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Abstract 

Colorectal carcinoma (CRC) is a common malignancy in the western world and is also 

regarded as one of the most preventable cancers. It is generally recognized that the type of diet is 

an important risk factor for CRC and tumor behavior. Interest in the short-chain fatty acids (SCFA) 

production by propionibacteria from dairy diet, on the human organism has increased rapidly in 

the last ten years due to the fact that gastrointestinal functions and beneficial effects are 

associated with these acids. SCFAs, namely butyrate, propionate and acetate are the major 

products of the propionibacteria fermentation and metabolism of undigested dietary fibers in the 

human large intestine. These SCFA have been reported as anti-proliferative and anti-neoplastic 

agents that induce differentiation, growth arrest and apoptosis in CRC cells lines. It is known that 

SCFAs protect against development of CRC and therefore, in this monographic review we focus 

on new aspects of cellular functions of SCFAs as a nutraceuticals in the prevention and/or 

treatment of CRC. In this context we also aimed at developing a simple, feasible and easily 

implemented protocols for undergraduate students in secondary school labs using protocols with  

baker´s yeast cells to illustrate the effect of acetic acid on two key cellular biological processes, 

namely on cell cycle and cell death. 
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Resumo 

O carcinoma colorretal (CCR) é um tumor maligno comum no mundo ocidental, mas é 

também considerado um dos cancros mais evitáveis. É geralmente reconhecido que o tipo de 

dieta é um importante fator de risco para o desenvolvimento e o comportamento deste tipo de 

cancro. O interesse nos ácidos gordos de cadeia curta (AGCC), produzidos no organismo 

humano pelas propionibacterias presentes nos lacticínios, cresceu rapidamente nos últimos dez 

anos, uma vez que várias funções gastrointestinais e efeitos benéficos estão associados a estes 

ácidos. Os AGCC, nomeadamente o butirato, o propionato e o acetato, são os principais 

produtos resultantes da fermentação das propionibacterias e do metabolismo das fibras não 

digeridas no intestino grosso humano. Estes AGCC têm sido referidos como sendo agentes anti-

proliferativos e anti-neoplásicos, induzindo a diferenciação, a paragem do crescimento e a 

apoptose em linhas celulares de CRC. Sabe-se que os AGCC protegem contra o desenvolvimento 

do CRC e, portanto, nesta revisão monográfica concentramo-nos em novos aspetos das funções 

celulares dos AGCC como nutracêuticos na prevenção e / ou tratamento do CRC. Neste 

contexto, foi também nosso objectivo desenvolver um protocolo simples e de fácil 

implementação para estudantes do ensino secundário, recorrendo à utilização de fermento de 

padeiro, de forma a ilustrar o efeito do ácido acético em dois processos biológicos celulares 

chave, nomeadamente, no ciclo celular e na morte celular. 
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1. Hallmarks of cancer: the role of apoptosis 
 

Cancer is a very heterogeneous disease, developing in different tissue types and 

displaying great genetic diversity. Every day our body produces potentially malignant cells. These, 

however, should not be considered cancerous, we only should name it cancer when there is 

clinical manifestation or evidence of increased cell proliferation and capability of metastasize in 

the organism (Simões, 2010). 

There are several evidences which indicate that tumourigenesis in humans is a multistep 

process and that these steps reflect genetic alterations that drive the progressive transformation 

of normal human cells into highly malignant derivatives (Hanahan & Weinberg, 2000). However, 

recent insights suggest that the underlying etiology and progression of the disease can be 

reduced to two events, mutations that give rise to excessive proliferation and a compensatory 

disruption of survival signaling pathways that ensures the persistence of these hyperproliferative 

cells (Green & Evan, 2002).  

Hanahan and Weinberg (2000) proposed that six capabilities acquired during tumor 

development are shared in common by most and perhaps all types of human tumors. These six 

essential alterations in cell physiology that collectively dictate malignant growth are: self-

sufficiency in growth signals, insensitivity to growth-inhibitory (antigrowth) signals, evasion of 

proto growth-inhibitory (antigrowth) signals, evasion of programmed cell death (apoptosis), 

limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis 

(Hanahan & Weinberg, 2000). Two enabling characteristics crucial to the acquisition of the six 

hallmark capabilities are the two new emerging hallmark capabilities, the metabolic alterations 

and signaling interactions of the tumor microenvironment crucial to cancer phenotypes (Figure 1) 

(Hanahan & Weinberg, 2011). 
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Figure 1 - Emerging Hallmarks and Enabling Characteristics (Adapted from Hanahan & Weinberg, 2011). 

 

Normal tissues carefully control the production and release of growth-promoting signals 

that instruct entry into and progression through the cell growth-and-division cycle, thereby 

ensuring a homeostasis of cell number and thus maintenance of normal tissue architecture and 

function. Cancer cells, by deregulating these signals, become “masters of their own destinies” 

(Claesson et al., 2012). The ability of tumor cell populations to expand is determined not only by 

the rate of cell proliferation but also by the rate of cell death, being programmed cell death – 

apoptosis – the major source of this death. The evidence come mainly from studies in mouse 

models and cultured cells, as well as from analyses of human cancer tissue, that showed that 

cancer cells acquired resistance toward apoptosis which is a hallmark of most and perhaps all 

types of cancer (Hanahan & Weinberg, 2000).  

Apoptosis is a genetically predetermined mechanism that may be elicited by several 

molecular pathways and organisms can trigger this process to remove unwanted and potentially 

Avoiding imune destruction 

Genome instability and mutation Tumor-promoting inflammation 

Deregulating celular energetics 
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dangerous cells. The activation of apoptotic genes culminate in morphological and biochemical 

changes leading to chromatin condensation followed by nuclear condensation, DNA 

fragmentation and packing of nuclear fragments into multiple membrane-enclosed apoptotic 

bodies (Ramos, Rabelo, Duarte, Gazzinelli, & Alvarez-Leite, 2002). Apoptosis can be also 

regulated via the action of several oncogenes and subsequently oncoproteins (Salakou et al., 

2007). 

There are two different apoptosis pathways, called the extrinsic and intrinsic pathways. In 

the extrinsic pathway (also known as “death receptor pathway”), apoptosis is activated by the 

cell-surface death receptors CD95 (Apo-1 or Fas)/TRAIL/tumor necrosis factor (TNF) receptor 1 

family proteins which are located on the plasma membrane, and directly activates the caspase 

cascade via the recruitment of the “initiator” caspase-8 within a death-inducing signaling complex 

(DISC). The intrinsic pathway (also called “mitochondrial pathway”), leads to the release of 

cytochrome c from the damaged mitochondrion, which then binds to the adaptor molecule APAF-

1 and an inactive “initiator” caspase, procaspase 9, within a multiprotein complex called the 

apoptosome. This leads to the activation of caspase 9, which then triggers a cascade of caspases 

activation (caspases 3 and 7) resulting in the morphological and biochemical changes associated 

with apoptosis (Tzifi et al., 2012). Caspase activated cell death is regulated by genes of the Bcl-2 

family, for instance by the pro- and anti-apoptotic genes, Bax and Bcl-2, respectively (Fauser, 

Prisciandaro, Cummins, & Howarth, 2011; Jin & El-Deiry, 2005). Currently, the intrinsic 

apoptotic pathway is more widely implicated as a barrier to cancer pathogenesis. Both apoptotic 

pathways are targets for cancer treatment (Shao, Gao, Marks, & Jiang, 2004). 
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    Figure 2 - Schematic representation of apoptotic pathways.  

 

2. Colorectal carcinoma  
 

Colorectal carcinoma (CRC) is the third most commonly diagnosed cancer in males and 

the second in females, with over 1.2 million cancer cases in the world, accounting for 9.8% of 

total cancer cases, according to data from GLOBOCAN project (2008). In Europe, the incidence 

of CRC is 229.229 cases, accounting for 13.5% of total cancer cases. In Portugal, the CRC is the 

second most prevalent cancer (after prostate cancer) with an incidence number of 3951 cases 

and an incidence rate of 16.5% of total cancer cases (Globocan project, 2008, 

http://globocan.iarc.fr/). Cancer prevention is an essential component of cancer control 

strategies because about 40% of all cancer deaths can be prevented (World Health Organization, 

2008, http://www.who.int/en/). 

Studies reported that dietary patterns, lifestyle, physical inactivity and obesity increased 

CRC risks, especially in genetically predisposed populations (Doll & Peto, 1981; Potter, 1999; 

Qin et al., 2010). CRC is thus causally related to both genes and environment. Environment is a 

risk factor that may cause mutations and initiate cancer or enhance growth by genetic and 

epigenetic mechanisms (Ferguson, 1999; Simões, 2010) .  

http://globocan.iarc.fr/
http://www.who.int/en/
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2.1. Types of colorectal carcinoma 
 

About 75% of patients with CRC have sporadic disease with no apparent evidence of 

having inherited the disorder. The remaining 25% of patients have a family history of CRC that 

suggests a hereditary contribution, common exposures among family members, or a combination 

of both. Genetic mutations have been identified as the cause of inherited cancer risk in some 

colon cancer-prone families; these mutations are estimated to account for only 5% to 6% of CRC 

cases overall. It is likely that other undiscovered genes and genetic factors contribute to the 

development of familial CRC in conjunction with nongenetic risk factors (National Cancer 

Institute, 2013, http://www.cancer.gov/cancertopics/pdq/genetics/colorectal). Among the non-

sporadic CRC cases, 5 to 15% can be attributed to the following hereditary CRC syndromes: 

Lynch syndrome (also hereditary nonpolyposis CRC or HNPCC), familial adenomatous polyposis 

(FAP), and MUTYH-associated polyposis (MAP) (Castells, Castellvi-Bel, & Balaguer, 2009).  

Two-thirds of CRCs are located in the rectum, rectosigmoid, or sigmoid colon with the 

other third distributed in the remainder of the colon. Adenocarcinomas are the most common 

type of CRC and have its origin in intestinal epithelial cells. The progression from adenoma to 

carcinoma occurs by the sequential accumulation of genetic changes, which is the more 

accepted model for understanding carcinogenesis process (presented in Figure 3) (Bruckner et 

al. 2000) Available from: http://www.ncbi.nlm.nih.gov/books/NBK20861/; Cancer Research 

UK).   

Adenocarcinomas start in the intestinal gland cells in the lining of the colon wall. There 

are one or two rare types of adenocarcinoma of the colon and rectum, called mucinous tumors 

and signet ring tumors and these terms refer to how the cells look under the microscope. Only 

about 1 to 2% of colorectal cancers are the signet ring type. Squamous cells cancers are the skin 

like cells that make up the bowel lining together with the gland cells. Carcinoid is an unusual type 

of slow growing tumor called a neuroendocrine tumor. Between 4 to 17% of every carcinoid 

tumors diagnosed start in the rectum and between 2 to 7% out of every carcinoid tumors 

diagnosed begin in the large bowel. Sarcomas are cancers of the supporting cells of the body, 

such as bone or muscle. Most sarcomas found in the colon or rectum are leiomyosarcomas, 

which account for less than 2% of colorectal carcinomas and have a high chance of 

metastasizing. Lymphomas are cancers of the lymphatic system. Only about 1 in 100 cancers 

http://www.cancer.gov/cancertopics/pdq/genetics/colorectal
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diagnosed in the colon or rectum (1%) are lymphomas (Cancer Research UK, 2013, 

http://www.cancerresearchuk.org/cancer-help/type/bowel-cancer/about/types-of-bowel-cancer). 

 

2.2. Colorectal carcinoma: associated genetic alterations  
 

The model of cell transformation and progression from adenoma to colorectal carcinoma 

is based on the concept that progression is accompanied by the accumulation of molecular 

alterations in which adenomatous polyposis coli (APC), K-RAS, and p53 genes play a central role 

(presented in Figure 3) (Fearon & Vogelstein, 1990). A number of data indicate that the 

simultaneous presence of alterations of these genes is not a frequent event. In particular, K-RAS 

and p53 mutations rarely co-exist in the same tumor, indicating that these alterations do not 

represent a synergistic evolutionary pathway (Smith et al., 2002). 

It was found that somatic mutations in APC gene are also found in the great majority of 

sporadic colorectal tumors (Miyoshi et al., 1992). APC has been proposed to function as a 

‘‘gatekeeper’’ gene, regulating the entry of epithelial cells into adenoma-carcinoma progression 

(Kinzler & Vogelstein, 1996), maintaining low levels of -catenin in the absence of a Wnt signal, 

thus preventing excessive cell proliferation. Axis duplication and cell transformation are based on 

the activation of the canonical Wnt pathway that involves the multifunctional protein -catenin 

(Rao & Kuhl, 2010). A mutation of the gatekeeper leads to a permanent imbalance of cell division 

over cell death (Kinzler & Vogelstein, 1996).  

