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Abstract

Full fledged verification of software ensures correction to a level that no other technique can
reach. However it requires precise and unambiguous specifications of requirements, functionality
and technical aspects of the software to be verified. Furthermore, it requires that these specific-
ations together with the produced models and code be checked for conformity. This represents
beyond doubt an investment that most developers and companies are neither able nor willing to
make.

Although testing can not reach the same level of assurance as full fledged verification, it is
the most widely accepted and used technique to validate expectations about software products.
Testing is the most natural way of checking that a piece of software is doing what the developers
expect it to do. Improvements to test case generation have the potential to produce a great impact
in the state of the art of software engineering, by putting Software Testing closer to Formal Software
Verification.

This is an exploratory project, aimed at surveying the current state of the art in the field of test
case generation and related techniques for the Java language, eventually suggesting possible
advancements in the field.





Resumo

A verdadeira verificação de software garante correcção de software a um nível que nenhuma
outra técnica consegue igualar. No entanto, exige especificações precisas e inequívocas de re-
quisitos de funcionalidade e aspectos técnicos do software a ser verificado. Além disso, é neces-
sário que as especificações, juntamente com os modelos produzidos e código sejam verificados
quanto à sua conformidade. Isto representa indubitavelmente um investimento que a maioria dos
profissionais e empresas não são capazes, nem estão dispostos a fazer.

Embora os testes não alcancem o mesmo nível de garantia como a verificação completa, é
a técnica mais amplamente aceite e usada para validar as especificações sobre produtos de
software. O teste é a forma mais natural de verificar que um pedaço de software cumpre o que
os programadores esperam que faça. Melhorias na geração de boletins de teste têm o potencial
de produzir um grande impacto no estado da arte da engenharia de software, colocando o teste
de software mais perto da Verificação Formal de Software.

Este projecto é de carácter exploratório, visando o levantamento do estado actual da área de
geração de casos de teste para a linguagem Java e técnicas relacionadas, sugerindo avanços
possíveis nesta área de validação de software.
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Chapter 1

Introduction
Quoting the co-founder of Microsoft, Bill Gates, in a recent interview [Eaton, 2011], the importance
of software is higher today than ever. Software is developed by people with no completely reliable
method to do so. This means that errors in software, which due to the importance of software, are
more and more dangerous.

To verify software there are formal software verification (FSV) techniques, which allow practi-
tioners to achieve the highest degree of confidence in its correction [Holzmann, 2010]. However,
these techniques come with overloaded costs. For example, the estimated costs of completely
verifying an operating system was reported to be around 20 people years [Klein et al., 2009]. This
gives a rough estimate of 700 US$ per line of code. In the field of verification techniques we can
find theorem proving and model checking.

Theorem proving is a formal verification technique that supports program mathematical correc-
tion arguments [Chang et al., 1973]. In order to verify a program using theorem provers, practi-
tioners need to establish a sound link between the implementation in a programming language
and its mathematical semantics. Only then off-the-shelf theorem provers be used to discharge the
mathematical logic derived from the properties to be verified [Alexi, 1988; Vermolen, 2007]. Model
checking is another technique to formally verify software. It is based on an exhaustive search for
counter examples for a given property, within a bounded domain [Clarke and Emerson, 1981;
Clarke, 2008]. Compared to theorem proving, it is easier to automate, but does not achieve the
same degree of completeness, due to its bounded nature.

Neither of these techniques, reliable as they are, is widely adopted in mainstream software in-
dustry [Holzmann, 2010]. This is due to the cost/benefit trade-off in applying them [Klein et al.,
2009]. The alternative that is most accepted is testing. Testing is even lighter than model check-
ing [Myers, 1979], at the cost of being even less complete. What makes software testing more
affordable is the fact that it can be done by regular developers using the same programming lan-
guages in which products are implemented. Testing relates inputs with outputs in accordance with
an expected results [Myers, 1979].

1.1 Problem Statement

A good testing infrastructure for a product or service, it is estimated at least 50% of the total costs
of the project [Myers, 1979]. This is due to the importance of detecting problems in the early stages
of a project, when they are cheaper to fix [Sommerville, 2010]. An estimation of the costs required
to fix problems detected in earlier product development stages can be found in Table 1.1 [Kaner
et al., 2001]. Note however that, there is also a cost associated with the maintenance of the test
suites throughout the entire project, to ensure the correct behaviour of the product throughout the
various stages [Harrold et al., 1993]. An inadequate testing infrastructure can lead to even bigger
losses [Tassey, 2002].

3
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Stage Detected

Stage Introduced Requirements Architecture Construction System Test Post-release

Requirements 1x 3x 5x 10x 10-100x
Architecture - 1x 10x 15x 25-100x
Construction - - 1x 10x 10-25x

Table 1.1: Cost to fix a defect in various project stages [Kaner et al., 2001]

In order to reduce costs, or to better take advantage of them, researchers and practitioners focus
their efforts in ways to automate test case generation (TCG) [Edvardsson, 1999]. This technique
attempts to cover a considerable amount of inputs, while also testing more production code. TCG
attempts to increase the effectiveness of testing, since it is less exposed to trivial mistakes. Also,
due to the generation being automatic, there is considerably less effort with maintenance of a test
suite. On the downside, automatically generated tests tend to be simpler than manually written
ones, and therefore they are only able to detect simpler flaws in the software.

1.2 Research Plan

The ultimate goal of this research is to assess the prospect of advance in TCG and, if possible,
provide an implementation of such advance. First we need to explore what techniques are avail-
able. Only then we will know whether or not potential for making a contribution to the field. For the
purposes of this research, we will focus on TCG for the Java programming language. However,
we will not limit the study of techniques and tools to the ones for Java, as there might be valuable
lessons to learn from other languages or frameworks.

We propose to answer the following research questions:

RQ1 What methods are there for test case generation?

RQ2 How do the existing methods compare to each other?

RQ3 Is there an opportunity to produce an advancement in existing methods for fully automated
test case generation?

In order to answer these research questions we have decided to break each of them into tasks
in order to better structure the research. RQ1 is broken down into the following tasks:

T1.1 Research the state of the art in TCG;

T1.2 Research techniques that might be used in the context of TCG;

For RQ2 the break down in tasks is:

T2.1 Select of the most promising tools according to the survey done to answer RQ1;

T2.2 Conduct of a case study, where the tools selected in T2.1 are applied to real world software;

Finally RQ3 is broken down into the following tasks:

4



1.3. BACKGROUND

T3.1 Formulate requirements for our contribution;

T3.2 Based on the results of the case study conducted for RQ2, decide whether to improve one
of the existing tools or implement a new tool chain;

T3.3 Implement a prototype of what was decided in T3.2;

1.3 Background

A test case consists of passing an input value to a method under test and checking if the output of
that method conforms with a set of expected results in order to confirm that the method is behaving
correctly [Myers, 1979]. Figure 1.1 illustrates a typical flow of a test case. The main advantage of
manually written test cases is the control it provides to developers, allowing them to define input
and expected output values. The main disadvantages are the high costs of the process and the
obvious subject to human error.

Input
Value

Method
Under Test

Test
Oracle

Figure 1.1: Typical test case flow.

The following sections provide a deeper understanding about testing.

1.3.1 Testing Philosophies

By tradition, testing philosophies are divided into two major factions, white-box testing (WBT) and
black-box testing (BBT) [Myers, 1979]. Their combination leads to get another philosophy known
as grey-box testing (GBT) [Kaner et al., 1999].

WBT is a testing methodology that checks the internal workings of a piece of software. To follow
this approach the source code must be available to the practitioner, since test data are derived
from the logic of the software. This approach is useful in detecting errors and problems within the
code itself, but fails to detect unimplemented or incorrect specifications, because WBT completely
disregards specifications. Ultimately, the goal of WBT is to check every possible execution of the
software [Myers, 1979].

On the other hand, BBT validates that a software conforms to a given specification. Unlike WBT,
tests following BBT philosophy do not require knowledge of the source code. This approach is
used to detect incorrectly implemented specifications. However, it is not as accurate as WBT in
pin-pointing problems with the internal logic. In the long run BBT attempts to test all possible
input/output combinations [Myers, 1979].

Blending some aspects of both philosophies has lead to a third one, known as GBT. GBT does
not fit into BBT because it leverages some knowledge of the internal logic. However, it can not
be considered WBT either since it does not aim at exploring the problems in the internal logic of
the software. The main idea is to leverage knowledge of the specification and the internal logic to
produce better informed tests cases [Kaner et al., 1999].
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Summing up, these philosophies offer guidelines to create reliable test suites. Neither BBT nor
WBT, present a better offer than the other. On the other hand, GBT offers a good compromise
between specification validation and structural verification.

1.3.2 Levels of Testing

In the process of testing software products, there are various granularity levels on which practi-
tioners can test software. The finest of them is unit testing, which leads to integration testing, and
finally to the coarsest level, system testing [Kaner et al., 1999]. Other levels exist, however, these
three are considered the most relevant. This section will describe each of them in detail.

The finest level, unit testing, consists in testing software units, the smallest components of a
software system [Kaner et al., 1999]. In essence a unit test is a call to the unit being tested
with a predefined input value. By carefully selecting the inputs passed to the unit under test, the
tester can predict the expected outputs, and then express that expectation as an assert statement.
Such statements in a test are called oracles. In order to write high quality unit tests, both a very
rigorous discipline and considerable effort are required, since each unit requires at least one test,
but preferably one test per control path [Zhu et al., 1997].

There is, a technique that attempts to reduce efforts in unit testing, known as parameterised
unit testing (PUT) [de Halleux and Tillmann, 2008; Tillmann et al., 2010]. The major contribution
introduced by this technique is the possibility of providing parameterised input values, meaning
that input values are not defined in the test itself, but at run-time and according to a predicate
expression. PUT is therefore a generalisation of unit testing that requires more abstract oracles.
Both approaches follow a WBT philosophy.

A coarser level of testing is integration testing. At this level, instead of testing single units, entire
modules or sets of units are tested [Myers, 1979; Kaner et al., 1999]. The main goal is to check
that the interactions of the modules under test are behaving as expected. However, there are
some limitations to integration testing, for instance it makes it harder to pin-point the source of the
detected problems [Kaner et al., 1999]. Integration testing usually follows a GBT philosophy.

The coarsest level of testing is called system testing [Kaner et al., 1999]. At this level the whole
product is placed under test. This is done to validate that the software meets the requirements
defined by the stakeholders, which makes system testing purely BBT. System testing suffers from
the same limitations as integration testing, making it even harder to pin-point the source of flaws
[Kaner et al., 1999].

Summing up, three of the most relevant levels of testing were described: unit testing, integration
testing and system testing. No level stands out from the others, meaning they all complement
each other. While testing a software system, one should consider more than one level of testing
to ensure a higher degree of confidence [Kanstrén, 2008].

1.3.3 Goals of Testing

What do testers expect to learn from testing a piece of software? Testers may want to learn more
about the performance of the system under test or if all requirements are met. Approaches known
as non-functional testing, regression testing and acceptance testing provide for different goals in
testing.

Non-functional testing addresses non-functional requirements, such as performance and scalab-
ility [Myers, 1979]. To evaluate performance of the software, the system is run several times in
different machines and the performance on each machine is measured. To measure scalability,
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the system is put through an increasing amount of workloads in order to assess the workload
which it can handle.

Regression testing is a type of testing whose aim is to find errors that might have been introduced
after applying changes to a certain functionality [Kaner et al., 1999]. This is done by recording
in a regression test suite the behaviour of software before the changes are made. Then, after
making the changes the regression test is used to check that only the intended new behaviour was
affected by the change. Thus, no undesirable side effects were introduced. Regression tests may
reveal newly introduced faults, or they may fail if the changes were meant to intentionally change
functionality. Another use of regression testing, other than finding errors, is to assert that the
performance of the system was not affected. Regression testing can, therefore, be accomplished
at the various levels of testing.

On the other hand there is acceptance testing, also known as functional testing, which is a type
of testing to check that a given implementation meets its requirements [Kaner et al., 1999]. This
can be done by a tester with access to the requirements of the system, or by the final users of the
system. This is usually a final stage of development, where any flaws may be uncovered before
delivery. Usually, acceptance testing is done at system testing, but it is also possible to apply at
the other levels.

These two forms of testing are not necessarily opposites, as they complement each other. An
acceptance test can be later used as a regression test. While regression tests are based on
previous versions of the production code, acceptance tests are based on a baseline specification
that represents the intended functionality [Myers, 1979].

1.3.4 Adequacy Criteria

As previously mentioned, the main goal of software testing is to provide stakeholders with confid-
ence in the software under test. In order to be easily understood by everyone, confidence should
be expressed as a number. As such, the quality of a given test suite must be measured according
to proper adequacy criteria [Zhu et al., 1997]. This section will describe some adequacy criterion:
structural coverage; fault detection; input bound coverage and assertion density.

The first adequacy criterion covered in this section is also the most common, structural coverage.
This criterion measures how much of the source code is executed by the test suite. Structural
coverage can measure the coverage over structural elements like: line coverage, branch coverage
and loop coverage [Zhu et al., 1997].

It is believed that when an element is executed by a test suite there are less chances of problems
occurring in that element [Zhu et al., 1997]. This is, however, not enough because in addiction to
executing the statement, it is also necessary to check that the result is the expected.

Another criterion of relevance is fault detection. This criterion measures how reliable a given
test suite is in detecting defects in the code [Zhu et al., 1997]. This becomes especially useful
while creating a test suite for regression testing. These tests aim to prevent the introduction of
faults while maintaining the existing features and in developing new ones. A common form of
evaluating the robustness of a test suite in relation to fault detection is mutation analysis [Zhu
et al., 1997]. This analysis consists in injecting artificial changes, mutations, in the source code
and then checking how many of the mutations the test suite is able to detect. The higher the
number of mutations detected the more reliable a given suite is.

Another criterion is input bound coverage. This adequacy criterion measures how much of the
input domain is being covered [Zhu et al., 1997]. The higher the input bound coverage, the more
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likely the chances of detecting errors in the behaviour of the system under test are. However,
covering the whole extent of the input domain is a virtually impossible task in most cases.

The last adequacy criterion covered in this section is known as assertion density. This criterion
measures the number of assertions per lines of code [Foster et al., 2003], thus the higher the ratio
the more assertions per each line of code. This metric leads to a higher confidence in the test
suite, in the sense that more assertions can detect more discrete problems in the software.

In summary, this section provides some insight to several adequacy criteria in the field of soft-
ware testing. These criteria are very important, because in order to measure the confidence in a
software through its tests on should have confidence in the test suite itself.

1.4 Document Outline

The remainder of this dissertation is organised as follows. A review over TCG literature is presen-
ted in Chapter 2: Literature Review which also includes an overview of the current major chal-
lenges in TCG which allow us to answer RQ1. Chapter 3: Tool Review describes a review of
chosen tools that can be used in TCG, we try to apply all the selected tools to a real world tool,
Checkstyle.. Chapter 4: R - An Experiment in TCG Tool Interoperability describes the im-
plementation of our tool, Raiko, which is a combination of a tool for emphdirected random testing,
R, with a constraint inference system, D. The document concludes in Chapter 5:
Conclusions drawing conclusions and future work.
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Chapter 2

Literature Review

This chapter reports on the literature review process conducted while researching into the state
of the art in TCG. The most relevant TCG techniques found in the review are described, includ-
ing random testing, bounded exhaustive testing, mutation-driven testing and finally model-based
testing. Other techniques that can be used in the context of TCG are also discussed. The chapter
closes with a discussion of the identified challenges in test case generation.

