
Eduardo José Tanque de Pádua Cruz

Parallel Interactive Ray Tracing and
Exploiting Spatial Coherence

Ed
ua

rd
o

Jo
sé

 T
an

qu
e

de
 P

ád
ua

 C
ru

z

Janeiro de 2013U
M

in
ho

 |
 2

01
3

Pa
ra

lle
l I

nt
er

ac
tiv

e
Ra

y
Tr

ac
in

g
an

d
Ex

pl
oi

tin
g

Sp
at

ia
l C

oh
er

en
ce

Universidade do Minho
Escola de Engenharia

Janeiro 2013

Dissertação de Mestrado
Mestrado em Informática

Trabalho realizado sob a orientação do
Professor Doutor Luís Paulo Peixoto dos Santos

Eduardo José Tanque de Pádua Cruz

Parallel Interactive Ray Tracing and
Exploitng Spatial Coherence

Universidade do Minho
Escola de Engenharia

 i

 Inscription

"We choose to go to the moon, we choose to go to the moon in this decade and do the other

things, not because they are easy, but because they are hard, because that goal will serve to

organize and measure the best of our energies and skills, because that challenge is one that

we are willing to accept, one we are unwilling to postpone, and one which we intend to win,

and the others, too." - John F. Kennedy, 12th of September, 1962

 iii

 Acknowledgments

This research project would not have been possible without the support of many people. First

and most of all, I would like to express my deepest gratitude to my supervisor, Prof. Dr. Luís

Paulo Peixoto dos Santos for accepting me as his student, selecting me for the research grant

and for the invaluable offered assistance, support and guidance. My gratitude is also due to the

members of the CoLab, who allowed me to participate in a Summer School in the University of

Texas – Austin, where I got significant insight on parallel computation, computer graphics and

academic research.

I would also like to convey thanks to the Science and Technology Foundation of Portugal (FCT)

for providing the financial means to perform this study and to the Department of Informatics of

the University of Minho for making available their staff laboratory facilities.

I must also express my gratitude to Dr. Nuno Brito, for his unselfish and unfailing support,

pushing me forward to complete this work and help in the review process of this thesis.

I also wish to express my love and gratitude to my beloved family and Filipa, for their

understanding and endless love, through the duration of my studies. I will carry you with me

wherever I go.

I also thank my Dear Lord, for giving the strengths to continue when matters seamed worthless

and always putting the next step of the path so I could reach this goal.

 v

 Abstract

Ray tracing is a rendering technique that allows simulating a wide range of light transport

phenomena, resulting on highly realistic computer generated imaging. Ray tracing is, however,

computationally very demanding, compared to other techniques such as rasterization that

achieves shorter rendering times by greatly simplifying the physics of light propagation, at the

cost of less realistic images.

The complexity of the ray tracing algorithm makes it unusable for interactive applications on

machines without dedicated hardware, such as GPUs. The extreme task independent nature of

the algorithm offers great potential for parallel processing, increasing the available

computational power by using additional resources. This thesis studies different approaches

and enhancements on the decomposition of workload and load balancing in a distributed

shared memory cluster in order to achieve interactive frame rates.

This thesis also studies approaches to enhance the ray tracing algorithm, by reducing the

computational demand without decreasing the quality of the results. To achieve this goal,

optimizations that depend on the rays’ processing order were implemented. An alternative to

the traditional image plan traversal order, scan line, is studied, using space-filling curves.

Results have shown linear speed-ups of the used ray tracer in a distributed shared memory

cluster. They have also shown that spatial coherence can be used to increase the performance

of the ray tracing algorithm and that the improvement depends of the traversal order of the

image plane.

Keywords: Ray Tracing, Parallel Computing, Spatial Coherence

 vi

 Resumo

O ray tracing é uma técnica de síntese de imagens que permite simular um vasto conjunto de

fenómenos da luz, resultando em imagens geradas por computador altamente realistas. O ray

tracing é, no entanto, computacionalmente muito exigente quando comparado com outras

técnicas tais como a rasterização, a qual consegue tempos de síntese mais baixos mas com

imagens menos realistas.