The RAS oncogene promotes tumor formation through stimulation of cell proliferation, 

motility and regulation of apoptosis. Activating mutations in the RAS oncogenes (H-, N-, and K-

RAS) are found in approximately 20% of all human tumors (Shaw et al., 2011) and mediates 

several key aspects of oncogenesis, including deregulated cell growth, evasion of apoptosis and 

malignant transformation, a consequence of the loss of GTPase activity (Shaw et al., 2011; Smith 

et al., 2002). The TP53 gene product, p53, functions as a transcription factor, exerting cell cycle 

control by binding to specific recognition sequences in a variety of genes including p21, Bax, and 

Bcl-2 in response to DNA damage or other cellular stress (A. J. Levine, 1997). About 70% of 

CRCs contain p53 mutations (Baker et al., 1990), rendering them susceptible to failure of 

apoptosis and increased accumulation of DNA damage, allowing unregulated growth (el-Deiry et 

al., 1993; Williams, Coxhead, & Mathers, 2003). These mutations in p53 are proposed to be 

relatively late events in the development of colorectal tumors, with the loss of p53-mediated 

http://www.cancerresearchuk.org/cancer-help/type/bowel-cancer/about/types-of-bowel-cancer
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pathways of apoptosis considered to be an important determinant of progression from adenoma 

to malignant tumor (Smith et al., 2002).  

 

 

 

 

 

 

 

 

 

Figure 3 - Genetic changes associated with colorectal tumorigenesis (Adapted from Kinzler & Vogelstein, 1996; 

Smith et al., 2002). 

 

BRAF is one of the RAF genes involved in the important RAS/RAF/MEK/MAP kinase 

intracellular signaling pathway, which regulates different physiological processes including cell 

growth, differentiation, and apoptosis (Calistri et al., 2005; Fang & Richardson, 2005). BRAF-

activating gene mutations have been detected in many tumor types (Davies et al., 2002). 

However, Calistri et al. (2005) observed a very low frequency of mutations in their series of 

sporadic colorectal carcinoma, and no evident association with other specific gene mutations, 

suggesting that BRAF could represent an alternative pathway to both p53 and K-RAS genes, 

mainly in hereditary CRC characterized by microsatellite instability (MSI) (Calistri et al., 2005). 

It is thought that at least 50% of colorectal cancers have a deregulation of the MAPK 

pathway (Fang & Richardson, 2005). Two major oncogenes are implicated in sporadic colorectal 

carcinogenesis, KRAS and BRAF mutations, which are alternative (Oliveira et al., 2007). 

Mutations on KRAS and BRAF genes are frequently found in malignant and pre-malignant 

colorectal lesions (Rajagopalan et al., 2002). Mutations of the KRAS proto-oncogene are an early 

event in development of CRCs (Bos et al., 1987). KRAS oncogene is mutated  in 21% of all 

human sporadic cancers, including in about 30% of CRCs cases (Fang & Richardson, 2005; 

Oliveira et al., 2007), and BRAF mutations are found in 20% of all human cancers, including in 

about 10% CRCs cases (Ahlquist et al., 2008; Oliveira et al., 2007; Velho, Corso, Oliveira, & 

Seruca, 2010). 
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2.3. Classical chemotherapy for colorectal carcinoma 
 

According to Sobrinho Simões (2010), there will never be possible for medicine to cure 

advanced cancers. However, there will have a percentage of cancers that are always curable, 

those who are localized “in situ” when diagnosed early that can be removed by surgical 

techniques that have evolved in the past years. Currently, over 50% of cancers can be cured by 

surgery and the other 50% have no cure; medicine only can keep them in a state of equilibrium 

with the immune defenses. In these cases cancer may be regarded as a chronic disease: the 

cancer exists, but the disease does not manifest or at least it is mitigated. Oddly enough, cancer 

is a disease extremely inefficient, hence the hope of turning it into a chronic disease (Simões, 

2010). 

The development of CRC often follows a defined pattern. The entire process frequently 

takes a long period, like decades, before a malignant tumor is finally formed, and is thought to 

develop in a multistep process, known as the “adenoma-carcinoma sequence” (Vogelstein et al., 

1988). Because colon epithelia are directly exposed to dietary compounds, elimination of 

precancerous or cancerous cells by nutritional or chemopreventive interventions, or both, 

represents an approach to the lowering of the incidence of colon cancer (Cai et al., 2006; Dove-

Edwin & Thomas, 2001) . 

The current therapies are those in which a protein modification is identified in cancer. All 

modern drugs fall into one of two groups: either are small molecules which inhibit proteins 

action, which enter into the cell, or antibodies which are fixed on the cell surface, blocking, for 

example, receptors that are greatly increased in some cancer cells. These receptors stop working 

and the cell ceases to have the incentive to proliferate (Simões, 2010). In the last two decades 

several advances were achieved in the treatment of CRC. With more effective drugs, improved 

surgery, better radiotherapy and a strong randomized clinical trials evidence base, patients now 

have a higher chance of cure and, when cure is not achievable, they survive longer with their 

disease (Braun & Seymour, 2011). The optimum treatment strategy for patients with CRC 

depends on a large number of factors, such as age, performance status,  the presence of other 

disorders or diseases and the treatment setting (adjuvant versus palliative versus neoadjuvant) 

(Braun & Seymour, 2011). The main types of treatment that can be used for colon and rectal 

carcinoma are surgery, radiation therapy, chemotherapy and targeted therapy. Surgery is the 

only curative treatment for CRC. Depending on the stage of the cancer, two or more of these 
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types of treatment may be combined at the same time or used after one another (American 

Cancer Society, 2013, 

http://www.cancer.org/cancer/colonandrectumcancer/detailedguide/colorectal-cancer-treating-

chemotherapy). 

In recent years new different approaches to nutritional treatment have been used to 

correct the deficits observed in patients with colorectal cancer (de Oliveira & Aarestrup, 2012), 

such as the use of nutraceuticals. 

 

3. Nutraceuticals in colorectal carcinoma prevention or therapy 
 

In the last years several products have been commercialized in the form of 

pharmaceutical products, such as pills, tablets, solutions, etc., incorporating food extracts or 

phytochemical‐enriched extracts to which a beneficial physiological function has been directly or 

indirectly attributed (Palthur, 2010). This variety of products cannot be truly classified as “food” 

or “pharmaceutical”, so a combined term between nutrients and pharmaceuticals, 

“nutraceuticals”, has been coined to designate them (Espin, Garcia-Conesa, & Tomas-Barberan, 

2007).  

According to Stephen Defelice (1995) “a nutraceutical is any substance that is a food or 

part of a food and provides medical or health benefits, including the prevention and treatment of 

disease. Such products may range from isolated nutrients, dietary supplements and specific diets 

to genetically engineered designer foods, herbal products, and processed foods such as cereals, 

soups and beverages” (DeFelice, 1995). However, there is often confusion in the use of this 

terminology as there is a slight difference between the functional foods and nutraceuticals. When 

food is being cooked or prepared using "scientific intelligence" with or without knowledge of how 

or why it is being used, the food is called "functional food". Functional food provides the body 

with the required amount of vitamins, fats, proteins, carbohydrates, etc. needed for its healthy 

survival. When functional food helps in the prevention and/or treatment of disease(s) and/or 

disorder(s) it is called a nutraceutical (Pandey, 2010). 

The nutraceuticals revolution began in the early 1980s, sparked off when the actual or 

potential clinical benefits of calcium, fiber and fish oil were supported by clinical studies 

published in distinguished medical journals, and when physicians began to educate their 

colleagues and consumers about these substances via the media (DeFelice, 1995). Within 

http://www.cancer.org/cancer/colonandrectumcancer/detailedguide/colorectal-cancer-treating-chemotherapy
http://www.cancer.org/cancer/colonandrectumcancer/detailedguide/colorectal-cancer-treating-chemotherapy
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European Medicines law, a nutraceutical can be defined as a medicine for two reasons: it can be 

used for the prevention, treatment or cure of a condition or disease or it can be administered 

with a view to restoring, correcting or modifying physiological functions in human beings 

(Richardson, 1996). However, no specific regulation exists in Europe to control nutraceuticals 

(Espin et al., 2007). The majority of the definitions indicate the health benefits of nutraceuticals 

and among these health benefits are prevention and treatment of diseases.  

The major impact of eating habits on the prevalence of CRC has triggered efforts to 

design an optimal diet and/or to create food supplements specifically reducing the risk of cancer. 

Already in 1989 Fuller checked the growing interest in the use of live microbial agents for health 

maintenance and disease prevention or treatment (Fuller, 1989). 

 

3.1. Prebiotics 
 

A prebiotic was first defined by Gibson and Roberfroid as ‘‘a nondigestible food ingredient 

that beneficially affects the host by selectively stimulating the growth and/or activity of one or a 

limited number of bacteria in the colon, and thus improves host health’’ (G. R. Gibson & 

Roberfroid, 1995). However many food components, especially many food oligosaccharides and 

polysaccharides (including dietary fiber), have been claimed to have prebiotic activity without due 

consideration to the criteria required.  

In practical terms, prebiotics are short-chain carbohydrates (SCCs) that are nondigestible 

by human enzymes and that have been called resistant SCCs. They are sometimes referred to as 

nondigestible oligosaccharides (NDOs). Nonetheless, NDOs are not strictly oligosaccharides and 

their nondigestibility is largely assumed but not always proved (Cummings, Macfarlane, & 

Englyst, 2001). An oligosaccharide, according to the International Union of Pure and Applied 

Chemistry Joint Commission on Biochemical Nomenclature (IUPAC-IUB JCBN) definition, is a 

molecule containing a small number (2 to about 10) of monosaccharide residues connected by 

glycosidic linkages ("IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). 

Abbreviated terminology of oligosaccharide chains. Recommendations 1980," 1982). Some of 

the carbohydrates that are named prebiotics often fall outside this definition because several of 

them have a degree of polymerization (DP) higher than 10 (Cummings et al., 2001). Not all 

dietary carbohydrates are prebiotics, and clear criteria need to be established for classifying a 

food ingredient as a prebiotic. These criteria are, by Gibson and Roberfroid, (1) to resist gastric 
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acidity, hydrolysis by mammalian enzymes and gastrointestinal absorption; (2) to be fermented 

by the intestinal microflora; (3) to stimulate selectively the growth and/or activity of intestinal 

bacteria associated with health and wellbeing (G. R. Gibson, Probert, Loo, Rastall, & Roberfroid, 

2004).  

In 2004 the definition was updated when prebiotics were defined as “selectively 

fermented ingredients that allow specific changes, both in the composition and/or activity in the 

gastrointestinal microflora that confer benefits upon host wellbeing and health” (G. R. Gibson et 

al., 2004). The definition considers microflora changes in the whole gastrointestinal tract and 

extrapolates the definition into other areas that may benefit from a selective targeting of 

bifidobacteria and lactobacilli (Bellei G., 2012). Any dietary material that is non-digestible and 

enters the large intestine is a candidate prebiotic. This includes polysaccharide-type 

carbohydrates such as resistant starch and dietary fiber, as well as proteins and lipids. However, 

current prebiotics are confined to non-digestible oligosaccharides, many of which seem to confer 

the degree of fermentation selectivity that is required (regarding bifidobacteria)(G. G. Gibson et 

al., 2010)  

This prebiotics compounds have been shown to be a source of SCFA both in vitro and in 

vivo. Pan et al (2009) demonstrated, using a rat model, that the intake of selected prebiotic 

oligosaccharides improved concentrations of feacal SCFA, including butyrate (Pan et al., 2009). 

By producing a greater concentration of butyrate, the preferred energy source for colonocytes 

(Scheppach, 1994), a trophic effect may result within the gastrointestinal tract (Pan et al., 2009). 

Hence, prebiotics can have an impact on gut health in general, and are believed to play an 

important role in the prevention of CRC, as it has been highlighted by a Fotiadis and co-workers 

review (Fotiadis, Stoidis, Spyropoulos, & Zografos, 2008). For example, Bindels et al. (2012) 

proposed that propionate production by propionibacteria could be one of the gut microbial 

functions responsible for the anti-tumor effect of prebiotic nutrients (Bindels et al., 2012) . 

Among the established prebiotics, inulin-type fructans, present in foods, have been 

studied widely in the setting of CRC (Pool-Zobel, 2005) and have been demonstrated to elevate 

the levels of bifidobacteria and to increase SCFA concentrations in the colon (Bouhnik et al., 

1999). Various studies have shown that these prebiotics prevent chemically induced 

preneoplastic lesions, aberrant crypt foci (ACF) and tumors in the colon of rats and mice (Reddy, 

Hamid, & Rao, 1997; Verghese, Rao, Chawan, & Shackelford, 2002). 
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3.2. Probiotics 
 

The term probiotic was first used in 1965 in contrast to the word antibiotic and defined 

as “substances secreted by one microorganism, which stimulates the growth of another” 

(Schrezenmeir & de Vrese, 2001). These probiotics are nonpathogenic micro-organisms that, 

when ingested, exert a positive influence on the health or physiology of the host (Fuller, 1989). 

They can influence intestinal physiology either directly or indirectly through regulation of the 

endogenous microflora. This complex multicellular entity plays an important role in maintaining 

homeostasis in the body (Macfarlane & Macfarlane, 2012).  

