherwise, the same algorithm is executed in the next time interval. The messages are

replicated to all of the original sender's neighbors, and so on (similar to an epidemic routing

algorithm; this e�ectively improves message availability, although it requires more resources

from the mobile devices). Figure 4.2 shows the distribution of delivery ratio for the four

datasets over a span of thirty simulations. It is clearly noticeable that upmc/rollernet is the

scenario with the best connectivity, with the other datasets having a very low performance

in terms of delivered messages.

The next approach was to �nd the most popular nodes and to analyze the impact they

have on the usual performance metrics. When a message is successfully forwarded to the

destination, all the nodes in the path are saved. The idea is that, after a reasonable amount

of forwarded messages, it is possible to �nd out the set of critical nodes (in other words,

nodes that would impair connectivity if they were removed from the graph).

This simulation is repeated for all of the datasets, but this time the 3 nodes that appear

more frequently in the previous simulation are removed from the subgraphs. We then

compare the 2 simulations in terms of message delivery ratio (percentage of messages that

successfully reach its destination) and the average number of hops. Table 4.2 presents this

information. It was observed that there was a general decrease in the message delivery ratio,

and an increase in the average number of hops, for the simulations without the critical nodes.
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Figure 4.2: Delivery ratio distribution over thirty simulations.

This is more noticeable in the �rst 2 mentioned datasets, which also possess much higher

delivery ratios; this fact may be explained by the more homogeneous distribution of contacts

in these traces, as noted in Section 3.4.

4.3.1 Comparison with the ONE simulator

An additional experiment was also performed using the ONE network simulator, with similar

parameters to the previous one; that is, messages were generated with random node source

and destination ID's, during evenly-spaced time intervals. The nodes present in the dataset

were modeled as having a stationary movement (since the datasets do not provide any kind

of information about the movement patterns of the nodes), and the epidemic algorithm was

chosen to forward the messages between the nodes.

The initial results of this experiment presented an extremely low ratio of messages that

were successfully delivered (between 2 and 4%), with the exception of upmc/rollernet, that

resulted in a delivery ratio of nearly 40%. Even by repeating the experiment with 100 and

200 random messages, the message delivery ratio remained practically unchanged. However,

by increasing the simulated message TTL, the results obtained were closer to the ones of

the �rst simulation experiment. Even so, these observations may suggest that the previous
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Table 4.2: Statistics for the simulations on time-varying graphs (with and without critical

nodes).

Name unimi/pmtr upmc/rollernet st_andrews/sassy upmc/content

Delivery Ratio

(Complete)

0.68 0.96 0.04 0.24

Average no. of hops

(Complete)

2.18 2.83 2.50 2.50

Delivery Ratio

(Without critical

nodes)

0.64 0.56 0.06 0.18

Average no. of hops

(Without critical

nodes)

4.34 4.50 1.67 2.56

simulation could be too optimistic in relation to a real-world scenario; in other words, the

aggregation of contacts by time windows may not provide a model which perfectly describes

contact patterns between nodes, for the chosen time periods. Table 4.3 presents these

results.

The next step was to analyze the performance of another common routing algorithm,

when considering a time-varying graph model. To do so, for each dataset, a simulation

with 50 messages with random source and destination nodes, originating on a random time

interval, was performed. A simple epidemic routing approach was used on these simulations:

although it is a simple algorithm, it generates a big number of replicas that consume the

limited resources of the nodes. A more e�cient approach that was implemented was the

Spray-and-Wait scheme, proposed by Spyropoulos et al [6]. This routing algorithm consists

of two phases: the spray phase, where a prede�ned number of replicas (in our case, ten) are

created and forwarded the the neighbors of the sender; and the wait phase, during which a

node only forwards the message directly to the destination, if it is found. Table 4.4 shows the

performance results in terms of delivery ratio, average hop number and number of generated

replicas.

It can be concluded that the simulation produces widely di�erent results in terms of

49



Table 4.3: Time-varying graph model and ONE performance comparison.