A complexidade do algoritmo de ray tracing torna o seu uso impossível para aplicações

interativas em máquinas que não disponham de hardware dedicado a esse tipo de

processamento, como os GPUs. No entanto, a natureza extremamente paralela do algoritmo

oferece um grande potencial para o processamento paralelo. Nesta tese são analisadas

diferentes abordagens e optimizações da decomposição das tarefas e balanceamento da carga

num cluster de memória distribuída, por forma a alcançar frame rates interativas.

Esta tese também estuda abordagens que melhoram o algoritmo de ray tracing, ao reduzir o

esforço computacional sem perder qualidade nos resultados. Para esse efeito, foram

implementadas optimizações que dependem da ordem pela qual os raios são processados.

Foi estudada, nomeadamente, uma travessia do plano da imagem alternativa à tradicional,

scan line, usando curvas de preenchimento espacial.

Os resultados obtidos mostraram aumento de desempenho linear do ray tracer utilizado num

cluster de memória distribuída. Demonstraram também que a coerência espacial pode ser

usada para melhorar o desempenho do algoritmo de ray tracing e que estas melhorias

dependem do algoritmo de travessia utilizado.

Palavras-Chave: Ray Tracing, Computação Paralela, Coerência Espacial

 vii

 Index

Inscription*..*i!
Acknowledgments*..*iii!
Abstract*..*v!
Resumo*..*vi!
Index*..*vii!
List*of*Acronyms*...*ix!
Index*of*Figures*..*xi!
Index*of*tables*..*xiii!
1*Introduction*..*1!
1.1! Motivation*..*1!
1.2! Organization*...*2!

2*Objectives*and*Goals*...*3!
3*State*of*the*Art*..*4!
3.1! Ray*Tracing*...*4!
3.2! Acceleration*Data*Structures*..*5!
3.3! Rasterization*vs.*Ray*tracing*...*5!
3.4! Coherence*..*6!
3.5! Processing*Packets*instead*of*Single*Rays*...*7!
3.6! Parallel*Ray*Tracing*...*9!
3.7! Parallel*Progressive*Ray*Tracing*...*11!
3.8! Parallel*task*assignment*strategies*in*the*Demand*Driven*context*............*12!
3.9! Ray*coherence*techniques*...*14!
3.10! Space*filling*curves*...*15!
3.11! The*Hilbert*curve*..*16!

4*METODOLOGY*...*19!
4.1! iRT*Overview*..*19!
4.2! Workload*decomposition*...*20!
4.3! Measuring*efficiency*of*parallelization*...*21!
4.4! Static*Distribution*...*22!
4.5! StaticXCyclic*Distribution*..*23!
4.6! Dynamic*load*balance*..*24!

 viii

4.7! Tasks*refinement*..*26!
4.8! NonXblocking*communication*...*26!
4.9! Comparing*Scan*Line*and*Hilbert*line*traversal*...*26!

5*RESULTS*..*31!
5.1! Experimental*Setup*..*31!
5.2! Load*Balancing*...*31!
5.3! Spatial*Coherence*..*36!

6*CONCLUSIONS*..*43!
6.1! Achieved*goals*..*43!
6.2! Future*work*..*43!

7*BIBLIOGRAFY*..*45!

 ix

 List of Acronyms

AABB Axis Aligned Bounding Boxes (Volumes Delimitadores Alinhados pelos Eixos)

ADS Acceleration Data Structures (Estruturas de Dados de Aceleração)

BVH Bounding Volume Hierarchy (Hierarquia de Volumes Delimitadores)

DSM Distributed Shared Memory (Memória Partilhada Distribuída)

IGIDE Interactive Global Illumination within Dynamic Environments

 (Iluminação Global Interactiva em Ambientes Dinâmicos)

iRT Interactive Ray Tracer (Ray-Tracer Interactivo)

Kd-tree K-dimensional Tree (Árvore K-dimensional)

SM Shared Memory (Memória Partilhada)

SISD Single Instruction Single Data (Instrução Única para Dados Únicos)