The mammalian intestinal tract contains a complex, dynamic, and diverse microbial 

community dominated by nonpathologic bacteria or “good bacteria” (Teitelbaum & Walker, 

2002). The vast majority of bacteria in the human body reside in the large intestine, where the 

slow transit time, availability of nutrients, anaerobic conditions and pH are favorable for microbial 

growth (G. G. Gibson et al., 2010). Colonic microorganisms have ample opportunity to degrade 

available substrates, which may be derived from either the diet or by endogenous secretions 

(Bergman, 1990; Cummings & Macfarlane, 1991; Miller & Wolin, 1979). Bacterial fermentation 

involves a variety of reactions and metabolic processes in the anaerobic microbial breakdown of 

organic matter, yielding metabolizable energy for microbial growth and maintenance and other 

metabolic end products for use by the host (Cummings & Macfarlane, 1991; Wong, de Souza, 

Kendall, Emam, & Jenkins, 2006). In terms of end products, a variety of different metabolites 

arise, including short-chain fatty acids (SCFA) such as acetate, propionate and butyrate, (G. R. 

Gibson, Willems, Reading, & Collins, 1996). Thus, carbohydrate fermentation generally leads to 

health promoting SCFA production (Figure 4). 

Each person has a distinct and highly variable microbiota, but a conserved set of gut 

colonizers (the core gut microbiota) and genes (the core microbiome) are shared among 

individuals (Qin et al., 2010; Turnbaugh et al., 2009) and may be required for the correct 

functioning of the gut (Tremaroli & Backhed, 2012). The human gut microflora differs in 

composition between infants and adults at various stages of life. Initial bacterial colonization of 

the human intestine begins at birth and on weaning Bifidobacteria decrease and a more “adult” 

profile of bacteria are present. In healthy elderly people, a decrease in the number of Bacteroides 

and Bifidobacteria has been reported (Roy, Kien, Bouthillier, & Levy, 2006). It is important that 

older people ingest sufficient amounts of dietary fiber to obtain the required amount of SCFA in 
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the gut lumen. Dietary supplements with defined food ingredients that promote particular 

components of the microbiota may also prove useful for maintaining health in older people 

(Claesson et al., 2012; Macfarlane & Macfarlane, 2012) . 

When probiotics are ingested, they are able to resist the physicochemical conditions 

prevailing in the digestive tract. The strains most frequently used as probiotics consist mostly of 

strains of Lactobacillus, Bifidobacterium and Streptococcus, bacterial types which have been 

used for centuries in the production of fermented dairy products (Fooks & Gibson, 2002; 

Heyman & Menard, 2002). Because of all their benefits, probiotics represent an emerging 

therapeutic option. There is accumulating evidence describing the capacity for probiotic strains to 

prevent CRC, and in some cases, treat established tumor (Geier, Butler, & Howarth, 2006).  

The predominant species used as probiotic agents belong to the group of lactic acid 

bacteria (LAB). Due to their long history of safe use in foods, most species of LAB are considered 

as commensal microorganisms with no pathogenic potential (Chukeatirote, 2003). Within the 

LAB group, the genus Lactobacillus is the most widely encountered for probiotics (Chukeatirote, 

2003). L. acidophilus NCFM strain exhibits ability to reduce levels of free amines in the intestine, 

leading to a low risk of colon carcinoma (Goldin & Gorbach, 1984). However, also here the 

controverse is present, for example, Shahani et al. (1980) observed that consumption of large 

quantities of fermented milk products containing Lactobacillus or Bifidobacteria were associated 

with a lower incidence of CRC (Shahani & Ayebo, 1980) although, other studies suggested that 

consumption of fermented dairy products had little influence or no protection (Kampman, 

Goldbohm, van den Brandt, & van 't Veer, 1994).  

The mechanisms by which probiotics may inhibit CRC are not yet fully characterized. The 

production of SCFAs is one key mechanism by which probiotics and prebiotics may impart 

beneficial effects (Figure 4). Mattar et al. (2002) demonstrated that the addition of the probiotic 

Lactobacillus casei GG (LGG) to the Caco-2 cells induced MUC-2 expression (responsible for the 

production of mucins of the intestine mucus layer) that correlated with LGG dosage. They 

surmise that LGG may bind to specific receptor sites on the enterocyte and stimulate the up-

regulation of MUC-2, resulting in increased inhibition of bacterial translocation (Mattar et al., 

2002). Ohkawara et al. (2005) investigated the bacterial strain Butyrivibrio fibrisolvens MDT-1 in 

the context of CRC treatment as it produces high amounts of butyrate, a SCFA with well-known 

apoptotic ability in cancer cells. In the 1,2-dimethylhydrazine-induced mouse model of colon 

carcinoma, administration of Butyrivibrio fibrisolvens MDT-1 led to a significant decrease in ACF, 
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and the number of mice with an increased proportion of aberrant crypts per foci was also 

reduced, indicating an inhibited progression of tumor development. This suggests that MDT-1 

may be a potential new probiotic with the ability to reduce the incidence of CRC (Ohkawara et al., 

2005).  

The genetic manipulation of probiotics is another area of research in the treatment of 

CRC, which can be a method to deliver important anti-neoplastic factors to the colon. Steidler et 

al. (2000) demonstrated that Lactococcus lactis genetically-engineered to produce the anti-

inflammatory cytokine IL-10, reduced colonic inflammation in the dextran sulphate sodium model 

of colitis (Steidler et al., 2000). This study highlighted the potential for probiotics to be used as a 

delivery system for anti-inflammatory or anti-tumorigenic substances which could help in the 

prevention or treatment of CRC (Geier et al., 2006). This is an important advance in the field of 

treatment of CRC, as a probiotic strain could potentially be engineered to produce other 

cytokines. Castagliuolo et al. (2005) used a nonpathogenic strain of E. coli designed to deliver 

TGF- genes to the colonic mucosa that successfully demonstrated to reduce the severity of 

experimental colitis in mice (Castagliuolo et al., 2005). This strategy could also be beneficial in 

the prevention of CRC, since TGF- could be administered as an anti-proliferative factor, thus 

suppressing tumor development (Geier et al., 2006). The use of this technology provides a mean 

by which probiotic strains can be tailored to deliver a wide array of therapeutic genes or factors 

including other anti-proliferative factors, or pro-apoptotic factors including anti-inflammatory 

cytokines (Geier et al., 2006). 

 

3.2.1. Propionibacteria 

 

Among different dietary bacteria, the Propionibacterium form a genus, which is found in 

specific dairy products (Mantere-Alhonen, 1995). Several experiments have shown that 

propionibacteria also possess probiotic characteristics when used alone or together with lactic 

acid and/or bifidobacteria (Mantere-Alhonen, 1995). Propionibacteria possess a peculiar 

fermentative metabolism which leads to the production of carbon dioxide and SCFA, such as 

propionate and acetate (Lan, Lagadic-Gossmann, Lemaire, Brenner, & Jan, 2007). In the last 

decades, several studies showed that the SCFA, namely acetate, propionate and butyrate, 

induces apoptosis in CRC cells but not in normal cells (Tang, Chen, Jiang, & Nie; Sakata 1987; 

Sauer, Richter, & Pool-Zobel, 2007). These results will be discussed later in this work. 
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The first time that the probiotic and growth promoting effect of pure propionibacteria was 

observed was in a study made with piglets by Mantere-Alhonen, in 1982 (Mantere-Alhonen, 

1982). It was a rather large test material, thus the positive results of the feeding experiments 

should be considered as statistically significant, and they prove the ability of propionibacteria to 

act as probiotics (Mantere-Alhonen, 1995). In 2002 Jan and Balzacq proposed that 

propionibacteria could constitute probiotics efficient in digestive cancer prophylaxis via their 

ability to produce SCFA which induced apoptosis (Jan et al., 2002). Propionibacteria can survive 

in the human intestine and was found to induce apoptosis in colorectal cancer cells but not in 

normal cells, at least in part, due to their specific property to produce propionate and acetate 

(Jan et al., 2002). 

Immerseel et al. (2010) suggested, that an ideal probiotic would be a colonizing 

bacterium that combines systemic anti-inflammatory and immunoregulatory effects with delivery 

of high butyrate levels at the site of action and that can be ingested in a stable form, such as 

spores (Van Immerseel et al., 2010). These studies indicate that SCFA delivery via probiotic 

ingestion may be an exciting new prevention/treatment option for CRC (Geier et al., 2006). 

The possibility of using live propionibacteria in diet as preventive anti-cancer agents 

remains to be determined first by in vivo relevance of SCFA-based therapeutic strategy, and 

second by efficiently deliver SCFA to cancer cells (Lan et al., 2007).  

 

3.3. Symbiotics 

 

When prebiotics and probiotics are administered simultaneously, the combination is 

termed symbiotics. Symbiotics have been proposed as a new preventive and therapeutic option.  

The mechanisms by which pro-, pre- and symbiotics may inhibit colon carcinoma are 

beginning to be understood (Fotiadis et al., 2008).  The prebiotic in the symbiotic mixture 

improves the survival of the probiotic bacteria and stimulates the activity of the host’s 

endogenous bacteria (Mugambi, Musekiwa, Lombard, Young, & Blaauw, 2012). Consumption of 

probiotics and prebiotics together can increase the beneficial effects of each, since the stimulus 

of probiotic strains leads to selection of ideal symbiotic pairs (de Oliveira & Aarestrup, 2012).  

A human study has investigated the effect of an oligofrutose and inulin mixture together, 

a product called ‘Synergy’ that combines short-chain oligofrutose and long-chain inulin with 

Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb-12 on biomarkers of cancer (Rafter et 
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al., 2007). The study involved a twelve week double blind placebo-controlled trial in patients with 

cancer and polypectomised individuals. The symbiotic intervention resulted in significant 

alterations in the composition of the colonic bacterial ecosystem, which presumably have 

consequences for the metabolic activity of this organ. Colorectal cell proliferation and genotoxicity 

were significantly reduced, and the intestinal barrier function increased (Rafter et al., 2007).  

The most important conclusion from Brady et al. (2000) is that in animals it appears to 

be a synergistic effect of consumption of probiotic bacteria and prebiotics such as 

fructoligosaccharides on the attenuation of the development of CRC. The effect is often not large, 

but it could be beneficial, in combination with other ways to reduce risk (Brady et al., 2000). For 

example, in vitro studies only comprising prebiotics, the increase in acetic acid was reported to 

be between two and six times higher as compared to controls and for butyric acid the highest 

concentrations observed were four times higher as compared to control (van Zanten et al., 

2012). These increases in concentrations of acetic and butyric acids were however lower than 

the increases observed for all symbiotic combinations investigated in van Zanten et al. (2012)  

study, where concentrations were three to eight times higher for both acetic and butyric acids as 

compared to control. These findings emphasize that a synergistic effect may be obtained when 

combining the prebiotic with the probiotic strains (van Zanten et al., 2012).  

 

 

 

 

 

 

 

Figure 4 - General process of colonic fermentation by symbiotics. Prebiotics compounds are food source for probiotic 

microorganisms, which produce SCFA that contribute to host health improvement (Adapted from Huazano-García & 

López, 2013). 
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4. The association between diet, SCFA and colorectal carcinoma risk 
 

Although there is a strong genetic component in the development of colorectal adenomas 

or carcinomas, it is generally accepted that environmental factors including diet and lifestyle have 

a major impact on risk (Azcarate-Peril, Sikes, & Bruno-Barcena, 2011). Diet and nutrition are 

estimated to explain as much as 30-50% of the worldwide incidence of CRC and a high intake of 

calories, fats, red meat and low consumption of fruits and vegetables are associated with the risk 

of CRC development (Cervi, 2005; Chan & Giovannucci, 2010). It is believed that a proper diet 

can prevent three to four million new cases per year (Garófolo, 2004).  

Dietary fiber has been consumed for centuries and has been recognized as having health 

benefits. The consumption of foods rich in this dietary component such as fresh vegetables and 

fruits, whole grains and nuts is associated with gastrointestinal benefits, such as increasing stool 

bulk and improving laxation (Schneeman, 1999). Despite all the benefits, Scharlau et al. (2009) 

referred that human studies are not showing that fruit and vegetable intakes are associated with 

a reduced cancer incidence in general and in particular with reduced CRC risk (Fuchs et al., 

1999; Scharlau et al., 2009). For example, Terry et al. (2001) results do not support the 

hypothesis that high consumption of cereal fiber decreases the risk of colon or rectal carcinoma, 

even based on a much broader range of cereal fiber intake than had been examined in previous 

cohort studies (Terry et al., 2001). However, it is also likely that the frequency of fruit and 

vegetables consumption that is adequate to decrease cancer risk, taking into account other 

health consequences, probably varies with individual factors and, perhaps, with other cofactors in 

the population, such as multivitamin use and whether foods are fortified with other 

micronutrients. In contrast, the role of diet in cancer development is strongly supported by 

epidemiological studies, in particular in the case of cancers of the digestive tract (Vano, 

Rodrigues, & Schneider, 2009). Topping and Clifton (2001) observed that some studies showed 

that native East Africans, consuming a diet high in unrefined cereals, were at lower risk of CRC, 

diverticular disease, and constipation than Europeans who ate a diet low in such foods (Topping 

& Clifton, 2001). Another study by Bamia et al. (2013) allowed to conclude that adherence to 

Mediterranean diet may be associated with lower CRC risk (Bamia et al., 2013) . The traditional 

Mediterranean diet is characterized by high intakes of vegetables, fruit/nuts, fish, cereals and 

legumes, moderate alcohol consumption (particularly wine during meals), low to-moderate 

consumption of dairy products (mainly cheese and yogurt) and low consumption of meat/meat 
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products (Trichopoulou & Lagiou, 1997) . The main source of lipids is olive oil consumed in large 

quantities, and it is the main source of monounsaturated fatty acids in Mediterranean populations 

(Bamia et al., 2013). It has been suggested that up to 25% of colorectal carcinomas could be 

prevented by shifting to a Mediterranean diet (Trichopoulou, Lagiou, Kuper, & Trichopoulos, 

2000). 