Name unimi/pmtr upmc/rollernet st_andrews/sassy upmc/content

Delivery Ratio

(Complete)

0.68 0.96 0.04 0.24

Average no. of hops

(Complete)

2.18 2.83 2.50 2.50

Delivery Ratio (ONE) 0.14 0.39 0.035 0.04

Average number of

hops (ONE)

2.2 1.9 3.18 2.74

the message delivery ratio; this may be explained by the fact that the datasets characterize

very di�erent scenarios and network topologies. The average hop count is usually between

2 and 3, which implies that the messages do not usually need to be forwarded many times

to reach the receiving node. However, the number of replicas using epidemic routing is

very high for all of the datasets, which implies a waste of resources on the devices. On the

other hand, the Spray-and-Wait scheme seems to produce generally similar results in terms

of delivery ratio; the hop count increases, but with a noticeable decrease in the number of

replicas present throughout the network.

After this, it would be interesting to observe the impact of di�erent network parameters

on the performance of a routing algorithms. To do so, the nodes were given a limited bu�er

size and the messages were set to be discarded after a speci�c number of hops. When a

node receives a message when is bu�er is full, it discards the oldest stored message.

Another relevant aspect of opportunistic networks is related to the amount of resources

that are available to the mobile nodes. Again, using our time-varying graph model, 30

simulations were made with 50 random messages, using the epidemic algorithm. However,

both the maximum number of messages a node can store and the time to live (maximum

number of hops) of a random message are restricted. Figure 4.3 presents the average delivery

ratio for the datasets with varying bu�er size and message time to live.

It was observed that, past a certain point, increasing the bu�er size does not seem to

produce a noticeable impact on the message delivery ratio (around 10 stored messages for
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Table 4.4: Performance metrics of Epidemic and Spray-and-Wait.

Name unimi/pmtr upmc/rollernet st_andrews/sassy upmc/content

Delivery Ratio (Epidemic) 0.68 0.96 0.04 0.24

Average number of hops (Epidemic) 2.18 2.83 2.50 2.50

Total number of replicas (Epidemic) 537 114 90 401

Delivery Ratio (Spray-and-Wait) 0.66 0.92 0.12 0.2

Average number of hops (Spray-and-Wait) 5.9 3.8 3.16 4

Total number of replicas (Spray-and-Wait) 369 108 50 292

unimi/pmtr, 5 for upmc/rollernet, and 20 for upmc/content). One notable exception is

st_andrews/sassy, in which the delivery probability is so low that the amount of stored

messages does not seem to be an important factor. Meanwhile, the maximum time to live

of a message does not seem to in�uence heavily the delivery ratio after around �ve or six

hops. The datasets which have greater connectivity also seem to be more easily in�uenced

by small changes of message time to live; for the others, the connectivity is so low to begin

with that these parameters do not seem to have a great impact on the delivery ratio.

The same experiment was performed using the ONE simulator; the only di�erence being

that the message time to live was restricted in terms of actual time (in minutes) rather than

hop count. This was done because the ONE does not support a maximum message hop

count; also, restricting the time to very small periods would not a�ect the simulations on

the time-varying graph model. The time to live follows a logarithmic scale, so that it is

possible to observe the approximate optimal values across the four datasets. Figure 4.4

presents these results.

The results obtained were lower when compared to the time-varying graph simulations.

This implies that the proposed time-varying graph model does not perfectly describe the

reality (at least in terms of these metrics); this was expected, since our simpli�ed model

may wrongly assume that there are paths between the nodes in certain moments that do

not correspond to the truth.
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4.4 Conclusions and Future work

This chapter proposes the use of time-varying graphs to describe the dynamic nature of

opportunistic networks. In our case, a model using static subgraphs was used, which is a

simple approach, but at the cost of a lack of precision in terms of the contact opportunities

of the nodes within a time period.

Using this model, a number of simulations were done in order to test the impact of

di�erent network characteristics on the performance of common routing algorithms, by

using di�erent opportunistic network traces. It was shown that the most popular nodes of

a network are not always important to the performance of a routing algorithm, especially

if there is a low amount of connectivity over time. The same conclusion can be made when

observing the delivery ratio for reduced bu�er sizes and message time to live; that is, the

scenarios with the best connectivity seem to be more sensible to restrictions on the nodes'

resources.

In terms of future work, it would be relevant to research other kinds of time-varying graph

models, since they seem to properly represent the problem at hand. Another interesting

approach would be to simulate more scenarios in order to study other kinds of network

characteristics. For example, it would be interesting to simulate the energy levels of mobile

devices, by assigning a cost to forwarding and device scanning operations; a node with

lower energy could then be assumed to be less likely to successfully deliver a message to the

destination node.
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Figure 4.3: Delivery ratio with restrictions on bu�er size and time to live (time-varying

graph simulation).
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Figure 4.4: Delivery ratio with restrictions on bu�er size and time to live (ONE simulation).