SIMD Single Instruction Multiple Data (Instrução Única para Dados Múltiplos)

 xi

 Index of Figures

Figure 1 - Light Path in Ray Tracing!..!7!
Figure 2 - SISD vs. SIMD!...!8!
Figure!3!,!Scan!Line!..!16!
Figure!4!,!Peano!Curve!..!16!
Figure!5!,!Hilbert!Curve!..!16!
Figure 6 - First 6 iterations of the 2D Hilbert Curve!..!17!
Figure 7 - First four iterations of the 2D Hilbert curve in arc view!...!18!
Figure 8 - iRT Pipeline!...!19!
Figure 9 - Architecture of iRT!...!20!
Figure 10 - Static Distribution!...!22!
Figure 11 - Static-Cyclic Distribution!..!23!
Figure 12 - Load Distribution with a Static-Cyclic approach!..!24!
Figure 13 - Dynamic Load Balancing!...!25!
Figure!14!,!Task!Refinement!...!26!
Figure!15!,!Bunny!,!Scan!Line!..!27!
Figure!16!,!Bunny!,!Hilbert!Curve!..!27!
Figure!17!,!Office!,!Scan!Line!..!27!
Figure!18!,!Office!,!Hilbert!Curve!..!27!
Figure!19!,!Sibenik!,!Scan!Line!..!27!
Figure!20!,!Sibenik!,!Hilbert!Curve!...!27!
Figure!21!,!Sponza!,!Scan!Line!..!28!
Figure!22!,!Sponza!,!Hilbert!Curve!...!28!
Figure!23!,!Bunny!,!Scan!Line!..!36!
Figure!24!,!Bunny!,!Hilbert!Curve!..!36!
Figure!25!,!Office!,!Scan!Line!..!36!
Figure!26!,!Office!,!Hilbert!Curve!..!36!
Figure!27!,!Sibenik!,!Scan!Line!..!37!
Figure!28!,!Sibenik!,!Hilbert!Curve!...!37!
Figure!29!,!Sponza!,!Scan!Line!..!37!
Figure!30!,!Sponza!,!Hilbert!Curve!...!37!

 xiii

 Index of tables

Table 1 - Coherence in Primary Rays!...!28!
Table 2 - Load Balancing – Bunnies!..!32!
Table 3 - Load Balancing – Office!...!33!
Table 4 - Load Balancing - Sibenik!...!34!
Table 5 - Load Balancing – Sponza!..!35!
Table 6 - Spatial Coherence with Scan Line Traversal!...!38!
Table 7 - Spatial Coherence with Hilbert Curve Traversal!...!39!
Table 8 – Gain of Traversing the Image Plane with the Hilbert Curve against Scan Line!..!39!
Table 9 - Exploiting Coherence with Scan Line Traversal!..!40!
Table 10 - Exploiting Coherence with Scan Line Traversal!..!41!

 1

 1 Introduction

1.1 Motivation

Ray tracing based renderers simulate global illumination and physically based light transport

effects, simulating the path that real light photons make. This rendering outputs high fidelity

images used in a predictive manner [1]. Being able to represent realistic light effects is

important in many applications such as the movie industry, light architecture and generation of

complex virtual environments. These applications often have interactivity requirements, which

implies very fast response times when calculating the light effects. Given the fact that the ray

tracing algorithm is computationally demanding, such is not possible in current computers

without using special purpose hardware.

Other techniques, such as rasterization approaches are significantly faster because they

aggressively exploit spatial coherence and perform simplifications and assumptions at the cost

of less accurate and realistic lightning effects. Traditionally in ray tracing, as observed by

Whitted [2], each ray can be traced independently from the others and thus less assumptions

are made, which increases its versatility but also increases the computational demand. In this

thesis, a study is made about coherence properties available in ray tracing and explores

techniques that take advantage of these properties, to reduce the required computational effort

and increase the overall performance. In particular, the use of space filling curves as an

alternative to the traditional image plane traversal order is proposed.

More efficient algorithms can increase the obtained frame rate but the result is bond to the

processing limits of the hardware. This limitation can be overcome by the use of parallel

computation, using multiple machines to increase the computational power. Given the extreme

parallel nature of the ray tracing algorithm, it is expected that the performance of the algorithm

can scale linearly with the increase of the computational power.