Regarding diet, resistant starch, a type of dietary fiber, has been hypothesized to have 

specific anti-cancer properties since this form of fiber is preferentially fermented by microflora 

into potentially beneficial SCFA in the colon (Chan & Giovannucci, 2010). These SCFA produced 

from undigested dietary fibers in the human large intestine, have been extensively reported as 

antitumor agents that induce differentiation, growth arrest and apoptosis in colon carcinoma cells 

(Tang, Chen, Jiang, & Nie, 2011a).  The most important role of SCFA in colonic physiology is 

their trophic effect on the intestinal epithelium. Sakata reported that the presence of SCFA in rat 

colon stimulates mucosal proliferation (Sakata, 1987). In human, SCFAs production from inulin-

type fructan can increase the metabolic activity, pointing to trophic effects for normal colonocytes 

(Sauer, Richter, & Pool-Zobel, 2007).  

SCFA are organic fatty acids with 1 to 6 carbon atoms, increasing from acetic (C2:0), 

propionic (C3:0), butyric (C4:0), valeric (C5:0) and caproic (C6:0) acids (Fauser et al., 2011). 

These intermediate carboxylic acids at the physiological pH predominate in their dissociated form 

acetate, propionate, butyrate, valerate and caproate are the principal anions which arise from 

bacterial fermentation of polysaccharide, oligosaccharide, protein, peptide, and glycoprotein 

precursors in the colon (Bergman, 1990; Cummings & Macfarlane, 1991; Miller & Wolin, 1979). 

Among these, however, butyrate, acetate, and propionate have been mainly emphasized. In 

particular, butyrate was addressed to be more beneficial for promoting colonic health and more 

effective for stimulating the proliferation of intestinal mucosal cells than acetate and propionate 

(Sakata, 1987). These SCFA, especially butyrate, are recognized for their potential to act on 

secondary chemoprevention by slowing growth and activating apoptosis in CRC cells. 

Additionally, SCFA can also act on primary prevention by activation of different drug metabolizing 

enzymes. This can reduce the burden of carcinogens and, therefore, decrease the number of 

mutations, reducing cancer risk (Scharlau et al., 2009). 

Results from Takashi Sakata (1987) indicated that the stimulatory effect of SCFA on 

intestinal epithelial cell proliferation in vivo is substantial and highly reproducible, and that the 

effect of SCFA persists sufficiently long to be of nutritional significance (Sakata, 1987). When the 
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concentrations of SCFA used were compared with the lumen concentrations measured by Yang 

et al. (1970), it was clear that physiological doses of acetate had a trophic effect on colonic 

epithelium, and butyrate had a trophic effect on both jejunal and colonic epithelium. In contrast, 

propionate was effective only at superphysiological doses (Sakata, 1987; Yang et al., 1970).  

Several benefits can be obtained when the ingestion of dietary fibers are higher: 

increases in SCFA result in decreased pH, which indirectly influences the composition of the 

colonic microflora (eg, reduces potentially pathogenic clostridia when pH is more acidic), 

decreases solubility of bile acids, increases absorption of minerals (indirectly), and reduces the 

ammonia absorption by the protonic dissociation of ammonia and other amines (Wong et al., 

2006). 

Because different types of dietary fiber produce varying amounts of the specific SCFA 

(Cummings, 1981), it is likely that the exact composition of fiber within the colonic lumen may 

determine its cellular effects, including its possible beneficial role in the prevention and/or 

treatment of colon cancer (McIntyre, Gibson, & Young, 1993). 

 

5. Colonic SCFA concentrations and carcinogenesis 

 

SCFA constitute approximately two-thirds of the colonic anion concentration (70-130 

mmol/l), however, the rate and amount of SCFA produced depends on the species and amounts 

of microbiota present in the colon, the substrate source and gut transit time (Macfarlane & 

Macfarlane, 2012; Mortensen & Clausen, 1996). Total SCFA and local differences in SCFA 

concentration along the intestinal track are implicated in diseases of the colon, especially in 

cancer and gastrointestinal disorders, where disease often occurs distally. Therefore, increased 

SCFA production and a greater delivery of SCFA distally may have a role in preventing these 

diseases (Wong et al., 2006). 

In vivo, the study of SCFA is more difficult and relies mostly on determination of the 

concentrations in feces. The three main SCFA, butyrate, propionate and acetate, can be found in 

the gut in considerably high concentrations. These concentrations range from 40–80mM, 10–

25mM and 10–20mM for acetate, propionate and butyrate, respectively (Alles et al., 1999; 

Jenkins et al., 1999; Topping & Clifton, 2001). The relative molar proportions range from 50–

65% for acetate, from 10–25% for propionate and from 10–25% for butyrate, depending on the 

fiber consumed (Alles et al., 1999; Jenkins et al., 1999; Topping & Clifton, 2001). Nonetheless, 
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the in vitro production of total colonic SCFA is difficult to determine because more than 95% of 

the SCFAs are rapidly absorbed (Roy et al., 2006) and metabolized by the host (Cook & Sellin, 

1998; Topping & Clifton, 2001).  

SCFA absorption rates are the same in all the regions of the colon, but as the 

concentrations of fermentation substrates are highest in the cecum and ascending colon, the 

concentration of SCFA decreases from the proximal to the distal colon (Roy et al., 2006). In the 

gut, butyrate is the major energy source for colonocytes (Ahmad et al., 2000), propionate is 

largely taken up by the liver and acetate enters the peripheral circulation to be metabolized by 

peripheral tissues (Wong et al., 2006).   

 

6. Effects of SCFA in CRC cells 
 

A variety of biological effects of SCFA have been reported, and there is a vast number of 

experimental works showing new aspects of these molecules.   

Although most studies focus on SCFA-induced apoptosis, Tang and co-workers demonstrated for 

the first time that butyrate and propionate are able to induce autophagy in human colon cancer 

cells (Tang et al., 2011a). Autophagy is an evolutionarily conserved catabolic process in which 

the cytoplasmic contents and organelles are transferred into double membrane vesicles, called 

autophagosomes (Glick, Barth, & Macleod, 2010). Autophagosome ultimately fuses with a 

lysosome, where its contents are broken down by degradative enzymes and subsequently 

recycled (Glick et al., 2010). This mechanism of type II Programed Cell Death (Tang et al., 

2011a), is responsible for the turnover of intracellular long-lived proteins and damaged organelles 

during cellular homeostasis. Autophagy plays also important roles in tissue development, 

differentiation and remodeling (B. Levine & Klionsky, 2004) and has been implicated in tumor 

development. In Tang et al. (2011a) in vitro study, human colon carcinoma cells were treated 

with propionate and butyrate at concentrations (1–3 mM) below their IC50 (half maximal inhibitory 

concentration) value toward the cancer cells and instead of inducing apoptosis, these SCFA 

induced extensive morphological alterations characteristics of autophagy. Consequently, the 

induced autophagy may provide tumor cells with an alternative energy supply to allow for 

adaptive protein synthesis and help overcome mitochondria defects causing a cellular energy 

crisis. Autophagic degradation of defective mitochondria could retard the occurrence of apoptosis 

by circumventing the release of proapoptotic factors such as cytochrome c from the mitochondria 
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and the activation of the apoptotic caspase cascade. The results presented in their study suggest 

that induced autophagy by SCFAs would increase the resistance and flexibility of colon carcinoma 

toward an adverse microenvironment and compromise the efficacy of SCFAs themselves in colon 

carcinoma prevention (Tang et al., 2011a).  

Therefore, SCFA may have opposing effects either inducing autophagy and hence 

increasing cell resistance, or inhibiting the proliferation of cancer cells through induction of 

apoptosis. In line of this latter effect we have recently demonstrated that lysosomal membrane 

permebilization (LMP) and the release of Cat-D is important in regulation of apoptosis by acetate 

(Marques et al., 2013) (Figure 5). An extensive revision was performed concerning the precise 

role of SCFA: butyrate, propionate and acetate in colorectal carcinoma and all data was compiled 

in Table I, and will be described in brief.  
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Figure 5 - Schematic representation of the proposed role of SCFAs in orchestrating two opposing cellular events: 

induction of autophagy which increases tumor resistance and contributes to its development or induction of 

apoptosis which increases tumor sensitivity and promotes elimination of colon cancer cells. MPT, mitochondrial 

membrane permeability transition; Δψm, mitochondrial membrane potential; ROS, reactive oxygen species 

(Adaptated from Marques et al., 2013; Tang, Chen, Jiang, & Nie, 2011b). 

 

6.1. Butyrate 
 

Of all SCFA butyrate is the most extensively studied because of its role in the prevention 

of CRC, inducing a variety of changes within the nucleus as a consequence of inhibition of cell 

differentiation, promotion of cell-cycle arrest and apoptosis of transformed colonocytes (Heerdt, 

Houston, & Augenlicht, 1997). Hinnebusch et al. (2002) demonstrated that apoptosis levels in 

human colon carcinoma cells were higher for treatment with butyrate than with other SCFA 

(Hinnebusch et al., 2002). On the other hand, Marques et al. (2013) showed that acetate 
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induces high levels of apoptosis in CRC cells (Marques et al., 2013).  Butyrate presents the same 

effects in other types of malignant cells both in vitro and in vivo (Table 1).  

Butyrate is a major energy source for colonic epithelial cells in vivo, accounting for about 

70-90% of total energy consumption (Cook & Sellin, 1998; G. R. Gibson & Roberfroid, 1995; 

Scheppach, 1994), while most other cell types use glucose (Donohoe et al., 2011), and is 

thought to stimulate cell proliferation (Scheppach et al., 1992). Cells that metabolize butyrate at 

a higher rate are likely to be less susceptible to its apoptosis-inducing effects, which may explain 

why normal colonocytes are unaffected by the very high levels of this SCFA in the distal colon 

(Medina et al., 1997). However, an important conclusion from Singh et al. (1997) study was that 

the response of colonic epithelial cells to butyrate may depend in part on the other energy 

sources available to the epithelium: in conditions of low energy availability, butyrate could 

stimulate growth, but in the presence of high levels of alternative high energy sources such as 

glucose, butyrate could switch from a growth stimulator to a growth inhibitor and/or an inducer 

of apoptosis, depending upon factors such as the level of exposure and the intracellular milieu 

(Sengupta, Muir, & Gibson, 2006; Singh et al., 1997). Nevertheless, differentiation of 

colonocytes, either induced by butyrate or by other conditions, is reversible at early times of 

exposure. It has been hypothesized that less differentiated transformed cells are more sensitive 

to the apoptotic effects of butyrate than differentiated colonocytes (Matthews, Howarth, & Butler, 

2006; Scharlau et al., 2009). Thus, if a continuous in vivo exposure to high concentrations of 

butyrate is not attained, the irreversible commitment to differentiation might not occur and cells 

could return to their normal malignant phenotype and regain the capacity to proliferate (Cai et al., 

2006).  

Boren and et al. (2003) observed that differences exist in the metabolism of butyrate 

between a butyrate-sensitive (HT29) and a butyrate-resistant (MIA) cell types. Incubation of MIA 

cells with butyrate had no effect on glucose utilization and was not associated with cellular 

differentiation (Boren et al., 2003). It was, therefore, proposed that a cell will undergo apoptosis 

or differentiation depending on the ability of that cell to metabolize butyrate. However, cancer 

cells that are capable of metabolize butyrate have been identified (Lopez de Silanes et al., 2004) 

and they are protected against its role as an apoptotic inducer. This finding suggests that the 

colonic butyrate-rich microenvironment may play a role in the selection of more aggressive colon 

carcinoma cells that maintain the ability to use butyrate as a carbon and energy source (Serpa et 

al., 2010). Additionally, several studies showed that butyrate-resistant cancer cells may be 
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selected and give rise to more aggressive cancers (Chai, Evdokiou, Young, & Zalewski, 2000; 

Lopez de Silanes et al., 2004; Mariadason, Corner, & Augenlicht, 2000).  