2.1 Review Process

This section will describe the literature review process conducted while studying the state of the
art in software testing. The papers were found through searches in known search engines and
through analysis of bibliography listings. It was decided to experiment with formal concept analysis
[Wolff, 1993] in the context of literature reviewing. formal concept analysis provided a wider per-
spective over the field of TCG, while revealing interesting relations among the many contributions
to the field.

Formal concept analysis is a technique that allows the automatic derivation of an ontology from
a matrix of objects and attributes [Wolff, 1993]. For the purpose of this review, the objects are
the papers and the attributes are the topics covered by the papers. A list of the attributes chosen
follows.

Adequacy Criterion If the paper discusses relevant adequacy criteria for test suites;

Constraint Inference If the paper discusses constraint generation techniques;

Constraint Solving If the paper discusses constraint solving techniques;

Data Generation If the paper discusses or addresses the test data generation problem;

Dynamic Analysis If the paper discusses applications of concrete executions;

Path Selection If the paper discusses path selection decidability problems;

Programming Language If the paper relates to a specific programming language;

Software Failure If the paper discusses or describes software failures or faults;

Software Testing If the paper discusses or addresses software testing in some way;

Symbolic Execution If the paper discusses applications of symbolic execution;

TCG Technique If the paper describes a TCG technique;
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TCG Problem If the paper describes the TCG problem;

TCG Tool If the paper describes a tool or system that either performs TCG or can be reused
as part of a TCG tool-chain.

Having constructed the context matrix, the CE tool [Tilley, 2004; Yevtushenko, 2011] was
used to generate the ontology illustrated in Figure 2.1. This ontology is represented by a concept
lattice. The bottom node of the lattice collects all papers that do not fit into any of the attributes.
By contrast, the top node contains all papers that fit into all of the attributes. However, in the
lattice of Figure 2.1, there are no papers neither in the bottom nor top nodes of the lattice. This
means that all the papers reviewed were both classifiable and diverse. By examining the remaining
nodes, some conclusions can be drawn about the literature review thus carried out. Some of these
conclusions follow:

• Most researched techniques for TCG refer to an implementation. This means that all tech-
niques researched have associated tools.

• Not all papers are related to testing. This is due to the need of collecting some information,
not directly related with software testing. For example, applications of given techniques in
contexts other than software testing.

This experience with formal concept analysis was a pleasant experience. We have found that
we had overlapping attributes which lead us to reduce them in number. It has allowed us to acquire
a better perspective on what we were searching for and even find some related concepts. Bellow
we fine a detailed account of what we have learned from the literature review process.

2.2 Test Case Generation Techniques

This section covers the most common techniques for TCG. These are random testing, bounded
exhaustive testing, mutation-driven testing and finally model-based testing.

2.2.1 Random Testing

The most basic TCG technique is random testing. This technique ranks among the most simple
techniques to implement, and also as one able to generate a high number of test cases per unit
of time [Edvardsson, 2002]. This is due to the simple nature of this technique, since there is no
sort of guidance in the generation process, i.e. it generates inputs regardless of the domain of the
software, as any random stream of data can be used to produce an input. There are essentially
three types of application of random testing. It can be used to generate random sequences of
method invocations and random input values to execute them, as happens in R [Pacheco
and Ernst, 2007]. Another possible application of random testing is QC [Claessen and
Hughes, 2000; Hughes, 2009].

As a downside to random testing, the chance of achieving an acceptable level of structural
coverage is low [Deason et al., 1991; Offutt and Hayes, 1996]. This is due to the nature of the
random test generator, which might not be able to produce the required input to cover relevant
paths of a method. Recent research, however, has revealed some interesting properties about
random testing [Ciupa et al., 2007]. For instance, the number of detected flaws seems to be
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Figure 2.1: Concept lattice
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inversely proportional to the elapsed testing time, meaning that there is no added gain in increasing
the generation time of a random testing tool indefinitely. The same study has also reported that
random testing is not limited to detecting artificial flaws seeded into the source code. It showed
that this technique is also capable of detecting complex bugs in software.

2.2.2 Bounded Exhaustive Testing

Another TCG technique that is being brought forward is bounded exhaustive testing [Sullivan et al.,
2004]. This technique generates test suites to meet a considerably high input bound coverage.
The technique ensures that every input combination within a bounded scope is tested to check that
the method under test is producing the expected outputs for each and every single one of them,
making it a very effective technique for testing. There are two ways of using bounded exhaustive
testing: 1) provide an oracle to be checked for a given input bound; 2) provide a description of
valid inputs and generate appropriate inputs from the provided description, and pass them to a
PUT.

There are two interesting tools in the field of bounded exhaustive testing, namely K [Milicevic
et al., 2007] and J P [Visser and Mehlitz, 2005; Pasareanu and Rungta, 2010].
K allows users to describe valid inputs of complex structures and a scope, upon which it
generates proper inputs. J P allows users to provide a test oracle. It will check
that the software is meeting them. Nonetheless, there are other tools that could be considered
for bounded exhaustive testing, even though they are not directed at this. Such is the case of
QC [Claessen and Hughes, 2000; Hughes, 2009] with the aid of custom-made data
generators for such a purpose [Runciman et al., 2008]. Figure 2.2 illustrates the typical workflow
of a bounded exhaustive testing tool.

There are, however, serious drawbacks to bounded exhaustive testing. One of these is the large
amount of computing resources required to generate sufficient inputs to cover a significant portion
of the input domain, which, in many cases, is virtually unlimited. Nonetheless, recent research
advances are attempting to reduce such costs by some orders of magnitude [Jagannath et al.,
2009].

2.2.3 Mutation Driven Testing

Mutation-driven testing [Fraser and Zeller, 2010] consists in improving test suites by generating
tests to detect a higher number of mutations. This technique uses mutation analysis techniques
(recall in Section 1.3) to learn of possible mutations and then it attempts to generate appropriate
oracles to properly detect those mutations. A mutation-driven testing technique which was im-
plemented in a tool named µTest [Fraser and Zeller, 2010] generates test cases while leveraging
genetic algorithms to do so. This technique depends on the source code and an existing test suite.

2.2.4 Model Based Testing

Another research approach to TCG is model-based testing. This technique consists in extracting
test cases from an existing model of the system under test [Bruno et al., 1995]. There are various
approaches to model-based testing, from which, the following are singled out [Utting and Legeard,
2006]:

• Generation of test input data from a domain model;
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Figure 2.2: Typical workflow of exhaustive testing.
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• Generation of test cases from an environment model;

• Generation of test cases with oracles from a behaviour model; and

• Generation of test scripts from abstract tests.

The first approach, input generation from a model consists in extracting information about the
input domain from the model and generate appropriate test data that can be used while testing the
software. The second approach, generation of test cases from an environment model where the
system under test will be used, for instance a statistical study of the expected load of the system
under test. From this model it is possible to construct sequences of calls to the system under test
to validate the behaviour under the designated environment. The third approach to model-based
testing, and perhaps the most interesting, allows the generation of test oracles, once a behavioural
model is available. This type of model holds enough information to generate complete test cases
with proper test oracles. Unlike the other approaches, this approach covers all the test construction
phases since it contains the relationship between the inputs and the outputs. The last approach
aims at the generation of executable test cases based on abstract representation, for example a
UML sequence diagram.

The most serious limitation in applying model-based testing is the constant lack of appropriate
models to generate tests from. But even in the presence of models, there are still limitations to
model-based testing [Utting and Legeard, 2006]. For instance, no approach is able to detect all
the differences between the model and the implementation, or the need to prove that the model is
correct. Its costs in comparison to other TCG techniques are still relatively high, since it requires
abstract models. Also there is the problem of keeping the software model synchronized with the
software code. These limitations keep most mainstream software industries away from model-
based testing [Sarma et al., 2010].

2.2.5 Summary

This concludes the state of art in TCG. The techniques surveyed were: random testing, bounded
exhaustive testing, mutation-driven testing and model-based testing. Random testing is the simplest
and cheapest technique studied. However, it is the one with the least chances of finding software
bugs. This does not mean that random testing is worthless since there are reports of its use-
fulness [Ciupa et al., 2007]. Bounded exhaustive testing has the goal of covering a significant
portion of the input domain, increasing the chances of finding a bug on the system under test.
Mutation-driven testing is a technique that focuses on the generation of test cases specifically
aimed at mutation detection. The last TCG studied, model-based testing, leverages a model of
the software and generates complete test cases or appropriate input test data to check that the
implementation meets the behaviour described by the model of the software.

In summary, no single technique presents a major advantage over the others and they rather
complement each other. However, the technique with most potential for TCG is model-based
testing, because it is capable of automatically generate the most complete input test cases with
test data and test oracles. Also because the generated test cases are capable of validating the
implementation against the model, in spite of the constant lack of suitable models for model-based
testing preventing this technique from being more widely adopted.
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2.3 Auxiliary Techniques

The literature review revealed software testing is commonly related to constraint satisfaction prob-
lems. This happens because constraint satisfaction problems are related to the generation of
inputs and the inference of oracles, which are two important aspects of TCG.

This section explains constraint inference, constraint solving and related techniques, as well as
their applications in the context of TCG.

2.3.1 Constraint Inference

Inference is the process of deriving strict logical consequences from assumed premises. A pos-
sible definition of constraint inference is the relation between constraints and their consequences.
For example let D and C be two constraint sets. We say that D |= C if and only if, for a given
valuation1 V , if V satisfies D then V also satisfies C. In (2.1) we attempt to express the definition
of constraint inference as a mathematical equation.

D |= C ⇐⇒ ∀V : (V (D) ⊢ ⊤ =⇒ V (C) ⊢ ⊤) (2.1)

In other words, constraint inference attempts to model a property system into a simpler one. This
is done so as to better understand the constraint system and to facilitate its solving. In computer
science, constraint inference is used in many fields, like symbolic execution [Ramamoorthy et al.,
1976], dynamic analysis [Gulwani et al., 2009] and more recently a combination of both, named
concolic execution [Pasareanu and Visser, 2009].

Symbolic Execution

Symbolic execution is a technique that executes programs using symbolic values, this is, instead
of using actual values to execute the program, symbolic execution uses predicate expressions that
represent the inputs. These expressions act like variable substitutions. The goal of symbolically
executing a program is to construct an expression based on its input variables [Ramamoorthy
et al., 1976]. This expression can then be solved to compute inputs for the program. Consider the
statements in Listing 2.1. A symbolic execution on the statements would produce the expression
(((a * a)+ (b * b)))== (c * c).

x = a * a;
y = b * b;
z = c * c;

result = ((x + y) == z);

Listing 2.1: Example to illustrate symbolic execution.

Using symbolic execution, there is no need to perform violation checks on each branch, since
all of them can be resolved in a single execution [Ramamoorthy et al., 1976]. However, symbolic
execution is entailed by some limitations, for instance function calls can not be resolved, unless we
either perform an inline substitution of the function being called for its corresponding instructions
or learn the symbolic expression of those functions before finishing the current function. Other

1The assignment of values
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limitations of symbolic execution, are object, pointer and array referencing [Ramamoorthy et al.,
1976]. Symbolic execution has no way of knowing their value since they are only instantiated
during run-time.

Dynamic Analysis

Dynamic analysis, on the other hand, makes use of actual values while executing a program
[Gulwani et al., 2009]. By using actual values to perform the executions, the problem of object,
pointer and array referencing is much less accentuated since the actual value of those elements
is always known throughout the execution of the program. Also, function calls do not present as
much of a problem to dynamic analysis as compared to symbolic execution, since it can simply
execute that call in order to know what the returned value is. There is a downside, however, and
this is that dynamic analysis requires a considerably large number of executions in order to infer
a reliable constraint system. This is due to the violation checks for each branch, which requires
different executions, with different input values.

Concolic Execution

Recent research, has lead to a combination of both strategies, symbolic execution and dynamic
analysis, leveraging the stronger points of each technique to balance each other weaknesses. This
means that the ability to solve branch expressions from symbolic execution is used to reduce the
number of executions needed for dynamic analysis. While dynamic analysis can provide values for
referenced elements like objects, pointers and arrays, thus eliminating the referencing limitation of
symbolic execution. This technique is known as concolic execution [Pasareanu and Visser, 2009].
The name is a contraction of concrete and symbolic execution.

2.3.2 Constraint Solving

Constraint solving is the process of attempting to find a solution to a constraint system. There are
some constraint solving techniques that are used inside a TCG. These techniques are used by
a TCG to search for solutions to the constraint system representing either the system under test
or appropriate inputs to the system under test. Solutions to the system normally guide the TCG
towards a desired adequacy criteria. The most relevant technique is known as satisfiability solving
[Dixon et al., 2011]. An approach to solving a satisfiability system is conflict-driven [Dixon et al.,
2011; Prasad et al., 2005]. This approach searches for a contradiction of the formula to satisfy and
if no contradicting example is found, then the formula must be true. Another approach to solving
a satisfiability system is based on stochastic local search methods [Prasad et al., 2005], but they
do not perform well on structured instances obtained from real verification problems.

2.3.3 Invariant Detection

The previously discussed constraint inference techniques allow for the construction of constraint
systems. These techniques have both direct and indirect applications to TCG. Direct applications
include the construction of a constraint system that represents the system under test. This con-
straint system then can be solved to provide guidance towards given adequacy criteria. Indirect
applications of constraint inference include invariant detection, a technique that attempts to infer
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function invariants. There it more than one way to accomplish this, be it through specification min-
ing [Ammons et al., 2002; Ernst et al., 2007] or static observation of source code [Ramanathan
et al., 2007].

Specification mining attempts to dynamically infer program specifications from execution traces
of the program [Ammons et al., 2002]. D [Ernst et al., 2007] is a tool that implements spe-
cification mining. It takes as input executions provided by a test suite and it observes properties
that were kept along the execution. This leads to a very interesting approach to testing, since
test cases can be created from specifications and specifications can be inferred from the execu-
tion traces provided by test cases. This creates a feedback loop [Xie and Notkin, 2003], where
tests can be generated from specifications and specifications can be refined from tests. However,
not all test cases contribute in the same way to this process [Dallmeier et al., 2010]. The more
complete the test cases the more reliable the inferred properties will be.

There are also some applications of invariant detection using static analysis [Ramanathan et al.,
2007]. By leveraging data flow analysis to gather predicates for each program point, it is possible
to derive valid properties that should be valid before and after the execution of a method.

Nonetheless, automatically inferred specifications are not completely trustworthy. Studies re-
ported in [Polikarpova et al., 2009] were made to compare programmer-written and automatically
inferred invariants. These studies conclude that automatically inferred contracts do not always
cover as much of the program behaviour as the ones manually defined by programmers. In some
cases, automatically inferred contracts encounter unspecified or unexpected program behaviour
that the developer missed. However, these studies suggest that the automatically inferred con-
tracts could be used either to complete programmer-written contracts or to serve as a baseline for
them.

2.3.4 Input Classification

Other relevant techniques that can aid in the process in testing, especially in test data generation,
are known as input classification techniques [Carbin and Rinard, 2010; Pacheco and Ernst, 2005].
These techniques consist in classifying inputs based on their potential to reveal faults in the target
software.

A possible approach to input classification is to use a model of the operation of the system under
test to generate random inputs and then executing the target software with the generated input,
checking its behaviour according to the previously extracted model of operation of the software.
If the execution behaves incorrectly then it is possible that either an illegal input was found or
a possible fault in the software was detected. This approach has been implemented in E
[Pacheco and Ernst, 2005], a tool that generates fault revealing test cases, given an example
execution of the system under test.