 2

Parallel computation entails issues such as communication latencies, load imbalance and

suboptimal work decomposition. Resorting to techniques such as non-blocking communication,

dynamic workload distribution and preemptive work decomposition can mitigate these issues.

1.2 Organization

In chapter 2 an introduction to the theme of this thesis is given and its goals are set. On

chapter 3 a revision of the state of the art is made, identifying and analysing approaches

already at use. This analysis brings support to the decisions and approach taken during this

research as described in chapter 4. Also in this chapter will be described the methodology and

implementation used. In chapter 5 the results from the research experiments will be presented

and analysed. The work from these chapters leads to the conclusions proposed in 6

 3

 2 Objectives and Goals

Interactive frame rates can only be achieved by increasing the computational power and/or

resorting to optimization techniques that improve the performance of the ray tracing algorithm.

In this thesis we propose to look into both. In the early days of ray tracing the use of DSM

clusters was appealing because the nature of the algorithm required more computational

power than the one existing in single workstations [3], [4] With the steady increase of

computational power, the power of clusters came into single workstations and research started

to focus on SM architectures. However, these approaches require low-level design and are

prone to errors. By exploiting approaches with message passing interfaces, traditionally used

for clusters, they remain valid for any environment that supports such interfaces. Currently

they can be executed seamlessly in single or multiple workstations, making such approaches

highly scalable and flexible.

This thesis proposes to study whether the image space traversal order can influence the

success of techniques that exploit ray coherence. Traditionally, the image plane is traversed in

scan line order, but this approach is bound to one dimension and inherently looses coherence

in a bi-dimensional space. Space filling curves have been studied before [5] as means of

covering multi-dimensional discrete spaces with a single line, and the great spatial coherence

exhibited by some of these curves has been applied to several fields, such as mathematics,

image processing and compression, cryptology, algorithms, scientific computing, parallel

computing, geographic information systems and database systems [6]. For that matter, special

purpose optimizations will be studied and implemented in order to evaluate if the traversal

order of the image plane can be used to exploit spatial coherence existing in ray tracing.

 4

 3 State of the Art

3.1 Ray Tracing

Ray tracing one frame containing only static scenery with a pre-computed acceleration

structure is an embarrassingly parallel task [1], [7]. Tracing rays is a recursive process that

has to be carried out for each individual pixel separately. One of the most expensive parts of

the rendering algorithm is the visibility calculation. At least one ray is shot per pixel and in a

naive approach each ray would be intersected with all the objects in the scene to determine

which is the closest triangle intersecting a given ray. To evaluate the light intensity that an

object scatters towards the eye, the intensity of the light reaching that object has to be

evaluated as well. Ray tracing achieves this by shooting additional, secondary rays, because

when a ray hits a reflecting or transparent surface, one or more new rays are cast from that

point, simulating the reflection and refraction effects. A typical image of 1024 x 1024 pixels

tends to cost at least a million primary rays and a multiple of that as shadow, reflection and

transparency rays.

Ray tracing is thus considered as a computationally demanding algorithm that does not benefit

from optimized hardware for its processing. In the past, ray tracing algorithms could only

provide interactive frame rates at the cost of limited resolution [8] and simulated shading

effects [9].

The present state of available technology provides affordable machines with multiple CPU

cores that can work in parallel. The current challenge is to support interactive ray tracing in

higher frame rates at higher resolutions, taking advantage of algorithm processing in parallel

machines equipped with many cores.

 5

This approach allows support for:

• High complexity scenes that do not fit on the memory of a single machine, such as

representations of complex buildings and structures;

• Animated scenes where objects are deformable and move in respect to each other

such as hair and clothes of multiple characters;

• Compelling light effects that are not feasible with rasterization approaches such as

realistic water and fire effects.

3.2 Acceleration Data Structures

The most expensive task in Ray Tracing is identifying which triangles each ray intersects. With

the increase of the number of triangles in a scene, the complexity of the algorithm grows

linearly, O (N). In order to alleviate the computational effort, objects can be organized in ADS.