54



Chapter 5

Data Collection Issues

5.1 Introduction

One of the future objectives of this work is to design a social-aware forwarding protocol

suitable for Delay-Tolerant networks. This protocol would be able to use combine existing

social and physical contact information, in order to decide the most e�cient path for the

messages to be transmitted to other nodes. Because of this, planning a data collection

experiment would prove very bene�cial, since then it would allow us to obtain a suitable

dataset for performance testing purposes, as well as possibly enabling us to make some

initial observations (regarding both the social and the physical aspect of the contacts) that

could prove to be useful when beginning to conceive the proposed forwarding algorithm.

However, due to constraints related to time and number of available participants mean

that, at this time, it would not be possible to collect a su�cient amount of data for a

meaningful statistical analysis, like the one done on Chapter 3. Not only it is di�cult to

deploy the necessary architecture for the experiment, but it is also highly unlikely to recruit

a reasonable number of volunteers that are willing to provide their social network data in

addition to information about physical encounters. In other words, putting this experiment

into practice would only serve as a proof of concept, which would not provide us with a

complete dataset of social and physical connections, with a reasonable duration and number

of nodes, which was our main goal. Even so, it would be interesting to discuss some of these

aspects regarding a data collection experiment, that will possibly be achieved in the future.

This chapter describes a proposed approach for a data collection experiment. First, some
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related ideas and problems will be discussed on a higher level of abstraction. Afterwards,

each part of the experiment will be reported in a more speci�c and detailed manner, focusing

on the technologies used and the design of the architecture.

5.2 Concepts

When planning a data collection experiment, several questions need to be addressed. One

of the most important questions is, obviously, what kind of data we actually want to obtain.

In our case, the objective is to acquire both social information collected from a social

networking service, as well as physical contact data from mobile devices.

In terms of the social component, the main objective is to collect the social interactions

of a number of users of a social networking service and using it to infer the strength of

the social relationship between them. Information such as exchanged messages, shared

multimedia content or mutual interests can be useful to assess how much two users interact

with each other and, possibly, how likely it is for them to meet in a real world scenario.

Additional data can also prove to be useful; for example, the comment timestamps can be

used to represent the notion of aging (recent comments are more important than older ones,

for example).

One of the most critical concerns relates to the privacy issues. Social networking service

users usually share personal information, such as name, address, and contact information,

not to mention extra information that can be deduced from the user's regular online activity.

It is then imperative that the collected data cannot be used to identify the user in question;

moreover, the actual content of the shared messages should be ignored.

On the other hand, the physical contact information consists of data describing contact

opportunities between a set of mobile devices. Besides the usual node identi�ers and times-

tamps for the beginning and ending of contact opportunities, additional data can be used

to make routing decisions. For example, a node can have a lower probability of delivering

a message if it has a low energy level and vice versa. Additionally, the inclusion of a node's

location during a contact could be used to determine the presence of nearby devices (some

social networking services also enable its users to associate a location to a speci�c message;

this can possibly enable a way of combining the data from the two di�erent sources).

Other question that can be discussed is related to the number of participants and the
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duration of the experiment. As such, it is necessary to adjust the duration of the experiment,

since it should be long enough that makes it possible to identify trends and seasonality

patterns; however, users taking part on this kind of experiments usually lose interest after

a certain period, meaning that they will not provide a high amount of relevant information

past a certain point in time.

We plan to use the social networking service Facebook to collect social data from a set

of users. Facebook treats all of the users, events, shared content and connections between

them as objects on this graph, and provides an API for querying that information (Graph

API).

Node 1

Facebook ID:  100003827424162

MAC Address: AA-AA-AA-AA-AA-AA-AA-AA

Facebook ID:  100003826283998

MAC Address: FF-FF-FF-FF-FF-FF-FF-FF

Node 2

Contacts

Start: 152351
End: 152622

Node 1 energy: 72%
Node 2 energy: 53%
Node 1 memory: 5k
Node 2 memory: 3k

Figure 5.1: Graph with physical connection timestamps between two nodes.