Other studies propose a down regulation of butyrate transporters, such as MCT1, in 

human colon carcinoma tissue (Lambert, Wood, Ellis, & Shirazi-Beechey, 2002; H. Li et al., 

2003) which results in a reduced uptake and metabolism of butyrate in the colonocytes (Hamer 

et al., 2008). A decline in the abundance of MCT1 in the membrane of colonic epithelial cells, 

and hence in butyrate uptake, would in turn reduce the availability of intracellular butyrate as a 

source of energy and as an important regulator of cellular homeostasis. In 2009 Thangaraju et 

al. showed that butyrate also elicits effects in colon cells extracellularly by serving as a ligand for 

GPR109A (Thangaraju et al., 2009), a receptor in the lumen facing apical membrane of colonic 

epithelial cells that binds butyrate with low affinity (Clarke et al., 2012). The expression of 

GPR109A is silenced in colon carcinoma by DNA methylation whereas its re-expression by 

butyrate exposure in cancer cells results in apoptosis without the involvement of histone 

deacetylases (HDAC) (Thangaraju et al., 2009). Butyrate was also able to activate the receptor 

with an EC50 (concentration necessary for half-maximal activation of the receptor) of ≈1.6 

mmol/L. Although the levels of butyrate in circulation are too low (≈5 mol/L) to activate the 

receptor, butyrate is present at high levels (≈20 mmol/L) in colonic lumen (Hamer et al., 2008). 

If GPR109A is expressed in the lumen-facing apical membrane of colonocytes, it might suggest 

that the ability of butyrate to prevent cancer and inflammation in the colon may also be mediated 

extracellularly via the receptor without entering into cells (Thangaraju et al., 2009). Still regarding 

to transporters, the gene of the SMCT1 transporter is highly methylated in colon adenomas of 

African Americans, who are more likely to die from colon carcinoma than others, which points to 

its potential use as a marker for early detection (Brim et al., 2011). Re-expression of SMCT1 in 

the presence of butyrate results in colon carcinoma cellular apoptosis (Brim et al., 2011). 

Thangaraju (2008) observed that the induction of apoptosis in SW480 colon cancer cells by 

SMCT1/butyrate was associated with upregulation of pro-apoptotic genes (p53, Bax, Bad, Bak, 

FAS ligand, FAS receptor, TRAIL, and TRAIL receptors) and downregulation of anti-apoptotic 

genes (Bcl-2, Bcl-W, BclxL, Bfl-1, and survivin) (Thangaraju et al., 2008). Butyrate causes cell 

death in colon carcinoma cells by two independent but complementary mechanisms: one 

through GPR109A independent of HDACs and other through SMCT1-mediated entry of butyrate 

into cells with subsequent inhibition of HDACs (Thangaraju et al., 2009). By acting as an HDAC 

inhibitor, butyrate leads to histone hyperacetylation (Cousens, Gallwitz, & Alberts, 1979) and 
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enhances the accessibility of transcription factors to the DNA, causing biological effects in colon 

carcinoma cells (Wong et al., 2006), including cell death (Shao et al., 2004). 

For Donohoe and co-workers (2012) butyrate inhibits the growth of cancerous 

colonocytes because it is metabolized inefficiently due to the Warburg effect, described as a high 

degree of aerobic glycolysis. Consequently, butyrate accumulates in the nucleus, acts as an 

HDAC inhibitor and causes cell death (Shao et al., 2004; Wong et al., 2006). Robert Li and Cong 

Jun Li (2006) confirmed the accumulation of acetylated histone 3 (H3) due to butyrate treatment 

(R. W. Li & Li, 2006). In addition to this function, butyrate increases histone acetylation through 

conversion to acetyl-CoA and stimulating histone acetyltransferases (HATs) (Barshishat, Polak-

Charcon, & Schwartz) activity (R. W. Li & Li, 2006). However, the metabolic state of the cell 

influences intranuclear butyrate and acetyl-CoA levels and determines whether butyrate functions 

to inhibit HDACs or stimulate HATs to epigenetically regulate the expression of different target 

genes (Donohoe et al., 2012). Deregulation in the expression or activity of HATs and HDACs may 

lead to alterations in gene expression profiles, associated with the reactivation or silencing of 

genes critical for cancer progression, differentiation and apoptosis (Iacomino, Tecce, Grimaldi, 

Tosto, & Russo, 2001; Marchion & Munster, 2007; Sambucetti et al., 1999). For example, 

hyperacetylation of histones can support chromatin opening and induction of p21 (WAF1/CIP1) 

gene expression (Davie, 2003), and increased histone acetylation in the promoter of p21WAF1 gene 

has been reported after butyrate treatment. Activation of tumor-suppressor genes, like p21WAF1, is 

claimed to be the major cause of growth arrest and/or apoptosis. On the other hand, down 

regulation of p21WAF1 expression in colorectal carcinomas is associated with histone 

hypoacetylation of total chromatin (Lu et al., 2008). It is possible, that nucleosome conformations 

are altered due to histone H3 hypoacetylation, and that the access to chromatin of transcriptional 

regulatory proteins may be reduced in colorectal carcinomas (Lu et al., 2008). It has also been 

reported that butyrate can induce a hypermethylation of DNA (de Haan, Gevers, & Parker, 1986), 

contributing to repression of the transcription of a specific region of DNA. Still regarding to DNA 

molecules, alkaline phosphatase (ALP) is a hydrolase isoenzyme responsible for removing 

phosphate groups nucleotides, and their levels are frequently elevated in patients with metastatic 

CRC (Saif, Alexander, & Wicox, 2005). ALP activity and the dipeptidyl peptidase-IV have been 

used as markers of colonocyte differentiation in many studies with Caco-2 and HT29 colon 

carcinoma cells and were increased during culture of malignant cells in the presence of butyrate 

(Whitehead, Young, & Bhathal, 1986). Regarding transcription, it has been demonstrated that 
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transcriptional attenuation triggered by butyrate plays an important role in the down regulation of 

two key genes that regulate colonic cell maturation and transformation – c-myc and cyclin D1, 

and therefore eliminate their increased steady state levels, which might be expected from the 

elevation in Wnt signaling (Cai et al., 2006; Maier et al., 2009). Scharlau et al. (2009) also 

observed that butyrate treatment enhanced mRNA gene expression, protein expression and 

enzyme activity of GSTs, and other stress response genes in human primary colon cells, LT97 

cells and HT29 cells (Scharlau et al., 2009). In response to DNA damage, p53 is activated and 

turns on the transcription of one of its downstream genes, p21WAF1 (Archer, Meng, Shei, & Hodin, 

1998; el-Deiry et al., 1993). For Harper et al. (1993) the p21WAF1 product binds to cyclin 

complexes and inhibits the function of cyclin-dependent kinases (Harper et al., 1993). Nakano et 

al (1997) found that butyrate markedly induces p21WAF1protein and causes G1-phase arrest. They 

also observed that butyrate can strongly activate the WAF1/CIP1 promoter, and that the two p53-

binding sites are not required for the transcriptional activation by butyrate (Nakano et al., 1997). 

By inhibiting the HDAC activity recruited to the p21WAF1 promoter by Sp1 or Sp3, butyrate induces 

the expression of p21WAF1 and thereby stops cell proliferation (Davie, 2003). Nakano et al (1997) 

suggested that butyrate-induced growth arrest in human colon carcinoma cells is due to the p53-

independent activation of p21 promoter mediated through specific Sp1 sites in the promoter 

region (Nakano et al., 1997). Siavoshian et al. (2000) showed that exposure to butyrate resulted 

in arrest in the G1 phase of the cell cycle, and that was associated with p21WAF1 induction at the 

protein and mRNA level and overexpression of cyclin D3 (Siavoshian et al., 2000). Regarding cell 

cycle progression, Robert Li and Cong Jun Li (2006) observed that MDBK cells (Madin-Darby 

bovine kidney epithelial cells) were arrested at the G1/S boundary and DNA replication was 

blocked after butyrate treatment (R. W. Li & Li, 2006). A different study showed that after 6 hours 

following treatment of CRC cells with 5 mM of butyrate, the percentage of cells in G1 phase of 

the cell cycle increased by 40% (Maier et al., 2009). Another gene that is regulated by p53 and 

that could influence the decision to commit to an apoptotic pathway is Bax, which belongs to Bcl-

2 family. It is known that members of the Bcl-2 family play important roles in regulating apoptosis 

by functioning as promoters (e.g. Bax, Bak, and Bok) or inhibitors (e.g. Bcl-XL, Bcl-w, A1, and 

Mcl-1) of cell death of transformed cells (Carpinelli et al., 2012; Gewies, 2003; Tzifi et al., 2012). 

It is also known that overexpression of Bcl-2 can block p53-mediated apoptosis (A. J. Levine, 

1997). Bax binds to Bcl-2 and antagonizes its ability to block apoptosis so a p53-dependent Bax 

synthesis could tip the scales toward apoptosis (A. J. Levine, 1997). Hague et al. (1996) 
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suggested that Bcl-2 and Bak play a pivotal role in sodium-butyrate-induced apoptosis in colonic 

epithelial cell and that overexpression of Bcl-2 does not protect against Bak-mediated apoptosis 

(Hague et al., 1996). Zhang et al. (2010) observed that there is a decrease of Bcl-2 (anti-

apoptotic protein) expression in a dose-dependent manner following butyrate treatment in human 

colon carcinoma cells, and also a dose-dependent increase of Bax with increase of butyrate 

concentration (Zhang et al., 2010). The ratio between Bax and Bcl-2 determines the cells’ 

survival or death. A decrease in the levels of Bcl-2 and an increase in Bax leads to the loss of 

mitochondrial transmembrane potential, a key event in the induction of apoptosis. Their results 

indicate that the treatment of butyrate leads to a shift from an anti-apoptotic to a pro-apoptotic 

state (Zhang et al., 2010). Chirakall et al. (2006) showed that butyrate induces apoptosis through 

upregulation of Bak. Their data strongly suggest that Bak upregulation is mediated through 

increased Sp3 binding at the promoter region rather than Sp1 binding, which decreased after 

treatment with butyrate. They also observed increased Bak and reduced Bcl-xL in response to 

sub-apoptotic concentrations of butyrate (Chirakkal et al., 2006).  

Concerning grow and spread of CRC, Neuropilin (NRP)-1 is a member of the VEGF 

receptor family in colon carcinoma, and high levels of NRP-1 staining in human colorectal 

carcinoma tissues is associated in tumor proliferation and angiogenesis and in decreased 

apoptosis (Ochiumi et al., 2006). Yu et al. (2010) data show that different CRC cells exposed to 

butyrate down-regulate NRP-1 expression through decreased mRNA production leading to 

reduction in protein levels. Modification of Sp family activity by butyrate, and the potential of NRP-

1 as a Sp1 target led Yu et al. to investigate the ability of butyrate to modulate NP-1 expression, 

with a view to providing an alternative therapy or chemopreventive strategy for colon carcinoma, 

as NRP-1 is involved in both angiogenesis and the prevention of apoptosis in CRC. Their data 

suggest two potential mechanisms for chemoprevention - through the apoptotic regulatory 

function of NRP-1 and through its pro-angiogenic role (Yu et al., 2010) . 

Colon carcinoma cells can also acquire mechanisms to escape CD95-mediated 

apoptosis (Fan et al., 1999). Fan et al. (1999) demonstrated that butyrate exposure selectively 

induces expression of CD95-L and CD95, which means that butyrate stimulation of colonic 

apoptosis is mediated by this death receptor (Fan et al., 1999). Because caspases are the 

executioners of apoptosis, they are considered the key players in apoptotic cell death (Park et al., 

2007). Butyrate treatment induced apoptosis by activation of caspase-9 (Zhang et al., 2010) and 
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caspase-3 (Ramos et al., 2002; Zhang et al., 2010) through the mitochondria cytochrome c-

mediated apoptotic pathway (Shao et al., 2004).  

A common characteristic of the majority of CRCs is the constitutive activation of the 

canonical Wnt signaling pathway. Bordonaro et al. (1999) reported that butyrate hyper-induces 

canonical Wnt transcriptional activity in CRC cells (Bordonaro et al., 1999) and that there is a 

relationship between enhanced Wnt activity and higher levels of apoptosis (Bordonaro, Lazarova, 

& Sartorelli, 2008). Later (2007), Bordonaro et al. observed that colon carcinoma cells with 

mutations in components of the canonical Wnt signaling hyper-induce this pathway in the 

presence of butyrate (Bordonaro et al., 2007). They had previously identified, on ten human CRC 

cell lines with different Wnt signaling mutations, two classes of CRC cell lines: those which 

respond to butyrate treatment with a high fold induction of canonical Wnt activity and apoptosis, 

and those which exhibit a relatively lower fold induction of canonical Wnt activity and apoptosis. 