2.4 Challenges

Software testing and TCG remain a challenging field in software sciences. There are four major
trends in software testing: Universal Test Theory, Test-Based Modelling, Fully Automated Testing
and Efficacy-maximised Test Engineering [Bertolino, 2007]. To complete this chapter we discuss
some of the most relevant challenges remaining in such trends.
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2.4.1 Input Generation

The problem in input generation is the difficulty of generating appropriate inputs, i.e. that meet
the entry condition for a given method. Some believe that a minimalist set of good program inputs
covering a significant amount of branches can reveal the same faults as a huge test data set would
[Carbin and Rinard, 2010; Pacheco and Ernst, 2005; Milicevic et al., 2007]. Also the automatic
generation of test data is seen as an important step to achieve fully automated testing.

The areas expected to produce considerable advances in input generation are model-based
approaches [Bruno et al., 1995], guided applications of random data generators [Pacheco and
Ernst, 2007], and a wide variety of search-based techniques [Maragathavalli, 2011]. From model-
based approaches it is possible to to use models as a baseline to derive complete test cases
[Bertolino, 2007]. This approach could be used in conjunction with concolic execution to guide the
execution process and thus traversing the most relevant paths to validate the model. Model-based
approaches remain the most promising in their allowing developers to validate their implementation
against application models defined by the stakeholders, assuming the model is correct.

Random generation techniques have been put aside in favour of other, more systematic, tech-
niques that were deemed more comprehensive and capable of achieving much better results,
like model-based testing and bounded exhaustive testing. Recently, however, random generation
have been compared to such systematic techniques and shown to achieve almost identical results
with much less effort [Ciupa et al., 2007]. For this reason, researchers currently believe that it is
possible to somehow enhance random generation techniques by making them smarter [Pacheco
et al., 2007], by leveraging previous executions to better predict the input bound.

2.4.2 Test Oracles

Another challenge in software testing and TCG in particular is the availability of test oracles [Staats
et al., 2011; Bertolino, 2007]. Recall that the part testing that decides whether test cases succeed
or fail is the oracle. There are several ways to produce test oracles. The most reliable ones involve
manual interaction from the developer and even these are mostly incomplete, resulting in test
oracles that do not cover all the behaviour they should. The current challenges is to improve current
means of producing reliable test oracles, and of course to take test automation a step further by
fully automating oracle generation. This is a challenge because there is no way of knowing what to
expect from a method with incomplete information. It is only possible to capture the current result
and assert that it is always the same. Even then it is necessary to convert observed behaviour
into expressions to be asserted. Model-based testing and executable specification languages like
JML are regarded as the most promising techniques capable of solving this challenge [Baresi and
Young, 2001; Bertolino, 2007].

2.4.3 General Challenges

The so-called general challenges in software testing go beyond the technical aspects of the testing
process. General challenges include enrichment to the whole theory behind software testing, like
the assessment of the true effectiveness of testing and also how can the results of a test case could
influence another test case, or even how the order of which test cases are executed influences
the testing process. Also it is very important to know the real costs of testing and the real costs of
not testing software applications.
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Test effectiveness is related to adequacy criteria. It is considered of vital importance to determine
which adequacy criteria or which combination of criteria is best in order to detect likely faults while
minimising the costs and effort of testing at the same time. Currently there is no single criterion
that stands out from the others, the general consensus being that a combination of criteria is
considered best [Bertolino, 2007].

Test composition relates to the order by which test cases are executed. When a given test suite
gets too big to run in a single execution, usually the approach is to apply the old divide and conquer
- divide et impera - strategy [Bertolino, 2007]. However, it has been suggested that by properly
ordering test cases it is possible to minimise the effort to run the test suite. Basically the results
from previously executed test cases can be used to reduce the effort in executing the whole test
suite.

Another interesting challenge in software testing is the inference of Test Patterns. Such patterns
would be analogous to the well known Design Patterns [Gamma et al., 1995] for software. The
purpose of these patterns would be to help in detecting the best strategy to thoroughly test a given
component or system, thus allowing testing to go faster and simpler. It would also provide for
reusable solutions to common problems.

Current state of the art cost evaluation of software testing is only based on estimations. What is
also estimated is the cost of poorly testing or not testing applications [Tassey, 2002]. Knowing the
real costs and risks of whether testing and not testing software is vital for the future of the software
testing discipline as it will allow the assessment between cost and risk for each component and
prioritise testing effort.

Finally, a challenge that will always prevail is the proper education of software testers [Bertolino,
2007]. Even with a wide array of tools and techniques available the human eyeball should always
have the final say in testing, and good educators in the software testing will make them more aware
of common problems and how to check for them.
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Chapter 3

Tool Review

The motivation behind the tool review reported in this chapter is to find out what tools are avail-
able that either preform TCG, or aid in a testing environment. This chapter describes the review
process, the tools reviewed and their range of application. Finally this chapter presents some
considerations about the tools.

3.1 Review Process

To learn more about TCG methods some tools were reviewed and analysed under a given set of
criteria in order to find out their usefulness in a software development environment. The evaluation
criteria used throughout the review are presented in Table 3.1 as well as a summary of what each
criterion means and what values it might take throughout the review.

The tools reviewed were found throughout the search for literature in the field, through searches
in known search engines and discussion with peers. The tools are mostly focused around the
Java programming language, with few a exceptions.

3.2 Reviewed Tools

3.2.1 Test Case generation tools

This section describes the most promising tools for TCG.

R

Figure 3.1: How R works [Pacheco and Ernst, 2007].
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Language Indicates the language for which the
tool is intended.

Price Indicates the price or licensing
limitations of the tool.

Level of Tests
Indicates the level of tests in which

the tool operates, it may take the
values Unit, Integration or System testing.

Scope Indicates the type of the tool,
framework, test case generator, etc.

Adequacy Criterion Indicates the adequacy criteria that
the tools attempts to meet.

Incremental Indicates if the tool leverages
any existing test suite.

Previously Generated Tests Indicates the integration of the
tool with previous generated tests.

Integration With Manual Tests Indicates the level of integration between
the tool and manually written tests.

Integration With Development Tools Indicates the integration of the tool
with other development tools.

Code or Binary Level Indicates the level where the tool operates.

Configuration Effort Indicates the level of effort required
to use the tool: low, medium, high.

Quality of Produced Tests Describes the quality of the generated tests.

Table 3.1: Evaluation criteria for the case study.
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R was developed by Carlos Pacheco and Michael Ernst [Pacheco and Ernst, 2007;
Pacheco, 2009]. This tool is capable of generating regression testing and contract violation tests,
with test inputs and oracles, for Java and .NET1 software. The underlying technique in R
is feedback-directed random TCG [Pacheco et al., 2007]. To put it simply, R generates
sequences of method and constructor invocations. These sequences are built incrementally by
randomly selecting which method to apply next to an already existing sequence. Once the se-
quence is built it is executed in order to determine if it is redundant, illegal, contract-violating, or
useful for generating more inputs. When a method invocation requires input parameters, R-
 randomly selects suitable inputs from a pool of previous invocations or from a pre-defined
set of values. Oracles are generated by observing the object state of the software under test and
generating proper assertions that check that object state. Figure 3.1 [Pacheco and Ernst, 2007]
attempts to illustrate this behaviour. R has been validated using a considerable number of
targets [Pacheco, 2009]. It showed potential as a reliable tool in generating and finding regression
errors and contract violations. Do note that the figure presented may be misleading. Even though
there are plans to allow user-defined contracts in the future, currently R only checks for a
handful of hard-coded contracts, as listed below:

• Equals to null: o.equals(null) should return false;

• Reflexivity of equality: o.equals(o) should return true;

• Symmetry of equality: o1.equals(o2) implies o2.equals(o1);

• Equals-hashcode: If o1.equals(o2)==true, then o1.hashCode() == o2.hashCode()

• No null pointer exceptions: No NullPointerException is thrown if no null inputs are used in a
test.

QC for Java

QC was originally a combinator library for the Haskell programming language [Claessen
and Hughes, 2000]. It was later implemented for several languages like Java [Open Source Con-
tributors, 2011b,a], Erlang [Hughes and Arts., 2011], Perl [Moertel, 2011], Ruby [Yeh, 2011] and
JavaScript [Thompson, 2011] among others. These tools are all about test data generation. By
generating high amounts of data and checking it against a given property, it is expected to cover
a wide range of the input domain, thus increasing the changes of finding more faults [Hughes,
2009]. While there is no validation for the Java implementation of Q, there is a report
on the effectiveness of Q for Haskell [Claessen and Hughes, 2000].

QC for Java [Open Source Contributors, 2011a] is one implementation of QC
for the Java language that allows for the creation of PUT cases. Recall that PUT is to run the same
test case with different input values. This implementation includes several statistical distributions
allowing users to better guide data generation.

If applied like a third party framework, QC requires test cases to explicitly call its fea-
tures. In some occasions it might be necessary to implement a custom data generator, which
QC allows and provides an extensive library for. Listing 3.1 illustrates an example im-
plementation of a generator. In this implementation a Stack instance is created with a random
size between 1 and 100, and then filled with random integers.

1This requires a different version of the tool.
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Language Java and .NET

Price Free under the MIT licence (see MIT [2011])

Level of Tests Unit level

Scope Test case generator

Adequacy Criterion Fault detection

Incremental Not influenced by existing test cases

Previously Generated Tests Overwrites or complements previously generated test
cases

Integration With Manual Tests Possible to co-exist

Integration With Development Tools
Comes as an Eclipse IDE plugin and a command line
tool. There is however, no integration with Apache Ant,
Apache Maven and Netbeans

Code or Binary Level Works at the binary level

Configuration Effort
Little effort in using the Eclipse plugin. The standalone
command line tool requires a proper setup of the class
path variable

Quality of Produced Tests

Produces complete test cases, with inputs and test or-
acles. Some of the produced tests seem to contain prob-
lems that prevent the test classes from compiling and
therefore running.

Table 3.2: Summary for R.

public class StackGenerator implements Generator<FastStack<Integer>> {
public FastStack<Integer> next() {
Random rand = new Random();
int size = 1 + rand.nextInt(100);
FastStack<Integer> fs = FastStack.newInstance();

for (int i = 0; i < size; i++) {
fs.push(rand.nextInt());

}
return fs;

}
}

Listing 3.1: Implementation of a random Stack generator
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Implemented generators can then be applied within a test case as illustrated in Listing 3.2. In this
test case, the generated Stack instance is tested through some common operations and checked
for conformity. Then the Stack instance is regenerated and the process starts all over again.

@Test
public void testNormal() {
FastStack<Integer> stack;
for (int i = 0; i < NUMBER_OF_RUNS; i++) {
stack = sg.next();

int currentTop = stack.peek();
int currentSize = stack.size();
final int num = 100;

for (int j = 0; j < num; j++) {
stack.push(j);

assertEquals(j, stack.peek());
}

assertEquals(currentSize + num, stack.size());
assertEquals(1, stack.peek(currentSize + 1).intValue());

for (int j = 0; j < num; j++) {
stack.pop();

}

assertEquals(currentTop, stack.peek().intValue());
assertEquals(currentSize, stack.size());

}
}

Listing 3.2: Application of the Stack generator in a test case

JC

JC [Open Source Contributors, 2011b] is another Java implementation of the previously men-
tioned QC combinator library [Claessen and Hughes, 2000]. This implementation how-
ever presents a different approach to how the test cases are written. Instead of adding a loop to
iterate over the randomly generated values, JC features its own test runner, which is com-
patible with the JUnit framework. This allows test cases to receive input parameters and run the
test case with the received parameters. This implementation of QC lacks many of the
data generation features present in QC for Java.

Much like QC for Java, to apply JC the test cases must include its functionalities.
However, there is little difference while implementing a data generator, the difference being that the
random value generator and the scope size are already passed on to the generator as parameters.
A PUT written with JC is illustrated in Listing 3.3. In this case, the generator is specified
through an annotation provided by JC. Notice the lack of a loop statement to refresh the
instance under test, this being accomplished by the runner that comes packaged with JC.

25



CHAPTER 3. TOOL REVIEW

Language Java

Price Free under the Apache 2.0 licence (see ASF [2011])

Level of Tests Unit level

Scope Parameterised test case framework

Adequacy Criterion Input domain coverage

Incremental Not influenced by existing test cases

Previously Generated Tests Impossible to replay previous instantiated tests

Integration With Manual Tests Possible to co-exist

Integration With Development Tools Only available as a third party library

Code or Binary Level Works at the source level

Configuration Effort To use the library it is only required to add it to the build
path and use its features

Quality of Produced Tests Does not produce the code for the test case, it only in-
stantiates a test case with different input values

Table 3.3: Summary for QC.

@Test
@Generator(klass = FastStack.class, generator = StackGenerator.class)
public void testNormal(FastStack<Integer> stack) {

int currentTop = stack.peek();
int currentSize = stack.size();

final int num = 100;
for (int i = 0; i < num; i++) {

stack.push(i);
}

assertEquals(currentSize + num, stack.size());
assertEquals(num - 1, stack.peek().intValue());

for (int i = 0; i < num; i++) {
stack.pop();

}

assertEquals(currentTop, stack.peek().intValue());
assertEquals(currentSize, stack.size());

}

Listing 3.3: Application of the Stack generator in a parameterised test case
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Language Java

Price Free under the CPL licence (see IBM [2011])

Level of Tests Unit level

Scope Parameterised test case framework

Adequacy Criterion Input domain coverage

Incremental Not influenced by existing test cases

Previously Generated Tests Impossible to instantiate previous test cases

Integration With Manual Tests Possible to co-exist

Integration With Development Tools Only available as a third party library

Code or Binary Level Works at the source level

Configuration Effort To use the library it is only required to add it to the build
path and use its features

Quality of Produced Tests Does not produce the code for the test case, it only in-
stantiates a test case with different input values

Table 3.4: Summary for JC.

F4JU

F4JU is another PUT generation framework. It is developed and maintained by Volker
Bergmann [Volker Bergmann, 2011]. This tool allows users to specify an external *.csv file to
feed input data and expect values to a given test case. This is especially useful since anyone
from software analysts to developers can build a complete *.csv file with all the important input
values to be tested. It also allows developers to produce equivalence class partition test cases,
this meaning that it is possible to define strict input sets for each test case. F4JU is cap-
able of exploring those input sets by following a combinatorial strategy. Consider the example in
Listing 3.4, in which two sets for each input parameter are defined, F4JU would combine
the sets and test them thoroughly.

There is little difference between tests written with this framework and the ones written with the
previously described tools, QC for Java and JC. The differences in implementing
custom generators and writing test cases are mostly aesthetic.

T2 Framework

T2 is a TCG framework developed by Wishnu Prasetya and collaborators [Prasetya et al., 2008].
This tool is a trace-based random test generation tool, similar to R. However, there is a
difference: T2 allows users to provide in-code specifications through the assert keyword of the
Java programming language. Furthermore, this tool integrates with JUnit. Downside of this tool,
is the fact that it can not test non-deterministic behaviour. For instance, classes that make use of
randomly generated values or multi-threaded behaviour can not be tested with T2. A study of the
effectiveness of T2 [Prasetya, 2011], reported that T2 can reduce the cost of testing software. Its
speed and achieved coverage are its stronger points.
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@RunWith(Feeder.class)
public class AddTest {
@Test
@Unique
public void testAdd(

@Values(”-2147483648,-6,-1,0,1,42,2147483647”) int param1,
@Values(”-2147483648,-6,-1,0,1,42,2147483647”) int param2) {

try {
int result = MyUtil.add(param1, param2);

} catch (Exception e) {
// accept application exceptions, fail on runtime exceptions
// like NullPointerException
if (e instanceof RuntimeException)

throw e;
}

}
}

Listing 3.4: Example of a Feed4JUnit equivalence partition test.