It would certainly be interesting to analyze the social data in order to �nd relevant

information regarding the way that people interact with each other in a social perspective.

However, it would not be possible to perform the exact same analysis which was done on

Chapter 3, for a number of reasons: namely, there is no notion of contact duration, which

was is an important aspect of the physical connection traces; also, communication on social

networking services is usually asynchronous, meaning that users do not need to be using

the service at the same time in order to send and receive messages between them. Even so,

this data can be easily modeled as a network graph, meaning that it is feasible to analyze

it in terms of usual network theory metrics, as well as studying other statistics about the

participating users and their social behaviour or using visualization tools to detect other

57



types of patterns.

After collecting the social network information from a set of users, it would then be

possible to add physical contact data to the social graph. The basic idea is to retrieve

the duration and identi�ers of the Bluetooth-enabled devices owned by the participating

nodes, when a contact opportunity arises. The proposed approach involves adding a list of

contacts to the edges that link two di�erent users together. These contacts consist of a pair

of timestamps that denote the start and the end of a connection opportunity between two

users, as illustrated in Figure 5.1, similar to the time-varying graphs discussed in Section

4. Because this format is similar to the ones used in opportunistic connection datasets, it

would be simple to export the physical contact data to be used in simulations or further

analysis. In addition, other information could be collected regarding the devices, such as

energy level, bandwidth and storage capacity, for example.

5.3 Proposed scenario

In terms of the data collection architecture, the ideal scenario would be to have an appli-

cation installed on a number of locations that would scan and record contact opportunities

with nearby wireless devices. An university campus would be a good example, since a lot

of students would be able to provide information from their social networks as well as their

mobile devices. Another advantage of this approach is that the users would usually spend

a lot of time in the campus, thus increasing the opportunity to collect a signi�cant amount

of contact information.

This data would be transferred to a centralized machine, which would then allow us to

group, anonymize and store all the information collected during the experiment, for further

analysis. In this manner, the users would be generating real mobile device connection data,

as in our proposed environment. An example of this scenario is shown by Figure 5.2.

To this end, a number of Bluetooth data collection applications, installed across the

campus on the participants' laptops, would scan the environment and record the contact

information of discovered mobile devices. This would make it possible to infer the movement

patterns of the mobile devices, while also allowing to collect data outside of the original area,

if the application detects external devices. This data is sent to a server application, which

then updates the information stored in the graph database.
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The users would also provide us with their Facebook user identi�ers, so that the physical

connection information could be complemented with the users' social data. The social data

component would then query the social networking service in order to retrieve relevant data

about the participants, which would also be inserted in the graph database.

With the obvious privacy issues that arise with this proposal, it is necessary to protect

all the data that can be used to identify the users. One way of dealing with this problem

would be to encrypt the user data with a cryptographic hash function, making it infeasible to

obtain the protected information, while also giving stronger guarantees of integrity. Another

important aspect is the security of the network channels between the di�erent components.

As such, communication between the clients, server and database should be performed

through the encrypted Secure Sockets Layer protocol.

Physical Data Collection Server

Client Application

Client Application

Figure 5.2: Example of the collection experiment on a campus environment.

5.4 Proof of Concept Experiment

In order to demonstrate the feasibility of the data collection experiment discussed above,

a prototype was created that retrieves both social and physical device data. Since this
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small experiment was not performed on a realistic scenario, it does not provide su�cient

information to perform a more thorough analysis; it is only intended to serve as an example

of the architecture.

On Facebook, it is only possible to access information regarding its users by means

of the Open Graph API. Only information that the users have made public is available

by default. To access private information about a user, the Open Graph API requires an

access token, which is an unique string for each user that allows secure access to what

information the user has allowed to be queried, when authenticating an application. To

make a call to the Facebook Graph API, we need to simply make a HTTPS request to

https://graph.facebook.com/object_id, where object_id refers to the unique identi�er of a

particular Facebook resource, such as an event, an application, or a photo album.

The Facebook API returns a JSON (JavaScript Object Notation) object of the queried

resource, which is then parsed and stored in a database by a Java application. An example

of a Facebook object is shown by Listing 5.1.