This could happen also in vivo: there may be CRC subtypes that respond to butyrate with hyper-

induction of canonical Wnt signaling and high levels of apoptosis, as well as CRC subtypes that 

respond with a lower fold induction of canonical Wnt activity and apoptosis (Bordonaro et al., 

2008; Lazarova, Bordonaro, Carbone, & Sartorelli, 2004). The fact that only a subtype of colonic 

carcinomas cells responds to butyrate with hyper-activation of Wnt signaling and enhanced 

apoptosis is probably the reason why some epidemiological studies are inconsistent about the 

association between fiber intake and colon carcinoma. Lazarova et al. (2004) suggested that 

exposure to butyrate may be most beneficial for those malignancies in which butyrate is able to 

induce relatively high levels of Wnt activity that lead to apoptosis (Lazarova et al., 2004). Even 

though several studies of butyrate in animal models have demonstrated a protective effect of 

butyrate on colorectal carcinogenesis, the same role of butyrate on carcinogenesis in humans is 

still difficult to understand. Again, Bordonaro et al. (2008) believe that the inconsistent findings in 

the literature on the protective role of dietary fiber and its degradation product butyrate against 

colon carcinoma can be at least partially explained by: (a) the existence of different subtypes of 

colonic neoplasms that differ in the induction of canonical Wnt signaling and apoptosis in 

response to butyrate; (b) variations in colonic microflora that generate different levels of butyrate 

by fermentation of dietary fiber; and (c) the timing of exposure of colonic cells to fiber/butyrate in 

relation to the specific stage of colonic tumorigenesis (Bordonaro et al., 2008). 

 Another pathway that has been shown to contribute to cancer proliferation and survival 

is the PI3K signaling pathway (Wang, Li, Wang, Kim, & Evers, 2002). Activation of PI3K, a down-
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regulator of the RAS signaling pathway, is necessary for actin cytoskeletal rearrangement, which 

is associated with the transformed phenotype, and is increased in 86% of human CRCs (Phillips, 

St Clair, Munday, Thomas, & Mitchell, 1998). Wang et al. (2002) showed that PI3K inhibition 

enhances apoptosis induced by butyrate in the aggressive human colon carcinoma cell line, 

KM20, and in HCT116 colon carcinoma cells (Wang et al., 2002). 

 Butyrate has also anti-inflammatory activity in colon adenocarcinoma cells mediated by 

inhibition of the NF-κB pathway (Tedelind, Westberg, Kjerrulf, & Vidal, 2007). NF-κB regulates 

genes involved in controlling cell proliferation, cell death, immune response, and inflammatory 

responses (Luhrs et al., 2001; Segain et al., 2000; Yin, Laevsky, & Giardina, 2001)  and it has 

been suggested that blocking NF-κB can cause tumor cells to stop proliferating, die, or become 

more sensitive to the action of anti-tumor agents (Garg & Aggarwal, 2002). Kaler et al. (2008) 

showed that in intestinal epithelial cells, butyrate activity modulates signaling by a major pro 

inflammatory cytokine, the tumor necrosis factor α (TNFα). Epithelial cells with k-RAS sensitizes 

cells to HDACi induced apoptosis. Kaler et al. (2008) demonstrated that butyrate interfered with 

TNFα-induced NF-κB activity in colon carcinoma cell lines (HCT116 and Hke3 cells), and that 

this activity of butyrate was unaffected by the presence of a mutant K-RAS (Kaler, 2008) 

Zhang et al. (2010) analyzed the roles of MAPKs - ERK1/2, JNK and p38 MAPKs, as 

they play central roles in the signaling pathways of cell proliferation, survival, and apoptosis. 

Butyrate induced apoptosis in the RKO human colorectal carcinoma cell line via activation of the 

JNK MAPK pathway. In addition, inactivation of ERK MAPK was involved in butyrate-induced 

growth inhibition of RKO cells (Zhang et al., 2010). 

Although the aforementioned studies demonstrate that butyrate has apoptotic properties, 

contradictory results exist. One important reason for the opposite effects of butyrate when tested 

in vitro vs in vivo may be the different conditions that exist in these two systems, such as: (a) 

differences between in vitro and in vivo experimental environments, (b) timing of butyrate 

administration with respect to tumor development, (c) amount of butyrate utilized in the 

experiments, (d) effects of fiber that are independent of butyrate production (e.g., fecal transit 

time, fecal bulk, and other bioactive agents present in the fiber), and (e) interaction of fiber with 

dietary fats (e.g., the complementary action of fish oil and pectin in suppressing intestinal 

tumorigenesis) (Bordonaro et al., 2008; Lupton, 2004). 

The global conclusion is that colonocyte-exposure to butyrate in the gut lumen of humans 

could be protective by reducing survival of transformed colon cells, while at the same time 
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promoting survival of non-transformed colonocytes (Scharlau et al., 2009). It must be 

remembered that butyrate is not available as a sole compound but probably acts in unison with 

other metabolites of dietary fiber and of the faecal gut flora. In this context the new approaches to 

investigate complete gut fermentation samples are of importance, since they self-evidently better 

reflect in vivo exposure conditions than butyrate alone (Scharlau et al., 2009).  

Despite all findings of the benefic effects of butyrate, there is an unresolved paradox 

concerning the putative protective role of this SCFA in colon carcinoma: CRCs still develop and 

grow despite the high concentrations of butyrate in the colon (Serpa et al., 2010).  

 

6.2. Propionate 
 

The number of published studies regarding propionate is by far lower than butyrate. 

Although propionate is less frequently studied it has the same health-promoting properties. 

Propionate like butyrate exerts an antiproliferative effect towards colon carcinoma cells (Hosseini, 

Grootaert, Verstraete, & Van de Wiele, 2011). Propionate not only adds to butyrate’s effect of 

suppressing cell growth, but also to butyrate’s effect of modulating histone acetylation in human 

colon cells (Hosseini et al., 2011) . Based on these observations it can be speculated that the 

products of complex in vitro fiber fermentation, like propionate, may contribute to in vivo tumour 

suppressor agent activities resulting in the inhibition of tumor progression (Kiefer, Beyer-

Sehlmeyer, & Pool-Zobel, 2006).  

Jan et al. (2002) showed that propionate induces typical signs of apoptosis in human 

colorectal carcinoma cell lines, with loss of mitochondrial trans-membrane potential, generation 

of reactive oxygen species, caspase-3-processing and nuclear chromatin condensation (Jan et al., 

2002). 

Bindels et al. (2012) demonstrated that, the anti-proliferative effect of propionate was 

partially cAMP level-dependent and associated with the activation of free fatty acid receptor 2 

(FFA2, a G-protein-coupled receptor, also known as GPR43) (Bindels et al., 2012). The authors 

argue that the pharmacological activation of FFA2 may be of therapeutic interest to control 

cancer cell proliferation and sustain the idea of a role for gut microbiota in the control of systemic 

cancer. The mammalian target of rapamycin (mTOR) negatively regulates autophagy and Tang et 

al (2011) demonstrated that propionate-induced autophagy was associated with decreased 

mTOR activity and enhanced AMP kinase activity  (Tang et al., 2011a).   
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6.3. Acetate 
 

A study by Barcenilla et al. (2000) revealed that 95% of intestinal isolated bacterial 

strains utilizing acetate were butyrate producers. This suggests that butyrate production by 

bacteria is heavily dependent on the availability of acetate (Barcenilla et al., 2000). Hence the 

activities of acetate producing bacteria which influence the availability of acetate can play a 

significant role in colonic health as rate-limiting steps in butyrate formation (Abell, Conlon, & 

Mcorist, 2006). Acetate induces cell proliferation arrest of intestinal epithelial cells in a 

concentration and pH dependent manner (Matsuki et al.). Jan et al. (2002) showed that acetate, 

at levels of 9–16 mmol/L, induced typical signs of apoptosis in human colorectal carcinoma cell 

lines. Like with propionate, this effect included a loss of mitochondrial trans-membrane potential, 

the generation of reactive oxygen species (ROS), caspase-3-processing and nuclear chromatin 

condensation. Accordingly Marques et al. (2013) observed that acetate per se induces apoptosis 

in CRC-derived cell lines HCT-15 and RKO, by inducing DNA fragmentation, caspase activation, 

phosphatidylserine exposure to the outer leaflet of the plasma membrane and the appearance of 

a sub-G1 population (Marques et al., 2013) .    

Although cancer cells may block classical apoptotic pathways, cell death can still occur 

through the release of lysosomal enzymes (Kirkegaard & Jaattela, 2009). Recently, Marques et 

al. (2013) showed that Cat D was release to the cytosol in two CRC lines undergoing acetate-

induced apoptosis. These results indicate that acetate induces a lysosomal apoptotic pathway 

(Marques et al., 2013). Currently, lysosomal pathway of apoptosis is a widely accepted concept 

as partial lysosomal permeabilization with subsequent release of proteolytic enzymes into the 

cytosol, contributing to the death pathways, has been described in several models of apoptosis. 

The magnitude of lysosomal permeabilization determines the type of cell death mediated by 

lysosomal enzymes: a complete breakdown of the organelle with release of lysosomal enzymes 

attaining high cytosolic concentration results in unregulated necrosis, while partial, selective 

permeabilization triggers apoptosis (Guicciardi, Leist, & Gores, 2004). Among the released 

enzymes, cathepsins are of particular interest, since these molecules are often overexpressed in 

human cancers, and high expression levels have been associated with increased risk of relapse 

and poor prognosis. In contrast to their tumor promoting effects, there is also evidence that they 

function as tumor suppressors (Marques et al., 2013). There are several human cathepsins 

identified, but the most relevant are the cysteine cathepsins B and L (Cat B and Cat L) and the 
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only lysosomal aspartic protease, cathepsin D (Cat D). Cat D has been implicated in apoptosis 

induced by staurosporine (Bidere et al., 2003) (Johansson, Steen, Ollinger, & Roberg, 2003), 

interferon-g, Fas/CD95/APO-1 and TNF-a (Deiss, Galinka, Berissi, Cohen, & Kimchi, 1996) 

(Demoz et al., 1999), oxidative stress (Roberg, Johansson, & Ollinger, 1999) sphingosine 

(Kagedal, Zhao, Svensson, & Brunk, 2001), and p53 (Wu, Saftig, Peters, & El-Deiry, 1998) and 

recently, as referred, by acetate (Marques et al., 2013). In our model Cat D seems to have a 

protective role in acetate-induced apoptosis which can have important prevention/therapeutic 

implications. The protective role of Cat D demonstrated by our data might partly explain why Cat 

D is overexpressed in some CRC clinical cases in comparison to normal colon mucosa. We 

therefore hypothesize that increased expression of this protease might be beneficial to cancer 

cells and thus that Cat D might have an ‘oncogenic-like effect’, allowing CRC cells to survive in 

the presence of physiological levels of SCFA in the colon (Marques et al., 2013). Accordingly, we 

also showed that inhibiting Cat D with PstA, a widely used specific inhibitor of Cat D enzymatic 

activity, increased acetate-induced apoptosis in CRC cells 
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Table 1 - Effects of SCFA butyrate, propionate and acetate in colorectal carcinoma cells. 

BUTYRATE Study Concentrations Effects Reference 

 
 

 

7 CRC cell lines 
(HRT18, HCT48, LS174T, SKCO-1, SW480, SW620 
and SW1116) 

 
2 mM 

Induction of  carcinoembryonic antigen (CEA) production 
was not a general phenomenon among  treated cells 

 
(Tsao, Shi, Wong, & 

Kim, 1983) 

 

WI-38  cell line (normal human embryonic lung 
fibroblast) 
 
SV-40-transformed cell line (SVWI-38) 
 
-Irradiation-transformed cell line (CT-1) 

 
5 – 20 mM 

 

Maximum inhibition of DNA synthesis, but not affected 
cell viability 

 
DNA synthesis did not affected transformed cells, but cell 

viability was decreased 

(de Haan et al., 1986) 

 
Cell lines originating from 6 colorectal adenomas and 
7 CRC 

1 – 4 mM 
Apoptosis occurred in colorectal adenoma and 

carcinoma celIs 
(Hague et al., 1993) 

 HT29 colon adenocarcinoma cells 5 mM Induction of growth inhibition and differentiation 
(Barnard & Warwick, 

1993) 

 WiDr  (Human Colon Adenocarcinoma) cell line 0.625 – 10mM Inhibition of proliferation (Nakano et al., 1997) 

 
 
 

S/RG/C2 (adenoma) cell line and  HT29 cell line 0 – 10 mM Growth inhibition and apoptosis (Singh et al., 1997) 

 HT29 cells 0 – 20 mM p21 is required for growth arrest by butyrate (Archer et al., 1998) 

 
 
 

YAMC (Young adult mouse colon cells) 1 mM Induction of apoptosis (Fan et al., 1999) 

 
 
 

Caco-2  cells (Human CRC cells) 3 mM Decrease of cell proliferation Harrison et al, 1999 

 
Caco-2  cells 
 

0.01 – 10 mM 
 

0.01 – 100 mM 

Inhibition of proliferation 
 

Induction of apoptosis 

 
(Ruemmele et al., 

1999) 
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 HT-29 cells 1 – 8 mM Inhibition of cell growth and proliferation 
(Siavoshian et al., 

2000) 

 LS174T and HM7  colon carcinoma cells 2 mM 
Activation of E-cadherin transcription through 

translocation of nuclear transcription factors bearing 
specific repressor activity 

(Barshishat et al., 
2000) 

 
 
 