Language Java

Price
Free under GPLv2 (see GNU [2011]) but depends in
other components that are not entirely GPL (see Volker
Bergmann 2011 for more details)

Level of Tests Unit level

Scope Parameterised test case framework

Adequacy Criterion Input domain coverage

Incremental Not influenced by existing test cases

Previously Generated Tests
Impossible to instantiate previous test cases, however it
is possible to check which inputs were passed on to the
test case

Integration With Manual Tests Possible to co-exist

Integration With Development Tools Only available as a third party library

Code or Binary Level Works at the source level

Configuration Effort To use the library it is only required to add it to the build
path and use its features

Quality of Produced Tests Does not produce the code for the test case, it only in-
stantiates a test case with different input values

Table 3.5: Summary for F4JU.
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To apply T2, it is recommended that the source code should contain some specifications, oth-
erwise the test process will only check for run-time exceptions. The specifications should be
introduced through the assert keyword, either in the desired method or in a separate method
with the same name appended with a _spec suffix, as illustrated in Listing 3.5. To invoke the T2
runner there are two possible ways. One way is to invoke the runner through the command line.
However, it is also possible, and recommended, to invoke T2 within a JUnit test case. Running
T2 from a test case allows other tools to measure the structural coverage that T2 managed to
achieve. Listing 3.6 illustrates how T2 can be invoked from JUnit.

public class FastStack<E> implements Iterable<E> {
private final List<E> mEntries = Lists.newArrayList();
...
public void push(E aElement) {
mEntries.add(aElement);

}

public void push_spec(E newElem) {
assert newElem != null : ‘‘PRE’’;

int size = this.size();
this.push(newElem);

assert (!this.isEmpty()) : ‘‘POST’’;
assert (this.contains(newElem)) : ‘‘POST’’;
assert (this.size() == size + 1) : ‘‘POST’’;

}
...

}

Listing 3.5: Example of T2 specifications.

@Test
public void testClass() {
Sequenic.T2.Main.Junit(FastStack.class.getName()
+ ‘‘--nmax=2000 --lenexec=5 --violmax=8 --elemty=java.lang.Integer’’);

}

Listing 3.6: Example of a test case invoking T2.

JMLUNG

JMLUNG [Zimmerman and Nagmoti, 2011; Zimmerman, 2011], is a TCG tool for JML-annotated
source code. The tool is developed and maintained by Daniel Zimmerman. It aims to support the
most recent features of the Java language, like generics and enumerated types. It leverages JML
specifications to generate test oracles, it also attempts to use reflection mechanisms to generate
test data, and also provides users the possibility to introduce their own input values. Currently
JMLUNG relies on the TestNG framework for running the generated test cases and a compiler
of the JML language (either jmlc or jml4c). Additionally, JMLUNG also depends on the next
major version of the JDK, OpenJDK 7, which is, at the time of writing, under development.
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Language Java

Price Free under GPLv3 licence (see GNU [2011])

Level of Tests Unit level

Scope Test case generator

Adequacy Criterion Specification validation / input domain coverage

Incremental Not influenced by existing test cases

Previously Generated Tests Previously generated tests can be re-run, with the aim of
fixing bugs

Integration With Manual Tests Possible to co-exist

Integration With Development Tools Only available as a third party library

Code or Binary Level Works at the source level

Configuration Effort

To use the library it is only required to add it to the build
path and use its features. Running it from the command
line the class path needs to be properly configured. The
specifications need to be added by other means

Quality of Produced Tests Does not produce the code for the test cases, it only in-
stantiates a test case with different input values

Table 3.6: Summary for T2.
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The first step in applying this tool is to properly annotate the source code with JML specifications,
whereafter the classes need to be compiled with a special compiler: jmlc if the source code does
not require newer Java features or with jml4c if it requires newer features, like generic types.
Then JMLUNG needs to run on the classes under test with java -jar jmlunitng.jar path-

list command. This command will generate the required java classes which need to be compiled
and executed with OpenJDK 7. Before compiling the generated classes, they can be edited to
provide input values.

Language JML annotated Java

Price Free, not open source

Level of Tests Unit level

Scope Test case generator

Adequacy Criterion Specification validation / input domain coverage

Incremental Not influenced by existing test cases

Previously Generated Tests Only generates test oracle, test cases can be added by
extending the input set

Integration With Manual Tests Possible to co-exist

Integration With Development Tools Only available as a third party tool, there is no integration
with any other development tool

Code or Binary Level Works at the source level

Configuration Effort

This tool requires OpenJDK 7 installed and set up as the
main JVM. The JML compilers, jmlc and jml4c, need
to be set up, and lastly the class path variable needs to
be set up to include JMLuniNG

Quality of Produced Tests Does not produce the code for the test cases, it only in-
stantiates a test case with different input values

Table 3.7: Summary for JMLUNG.

J P

J P is a tool developed by researchers at the NASA Ames Research Centre [Visser
and Mehlitz, 2005; NASA Ames Research Center, 2011]. This tool is more a model checker
for Java bytecode than a real TCG. This however does not mean that it can not be used to test
software. In fact the type of model checking that this tool performs is commonly mistaken with
systematic testing. The truth is that J P does a little more than traditional TCG
tools. Tests generated with traditional tools only cover one execution path at a time, and some
times some faults may go on undetected, while on the other hand model checking systematically
checks all paths. This increases the chances of finding more faults (see Figure 3.2).

J P is a virtual machine on top of the regular JVM. This new virtual machine adds
some model checking traits like backtracking and state matching among others to the original JVM.
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(a) Software Testing (b) Model Checking

Figure 3.2: Software Testing vs. Model Checking [NASA Ames Research Center, 2011]

J P was successfully applied to check random algorithms [Zhang and van Breugel,
2010] and network protocols [Martínez and Jiménez, 2008] with success. There are, however,
some limitations, for example it is only meant for non-deterministic software as quoted from the
project page [NASA Ames Research Center, 2011]:

A word of caution: if you have a strictly sequential program with only a few well
defined input values, you are probably better off writing a few tests - using JPF won’t
tell you much.

P is also unable to check Java Native Interface methods, this is, J P
can not test most I/O operations that the language supports and in which most software currently
build on. Out-of-the-box, J P checks the following properties, leaving the possiblity
to implement new properties:

Deadlocks gov.nasa.jpf.jvm.NotDeadlockedProperty - for every non-end state, test if there is any
runnable thread left;

Assertion Violation gov.nasa.jpf.jvm.NoAssertionViolatedProperty - test if any assertion expres-
sion has been violated;

Uncaught Exceptions gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty - test if any exception
was not handled inside the software.

To apply J P to a software under test, it first needs to to be configured to define the
intended software properties. Listing 3.7 illustrates a sample configuration, the target property
defining the class where the software entry point is located, DiningPhil in the example. The search

.class property defines the search strategy to be applied in the process, a breath-first approach
in the example. Listing 3.8 illustrates the class that will be targeted. This class consists of the
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traditional dinning philosophers problem, in which there are five philosophers and five forks. A
philosopher is either thinking or eating, when a philosopher wants to eat it needs to take both the
fork to its left and to its right. To start the J P process the user just needs to invoke
jpf <path-to-jpf-configuration-file> from the command line.

target = DiningPhil

search.class = .search.heuristic.BFSHeuristic

Listing 3.7: Example JPF configuration.

Language Java

Price Free under the NOSA licence (see NASA [2011])

Level of Tests System level

Scope Java bytecode model checker

Adequacy Criterion Property validation / structural coverage

Incremental Not influenced by existing test cases

Previously Generated Tests Does note generate test cases

Integration With Manual Tests Possible to co-exist

Integration With Development Tools Plugins available for Eclipse and Netbeans, there is cur-
rently no support for Ant or Maven

Code or Binary Level Works at the bytecode level

Configuration Effort Configuration depends on each system system under
test

Quality of Produced Tests Does not produce test cases

Table 3.8: Summary for J P.

UC

UC is a plugin a tool that was developed by Michal Kebrt [Kebrt and Sery, 2009]. This tool
means to apply model checking techniques, through J P to unit test cases, aiming
to bring high quality model checking to the general software development process. UC
recognises JUnit tests and exhaustively explores their reachable state space including all admiss-
ible thread interleaving. This tool was used to check the behaviour of two test classes that lean
on threaded behaviour to reveal faults [Kebrt and Sery, 2009].

U

U [Gligoric et al., 2010] is an extension to the standard Java language, that allows its users to
describe their test cases. Relying in a modified version of J P tool. This tool allows
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import gov.nasa.jpf.jvm.Verify;

public class DiningPhil {

static class Fork {}

static class Philosopher extends Thread {
Fork left;
Fork right;

public Philosopher(Fork left, Fork right) {
this.left = left;
this.right = right;
start();

}

public void run() {
// think!
synchronized (left) {

synchronized (right) {
// eat!

}}}
}

static final int N = 6;

public static void main(String[] args) {
Verify.beginAtomic();
Fork[] forks = new Fork[N];
for (int i = 0; i < N; i++)

forks[i] = new Fork();
for (int i = 0; i < N; i++)

new Philosopher(forks[i], forks[(i + 1) % N]);
Verify.endAtomic();

}
}

Listing 3.8: The classic dining philosophers problem.
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Language Java

Price Free, no licensing information is available

Level of Tests Unit level

Scope Unit level model checker

Adequacy Criterion Property validation / structural coverage

Incremental Not influenced by previous executions

Previously Generated Tests Does note generate test cases

Integration With Manual Tests Required

Integration With Development Tools Available as an Eclipse plugin and as an Ant Task, cur-
rently there is no support for Netbeans IDE or Maven

Code or Binary Level Works at the binary level

Configuration Effort
Little effort in configuring the Eclipse plugin, running the
Ant task however requires some understanding of Ant
and how to set up the class path variable

Quality of Produced Tests Does not produce test cases

Table 3.9: Summary for UC.

users to describe either test oracles or the input domain for the test cases. The tool will generate
input values or appropriate test cases to verify the correction of the oracles. These inputs could
be used at either system testing level or at the unit testing level. It has been evaluated on the J
P and Eclipse IDE to reveal some flaws in both projects [Gligoric et al., 2010].

E

E is very similar to R and has been developed by Carlos Pacheco and Michael Ernst
[Pacheco and Ernst, 2005]. The major difference is that E integrates with D in order
to produce an operational model of the system under test. This model is then used to generate
test cases, by filtering out redundant test cases and improving the ability to check for faults. The
developer can then check the failing test cases and decide if the test case is really revealing a
fault of the software or not.

The tutorial available at [Pacheco and Ernst, 2005] provides an easy to understand example
of usage. The basic usage is to tell E which classes should it generate test cases for and
an example usage of those classes, for example existing test cases over those classes. A typical
command line would be java eclat.textui.Main generate-inputs --create-regression-suite

--test ubs/BoundedStack.java ubs.BoundedStackJunitTest which will generate a test suite. The
resulting test suite can be found in a folder named eclat-src.

P

P is a tool developed by Nikolai Tillmann and Peli de Halleux and other staff at Microsoft Re-
search labs [Tillmann and de Halleux, 2008]. P leverages concolic execution to execute pro-
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Language Java

Price Free under the NCSA licence (see University of Illinois
[2011])

Level of Tests System / unit level

Scope Input generator / Oracle generator

Adequacy Criterion Input domain coverage

Incremental Not influenced by previous executions

Previously Generated Tests Not applicable

Integration With Manual Tests Possible to coexist

Integration With Development Tools Does not integrate with any software development tool

Code or Binary Level Works at the binary level

Configuration Effort Impossible to say, the instructions provided did not lead
to a successful execution of the tool as described

Quality of Produced Tests Does not produce test cases

Table 3.10: Summary for U.

Language Java

Price Free, in spite of, the source code not being currently
available

Level of Tests Unit level

Scope Test case generator

Adequacy Criterion Fault detection

Incremental Existing test cases improve the result

Previously Generated Tests Can be ran to check remaining faults

Integration With Manual Tests Possible to co-exist

Integration With Development Tools Only available as a third party library

Code or Binary Level Works at the source level

Configuration Effort To use the library it is only required to add it to the build
path and use its features

Quality of Produced Tests Produces complete test cases, with inputs and test or-
acles.

Table 3.11: Summary E.
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grams and capture their behaviour, generating a PUT and passing test inputs on to fully exercise
the function under test and detect errors.

This tool is fully integrated with the Visual Studio IDE from Microsoft. After installing P the
only thing to do is to press a single button and P will automatically start generating test cases.

Language .NET

Price Free for Visual Studio

Level of Tests Unit level

Scope Test case generator

Adequacy Criterion Structural coverage / Specification validation (if com-
bined with Code Contracts)

Incremental Not influenced by previously generated tests

Previously Generated Tests May remain for future notice or can be overwritten

Integration With Manual Tests Possible to co-exist

Integration With Development Tools Integrates with Microsoft Visual Studio, only

Code or Binary Level Works at the binary level

Configuration Effort Only installation is required

Quality of Produced Tests Produces parameterised tests cases with test oracles
and appropriate data generators

Table 3.12: Summary for P.

3.2.2 Interesting Tools for Software Testing

This section describes interesting tools in the software testing context, which are not TCG tools.

K

K is a tool that automatically generates structurally complex test inputs for the Java program-
ming language. It is being developed by researchers at MIT and other universities [Milicevic et al.,
2007]. Users must provide a predicate that describes a proper instantiation of the desired struc-
ture and a finitisation criterion to limit the scope. However, K does not integrate with other
testing frameworks like JUnit out-of-the-box.

To use K, users must first provide at least two important methods to the target structure.
These methods consist of (a) an imperative predicate that specifies the desired structural con-
straints; and (b) a finitisation criterion that bounds the desired test input size. An imperative pre-
dicate is a method that checks that all the desired properties about the structure are kept. It does
not take any parameters and should always return a Boolean value, true in case the structure
is valid or false otherwise. A finitisation is a method that tells the tool when to stop generating
input values. In a way it bounds the input domain to prevent from memory exhaustion.
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Consider the implementation of a binary tree, illustrated in Listing 3.9. This structure holds up
to two nodes and each node can hold up to two other nodes and so on. A possible predicate over
this structure would be Listing 3.10, that prevents the occurrence of cycles in the structure. The
finitisation method (Listing 3.11), as previously mentioned, simply defines the size of the structure
to generate. After enriching the desired structure with both these methods, K can be applied.
Currently, it is only available as a command line tool. To invoke K on the presented examples,
the following command could be used: java korat.Korat --visualize --class korat.examples

.binarytree.BinaryTree --args 5,5,5. This command would produce some visualisations of the
intended structure.

public class BinaryTree {
public static class Node {

Node left;
Node right;

}
private Node root;
private int size;

}

Listing 3.9: Example binary tree implementation.

public boolean repOK() {
if (root == null)

return size == 0;
// checks that tree has no cycle
Set visited = new HashSet();
visited.add(root);
LinkedList workList = new LinkedList();
workList.add(root);
while (!workList.isEmpty()) {

Node current = (Node) workList.removeFirst();
if (current.left != null) {

if (!visited.add(current.left))
return false;

workList.add(current.left);
}
if (current.right != null) {

if (!visited.add(current.right))
return false;

workList.add(current.right);
}

}
// checks that size is consistent
return (visited.size() == size);

}

Listing 3.10: Example binary tree imperative predicate.