Listing 5.1: JSON object example

{

"name" : "Facebook Platform " ,

"webs i te " : " http :// deve l ope r s . facebook . com" ,

"username " : " plat form " ,

" founded " : "May 2007" ,

"company_overview " : "Facebook Platform enab l e s anyone . . . " ,

"miss ion " : "To make the web more open and s o c i a l . " ,

" products " : "Facebook Appl i ca t ion Programming I n t e r f a c e . . . " ,

" l i k e s " : 449921 ,

" id " : 19292868552 ,

" category " : "Technology"

}

To retrieve an user's access token, a Facebook app was made, with a registration form

that registers the users' name and contact information. This form is hosted on a web page

that the users connect to, if they wish to participate in the experiment. First, the user is
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prompted to log in to their Facebook account; then, when authorizing the app, the user

is asked if he allows additional info to be collected; in our case, that means having the

permission to read the user's news feed (in other words, the messages, links or photos a user

shares with his friends, as well as the associated comments and "likes"). The users would

also provide the MAC address of their wireless devices, in order to correctly associate the

physical and social contact data. The Facebook access token is also automatically retrieved,

to enable further Open Graph API queries. This token is written on a web socket, to be

later read by the actual querying implementation. The login �ow is exempli�ed on Figure

5.3

The collection mechanism is hosted on the same system as the authentication web server.

It consists of a daemon which listens in a web socket for a new access token. In that case, the

daemon performs a series of API calls using the obtained access token. These calls request

a number of di�erent information about the user, such as the users' friends list, comments,

"likes", and photo and video tags.

Web Browser Server-Side Code Facebook API

"Login with Facebook" button

Access Token response

Generate access token

Figure 5.3: Facebook login architecture.

Since Facebook itself treats the data as a social graph, it makes sense to use a simi-

lar scheme to save the collected information from the users. The collected data is saved

in a Neo4j database http://neo4j.org/, a high-performance, open-source NoSQL graph

database, which stores the data as a graph structure, as opposed to the usual database

tables. As the network topology is highly connected, a graph database seems to be a good

choice, due to its �exibility. This allows to represent the users as nodes in the graph, while

comments, "likes", shared content, and the contact opportunities between them are recorded
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in the edges between two nodes. Additional data the nodes possess, such as MAC address

or Facebook ID, is stored as an attribute (a key-value pair, in Neo4j).

To collect physical contact information, a client application was built using the Blue-

Cove Java API (http://bluecove.org/), which provides an interface to interact with an

underlying Bluetooth protocol stack, regardless of its implementation. The physical data

collection application searches for nearby Bluetooth enabled devices at regular and con�g-

urable time intervals. When a contact opportunity is found, the application records their

MAC addresses, as well as the time and the duration of the contact opportunity.

This application also collects additional information such as the network interfaces,

bandwidth, battery level, available memory and the number of cores of the system where

it is hosted; this data is certainly relevant when considering the problems associated with

opportunistic network routing schemes. This data is stored in three di�erent �les: a con�g-

uration �le, which stores the application con�guration parameters (such as interval between

scans and server uploads, as well as proxy server hostname and port number), one �le that

saves the application state between di�erent executions, and the actual connection informa-

tion �le, which stores the contact opportunities with other Bluetooth devices, as well as the

energy levels and available memory space.

All of the collected contact information is then sent to a centralized server in regular

time intervals, which stores it in the aforementioned Neo4j graph database as labels on the

edges of the graph, as seen on Figure 5.4.

Java Client

Connection
Info

Server

Database
Laptops / Mobile Devices

Figure 5.4: Physical data collection architecture.
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The complete architecture for the data collection experiment, with the components

mentioned above, is shown by 5.5. The users would authenticate the Facebook application in

order to authorize access to the information that they post on their pro�le feeds. When �rst

authorizing the Facebook app, we would gain access to the access token of that particular

user. This token is the used to make a series of requests to the Facebook Graph API. The

responses, in JSON format, are then parsed and stored in the graph database.

Figure 5.5: Proposed architecture of the data collection experiment.

For this small experiment, only the users' pro�le feed data was collected; however, the

Facebook Graph API enables querying of other objects, such as liked movies, music, books,

photo and video tags, or attended events. Since the Neo4j database does not follow a rigid

schema, it is possible to add other types of objects to the graph. This information could be

interesting to collect, since two users with the same interests could possibly have a stronger

social bond, and subsequently having a higher chance of having a contact opportunity; on

the other hand, two users who have attended the same event or have been tagged in the

same photo or video can be assumed to have had a contact opportunity during that moment.
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Naturally, this information is extremely delicate, so privacy must be guaranteed.