LIM 1215 CRC cells 0 – 8 mM Cell cycle arrest and apoptosis (Chai et al., 2000) 

 Caco-2  cells  2 – 10 mM 

Stimulation of cell cycle arrest, apoptosis, alkaline 
phosphatase activity, transepithelial resistance, cell 

migration, urokinase receptor expression, and 
interleukin-8 secretion in undifferentiated Caco-2 cells;  
differentiated Caco-2 cells were essentially resistant to 

these effects 

 
(Mariadason, Velcich, 
Wilson, Augenlicht, & 

Gibson, 2001) 

 HT29 cells 4 mM 

Influences NF-B in part by preventing the complete 

degradation of IB- by reducing proteasome activity in 

the cell and increases levels of the p100 IB 
(Yin et al., 2001) 

 Rat  model (F344 rats) 
 

Pellets mixed into the 
diet – 1,5% (w/w) 

No protection against azoxymethane-induced colon 
carcinogenesis 

(Caderni et al., 2001) 

 
Caco-2 and RSB cells (Human colon 
carcinoma) 

2 – 10 Inhibition of cell growth 
(Avivi-Green, Polak-
Charcon, Madar, & 
Schwartz, 2002) 

 
 
 

KM20 cell line (Human colon carcinoma) 0 – 10 mM DNA fragmentation and apoptosis (Wang et al., 2002) 

 HT29 cells 10-2 mM Reduction of  paracellular permeability 
 

(Kinoshita, Suzuki, & 
Saito, 2002) 

 HT29 cells 2 mM 
Increase in the level of methylation of retinoblastoma 

(RB1) gene 
Gope, M. (2003) 

 Caco-2 cells 5 – 50 mM Induction of apoptosis 
(Ruemmele et al., 

2003) 
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HCT116 CRC cell line and HT29 cells 
 

3 mM 
and  IFN-  cytokine 

Inhibition signaling by IFN-g through the inhibition of 
STAT1 activation 

 
(Klampfer, Huang, 

Sasazuki, Shirasawa, & 
Augenlicht, 2003) 

 HT29 cells 0 – 10 mM Inhibition of proliferation (Boren et al., 2003) 

 
Colo-320   (human colon  carcinoma cell line) and 
SW1116  cells 

5 mM 
Activation of the expressions of p21WAF1 mRNA and 

protein 
(Chen et al., 2004) 

 HeLa cell line (Human cervical carcinoma) 10 – 50 mM Induction of apoptosis (Shao et al., 2004) 

 Several CRC cell lines 0 – 5 mM Increase in Wnt activity that contributes to apoptosis 

(Bordonaro et al., 
1999) 

Bordonaro 2002 
(Lazarova et al., 2004) 

(Bordonaro et al., 
2008) 

 Caco2, HCT116 and HT29 0 – 10 mM 
Induction of apoptosis through upregulation of BAK  

associated with increased Sp3 binding 
(Chirakkal et al., 2006) 

 HT29 cells 3 – 5 mM 

Increased expression of HSFs (heat shock factors) and 
hsps (heat shock proteins), which might render colon 

carcinoma cells resistant to the chemopreventive effects 
of butyrate 

(Cai et al., 2006) 

 Colo320DM cells 64 μmol/L  Inhibition of the NF-κB pathway (Tedelind et al., 2007) 

 
Fresh mice samples of tumors and their corresponding 
normal colorectal mucosa 

NaBu dissolved 
in drinking water 

administered at a low 
(0.5% in drinking 

water) 
or high (1.5% in 

drinking water) dose 

Average number of tumors found in mice receiving both 
NaBu and Folic Acid was significantly lower than the two 

components alone 
(Lu et al., 2008) 

 Rectal enemas of butyrate (rat model) 100 mM 
Stimulation of the gene expression of both secreted 
(Muc2) and membrane-linked (Muc1, Muc3, Muc4) 

mucins 

(Gaudier, Rival, 
Buisine, Robineau, & 

Hoebler, 2009) 
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SW837 (CCL-235) rectal and Dld-1 (CCL-221) colon 
adenocarcinoma cells 

5 mM 
Transcriptional attenuation with important role in the 
down regulation of both c-myc and cyclin D1 genes 

(Maier et al., 2009) 

 HCT116, HT29 and Caco-2 cell lines 0 – 20 mM 
Down-regulation of NRP-1 and VEGF at the mRNA and 
protein level,  through inhibition of Sp1 transactivation 

(Yu, Waby, Chirakkal, 
Staton, & Corfe) 

 RKO CRC cell line  0 – 40 mM Induction of apoptosis Yu Zhang et al (2010) 

 
HCT116 cells  0 – 20 mM Induction of apoptosis and inhibition of proliferation Kim Fung et al, 2011 

PROPIONATE Study  Concentrations Effects Reference 

 HT29 cells 10 – 40 mM Induction of apoptosis (Jan et al., 2002) 

 
Colo320DM cells 120 μmol/L Inhibition of the NF-κB pathway (Tedelind et al., 2007) 

ACETATE Study Concentrations Effects Reference 

 HT29 cells 10 – 40 mM Induction of apoptosis (Jan et al., 2002) 

 
Colo320DM cells 2,4 mM  Inhibition of the NF-κB pathway (Tedelind et al., 2007) 

 
HCT-15 and RKO CRC-derived cell lines 0 – 120 mM Induction of apoptosis and inhibition of cell proliferation (Marques et al.) 
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6.4. Combined effects of SCFA 
 

There are very few studies with the combination of SCFA. In Matthews et al. (2012) 

study, butyrate alone, and the combination of butyrate and propionate treatment, reduced Caco-2 

cell viability and induced significantly greater apoptosis than propionate alone. This suggests that 

distinct SCFA exert significantly different effects on cell viability that may be due to differences in 

their absorption, metabolism and/or ability to induce histone acetylation. Their study also showed 

that further separation of apoptosis into early and late apoptosis indicated that SCFA increase 

both phases of apoptosis, although butyrate alone and the combination of SCFA led to a greater 

extent compared to propionate alone (Matthews, Howarth, & Butler, 2012). Jan and co-workers 

observed that propionate and acetate-induced apoptosis in HT-29 cell occurred via the 

stereotyped biochemical events, including mitochondrial alterations, caspase activation and 

nuclear degradation (Jan et al., 2002). Lan et al. (2007) observed that propionate and acetate 

produced by propionibacteria triggered apoptosis induced cell cycle arrest in G2/M phase prior to 

apoptosis at pH 7.5 in HT-29 human colon adenocarcinoma cell line (Lan et al., 2007). 

 

7. Colorectal Carcinoma – SCFA prevention and/or therapy?  
 

The mainstay of CRC prevention is screening and detection of adenomatous polyps. CRC 

is an active area of scientific research, and studies range from cancer prevention and early 

detection to treatment. Cancer chemoprevention is characterized by the use of natural, synthetic, 

or biological (from a living source) substances to reverse, suppress, or prevent the development 

of cancer (Wattenberg, 1985). Epigenetic mechanisms by their potential reversibility represent 

interesting targets in CRC for chemopreventive approaches using dietary agents. Accumulating 

evidence suggests that natural molecules/nutrients present in our diet might modulate epigenetic 

events in humans (Schnekenburger & Diederich, 2012). 

 Jan et al. (2002) proposed that propionibacteria could constitute probiotics efficient in 

the prophylaxis of digestive cancer via their ability to produce apoptosis-inducing SCFA. They 

report that different strains and species of propionibacteria kill cancer cells via the metabolic 

production of two SCFA, propionate and acetate (Jan et al., 2002). All three major components of 

short-chain fatty acids (butyrate, propionate and acetate) induce apoptosis and inhibit cell 
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proliferation. However, several studies show that butyrate is the most potent in inducing 

apoptosis and inhibition of cell proliferation in CRC (C. J. Li & Elsasser, 2005). 

Determining which chemopreventive agents arise in the diet is fundamental to identify 

more effective strategies for cancer prevention and therapy (Tang et al., 2011b). Schnekenburger 

and Diederich (2012) suggested that improved early cancer detection and dietary intervention are 

preventive approaches of choice to decrease CRC incidence (Schnekenburger & Diederich, 

2012).  

 

8. Conclusions 
 

It is known that chemotherapy and radiotherapy operate based on, for example, a 

mechanism of induction of apoptosis in cancer cells by altering their metabolism. It is also known 

that if a cancer has an inoperative P53, which regulates the cell cycle and apoptosis, due to an 

inactivating mutation, it makes no sense to administer a drug to the patient whose mechanism of 

action is dependent on that molecule. Cancer should be analyzed for their molecular profile, 

identifying the main oncogenes and tumor suppressor genes mutated as the majority of patients 

are treated only based in the evaluation of cancer development, and following protocols 

established in the hospitals depending on the stage. Patients should be treated more based on 

the molecular profile of their cancers, and although in some cases this is already a current 

practise in others it would be very expensive and time consuming to be performed (Simões, 

2010). 

It is also well recognized that our lifestyle and dietary habits can prevent several 

diseases, including cancer. Among the several types of cancer, diet directly affects the 

gastrointestinal tract and thus can contribute to prevent or develop/accelerate tumors of 

gastrointestinal organs. It is known for decades that dietary fibers can contribute to health 

promoting, as they are indigestible in human tract and are fermented by colonic bacteria. The 

fiber types that are most amenable to fermentation are the soluble ones, found in foods such as 

berries, beans, flax seeds, plums, apples, and oats, and in some fiber supplements, such as 

those using psyllium and guar gum (Dharmarajan, Ravunniarath, & Pitchumoni, 2003a). 

Insoluble fibers (found in such foods as vegetables, the bran of grains e.g. wheat bran, nuts, and 

seeds) are not available for efficient fermentation, but it is still important in the colon. It provides 
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volume to the feces and its tendency to "speed things along" means that the fermentation will 

take place all along the length of the colon, including near the end, where the majority of colon 

carcinoma occurs (Dharmarajan, Ravunniarath, & Pitchumoni, 2003b).  

Without insoluble fibers, most of the fermentation would take place in the top part of the 

colon and the top colon cells would get most of the benefit. As a result of this fermentation, SCFA 

are released and contribute to eliminate potential dangerous cells. It is difficult to get these in our 

food, so the body relies on the process going on in the colon to make these essential 

biomolecules. Among these SCFA, butyrate, propionate and acetate are gaining most attention in 

the last decades. Several studies proved that these compounds can induce cell death of various 

malignant cell types namely CRC cells through apoptosis, a mechanism used by organisms to 

maintain homeostasis and protection. 

In the gastrointestinal tract, apoptosis is an important protective process eliminating cells 

with DNA damage that may otherwise progress to malignancy (Clarke et al., 2012) . Some study 

confirms the pro-apoptotic actions of SCFA, further supporting their potential as important 

adjunctive therapies for the treatment of colonic neoplasms (Matthews et al., 2012). Among the 

SCFA, butyrate seems to have the major effects in preventing malignant cells proliferation 

through apoptosis. Although many advances that have been made on the mode of action of these 

biomolecules, studies on these compounds are still needed, because despite of existing at high 

concentrations in the human intestine, transformed cells continue to arise in the colon and lead 

to the development of colorectal carcinomas.  
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1. Insights from Sacharomyces cerevisiae on the role of acetate in CRC cells - a 

practical application 
 

One aim of this work was to develop a protocol for secondary school students, to 

illustrate the effect of the SCFA acetic acid on two key cellular biological processes, namely on, 

cell cycle and cell death. Most of the experimental protocols described in the literature to monitor 

these cellular processes involve expensive reagents, complex protocols and sophisticated 

equipment. In Portuguese secondary schools it is very difficult to implement the experimental 

protocols described in the literature. Indeed these protocols include the monitoring of different 

functional, structural and morphological alterations associated with quite intricate cellular events 

which required for its characterization, different fluorescent techniques and transmission electron 

microscopy. Since these experiments are not feasible in the labs of secondary schools, we aimed 

at exploiting very simple techniques and biological materials such as bright field microscopy 

associated with differential coloration of yeast cells to demonstrate the effect of a short chain fatty 

acid, like acetic acid on cell cycle progression and cell death.  

Culturing yeast is simple, economical, and fast. Indeed yeast cells are characterized by a 

doubling time of approximately 90 min on a rich medium and are well adapted to both aerobic 

and anaerobic growth conditions. With few exceptions the yeast cell divides mitotically by forming 

a bud, which pinches off to form a daughter cell. The progression through the cell cycle can be 

monitored by the microscopic observation as described below. 

Another advantage to work with yeast cells and in particular with the species 

Saccharomyces cerevisiae, the common baker´s yeast, is that it is a genetically well-

characterized organism which provides useful and numerous genetic and molecular biology tools 

for researchers. S. cerevisiae has been therefore the most extensively studied one, and become 

progressively a preferred research cellular model system in several areas of cell biology. Though 

the easy handling and genetic tractability of S. cerevisiae resemble those of bacteria, yeast is 

additionally coupled to the functional advantage of being an eukaryotic cell. Moreover, the 

recognition that most basic cellular processes are conserved in S. cerevisiae led to its extensive 

use a preferred cellular model system in several areas of cell biology. It has become apparent 

that, among other cellular processes, the cell cycle and apoptotic core machinery are conserved 

in yeast to a degree that makes it a suitable model organism to approach pending questions on 
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cell cycle and apoptosis in human cells, and on its deregulation in the context of cancer, 

neurodegenerative diseases and aging (Carmona-Gutierrez et al., 2010). 