In computer graphics axis-aligned bounding boxes (AABB) are used efficiently to purge objects

that will not intersect with the view frustum. Such structures can reduce the ray-triangle

intersection tests down to O (N3) [10]. Reshtov applied this same AABB principle to KD-trees

[9], achieving interactive frame rates in complex static scenes with millions of triangles. For

static scenes, the build time of ADS can be ignored as it will be done once and then reused for

the whole duration of the execution, but with dynamic scenes the build and update times must

also be considered.

BVH have achieved interactivity in dynamic scenes where objects move and deform by: using a

variant of the surface area heuristics SAH algorithm - traditionally used in KD-trees -

maintaining the topology of the BVH - just re-fitting the bounding volumes from frame to frame -

and tracing the rays in packets, combining the advantages of packet traversal and frustum

traversal [11].

3.3 Rasterization vs. Ray tracing

One of the main differences between the broadly used rasterization based techniques and

pixel-by-pixel approaches such as ray tracing, is the aggressive exploitation of coherence

present in primary rays1. Approaches based on rasterization are object oriented and empty

1 Light rays calculated from the viewer’s perspective, also known as view rays.

 6

spaces are not taken into consideration. Rasterization provides earlier termination conditions,

simplifications, assumptions and interpolations that reduce the effort to compute the

contribution of each object to the final image at the cost of less accurate images.

The pixel-by-pixel approach provides realistic images because fewer assumptions are adopted.

Algorithmic improvements such as specular phenomena, direct illumination and indirect

diffuse inter reflections [12], [13] allow to render the desired effects. This approach is more

versatile when compared to rasterization [12] but reuses little to none of the information

computed previously, implying repeated computation effort that could be avoided if coherence

was exploited.

3.4 Coherence

Without losing versatility and realism, some optimizations can be applied in ray tracing by

exploiting the spatial coherence existent among neighbouring rays. Although light emitted from

the light source and travels through reflections and refractions to the viewer’s eyes2, rays that

do not reach the viewer’s eyes are not considered relevant when generating a frame. In order

to avoid processing rays that will be discarded, the light rays are generated from the viewer

plane and travel until the various light sources.

In typical ray tracers, the rays are not traced randomly. There exists a substantial coherence in

rays that are traced, i.e. there are common characteristics to most or all of the rays. This

coherence is particularly strong for primary rays but it is also present for hard shadow rays3,

soft shadow rays and other kinds of secondary rays [12]. In orthogonal projection, the primary

rays have the same direction and the origins varying slightly in their neighbourhood. In a

perspective projection, primary rays share the same origin and the direction varies smoothly in

their neighbourhood. This is demonstrated in Figure 1, depicting how the rays that originate

from the same image region often represent the same objects or objects that are close in the

3D space of the scene. This assumption is also true for shadow regions that are often created

by the same object or objects that are close together.

2 In 1604, the German astronomer Johannes Kepler published “Astronomia pars Optica”, enunciating as principle that light rays travel from an
object to the eye and not the other way around.
3 A shadow can be divided in two main parts: the umbra and the penumbra (there is also antumbra but usually it has no relevance in
computer graphics). Umbra, known as hard shadow, can be described as the darkest part of the shadow, corresponding to areas fully
occluded from a given light source and represented as black. Penumbra, known as soft shadow, is partially occluded regarding a given light
and is represented by variable scales of darkness. Although hard shadows seldom produce a realistic shadow, they are considerably cheaper
to generate than soft shadows. At the time of writing for this thesis, soft shadows were not implemented and we consider “shadows” as hard
shadows.

 7

Figure 1 - Light Path in Ray Tracing

Ray-tracers traditionally traversed the image plan in a scan line order. The scan line traversal

sequence breaks the ray coherence at the end of each line. As this approach only explores one

dimension then it might not be the most efficient method. As shadow rays are generated from

primary rays, the order by which primary rays are generated directly affects the order by which

shadow rays are processed. Spatial coherence and the impact of the traversal algorithm are

further explained in section 3.9.

Just for low to median frequency reflection rays, because rays are shot “randomly” in a

hemisphere, coherence is not obvious and thus not trivial to explore. Common techniques

used to exploit rays coherence are based on aggregation techniques that group rays in a

packet or beam based on the principle that coherent rays will traverse similar paths of the ADS

and thrive to test them individually as late as possible, thus reducing the ADS traversal cost.