5.5 Conclusions and future work

As stated previously, it was not possible to use the discussed architecture and technologies

in a real data collection experiment, since the available resources and number of partici-

pants would be too low to achieve any kind of statistical importance. However, a possible

architecture and scenario for a real data collection experiment were proposed. Also, a proof

of concept example was presented that integrates both social and physical data in a graph

database. The software components described are working properly and are ready to be

deployed.

We believe that, given the opportunity, obtaining a dataset that contains both social and

physical connection data would prove to be very interesting, not only in terms of statistical

analysis, but also as a tool used to test social-aware opportunistic routing protocols. The

collected data could also prove useful when designing a social-aware routing protocol, since

it could provide information about how the users connect to each other, in both physical

and social environments. As such, we consider the proposed data collection experiment as

one of the main goals of our future work.

64



Chapter 6

Final Conclusions

The documented work had the objective of performing a study on the subject of Delay-

Tolerant networking. Yet, its focus was more directed to the widely available datasets than

to forwarding protocols. Although this is a less common procedure, it also seems to be

relevant, since it provides a di�erent perspective on this problem.

A forwarding protocol hierarchy was presented, so as to classify the existent proposals

in terms of message replication and the type of information they retrieve from the nodes

themselves. Some recent social-aware routing algorithms were compared, taking into account

the speci�c type of context information used to choose the best path for a message to reach

its intended destination. Two of the most well-known Delay-Tolerant routing algorithms,

Epidemic and PRoPHET, were also brie�y described, since they are popular candidates for

comparison of newer proposals in terms of performance metrics. It was observed that the

use of context information usually seems to reduce the strain of the nodes' resources by

reducing the message overhead, while maintaining a good performance in terms of delivery

probability, when compared to more oblivious forwarding methods. As such this seems to

be a viable strategy for the problem at hand.

One of the main contributions of this project was to perform a statistical analysis on

opportunistic datasets. Four di�erent traces, collected in di�erent environments, were used.

These traces describe the contact opportunities between the participating nodes of the ex-

periment in question. This work included di�erent procedures including visualization, statis-

tical distribution and time series analysis. After describing the datasets in general regarding

the scenario at hand (such as number of nodes and duration), some visualization techniques
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were employed. These allow us to observe that the registered contact opportunities are usu-

ally sparse and heterogeneous, when compared to the complete set of participants. It was

also concluded that a small number of nodes are much more popular than the rest (in other

words, they have contacts with a lot of di�erent nodes), which seems to imply that these are

very important when exchanging messages between a pair of nodes not connected otherwise.

Another conclusion was that the number of contacts seems to have a good correlation with

the duration of the contacts; this means that a higher contact frequency between a pair of

nodes usually results in a longer connection opportunity between them.

The contact distribution seems to �t best the lognormal distribution, for all traces.

The time series analysis that was made revealed some interesting results: the observed

seasonality patterns seem to indicate that the speci�c scenario of the experiment is a deciding

factor in terms of the contact opportunities that are made, since the connectivity patterns

of individual nodes appears to be very similar, regardless of their popularity. Generally

speaking, the main objective of this chapter was to detect connectivity patterns in the

datasets that were not easily noticed at �rst sight, and to provide some observations that

could potentially be useful when planning a new opportunistic network contact collection

experiment. It was concluded that these traces characterize very di�erent scenarios, and

that these seem to be of extreme importance in terms of the connectivity behavior of the

participating nodes.

Some discussion was also done in terms of time-varying graphs, since these seem to �t

perfectly into the opportunistic network paradigm. The highly dynamic topology of Delay-

tolerant networks can be described as a graph that is subject to constant additions and

removals of edges, over time. A simple time-varying graph model was used, which divides

the whole duration of the experiment into smaller subgraphs which aggregate all of the

contact opportunities between the nodes, on a given time period. Although this approach

implies a loss of precision, it is a simple way of comparing di�erent datasets in terms of

message routing performance metrics.