However, an intriguing question came rapidly to our mind: why does a unicellular 

organism commits suicide? Apoptotic cell death seemed to be a process that was absent in 

yeast. Not only did a cellular suicide program make no sense for an organism consisting of just 

one cell, plain homology searches indicated the absence of crucial regulators of apoptosis 

(Madeo et al., 2004). However, discovery of an apoptotic phenotype in a yeast strain carrying a 

CDC48 mutation this idea (Madeo, Frohlich, & Frohlich, 1997). Yeast populations should not be 

interpreted just as a group of partitioned unicellular organisms that do not communicate among 

each other, but rather as a multicellular community of interacting individuals. Under certain 

circumstances, death of a single cell might be beneficial for the whole population, thus promoting 

the survival of the clone. When dying, aged yeast cells actively stimulate the survival of the clone 

by releasing defined substances into their surroundings. The death of older cells is advantageous 

for two reasons: first, because it spares nutrients for younger cells; and second, because the 

older cells release nutrients that can be metabolized by active proliferative younger cells. Several 

yeast physiological scenarios, in which altruistic death of single cells promotes survival of the 

population, strongly support this idea (Buttner et al., 2006).  
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Figure 6 - Physiological scenarios of yeast apoptosis (Adapted from Buttner et al., 2006). 

 

Since 1997 numerous studies have shown that different stimuli can trigger a death 

process in yeast, which share with mammalian cells common apoptotic features. These stimuli 

can be provided externally in the form of chemical or physical stress, via heterologous expression 

of human proapoptotic proteins (exogenous triggers) or by the yeast cells themselves, as part of 

lethal signal transduction pathways (endogenous triggers) (Carmona-Gutierrez et al., 2010). 

Acetic acid acts as an exogenous trigger and has been extensively exploited by us and 

other groups as a compound commonly used to induce yeast apoptosis. Indeed we first showed 

in our laboratory that treatment with acetic acid at low concentrations could induce apoptotic cell 

death, while higher concentrations appeared to induce necrosis, a form of passive cell death 

(Ludovico et al., 2002); (Ludovico, Sousa, Silva, Leao, & Corte-Real, 2001). Ludovico et al. 

(2001) observed concentration-dependent changes after treatment with acetic acid, which 

include chromatin condensation along the nuclear envelope, exposure of phosphatidylserine at 

the outer surface of the yeast cytoplasmic membrane and formation of DNA strand breaks 
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(Ludovico et al., 2001). Treatment of yeast cells with acetic acid leads to mitochondrial 

cytochrome-c release (Ludovico et al., 2002) and depends on the presence of the yeast orthologs 

of adenine nucleotide translocator. (Pereira, Camougrand, Manon, Sousa, & Corte-Real, 2007). 

Disruption of cytochrome-c partially prevents acetic acid-induced cell death, which is linked to 

enhanced mitochondrial membrane potential and loss of cytochrome-c oxidase activity. 

Consistently, o cells, which lack mitochondrial DNA, and hence respiration-deficient cells, display 

resistance against acetic acid-induced cell death (Ludovico et al., 2002). Valenti et al. (2008) 

demonstrated that acetic acid-induced apoptosis requires temporary activation of the proteasome 

(Valenti et al., 2008), which suggests the existence of a cross-talk between the antioxidant 

defense and the proteolytic systems. We also found that the vacuolar protease Pep4p is 

translocated from the vacuole into the cytosol and has a role in mitochondria degradation in cells 

undergoing acetic acid induced apoptosis (Pereira et al., 2010). Interestingly, as discussed above 

(see 6.3), our results on acetate induced apoptosis in CRC cells (see in 6.3) are in accordance 

with the results obtained in yeast. This reinforces the yeast cell as a good model to study basic 

mechanisms involved in cancer cells.   

Taking into account all the aforementioned advantages on the use of yeast as a cell 

model system and the need to addresses the topics on cell cycle and cell death in the scope of 

the program of eleventh year, we considered interesting and adequate to develop a protocol 

based on very simple experimental approaches to demonstrate the effect of acetic acid on yeast 

cell cycle progression and cell death induction. 

 

2. Experimental Procedures 

2.1 Material and reagents 
 

- 0,150 g of commercial baker’s yeast (bought in the supermarket) 

- 1 g of yeast extract 

- 1 g of peptone 

- 2 g of sacarose 

- 100 ml of water (at ≈30ºC) 
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- Optical Microscope 

- Microscope slides and cover glass 

- Balance 

- Erlenmeyer flask 

- Falcon tubes 

- Watchglass 

- Eyedropper 

- Spatula 

 

2.2. Culture Media  
 

A liquid medium containing white flour (0.5 %, w/v) and sacarose (2%, w/v) was 

prepared and used to assess the effect of acetic acid on yeast growth and cell cycle. A more rich 

medium containing yeast extract (1%, w/v), peptone (1% p/v) and sacarose (2%, w/v) as carbon 

source was also prepared, and used in the assays to study effect of acetic acid in cell cycle 

progression and on cell death.. 

 

2.3. Yeast strain and incubation conditions 
 

To perform the experiments commercial baker´s yeast was bought in the supermarket 

and used as inoculum. Yeast cells were incubated in the culture medium prepared as described 

above, at 30°C with orbital shaking (200 rpm) and a liquid/air ratio of 1:5 to assure a good 

aeration. 

These culture media and incubation conditions were used in the protocols of analysis of 

cell cycle and cell death described below. 
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2.4. Protocol for the analysis of cell cycle  
 

Cell proliferation is the process by which a cell of one type gives rise to two cells that are 

essentially identical. Given sufficient nutrients, yeasts cells double in number every 90 min 

approximately. The analysis of cell cycle in S. cerevisiae is a very simple experiment. Yeast grows 

by budding, which means that the original "mother" cell gives rise to an ellipsoidal daughter cell 

made of entirely new cell surface material (Herskowitz, 1988). The identification of the cell cycle 

phase of a budding yeast cell can be recognized by the cell morphology (bud size) and nuclear 

division. The size of the bud indicates approximately the position of the yeast cell in the cell cycle. 

For example, unbudded cells are in G1 (Herskowitz, 1988). To observe cell proliferation in the 

budding yeast we suggest the following experimental procedure, the same that was used by us in 

the laboratory. 

 

2.4.1. Experimental Procedure 

 

Procedure  

 

Step 1: Distribute 5 ml of culture medium in each falcon tube and inoculate with a concentrated 

cell suspension to obtain an initial optical density at 640 nm (OD640) of about 0.1. 

 

 Step 2: Add acetic acid from a stock solution (17.5 M) to obtain the following final 

concentrations: 

 

0 mM  5ml of the medium + yeast + 0 µl of acetic acid (negative control) 

10 mM  5ml of the medium + yeast + 2.8 µl of acetic acid 

20 mM  5ml of the medium + yeast + 5.6 µl of acetic acid 

30 mM  5ml of the medium + yeast + 8.57 µl of acetic acid 

 

Step 3: Harvest a sample every 2 h to measure the OD640, and observe under the microscope to 

count approximately 200 cells, and determine the % of cells in the different phase of the cell 

cycle. 
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2. 5. Protocol for the analysis of cell death 
 

The observation of cell death in S. cerevisiae is also a very simple experiment. To 

observe cell death cells were exposed to acetic acid at different concentrations (60, 80 and 120 

mM), pH 3±0, and methylene blue, a dye that stains blue metabolic inactive cells (“death cells”). 

Cells metabolic active can also take the dye, but is processed by active enzymes and reduced. 

The reduced form of the dye is colorless and hence metabolic active cells (“viable cells”) do not 

stain blue. 

 

2.5.1. Experimental Procedure 

 

Procedure  

 

Step 1: Distribute 5 ml of culture medium in each falcon tube and inoculate with a concentrated 

cell suspension to obtain an initial optical density at 640 nm (OD640) of about 0.1. 

 

Step 2: Add acetic acid from a stock solution (17.5 M) to obtain the following final 

concentrations: 

 

0 mM  5ml of the medium + yeast + 0 µl of acetic acid (negative control) 

60 mM   5ml of the medium + yeast + 17.1 µl of acetic acid 

80 mM  5ml of the medium + yeast + 22.85 µl of acetic acid 

120 mM  5 mL of medium + yeast + 34.28 µl of acetic acid 

 

Step 3: Place each falcon in the incubator at 30°C with shaking at 200 rpm.  

 

Step 4: Harvest 10µl of the cell suspension and add 10 µl of methylene blue. 

 

Step 5: Homogenize the mixture and transfer 10µl of the suspension to a Newbauer chamber. 

This is a special glass slide precisely divided into squares of 1 mm2 area; the slide is covered with 
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a cover slip, leaving a volume of each square of 10.04 cm3 or 0.1 mm3, which is equivalent to 1 

ml). 

 

Step 6: Count the cells stained in blue and the colorless cells in a total of about 300 cells. 

 

Step 7: To estimate the % of viable cells count 300 cells in the Newbauer chamber  

 

% viable cells     =       Colorless cells        x     100      

                                   Total number of cells (colorless+blue) 

 

% dead cells     =             Blue cells          x     100      

                                   Total number of cells (colorless+blue) 

                       

3. Results and discussion 

3.1. Effect of acetic acid on cell cycle progression  
 

Our first attempt was to growth the yeast cells in an inexpensive culture medium and of 

easy preparation. Therefore, we first tested a medium containing white flour and sacarose as 

carbon source. Though we observed cell growth and a negative effect of acetic acid in this 

medium the cell density achieved was quite low (figure 7.1 a) which could limit the observations 

under the microscope. Therefore in the following assays we used a rich medium with peptone, 

yeast extract and sacarose which allowed to achieve a higher cellular density figure 4.1 a) after 

24 h (OD640 of about 3.5 in comparison with 0.6). The increase in acetic acid concentration led to 

an increase of the inhibition of yeast growth (Fig. 7b). 

Cell samples from cultures in this medium in the absence and presence of different 

concentrations of acetic acid acetic were observed under the microscope to determine the % of 

cells in the different phases of the cell cycle (fig. 5c and 5d).  
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Figure 7 - Effect of acetic acid on yeast growth and cell cycle progression. Yeast cells were incubated in the absence 

or presence of  acetic acid (10mM, 20mM and 30mM) in culture medium with flour (a) or in rich medium (b) and 

OD 640 were measured after 2, 4, 6 and 8 hours; (c) Microscope images of cells after 2 hours treatment with 10 

mM acetic acid. (400X) showing yeast cells in different phases of the cell cycle; (d) Effect of 10, 20 and 30 mM of 

acetic acid on yeast cell cycle progression. 

 

The analysis of the cell cycle progression of samples exposed to increasing 

concentrations of acetic acid along 8 h incubation, suggests that growth inhibition by acetic acid 

is associated with a slight perturbation in the progression of cell cycle. This is more apparent in 

the culture exposed to 30 mM of acetic acid which displays a higher percentage of cells in the S 

phase. This may indicate that cells actively involved in duplication of their cellular contents are 

more sensitive to acetic acid, and therefore do not proceed as efficiently to the G2/M phase as 

untreated cells. 

 

3.2. Effect of acetic acid on cell death 
 

Exposure of yeast cells to increasing concentrations of acetic acid led to a decrease in 

number of colorless cell (“viable cells”) and an increase in the number of blue cell (“dead cells”) 

after staining with methylene blue (Figure 8a). The percentage of viable cells decreased from 

100% to 97,1% to 75.5 % and 16%, after 2 hours treatment with 60, 80 and 120 mM of acetic 
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acid, respectively. This indicates that acetic acid is inducing cell death, as assessed by the loss of 

metabolic activity (Figure 8b).  
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Figure 8 - Cell viability of yeast cells after exposure to acetic acid assessed by methylene blue staining. (a) 

Microscope image showing metabolic inactive cells (“dead cells”) (blue) and metabolic active cells (“viable cells”) 

(colorless) after 2 hours treatment with 60 mM acetate (400X). (b) Percentage of metabolic active cells (“viable 

cells”) after acetic acid treatment (60 mM, 80 mM and 120 mM). 

 

4. Final conclusions 

 

In the second part of this thesis we intended to develop protocols to illustrate key 

biological processes that are discussed in biology classes for undergraduate students. The 

difficulty to accomplish this objective was essentially due to the need to adapt the protocols and 

techniques used in research laboratories, to the scarce facilities available in secondary school 

labs. Laboratories in secondary schools are not equipped with the appropriate instrumentation 

that allow the use of more advanced experimental approaches required to study complex cellular 

processes.  

We demonstrate that very simple protocols associated with the use of yeast cells and of a 

basic optical microscope may be applied to illustrate two basic cellular processes, namely the 

cell cycle and cell death, in experimental biology at the secondary school level. 
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