So by applying K to the previously illustrated binary tree it is possible to quickly generate
various instances of the tree, one of them being illustrated in Figure 3.3.
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public static IFinitization finBinaryTree(int nodesNum, int minSize, int maxSize) {
IFinitization f = FinitizationFactory.create(BinaryTree.class);
IObjSet nodes = f.createObjSet(Node.class, nodesNum, true);
f.set(”root”, nodes);
f.set(”Node.left”, nodes);
f.set(”Node.right”, nodes);
IIntSet sizes = f.createIntSet(minSize, maxSize);
f.set(”size”, sizes);
return f;

}

Listing 3.11: Example binary tree finitisation.

..

Node0

.

Node1

. Node3.

Node2

. Node4.

BinaryTree0 (size: 5)

.

left

.

left

.

right

.

root

.

right

Figure 3.3: Example visualisation of a BinaryTree of size 5.
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Language Java

Price Free under the GPLv2 licence (see GNU [2011])

Level of Tests Not applicable

Scope Input generator

Adequacy Criterion Input domain coverage

Incremental Not influenced by previously generated inputs

Previously Generated Tests Does note generate test cases

Integration With Manual Tests No integration

Integration With Development Tools Does not integrate with IDEs nor other development tool

Code or Binary Level Works at the bytecode level

Configuration Effort
K only needs to be added to the class path; the im-
perative predicates and finitisation methods need to be
written

Quality of Produced Tests Does not produce test cases

Table 3.13: Summary for K.

RA

RA is helpful as a maintenance tool. It was developed by Brett Daniel and Darko Marinov,
[Daniel et al., 2011]. This tool helps its users in correcting broken tests. It must be used with
caution as the tool will not know if developers have introduced a new bug into the function or just
altered its behaviour to include new functionality. This tool executes the function whose tests got
broken with the last revision and examines its new behaviour, then it suggests some corrections to
the failing test that make it pass again, be it by changing an assertion or an input value. Figure 3.4
illustrates the typical usage of RA

D

D is an invariant detection tool developed at MIT by Michael Ernst and collaborators [Ernst
et al., 2007]. This tool is based in dynamic analysis of applications, this is, it detects likely program
invariants based on values observed from actual executions of the software. Not directly related
to TCG, D can be an intermediate step of it, since invariants may be used to aid the testing
process, either manually or automatically. Manually, in the sense that it may help developers to
better understand how a given function or method should behave. TCG tools could leverage the
invariants to better guide their generation process.

To apply D, users should provide some executions over the intended software, which can
be regular main methods exercising certain parts of the software, or regular JUnit tests. At the
moment D is only available as a command line tool. To invoke it on an existing test suite
the command java daikon.Chicory --daikon TARGET_CLASS should be enough. Then the tool will
execute the target classes and capture the execution traces that are then used to infer the likely
invariants. D is also able to annotate source code files with the detected invariants with the
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(a) Select tests to repair.

(b) Confirm suggested corrections.

Figure 3.4: Applying RA
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Language Java

Price Free under the NCSA licence (see University of Illinois
[2011])

Level of Tests Unit level

Scope Unit test correction tool

Adequacy Criterion Not applicable

Incremental Not applicable

Previously Generated Tests Not applicable

Integration With Manual Tests Possible, since it repairs test cases

Integration With Development Tools Plugins available for Eclipse, only

Code or Binary Level Works at the bytecode level

Configuration Effort Only the plugin installation is required

Quality of Produced Tests Does not produce test cases

Table 3.14: Summary for RA.

following command java daikon.tools.jtb.Annotate INVARIANT_FILE TARGET_SOURCE_FILE.

A JU C T

A JU C T [Whitney, 2011] is a tool that allows the easy creation of JUnit
test cases. This tool allows users to interact more closely with the methods under test by allowing
the user to specify which inputs to pass to the method under test and what behaviour to expect.
To put it simply, A JU C T is a JUnit test stub generator with the ability
to interact directly with the JUnit test being generated. Once all the methods are properly set up
the tool allows the user to export a complete JUnit test file. Perhaps the most interesting feature
provided by the tools is the ability to automatically identify branches in the control flow of a method
and allow the user to specify independent test cases for them.

This tool is only available as a standalone GUI application. In order to use the tool a user should
first load a java class file using the menu-bar (File →New Test) and choose the file for which to
stub out new test cases. The buttons at the bottom of the window (see Figure 3.5) can be used
to cycle through the available methods and gradually build each test case, passing on inputs and
defining appropriate test assertions. When all the methods have proper inputs and assertions the
user may export the test cases to a Java file to be used by external tools like JUnit.

JW

JW is a tool that allows lazy systematic unit testing of Java classes. It was developed by
Anthony Simons [Simons, 2007] and is currently licensed by the University of Sheffield. This tool
preforms bounded exhaustive testing of any compiled java class and it tests it for conformance to
a lazy specification inferred by the tool at run-time from the code.
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Language Various

Price Free under the MIT licence (see MIT [2011])

Level of Tests Not applicable

Scope Invariant Detector

Adequacy Criterion Not applicable

Incremental The more executions available, the more trustworthy the
invariants are

Previously Generated Tests Not applicable

Integration With Manual Tests Possible to leverage unit tests as executions

Integration With Development Tools Does not integrate with any IDE or software developing
tool

Code or Binary Level Works at the binary level

Configuration Effort Requires proper set up of the class path variable, where-
after it is fairly simple to use

Quality of Produced Tests Does not produce test cases

Table 3.15: Summary for D.

Figure 3.5: A JU C T main window.
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Language Java

Price Free under the GPLv3 licence (see GNU [2011])

Level of Tests Unit level

Scope Test case stub generator

Adequacy Criterion Branch coverage

Incremental Not influenced by existing test cases

Previously Generated Tests Can not be opened by the tool again

Integration With Manual Tests This tool facilitates writing of test cases

Integration With Development Tools Only available as a standalone application

Code or Binary Level Works at the source level

Configuration Effort No configuration effort

Quality of Produced Tests Produces complete test cases, with inputs and asser-
tions

Table 3.16: Summary for A JU C T.

JW is available as a Java GUI application where the user is allowed to set the parameters for
the test process. One of three strategies can be chosen: protocol, algebra and states. And
one of three modalities: inspect, explore and validate and lastly the depth of the test pro-
cess. The protocol strategy creates test sequences corresponding to every possible interleaved
ordering of the public constructors and methods in the class under test. The algebra strategy cre-
ates sequences that drive the test object into different concrete states. The last strategy, states,
creates sequences to cover most machine states of the class.

The inspect modality preforms a static analysis of the class to reveal the public API of the the
test class or the state space of the class. The explore modality preforms a similar analysis, but
dynamically instead. The validate modality creates and executes test sequences and validates
the outcome of the sequence at hand. The test depth defines the bound the algorithms should
use for bounded exhaustive testing. It turns out that this tool does not export any usable JUnit files
that can be used by other tools.

3.3 A Case Study - Checkstyle

This section starts by presenting, Checkstyle, a piece of software chosen as target for the ap-
plication of the testing tools described thus far. In this way we intend to “test such testing tools”
checking how they behave and drawing conclusions on their usefulness.

3.3.1 Subject of Study: Checkstyle

To preform our study, Checkstyle was chosen as the target of the tools under review. Checkstyle
was developed by Oliver Burn [Burn, 2011] and other freelance contributors. The purpose of this
tool is to help developers in writing Java code that adheres to a given coding standard. It can
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Language Java

Price Free for academic uses, not open source

Level of Tests Unit level

Scope Test case regeneration tool

Adequacy Criterion Bounded exhaustive testing

Incremental Previously generated test oracles can be used in gener-
ation of new tests

Previously Generated Tests Stored as a binary file

Integration With Manual Tests Possible to co-exist

Integration With Development Tools Only available as a GUI application

Code or Binary Level Works at the binary level

Configuration Effort JW requires a licence under which the jar file ex-
ecutes

Quality of Produced Tests Not producing the code for the test cases, it only pro-
duces a binary file that the tool uses to regenerate tests

Table 3.17: Summary for JWalk.

be configured to check virtually every coding style, but it defaults to the standard Java coding
conventions [Sun Microsystems, Inc., 1999] that comes packaged with the tool. Other reasons
for the success of Checkstyle, are easy the integration with other Java development tools like
the Eclipse IDE and the Apache Maven project manager. It is important to note that Checkstyle
performs several I/O operations, in reading: a) Checkstyle configuration files; b) Desired coding
styles; and c) source files to check. There is also the printing of a report that can be analysed by
the users of the tool, and information about the process that is sent to the default system logger.

This application was chosen for our case study because it is a common Java application, and
for its history in software engineering research [Cornelissen and Moonen, 2007; Zaidman et al.,
2007, 2008; Lubsen et al., 2009]. Before digging in to the case study itself, some information about
the application was collected, especially information about its source code. First, an overview of
Checkstyle has shown that the tool is composed of 22 packages and over 300 classes (Table 3.18).
The first line of Table 3.18 presents the total metrics for the project while the other lines provide
an average value for each level. There is also an existing test suite for Checkstyle, which allows
some comparisons to be made.

Due to time limitations, it was decided to conduct this study in a smaller, but also relevant, part
of the tool. In order to locate which part of the application should be used while evaluating TCG
tools, a Fan-In/Fan-Out table of the packages of Checkstyle was derived (Table 3.20). The most
relevant package was found to be com.puppycrawl.tools.checkstyle.api, due to the number of
packages that depend on it. The existing test cases for the package cover about 3.5 % of the
whole application as detailed in Table 3.19.
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Lines of
Javadoc

Non Comment
Source Statements Methods Classes Packages

Project 1,674 20,781 2,240 327 22

Package 76 945 102 15

Class 5 64 7

Method 1 9

Table 3.18: Information collected from Checkstyle.

Element Coverage (%) Covered
Instructions

Missed
Instructions

Total
Instructions

Target Package 73.2 3,896 1,430 5,326

src/checkstyle 81.3 36,791 8,480 45,271
target/generated-sources/antlr 83.5 20,348 4,019 24,367

Totals 31.4 57,139 12,499 69,638
Average 43.4 31.4% 68.6% 100.00%

Table 3.19: Coverage results achieved by the manual test cases.

3.3.2 Tools Tested

The TCG tools that were successfully applied to the subject of our study, com.puppycrawl.tools
.checkstyle.api, were: R, QC for Java, JC, F4JU, T2, D,
A JU C T, RA and JW. In this section we will discuss the results
obtained from exercising such tools.

Starting with R, it was decided to run in two time spans, 2.5 and 5 minutes. Table 3.21
shows the coverage results obtained with both the test suites. Clearly there is little gain in increas-
ing the running time from 2.5 to 5 minutes. Even with 5 minutes R was unable to achieve
a coverage result nearly as remarkable as the manually written test cases.

Let us now proceed by discussing the three PUT tools that were covered by this study, QC
for Java, JC and F4JU. These tools were applied successfully to the target package
and all of them achieved the same line coverage as the manually written tests. They have, how-
ever, allowed the coverage over the input domain to increase, by instantiating the test cases for
several inputs.

The T2 Framework was also applied with success to a class of the target package, com.puppycrawl
.tools.checkstyle.api. Because this tool requires some specifications in order to reveal its full
potential, it was decided to produce specifications for one class (FastStack). This tool was able
to cover 12.8% of the total instructions in comparison with the 15.9% achieved by the manually
written test cases. This is not a bad result considering it was done automatically with just some
simple specifications.

The application of D used only a fraction of the test suite of the case study. It was possible
to infer some invariants from test cases, an example of which can be found in Listing 3.12. An
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Package Fan-In Fan-Out

com/puppycrawl/tools/checkstyle 96 166
com/puppycrawl/tools/checkstyle/api 993 351
com/puppycrawl/tools/checkstyle/checks 180 211
com/puppycrawl/tools/checkstyle/checks/annotation 20 49
com/puppycrawl/tools/checkstyle/checks/blocks 17 31
com/puppycrawl/tools/checkstyle/checks/coding 82 232
com/puppycrawl/tools/checkstyle/checks/design 11 38
com/puppycrawl/tools/checkstyle/checks/duplicates 31 56
com/puppycrawl/tools/checkstyle/checks/header 5 10
com/puppycrawl/tools/checkstyle/checks/imports 29 58
com/puppycrawl/tools/checkstyle/checks/indentation 118 145
com/puppycrawl/tools/checkstyle/checks/javadoc 22 77
com/puppycrawl/tools/checkstyle/checks/metrics 26 55
com/puppycrawl/tools/checkstyle/checks/modifier 2 7
com/puppycrawl/tools/checkstyle/checks/naming 27 48
com/puppycrawl/tools/checkstyle/checks/regexp 24 34
com/puppycrawl/tools/checkstyle/checks/sizes 14 41
com/puppycrawl/tools/checkstyle/checks/whitespace 26 54
com/puppycrawl/tools/checkstyle/doclets 10 10
com/puppycrawl/tools/checkstyle/filters 24 66
com/puppycrawl/tools/checkstyle/grammars 10 8
com/puppycrawl/tools/checkstyle/gui 153 173

Total 1,920 1,920

Table 3.20: Fan-In and Fan-Out by package of Checkstyle.

Element Test
Suite Coverage (%) Covered

Instructions
Missed

Instructions
Total

Instructions

Target
Package

R 2.5 min 38.60 2,057 3,269
5,326R 5 min 39.30 2,092 3,234

Manual Tests 73.20 3,896 1,430

Table 3.21: R generated tests for the target package compared with manually written tests.
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example of an annotated method with the extracted invariants is illustrated in Listing 3.13.

===========================================================================
com.puppycrawl.tools.checkstyle.api.FastStack.clear():::ENTER
Variables: this this.mEntries this.mEntries.getClass()

this != null
this.mEntries != null
===========================================================================
com.puppycrawl.tools.checkstyle.api.FastStack.clear():::EXIT
Variables: this this.mEntries this.mEntries.getClass() orig(this) orig(this.

mEntries) orig(this.mEntries.getClass())
this.mEntries == \old(this.mEntries)
this.mEntries != null
this.mEntries.getClass() == \old(this.mEntries.getClass())
===========================================================================

Listing 3.12: Two Invariants inferred by D.

public class FastStack<E> implements Iterable<E> {
...

/*@ requires this != null; */
/*@ requires this.mEntries != null; */
/*@ ensures this.mEntries != null; */
/*@ ensures \typeof(this.mEntries) == \old(\typeof(this.mEntries)); */
public void clear() {

mEntries.clear();
}

...
}

Listing 3.13: Example of a class annotated with invariants detected by D.

Albeit useful, the invariants detected by D are incomplete in general. Take for instance
the annotated method in Listing 3.14, which only take one of three possible values: 0, 1 or 100.
This is obviously incomplete, since there is nothing preventing a Stack instance from having any
particular size.

A JU C T was also successfully applied to the case study. The work
flow of this tool is not much of an improvement over manually writing the test cases. After the first
few test methods the user will probably be fed up with constantly having to manually introduce test
code in so many different text boxes without any handy auto complete feature like in modern IDEs.
The tool also lacks some relevant features, like the possibility of creating tests that expect a given
exception to be thrown, or to generalise on a generic data type.

To apply RA, changes were introduced to methods of the target of our study, com.

puppycrawl.tools.checkstyle.api. After introducing the changes, the tests started failing, as
expected. However, using RA it was possible to fix them, using the new functionality that
was used, by altering the assertions of the test case.

Finally, JW was successfully applied to a class of the case study, the FastStack class.
This had to undergo some changes in order for JW to properly test it and produce accurate
test oracles. The problem was that some code used in the class was not quite deterministic and
was causing some problems for JW.
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public class FastStack<E> implements Iterable<E> {
...