It was observed that the datasets portray very di�erent realities, in terms of the speci�c

scenario in which they were collected. It also seems that the more popular nodes seem to have

a higher importance when there is a higher connectivity overall. As expected, the Spray-and-

Wait protocol generates fewer replicas throughout the network, while achieving a similar

delivery ratio to that of the Epidemic routing scheme. In addition, each trace has di�erent
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optimal message time to live and bu�er size values, again proving that di�erent opportunistic

environments have a great impact in terms of the underlying network parameters.

Finally, a data collection architecture was proposed, with the intention to obtain a

dataset that combines both physical and social information about a set of nodes. Even

though it was not possible to perform a complete data collection exercise, a proof of concept

example was described, with hopes of performing a real experiment in the future.

6.1 Future Work

Naturally, there are several di�erent approaches that can be made in terms of future work.

These include, for example, extending our research to other datasets or exploring other

techniques of network analysis or visualization techniques. However, one of the intended

future objectives is to collect a dataset that possesses both physical contact and social

network information.

Obtaining such a trace would then allow us to perform a statistical analysis such as

the one made on Chapter 3. If a correlation is found between the contact frequency of the

physical and the social data, then it is reasonable to think that the social network contact

information can be useful in regards to a Delay-Tolerant network routing protocol. This

observation would then open the doors to planning a social-aware routing algorithm that

combines these two kinds of data.

One of the discussed proposals is to design a probabilistic routing algorithm based on

social network interactions in addition to past physical device encounters. The main idea

is that if two people interact commonly on a social network (e.g. exchanging messages,

appearing in the same photographs, attending the same events, etc.), they will probably

meet physically in the near future, thus allowing connection opportunities between the

mobile devices carried by them.

This data, in conjunction with the history of connections of their devices, would then

allow this protocol to attribute a metric which states the feasibility of a node being the next

network hop (similarly to the PRoPHET protocol discussed earlier), thereby exploiting the

users' mobility in order to forward a message through the network using the least resources

possible, while also attempting to achieve a high probability of a message reaching its

destination. It would then required to run performance tests for our protocol, in comparison
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to other well-know existing routing algorithms (such as Epidemic or PRoPHET), using

network analysis tools, such as the ONE simulator.

An additional approach would be to implement this protocol on an actual mobile device.

As an example the Bytewalla project (http://www.tslab.ssvl.kth.se/csd/projects/

092106/) features a Delay-Tolerant network implementation for the Android mobile plat-

form with the PRoPHET routing protocol, while also allowing developers to implement

their own routing schemes.

In retrospective, the work that was made seems to be relevant to the problem in question,

which fundamentally consists of providing connectivity to challenging network environments.

We believe that the proposed future work on this subject makes sense, in the sense that

examining available opportunistic contact traces would result in some observations that

can be relevant when planning a new data collection experiment. Obtaining a trace that

combines both physical and social information could prove useful when designing a new

routing protocol, since recent social-aware proposals seem to have given good performance

results.
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Appendix A

Dataset samples

This appendix presents a small part of the datasets obtained from Crawdad, that were used

in Chapters 3 and 4.

Listing A.1: unimi/pmtr dataset sample

id_source , id_dest inat ion , t_start_contact , t_end_contact

38 1 35869 35887

3 1 35860 35890

11 1 35901 35951

10 1 36067 36099

Listing A.2: upmc/rollernet dataset sample

1 2 1156084891 1156084891 1 0

1 2 1156085092 1156085092 2 201

1 2 1156085110 1156085110 3 18

1 2 1156085190 1156085190 4 80
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Listing A.3: st_andrews/sassy dataset sample

device_having_encounter , device_seen , rawtime_start , rawtime_end ,

timeuploaded , r s s i v a l u e , e r r o r v a l

2 , 1 , 1203082300.0 , 1203082393.0 , 1203086114.0 , 21 . 0 , 0 : 3 5 : 1 4

2 , 10 , 1203082491.0 , 1203082491.0 , 1203086114.0 , 229 .0 , 0 : 3 5 : 1 4

10 , 18 , 1203082494.0 , 1203082494.0 , 1203086114.0 , 225 .0 , 0 : 3 5 : 1 4

17 , 19 , 1203082497.0 , 1203082504.0 , 1203086114.0 , 224 .0 , 0 : 3 5 : 1 4

Listing A.4: upmc/content dataset sample for node 3 (�le 3.dat)

19 1130495571 1130495571

952 1130496163 1130496163

434 1130496163 1130496163

9 1130495578 1130496752
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