/*@ requires this != null; */
/*@ requires this.mEntries != null; */
/*@ ensures this.mEntries != null; */
/*@ ensures \result == 0 || \result == 1 || \result == 100; */
/*@ ensures \typeof(this.mEntries) == \old(\typeof(this.mEntries)); */
public int size() {

return mEntries.size();
}

...
}

Listing 3.14: Example of incomplete invariants detected by D.

3.3.3 Tools Not Tested

The tools that were not applied with success to com.puppycrawl.tools.checkstyle.api were: JM-
LUNG, J P, UC, U, E and P. In this section we discuss why
this happened.

The first tool that was not able to run successfully on the subject of this study was JMLUNG,
the problem arising from the classes not being able compile under the jml4c compiler, a compiler
for JML specifications, which is a requirement for JMLUNG. The tool was applied to an example
annotated class provided at jml4c’s website. This new class consists of a simple representation
of a bank account and JML is used to specify legal operations over it. Executing the generated
test class without providing any additional inputs the tool was able to generate 75 test cases of
which 51 were skipped and 5 failed. It is worth mentioning that the tests that failed were due to
the incorrect handling of null values in the constructor and main methods of the class. The test
cases skipped are due to the inputs not meeting the specified pre-condition. Some more values
were provided to the test cases through strategy files generated by the tool, which was then able to
generate a total of 588 test cases of which 402 were skipped and the same 5 failed, as is illustrated
in Table 3.22.

Total Passed Skipped Failed Used Tests (%) Unused Tests (%)

Without custom
values 75 19 51 5 25.33 74.67

With custom val-
ues 588 181 402 5 30.78 69.22

Table 3.22: Comparison of JMLUnitNG results.

Continuing to J P and related tools, UC and U, it was not possible
to successfully apply them to com.puppycrawl.tools.checkstyle.api, nor Checktyle, due to the
dependency of Checkstyle on Java Native interface methods. A discussion was opened with the
team behind J P, to learn a way to work around this limitation. It was concluded that
making Checkstyle work with J P would consume too much time and there would
be little or no return from it. In addition, UC is very unstable at the time and U is not
working properly.
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E was unable to run due the lack of maintenance of the project. Dependencies were broken
and the tool will not run regardless of the target system. P was not applied, because it is meant
for systems implemented with the .NET framework.

K was not successfully applied to Checkstyle. The results achieved with K were either
too loose or too strict, and proper ones were never generated. However, it was applied to some
examples provided by their respective developers.

3.4 Summary

The tools covered in this case study are regarded as the ones that could aid in the testing phase
of the software development cycle. Other tools exist which either were not available for public use
or there is no usable implementation available. These include TestEra [Marinov and Khurshid,
2001], Rostra [Xie et al., 2004], Symstra [Xie et al., 2005] and JTestCraft [den Hollander, 2010].

Some commercial tools were also found, like JTest [Parasoft, 2011] and Agitar [Agitar Tech-
nologies, 2011], though very little is known of how these solutions work. However, according to
Boshernitsan et al. [2006], Agitar makes use of the the D invariant detector to generate in-
variants and then uses them to improve the test generation process. At the time of writing there is
no pricing information for these tools in their homepage. Evaluations are available for enterprises.

Other tools that were not considered for this case study are tools that rely on the existence of
models for the tool under test, like TGV [Jard and Jéron, 2005] and TorX [van Osch, 2005]. The
reason these tools were discarded was due to the common lack of a model from which to extract
test cases, like Checkstyle, or in some cases the existence of an outdated model.
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Chapter 4

R - An Experiment in TCG Tool
Interoperability

There are two ways to contribute to the advance of technology - either by inventing something new
and useful, or by showing that the current state-of-the-art tools can be put together in a way such
that the whole is better than the sum of its parts.

Tool integration, the second alternative above, is a challenging activity. We follow its path in
building a new TCG tool - R - by putting together two tools reviewed in the previous chapters -
R and D. The inspiration came from E, a tool that attempts to infer an operational
model of the target software from existing test cases and then applies random testing to check the
inferred model . Our tool is named R, a construction from R and D. R
aims to be a replacement to the abandoned E, while introducing some new functionality.

Like E, R attempts to infer a model of correct behaviour of a system from an existing
test suite using D. Then, it uses R to generate assertions that check the model,
achieving some degree of acceptance testing. The new assertions go beyond the ones that are
generated by default by R, which are meant for regression testing. The most interesting
feature introduced over E is the possibility to generate input values based on the inferred
model. Figure 4.1 depicts the overall architecture of R.

Classes 
Under Test

Existing 
Test Suite

New Test 
Suite

Raikon

Acceptance 
Assertions

Randoop

Method 
Invokations

Sequence 
Generator

Input 
Generator

Daikon

 Post 
Conditions  

& 
Invariants

Pre 
Conditions

Operational 
Model

Figure 4.1: Architecture for R

R should improve upon the input domain coverage and help developers in creating com-
plete test suites. R should also be able to find more flaws in faulty software, since failing
tests may be violating the inferred model and that may mean that there is an error in the software
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or that the inferred model is incomplete. This is one of the reasons not to completely trust R,
as the model may be incomplete. Ideally R would use a user provided model of operation.
Inferring the model from an existing test suite is meant as a backup solution.

4.1 Implementation

To implement the core of R, first we have studied how R implements checks and how
the checks are added to sequences. We also had to study how D handles invariants. Starting
with D, we have learned that the invariants are divided as unary, binary and ternary according
to the number of variables involved in it. After analysing R, we have learned that there
are no classes implementing generic n-ary checks. It became clear that it would be necessary to
implement a similar architecture for the checks in R. So it was decided to implement one
class for each arity: unary, binary and ternary. To simplify the conversion between invariants from
D to checks of R, a field was added to the newly implemented classes to indicate
what operation it intends to express. This allowed a reduction of the number of classes needed to
convert the invariants into checks. Finally, to glue the whole process, a sequence visitor (which
is how R finds which checks should be added to a given statement) was implemented to
convert invariants from D into checks of R on a statement-by-statement approach.

In order to support pre-state invariants inferred by D, the sequence visitor was extended to
create a deep copy of the object on which the statement is being invoked. The deep copy is done
with a small library named J D-C 1. This library relies on standard reflection
mechanisms. This decision introduced a limitation in the tool. When the object to be cloned is
too big and complex, i.e. involving too many nested objects, the sequence generation process is
delayed.

Since D refers to parameters by name, and since parameter names are not available by re-
flection, it was necessary to use a byte code engineering library to gather that information. D
relies on the BCEL2 library. However, using BCEL proved not easy to use, and we eventually op-
ted for another such library, P3, which provides a much simpler way to get parameter
names. This decision has limited the tool to only being able to get parameter names for classes
whose debugging information is available, meaning that the classes need to be compiled with the
debug flag on.

To generate input values from the inferred entry conditions, it would be necessary to use a
constraint solving library to find all the values in range of the bounds defined by the conditions.
Two major libraries were found in this respect, JCP4 and C5. Experiments were made with
both solvers and JCP was the chosen as the solver to include in R. In our experiments
with both solvers, we have learned that C was not as reliable and not as scalable as JCP
and that both solvers however lack the support for floating point numbers.

Some pragmatic choices were also made in order to make for some missing functionality in
D. For instance, there is no simple way of getting the name of a variable without tokens
introduced by D. Therefore, it was decided to apply regular expression recognition to the
variable names to eliminate each token. This introduces some delay while processing the correct

1Available at http://code.google.com/p/cloning/
2Available at http://commons.apache.org/bcel/
3Available at http://paranamer.codehaus.org/
4Available at http://www.jacop.eu/
5Available at http://www.emn.fr/z-info/choco-solver/
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variable name. The internal API of D also has some limitations when attempting to learn
what the type of a given variable is. Some methods for such a purpose are incomplete, others
non existing, so it was decided to attempt to complete such methods as much as possible.

Currently, R is available at http://code.google.com/p/raikon/. At the moment it
is only available as a command-line tool. All the usual R options are still available, new
options being added to control the extra functionality. The options are the following:

use-daikon:boolean Signals that this run will use D artefacts (Slower) [defaults to false].

invoke-daikon:boolean Signals that this run will invoke D to produce an invariants file
(Slower) [defaults to false].

test-case:string The fully-qualified name of a test case.

projectPrefix:string The project prefix to filter out unwanted classes. Includes only classes
with the prefix.

exclusionPattern Complements projectPrefix. Excludes specified classes.

heapSize:string The heap size for invoking D. Formatted as for the JVM [defaults to
“512m”].

invFileName:string The name of the file that will store the invariants [defaults to “invariants”].

disable-regression:boolean Signals that this run will disable regression checks [defaults
to false].

daikon-config:string Specifies the D configuration file, if any.

lowBound:int Lower bound for the input search domain [defaults to -100].

uppBound:int Upper bound for the input search domain [defaults to 100].

maxSolutions:int Maximum number of solutions [defaults to 100].

4.2 Evaluation Set Up

To evaluate R, three experiments were conducted. The first one addressed FS class
of the subject of our tool review, Checkstyle. The other two experiments were conducted on the
Apache Commons Collection6, one on an arbitrary package of the project and the other on the
whole project. The reason for choosing Commons Collections is due to R having been
evaluated on it with success [Pacheco, 2009]. These three experiments also allowed us to evaluate
R on three different levels, a single class, a package and a whole system.

We will measure the number of generated test cases and the input bound coverage, which is
measured by the tool itself. We measure line and method coverage to compare both tools effect-
iveness in covering code elements. They are measured with the EclEmma7 plugin for Eclipse. We
also measure a ratio of assertions by cyclomatic complexity, to achieve a better idea of the amount

6Available at http://commons.apache.org/collections/
7Available at http://www.eclemma.org/
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of assertions generated. Assertions are measured with an egrep script and cyclomatic complex-
ity is measured with JavaNCSS8. Finally, we also compare the number of generated failing test
cases, measured with JUnit.

To perform the experiments we ran both tools, R and R, in increasing time spans,
starting at 0 and incrementing 5 seconds after each run. We repeat this process until the number of
generated test cases starts to stabilise, or the time reaches 900 seconds. In between runs we take
note of the desired metrics. The sequences generated have a maximum size of 5 statements. The
flow chart in Figure 4.2 illustrates the steps for the experiments, the results of which are detailed
in the following sections.

1. Run Tool 2. Take Note 
of Results 3. Stable?

4.1 End 
Experiment

4.2 
Increase 

Time Span

Yes

No

Figure 4.2: Flow of the experiments.

4.3 Results

4.3.1 Experiment A: Single Class

This experiment started with the most simple case where R was used, the FastStack
class from com.puppycrawl.tools.checkstyle.api. Both tools were ran up to 120 seconds. Fig-
ure 4.3 provides a comparison of results over the elapsed time. R was able to generate
more sequences, i.e. more test cases in a 120 seconds time span, R was able to gen-
erate approximately 6,500 while R was able to generate around 21,000. R was also
able to significantly increase the input coverage in comparison to R. R managed to
cover around 7,700 distinct inputs while R only managed to cover about 200. Both tools
managed to cover all the lines and methods of the FastStack class. When comparing the ratio of
number of assertions by cyclomatic complexity, R also came ahead of R achieving
a ratio of almost 15,000 against the ratio of 1,000 achieved by R. When comparing the
number of failed tests R did not generate any failing test cases while R generated
around 15,000 failing test cases. Running R adds an overhead of about one second to read
the invariant file and to generate the new inputs.

8Available at http://www.kclee.de/clemens/java/javancss/
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(e) Comparison of assertions by cyclomatic complexity (14).
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(f) Comparison of failing tests.

Figure 4.3: Results for FastStack
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4.3.2 Experiment B: Package

The package from Commons Collections chosen to perform our second experiment was, org.
apache.commons.collections.collection which holds classes that extend the standard Java in-
terface java.util.Collection. Results for the experiment can be found in Figure 4.4. This exper-
iment took about 240 seconds to stabilise. The results for this package are also very encouraging.
R generated around 22,750 test cases while R generated 22,000. Still, the number
of covered inputs was significantly increased with R managing to cover 8,672 distinct inputs
and R covering 2,781. Both tools achieved similar results in line and method coverage.
The line coverage came close to 42% and method coverage was about 40%. When comparing
the ratio of assertions by cyclomatic complexity, R was also able to surpass R with
a ratio of around 1,400 against the 400 achieved by R. R generated close to 15,500
failing test cases while R generated around 1,000 failing test cases. R took around
two seconds in reading the invariants file and generating new inputs.

4.3.3 Experiment C: Whole System

Our experiment with the whole Commons Collections library, was not as successful. This exper-
iment was conducted to a limit of 900 seconds after which only R was able to stabilise.
R was able to generate around 360,000 test cases achieving a coverage of 1,450,000 in-
puts while R was only able to generate about 123,000 test cases, that cover around 410,000
inputs. In terms of coverage both tools were close to each other. However, R came out on
top with a line coverage of 41.9% and method coverage of 60%, while R managed a line cov-
erage of 39.7% and method coverage of 57.4%. Comparing the rate of assertions by cyclomatic
complexity, R and R were equal up until 600 seconds, where R stopped
generating assertions. R achieved a rate of 147.41 assertions by cyclomatic complexity and
R achieved a rate of 105.50. R also generated more failing tests than R with
a total of 21,040 failing tests and R generating 3,940 failing tests. Figure 4.5 Illustrates
the results obtained over time.

4.4 Discussion

We can see that the metrics measured for both tools increase proportionally over time. It can also
be seen that the generation of test cases starts growing at a lower pace after a given moment.
This is due to the tools generating unique test cases, so the number of generated tests decreases
over time. When the tools test all methods, they permute the sequences in order to generate new
ones.

Overall, R preformed better than R. In the smaller experiments R was able
to surpass R. It significantly exceeded the coverage over input domain, while generating
more test cases. The largest experiment, with the whole library, was less successful. R
was able to generate more test cases and to cover more inputs. This is due to R’s over-
head when visiting sequences. Nonetheless, when comparing the number of failing tests, R
surpassed R. This could mean that R has more potential to find more flaws in the
software under test.

Over time, we believe that R can preform better than R on all scenarios, when its
limitations are lessened.
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(e) Comparison of assertions by cyclomatic complexity
(142).
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Figure 4.4: Results for org.apache.commons.collections.collection
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(d) Comparison of covered methods.
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(e) Comparison of assertions by cyclomatic complexity
(142).
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(f) Comparison of failing tests.

Figure 4.5: Results for Commons Collections
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Chapter 5

Conclusions

This is the final chapter of this dissertation which sums up the whole work, presents answers to
the research questions and finally, it opens up avenues for future research.

Summing up, we have conducted two reviews: a literature review, where literature of the prom-
inent topic, software testing, of our work was reviewed and a tool review, where we have evaluated
existing tools. Then we gave our own contribution to the field by showing that, rather than invent-
ing new tools for TCG one benefits from combining existing tools so as to get the best of them.
Our choice was to merge R with D, leading to R, whose implementation and
evaluation was performed.

Our literature review allowed us to learn more about TCG and related techniques in a theoret-
ical approach. We have also learned of the major challenges in testing. We have studied random
testing, bounded exhaustive testing, mutation-driven testing and model-based testing. These tech-
niques have their advantages and disadvantages, but they all aim at reducing the cost of testing
in a development environment. We have also learned the current state of the art in constraint
inference/solving techniques, since they are very closely related with software testing. The most
relevant uses of constraint inference techniques were found to be: invariant detection, symbolic
execution, dynamic analysis and concolic execution. While the constraint solving techniques stud-
ied amounted to TCG satisfiability solving. This study allows to answer our first research question,
What methods are there for Java unit test case generation?. Our research has revealed that the
most common methods of for the Java language are random testing, bounded exhaustive testing
and model-based testing. We have also learned about mutation-driven testing, but this is a recent
technique and no public implementation of this technique was available.

Finally, our literature review has shown some techniques that could either directly or indirectly
useful to TCG, namely invariant detection and input classification. Invariant detection is a tech-
nique that relies on constraint inference to infer invariants from source code and input classification
is a technique that classifies inputs based on their effects on the target software.

Our tool review, compared many of the tools uncovered in our literature review. Not all of the
tools were successfully applied to our study, Checkstyle. Nonetheless, it was shown that the tools
that were not applied, were either inappropriate for the tool under study or simply unstable at the
time of the case study. The most interesting tools were R, F4JU and JMLUNG.
R is a very interesting tool that automatically generates a regression testing suite. This tool
captures program executions and builds test cases from the observable states of the software. It
is however, incapable of exploring a significant part of the software mostly due to its random input
generation strategy, which lacks the capability to generate more complex inputs. F4JU is
very similar to both QC for Java and JC. It does however, provide some additional
features that make it more appealing that the other two. Like the possibility to feed test data
through a csv file.

Even though JMLUNG was not successfully applied to the subject of our study, it was found to
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be very interesting by being able to extract oracles from JML specifications. It also features some
reflection mechanisms helping to improve test data generation. Nonetheless, it allows users to
provide their own input data. The major set back of JMLUNG is that it requires JML specifica-
tions. Another problem of JMLUNG is that it generates too many unused test cases, leading to
a considerable overhead in TCG.

In our tool review we have also found some very interesting tools. The ones that we would like
to point out are D and RA. D is able to take some of the already written test
cases and infer code invariants. This is an interesting functionality, which we found could be used
by other tools to improve TCG, as was shown with R. RA is another interesting tool
to help developers in fixing broken test cases.

Let us raise some considerations about the tool review. Firstly, it was noted that some of the
tools covered by our study were not suited for the case study, Checkstyle. However, it was de-
cided to continue using Checkstyle as case study due to the previously stated reasons, i.e. for
being a common Java application with a history in software engineering research [Cornelissen and
Moonen, 2007; Zaidman et al., 2007, 2008; Lubsen et al., 2009]. Another relevant observation
about the tools that were covered by this study is that they are far more usable when they come
integrated in an IDE, or some form to apply the tool through a GUI. Command line tools are, most
of the times, quite complicated to set up, especially in real life applications whose class paths are
not always easy to configure.

A last consideration about the studied tools, is that they do not seem ready to be used by the
software industry. Some tools, like QC for Java and F4JU, even though capable of
significantly improving test cases by increasing their input space coverage, are still not automatic
enough to efficiently reduce the test case creation cost. In addition, development and maintenance
of these tools appear to be fairly slow. Other tools like J P and U are more of
research tools than proper tools for use in industrial environments, as their set up is not always
simple and in some cases there is very little or no introductory documentation available. However,
due to their nature these tools are in constant development. Finally, this study covers some tools
that are both stable and easy to use, as is the case of R and D, but are also usable
in research contexts by allowing new approaches to solve the problems they aim at solving.

Tables 5.1 and 5.2 sum up all information about the tools covered by the review, enabling us
to answer the second research question which triggered the work. How do the existing methods
compare to each other? The answer is that there are several tools available for TCG. However,
some tools are widely unstable or unable to efficiently reduce the costs of software testing.

Concerning the last research question, Is there an opportunity to integrate such a method in a
tool for fully automated test suite augmentation?, we have implemented, R, a tool that integ-
rates R and D. The tool uses an operational model inferred by D to improve
the assertions used by R and to generate a higher number of valid inputs. This effect-
ively increases the coverage over the input domain and in some cases improves the line coverage
in comparison with the test suites generated by R. However, in larger systems, R
works significantly slower in comparison with R, but that could be due to some limitations
of R, which can be improved. Nonetheless, the results obtained from R were good
enough to inspire future work on the tool. Which answers our last research question affirmatively.

There are, however, some future improvements to R. First and foremost, the tool limita-
tions should be amended. In an attempt reduce the delay introduced by the deep copy strategy
there is a possibility of using serialisation mechanisms instead of reflection. To get the parameter
names of a statement, a new strategy also needs to be implemented. For example using the
same library as D, BCEL. Or by extending D to also provide the parameter position in
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the parameter array, thus dispensing the need for both P and BCEL. To patch up the
input generation limitation, of only being able to generate integer values, the solver, JCP could
be extended to support floating point numbers, or we could implement a similar library, whose
focus would be the generation of input data based on the conditions inferred by D. Also, the
improvement of the internal API of D should somewhat improve performance and simplify
some internal logic of R.

Other than repairing the discussed limitations, R could greatly benefit of more integration
with other development tools. Like the Eclipse IDE or the Maven project manager. Other im-
provements that could benefit R are improvements on both of the tools that make R.
A suggestion to improve D would be use existing specifications when inferring invariants.
Instead of relying solely in execution traces, D could also attempt to use existing specifica-
tions, such as JML specifications or existing abstract models of the software, to enrich the one it
infers. R could offer more control on the sequences it generates, allowing a differentiation
of set up statements, i.e. statements that prepare the instance, from statements that test the in-
stance. Also, in the future, R could benefit from a combinatorial testing strategy, in which
all possible input combinations are tested. Table 5.3 sums up a profile of R.

Language Java

Price Free under the MIT licence (see MIT [2011])

Level of Tests Unit level

Scope Test case generator

Adequacy Criterion Fault detection / specification coverage

Incremental Existing test cases are used to infer a model of correct
operation

Previously Generated Tests Overwrites or complements previously generated test
cases

Integration With Manual Tests Co-exist with manual tests

Integration With Development Tools Only available as a command line tools

Code or Binary Level Works at the binary level

Configuration Effort The standalone command line tool requires a proper
setup of the class path variable

Quality of Produced Tests

Produces complete test cases, with inputs and test or-
acles. Some of the produced tests seem to contain prob-
lems that prevent the test classes from compiling and
therefore running. Nonetheless, they are easy to fix and
execute

Table 5.3: R Summary.

In conclusion, our work has opened some paths for future research. There is already a wide
variety of TCG tools whose source code is open and in some cases, there is room for improvement.
For instance, integrating K with F4JU in order to allow the generation of more complex
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data types to pass them on to a PUT. D could be combined with K, in order to produce
a valid predicate for the structure to be generated from the invariants inferred by D. Another
avenue for future research is the generation of more abstract test oracles. The invariants inferred
by D are influenced by execution traces, and when the number of execution traces is not
enough, the invariants inferred will reflect the execution traces, thus the invariants will not reveal
appropriate properties for acceptance testing. Allowing D to gather information from other
means than executions might improve the inferred invariants. These experiments could produce
advancements in TCG.

Summing up, tool interoperability shows potential [Sun et al., 2009; Marín et al., 2011]. The
effort put in combining tools is payed off by the results, which in most cases, are better than the
sum of its parts. This dissertation is proof of that, as our work showed with R.
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Index of Terms

acceptance testing
a test conducted to determine if the requirements of a specification or contract are met. 6,
7, 51, 64

adequacy criterion
measures the quality of the test suite following a given criterion. 7–9, 19, 73

assertion density
adequacy criterion that measures number of assertions per line of code. 7, 8

black-box testing
tests to validate a specification without any knowledge of the code. xi, 5, 6, 74

bounded exhaustive testing
testing technique that exhaustively tests the input domain. 9, 10, 12, 14, 18, 42, 44, 59

concolic execution
a technique that results from the combination of symbolic execution and dynamic analysis.
15, 16, 18, 35, 59

constraint inference
techniques to infer simpler constraint systems from more complex ones. 8, 9, 15, 16, 59

constraint satisfaction problems
mathematical problems defined as a set of objects whose state must satisfy a number of
constraints. 15

constraint solving
techniques to solve constraint systems. 9, 15, 16, 52, 59

cyclomatic complexity
metric that measures the number of linearly independent control flow paths. 53–58, 78–97

dynamic analysis
techniques that attempt to infer constraint systems from actual executions. 9, 15, 16, 59, 73

fault detection
adequacy criteria that measure defect detection effectiveness. 7, 61, 74

formal concept analysis
a way of automatically deriving an ontology from a map of objects and their properties. 9,
10, 99
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formal software verification
a process of formalising software validation. xi, 3, 76

functional tests
type of tests that verify that a is abiding a design specification. 7

genetic algorithms
group of algorithms that search for solutions by evolving existent candidates. 12

grey-box testing
a method that combines black-box testing and white-box testing, validates a certain specific-
ation using knowledge of internal algorithms and structures. xi, 5, 6

input bound coverage
measure of how much of the input is covered. 7, 12, 23, 37, 46, 51, 53, 60–62

input classification
technique to classify inputs by order of criticality. 17, 59

integration testing
tests for modules or sets of units. 6

invariant detection
research field that aims to detect invariants from source code. 16, 17, 59

model checking
technique to formally validate software. 3, 31

model-based testing
technique that generates test cases from models. 9, 10, 12, 14, 18, 59

mutation
artificial change introduced in the source code, with the aim of detecting it. 7, 12, 14

mutation analysis
technique to measure how effective a test suite is in fault detection. 7, 12

mutation-driven testing
Test case generation technique to detect mutants. 9, 10, 12, 14, 59

non-functional tests
tests for non-functional requirements, such as performance, stability, etc. 6

ontology
a formal representation of knowledge as a set of concepts within a domain. 9

parameterised unit testing
generalisation of unit testing allowing inputs as parameters. xi, 6, 12, 23, 25, 27, 37, 46, 61,
64
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random testing
Test case generation technique that randomly generates test cases. 9, 10, 12, 14, 18, 27,
51, 59

regression testing
a type of testing that seeks to uncover new errors in existing functionality after making
changes. 6, 7, 23, 51, 59

satisfiability solver
determine if the variables of a given boolean formula can be assigned. 16, 59

software
set of functions that compose an application. 3–6, 8, 9, 12, 14–19, 23, 31, 32, 35, 40, 45,
50, 51, 59, 60, 74, 75

software bug
flaw that causes incorrect behaviour of code. 10, 12

software testing
process intended to check the quality and correctness of software. 3, 5–10, 12, 14, 15,
17–19, 21, 27, 37, 40, 42, 44, 50, 59, 60

specification mining
techniques that attempt to generate program specifications from executions. 17

stakeholder
a person with an interest or concern in a product. 6, 7, 18

structural coverage
coverage criteria that measure how many code elements are executed. 7, 29, 46, 53, 54,
56, 60–62

symbolic execution
techniques that attempt to generate a constraint system through static execution. 9, 15, 16,
59, 73

system testing
type of tests that check if a given software is behaving as expected. 6, 7, 35

system under test
application or component being targeted for testing. 6, 12, 14, 16, 17, 35, 62

test
sequence of instructions that assert a given expected behaviour. 4–8, 10, 12, 14, 17–19,
23, 27, 35, 42, 46, 48, 51, 54, 59, 60, 76

test case generation
techniques that automatically generate test cases. vii, xi, 4, 8–10, 12, 14–18, 21, 23, 27,
29, 31, 37, 40, 45, 46, 51, 59–61, 63, 64, 74–76
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test data generator
component of a test case generation that generates data. 9, 17, 23, 60

test oracle
component of a test case generation that asserts expected behaviour. 6, 12, 14, 15, 18, 23,
35, 60, 64

test suite
a set of test cases. 3, 4, 6–9, 12, 17, 19, 51, 52, 60, 73

theorem proving
a formal software verification technique that proves program correctness. 3

unit testing
testing of small application units. 6, 35, 74

white-box testing
tests to check internal workings and structures. xi, 5, 6, 74
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Appendix A

Detailed Results

The tables that lead to Figure 4.3, Figure 4.4, Figure 4.5 can be found bellow.

Time Reading Invariants 0:00:00.738

Time Solving Constraints 0:00:00.260

Total Time 0:00:00.998

Table A.1: Set up time for FastStack

Time Reading Invariants 0:00:01.502

Time Solving Constraints 0:00:00.647

Total Time 0:00:02.149

Table A.2: Set up time for org.apache.commons.collections.collection

Time Reading Invariants 0:02:01.674

Time Solving Constraints 0:00:03.270

Total Time 0:02:04.944

Table A.3: Set up time for Commons Collections
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APPENDIX A. DETAILED RESULTS

G
enerated

Sequences
C

overed
Inputs

Line
C

overage
(%

)
M

ethod
C

overage
(%

)

A
sserts/

C
yclom

atic
C

om
plexity

(142)

Failing
Tests

Tim
e

R


R


R


R


R


R


R


R


R


R


R


R


0
0

0
0

0
0.0

0.0
0.0

0.0
0

0
0

0

5
2,008

1,154
766

1,131
31.1

37.5
30.6

36.7
31.63

58.15
64

617

10
4,315

2,636
1,089

2,253
34.0

38.7
34.7

36.7
73.32

150.80
164

1,597

15
6,637

4,142
1,269

3,071
35.6

39.1
35.7

37.8
115.27

241.37
382

2,537

20
8,945

5,628
1,438

3,762
35.6

39.1
35.7

37.8
157.85

337.18
474

3,537

25
11,017

7,232
1,560

4,433
35.8

39.1
35.7

37.8
197.50

429.25
562

4,514

30
13,009

8,688
1,642

4,844
36.6

39.1
36.7

37.8
234.63

532.39
567

5,604

35
14,864

10,125
1,757

5,354
36.6

39.1
36.7

37.8
267.07

624.35
656

6,577

40
16,481

11,446
1,831

5,784
36.6

39.1
36.7

37.8
292.37

714.97
732

7,547

45
17,918

12,857
1,896

6,118
39.3

39.1
37.8

37.8
324.20

799.34
823

8,424

50
19,103

14,143
2,098

6,530
39.3

39.1
37.8

37.8
346.18

881.18
887

9,300

55
20,119

15,364
2,171

6,823
39.3

39.1
37.8

37.8
363.35

958.64
940

10,122

Table
A.6:D

etailed
results

for
org.apache.commons.collections.collection

(0-55
seconds)
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APPENDIX A. DETAILED RESULTS

G
enerated

Sequences
C

overed
Inputs

Line
C

overage
(%

)
M

ethod
C

overage
(%

)

A
sserts/

C
yclom

atic
C

om
plexity

(142)

Failing
Tests

Tim
e

R


R


R


R


R


R


R


R


R


R


R


R


125
22,075

22,853
2,781

8,672
41.7%

40.3%
39.8%

38.8%
398.46

1,378.99
1,058

14,716

130
22,084

23,014
2,821

8,696
41.7%

40.3%
39.8%

38.8%
398.89

1,388.27
1,058

14,814

135
22,089

23,102
2,837

8,720
41.7%

40.3%
39.8%

38.8%
398.81

1,393.61
1,058

14,863

140
22,091

23,187
2,844

8,736
41.7%

41.4%
39.8%

39.8%
398.92

1,397.64
1,058

14,911

145
22,096

23,239
2,861

8,765
41.7%

41.4%
39.8%

39.8%
399.11

1,400.68
1,058

14,944

150
22,101

23,262
2,853

8,773
41.7%

41.4%
39.8%

39.8%
399.02

1,402.04
1,058

14,957

155
22,108

23,314
2,884

8,785
41.7%

41.4%
39.8%

39.8%
399.23

1,404.32
1,058

14,981

160
22,108

23,365
2,885

8,791
41.7%

41.4%
39.8%

39.8%
399.23

1,406.62
1,058

15,006

165
22,110

23,461
2,888

8,799
41.7%

41.4%
39.8%

39.8%
399.26

1,412.30
1,058

15,071

170
22,123

23,462
2,894

8,799
41.7%

41.4%
39.8%

39.8%
399.49

1,412.28
1,058

15,071

175
22,125

23,558
2,897

8,806
41.7%

41.4%
39.8%

39.8%
399.53

1,417.49
1,058

15,130

180
22,125

23,618
2,898

8,816
41.7%

41.4%
39.8%

39.8%
399.53

1,420.46
1,058

15,159

185
22,127

23,648
2,898

8,819
41.7%

41.4%
39.8%

39.8%
399.59

1,421.65
1,058

15,170

Table
A.8:D

etailed
results

for
org.apache.commons.collections.collection

(125-185
seconds)
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APPENDIX A. DETAILED RESULTS

G
enerated

Sequences
C

overed
Inputs

Line
C

overage
(%

)
M

ethod
C

overage
(%

)

A
sserts/

C
yclom

atic
C

om
plexity

(6,848)

Failing
Tests

Tim
e

R


R


R


R


R


R


R


R


R


R


R


R


0
0

0
0

0
0.0

0.0
0.0

0.0
0

0
0

0

5
3,137

780
7,488

1,939
24.6

15.4
38.9

24.1
0.81

0.47
27

88

10
6,049

968
14,557

1,939
28.3

17.8
44.4

28.0
1.05

0.81
62

129

15
9,661

1,010
25,663

5,307
30.4

25.6
47.4

40.2
1.86

1.87
106

295

20
13,585

2,112
37,338

6,000
31.7

26.2
49.1

40.9
2.78

2.26
170

332

25
20,848

3,629
49,403

9,293
32.5

28.3
49.1

43.9
3.68

3.52
216

519

30
24,417

4,197
60,541

10,309
32.8

28.7
50.0

44.4
4.53

4.03
260

587

35
27,979

5,277
73,164

13,386
33.1

29.8
50.6

45.9
5.46

5.10
287

733

40
30,767

5,834
86,797

15,100
33.6

30.3
51.1

46.5
6.49

5.49
334

814

45
34,223

7,051
98,025

19,423
34.0

31.2
51.6

47.7
7.33

6.67
360

1,038

50
36,771

7,470
108,565

20,677
34.2

31.4
51.9

47.9
8.12

7.28
393

1,124

55
39,515

9,136
118,557

24,260
34.5

32.0
52.2
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1,299
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A.10:D

etailed
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(0-55
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APPENDIX A. DETAILED RESULTS

G
enerated
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C

overed
Inputs

Line
C

overage
(%

)
M

ethod
C

overage
(%

)

A
sserts/

C
yclom

atic
C

om
plexity

(6,848)

Failing
Tests

Tim
e

R


R


R


R

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
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
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

R


R


R

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81,247
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293,331

55,428
36.6

34.6
54.8

51.4
21.58
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2,290

130
85,177

20,601
308,713

58,759
36.9

34.9
54.9

51.7
22.73

21.12
924

3,170

135
86,932

21,906
315,484

62,935
36.9

35.0
55.2

52.0
23.23

22.65
941

3,416
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88,413

22,182
321,377
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23.66
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23,129
323,595
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37.1
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52.2
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3,620
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327,278
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3,726
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330,453
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55.7
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1,014

3,811
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92,380
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337,234
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55.7
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1,021

3,811
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92,840
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338,972
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35.6
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26.99
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362,421
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1,123
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102,296

27,080
376,274
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55.9

52.8
27.63
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1,168

4,256
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27,660
391,729

80,766
37.5

35.8
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52.8
28.76

30.09
1,211

4,357

185
108,381

28,777
400,411

84,555
37.6

35.9
56.1

52.9
29.45

31.33
1,251

4,545

Table
A.12:D

etailed
results

forC
om

m
ons

C
ollections

(125-185
seconds)
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APPENDIX A. DETAILED RESULTS

G
enerated

Sequences
C

overed
Inputs

Line
C

overage
(%

)
M

ethod
C

overage
(%

)

A
sserts/

C
yclom

atic
C

om
plexity

(6,848)

Failing
Tests

Tim
e

R


R


R


R


R


R


R


R


R


R


R


R


255
148,062

38,274
558,658

116,048
38.3

36.5
57.0

53.8
40.98

42.24
1,656

6,314

260
148,383

38,589
559,951

117,068
38.3

36.5
57.0

53.8
41.08

42.65
1,674

6,162

265
151,561

38,796
572,833

117,822
38.4

36.5
57.0

53.8
42.02

42.91
1,676

6,310

270
152,731

39,465
577,701

119,763
38.4

36.5
57.0

53.8
42.36

43.70
1,705

6,197

275
155,135

40,253
587,689

122,411
38.5

36.6
57.0

53.8
43.08

44.76
1,714

6,463

280
156,307

40,884
592,537

124,547
38.5

36.6
57.0

53.9
43.43

45.53
1,758

6,556

285
159,558

42,371
605,620

129,238
38.5

36.7
57.0

54.0
44.38

47.31
1,790

6,800

290
163,281

42,839
620,745

131,405
38.6

36.7
57.1

54.3
45.48

47.54
1,844

6,937

295
164,431

43,518
625,525

133,113
38.6

36.7
57.2

54.0
45.83

48.61
1,855

7,037

300
168,090

43,583
640,522

133,420
38.7

36.7
57.2

54.1
46.91

48.72
1,891

7,230

305
174,219

44,718
665,667

137,185
38.7

36.8
57.3

54.1
48.75

50.07
1,957

7,299

310
174,762

45,198
667,910

138,916
38.8

36.9
57.3

54.3
48.91

50.44
1,961

7,684

315
175,524

46,426
671,033

143,416
38.8

36.9
57.4

54.0
49.14

51.49
1,972

7,024

Table
A.14:D

etailed
results

forC
om

m
ons

C
ollections

(255-315
seconds)
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APPENDIX A. DETAILED RESULTS

G
enerated

Sequences
C

overed
Inputs

Line
C

overage
(%

)
M

ethod
C

overage
(%

)

A
sserts/

C
yclom

atic
C

om
plexity

(6,848)

Failing
Tests

Tim
e

R


R


R


R


R


R


R


R


R


R


R


R


385
215,027

56,746
834,250

178,423
39.3

37.4
57.8

55.0
61.34

63.05
2,550

9,604

390
217,998

57,139
846,924

179,633
39.3

37.4
57.8

55.0
61.88

64.87
2,553

9,646

395
220,223

58,211
856,156

183,198
39.4

37.4
57.8

55.0
62.55

65.51
2,386

9,336

400
223,878

58,388
871,203

183,821
39.6

37.4
58.0

55.0
63.66

66.75
2,415

9,401

405
227,876

58,416
888,120

183,895
39.6

37.4
58.0

55.0
64.86

67.00
2,242

9,642

410
229,219

58,884
893,815

185,383
39.6

37.5
58.0

55.1
65.26

67.01
2,474

9,732

415
232,807

59,959
908,862

188,979
39.6

37.5
58.0

55.2
66.36

67.46
2,512

9,910

420
233,220

60,415
910,602

190,594
39.6

37.6
58.0

55.3
66.49

68.74
2,522

9,986

425
233,817

61,531
913,157

194,491
39.6

37.7
58.0

55.3
66.67

69.32
2,584

10,167

430
236,174

61,889
922,722

197,557
39.6

37.7
58.1

55.4
67.39

70.05
2,559

10,163

435
237,765

62,959
929,230

199,329
39.6

37.7
58.1

55.4
67.88

70.55
2,680

10,421

440
244,570

63,235
957,030

200,234
39.7

37.8
58.2

55.4
69.92

72.28
2,691

10,476

445
244,803

64,114
957,961

203,493
39.7

37.8
58.2

55.4
69.99

72.61
2,694

10,623

Table
A.16:D

etailed
results

forC
om

m
ons

C
ollections

(385-445
seconds)
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e
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
R





R





R





R





R





R





R





R





R





R





R





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2
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8
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.4
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3
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,0

78
99

1,
56

8
21

3,
87

4
39
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1
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2,
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08
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,5

40
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2

21
5,
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3
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.9
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.9
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.4
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.6

74
.1
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77
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3

2,
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,3
91

47
5

25
9,

98
4

68
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5
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7,
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1
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.6

74
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77

.6
5
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,5
74
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69
,7

93
1,
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4
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2
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2,
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59
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2
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5
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1

2,
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,0
25
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6
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1,
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1
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55
.8
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5

2,
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,0
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APPENDIX A. DETAILED RESULTS

G
enerated

Sequences
C

overed
Inputs

Line
C

overage
(%

)
M

ethod
C

overage
(%

)

A
sserts/

C
yclom

atic
C

om
plexity

(6,848)

Failing
Tests

Tim
e

R


R


R


R


R


R


R


R


R


R


R


R


515
283,379

73,743
1,120,118

237,440
39.9

38.0
58.6

55.8
81.63

83.20
3,044

12,231

520
285,701

74,436
1,130,015

241,161
40.0

38.0
58.6

55.7
82.33

83.81
3,069

12,301

525
288,053

74,784
1,140,169

241,345
40.0

38.0
58.7

55.7
83.03

84.54
3,094

12,371

530
288,647

76,519
1,142,513

247,325
40.0

38.0
58.7

55.8
83.22

85.94
3,121

12,443

535
290,262

76,861
1,149,230

248,481
40.0

38.0
58.7

55.9
83.71

87.35
3,149

12,572

540
292,560

78,176
1,158,853

252,923
40.1

38.1
58.7

55.9
84.38

88.01
3,177

12,701

545
295,767

78,193
1,172,399

252,981
40.1

38.2
58.7

55.9
85.36

88.62
3,205

12,830

550
300,035

78,760
1,190,364

254,908
40.2

38.3
58.7

56.0
86.63

90.34
3,233

12,959

555
302,458

79,305
1,200,758

256,763
40.2

38.4
58.7

56.0
87.37

90.35
3,273

13,100

560
305,521

79,872
1,213,669

258,702
40.2

38.5
58.7

56.0
88.30

90.90
3,282

13,211

565
306,325

81,533
1,217,109

264,919
40.2

38.5
58.7

56.1
88.55

91.44
3,291

13,322

570
308,540

81,550
1,226,636

264,987
40.2

38.6
58.7

56.1
89.22

92.09
3,300

13,433

575
309,894

81,555
1,232,400

265,003
40.2

38.6
58.7

56.2
89.63

94.29
3,309

13,544

Table
A.18:D

etailed
results

forC
om

m
ons

C
ollections

(515-575
seconds)
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/
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m
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C
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(6
,8

48
)

Fa
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ng
Te

st
s

Ti
m

e
R





R





R





R





R





R





R





R





R





R





R





R






58
0

31
0,

39
1

81
,5

64
1,

23
4,

62
9

26
5,

05
3

40
.2

38
.7

58
.7

56
.2

89
.7

8
94

.3
2

3,
31

1
13

,6
56

58
5

31
1,

31
1

81
,9

18
1,

23
8,

34
3

26
6,

27
3

40
.2

38
.7

58
.8

56
.2

90
.0

6
94

.3
2

3,
33

1
13

,7
15

59
0

31
4,

62
5

81
,9
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1,

25
2,

44
0

26
6,

55
0

40
.2

38
.7

58
.8

56
.2

91
.0

8
94

.3
4

3,
35

1
13

,7
74

59
5

31
4,

86
4

82
,0

65
1,

25
3,

52
1

26
6,

79
4

40
.2

38
.7

58
.8

56
.2

91
.1

5
94

.7
6

3,
37

1
13

,8
33

60
0

31
6,

10
1

82
,0

71
1,
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8,
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0

26
6,
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1

40
.2

38
.7

58
.8

56
.2

91
.5

3
94

.9
2

3,
39

1
13

,8
92

60
5

31
7,

64
6

83
,2

04
1,

26
5,

54
3

27
1,

02
6

40
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38
.7

58
.8

56
.2

92
.0

0
94

.9
4

3,
41
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13

,9
52

61
0
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9,

89
5

83
,2
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1,
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4,
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9
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1,
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5
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38
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4

3,
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.2
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APPENDIX A. DETAILED RESULTS

G
enerated

Sequences
C

overed
Inputs

Line
C

overage
(%

)
M

ethod
C

overage
(%

)

A
sserts/

C
yclom

atic
C

om
plexity

(6,848)

Failing
Tests

Tim
e

R


R


R


R


R


R


R


R


R


R


R


R


645
332,860

88,175
1,329,356

288,691
41.0

38.9
59.6

56.3
96.62

100.42
3,549

14,812

650
333,315

89,616
1,331,269

293,647
41.0

38.9
59.6

56.4
96.76

102.16
3,566

14,937

655
338,692

89,787
1,354,333

294,261
41.0

38.9
59.7

56.4
97.42

102.18
3,584

15,065

660
343,661

91,050
1,375,412

298,407
41.0

38.9
59.7

56.4
98.39

104.14
3,638

15,193

665
344,870

91,429
1,380,771

299,755
41.1

38.9
59.8

56.4
99.91

104.37
3,692

15,321

670
348,527

91,880
1,396,217

301,289
41.1

38.9
59.8

56.4
100.27

106.14
3,746

15,449

675
350,784

93,085
1,405,870

305,413
41.2

38.9
59.9

56.4
101.39

106.59
3,800

15,577

680
355,725

93,117
1,426,241

305,554
41.2

38.9
59.9

56.4
102.08

107.32
3,851

15,703

685
356,695

93,626
1,430,176

307,523
41.2

38.9
59.9

56.5
103.57

109.01
3,854

15,889

690
358,880

94,706
1,439,305

311,339
41.2

38.9
59.9

56.5
103.87

109.07
3,858

16,075

695
359,773

95,483
1,442,851

313,900
41.2

39.0
59.9

56.6
104.54

109.94
3,861

16,261

700
359,977

97,371
1,443,643

320,751
41.2

39.0
59.9

56.6
104.81

111.08
3,865

16,447

705
359,977

98,049
1,443,643

322,853
41.2

39.0
59.9

56.6
104.87

111.93
3,868

16,638

Table
A.20:D

etailed
results

forC
om

m
ons

C
ollections

(645-705
seconds)
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APPENDIX A. DETAILED RESULTS
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Appendix B

Additional Tooling

During this master thesis project some tools were created to aid in several aspects of the process.
This chapter describes the developed tools and what they are meant for.

B.1 2

The first tool developed was bib2csv. This tool was developed in collaboration with Márcio
Coelho and is meant to take a BIBTEX file properly annotated with keywords, and converts it to a
csv file compatible with the CE tool [Yevtushenko, 2011]. This was done in order to facilitate
the application of formal concept analysis in the context of literature revision. The tool is available
as an open source Perl script at https://github.com/TiagoVeloso/Bib2CSV.

B.2 Fan-In/Fan-Out Calculator

This is another tool that was developed in the context of this master thesis was a simple Fan-
In/Fan-Out Calculator generator. This tool was built on top of the already existing javap tool,
which is a Java class disassembler. The javap tool is able to extract class dependencies. From
this, all it was done was to apply a sequence of regular expressions to transform the output of
javap into a useable format, dot or csv. It was written in Perl, the tool is available under an
open source licence at https://github.com/TiagoVeloso/CallGraph.
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