3.5 Processing Packets instead of Single Rays

Modern high performance ray tracers employ the spatial coherence approach to reduce

computational costs. Current systems can employ ray aggregation techniques, combining

several rays into a packet and/or frustum4. The first enunciation of this technique was given by

Wald et al, proposing to trace rays in bundles of four through a KD-tree and use of SIMD

instructions to process these rays in parallel [14].

Ray aggregation techniques provide advantages for operations such as memory accesses,

function calls and traversal computations. This technique permits the use of SIMD instructions

4 Frustum is the portion of a solid that lies between two parallel planes cutting it. In the context of this thesis it refers to the three dimensional
region that is visible on the screen.

 8

to gain greater performance from the CPU. Tracing rays with SIMD still requires performing the

traversal steps with SISD.

Nunes implemented a SIMD approach in iRT [13], using a packet of four rays, i.e. a set of four

floating point values and a four times speedup was expected as depicted on Figure 2.

However, the vectorial version is only capable of achieving speeds of 2.8 to 3.7 times faster

than the scalar version. Compared to the traditional scalar method, there exist no

disadvantages or limitations on this optimization other than the reordering of computation

tasks.

Figure 2 - SISD vs. SIMD

Dmitriev et al [15] proposed a broader concept of ray packing using frustum and interval

arithmetic-based techniques to avoid traversal steps or primitive intersections based on

conservative bounds of the packet of rays. Using the boundaries of the packets of rays, the

intersection of all the rays in the packet could be avoided if the full packet misses the triangle.

Reshtov has recently shown that even better performance could be achieved by building a

customized frustum at each leaf cell to exclude currently inactive rays [16]. He applied this

concept to a KD-tree traversal and used an arithmetic process based on “inverse frustum

culling” to cull complete sub trees during the traversal. This concept was later extended to

grids and BVH’s, as all of these contexts are sub-cases of AABB [17]. Although additional

research is required for improving the less coherent rays, packets and frustum techniques are

currently the method of choice for obtaining real-time performance.

 9

3.6 Parallel Ray Tracing

Ray tracing supports independence of ray paths, thus being possible to parallelize the

computation of its paths. Interactive ray tracing is often achieved by resort to multilevel

parallelism such as sampling strategies, exploitation of memory locations and rays coherence

[12], [18].

In 2006, Parker et al. stated that “Almost ten years after the first interactive ray tracer was

introduced on a massive super computer, the necessary compute power to solve the same

visualization problems will be available on a workstation sized system.” [7]. This fact was

based on the improvement of individual processing power in modern CPUs. Besides this

processing capability increase, Manta has also exploited the emergent tendency of

workstations with multiple cores, providing a modular highly scalable parallel pipeline and

adopting SIMD instructions for vectorial processors. This modular pipeline gives the entire

system additional flexibility as new modules can be easily added or altered without the need of

code refactoring. As depicted below in Figure 3, Manta’s pipeline describes the stages

necessary to render a single frame.

Figure [7] - Manta's Pipeline for asynchronous rendering

Exception made for the load balancer, this figure represents a normal single threaded ray

tracing pipeline. Although the load balancer is represented as single block, it should be

perceived as three separate steps. First, the inherently load balanced tasks such as the pixel

sampling or packets construction are scheduled, followed by the load imbalanced tasks such

as rendering a packet or image deployment (usually only done by a single thread). After these

 10

two steps, all threads dynamically balance the remaining workload. This way all threads get

similar amounts of work and the idle time at the threads-barrier is substantially reduced. With

the adoption of this pipeline, the threads synchronization happens only once per frame at the

end of each rendering loop. However, this method introduces a one-frame latency between the

image being rendered and outputted. If the frame rate is higher than ten frames per second,

this latency will hardly be perceived. Actually the one-frame latency allows that synchronization

happens at a single barrier, substantially simplifying interactions with the scene. Interactions

such as camera movements or scene animations require image displacement and ADS

restructuring, if these changes would be taken into consideration within a frame generation

then the work effort could be loss due to call-backs or images that become incoherent.

Another important and interesting aspect of Manta’s implementation is the adopted data

structure known as wide ray packets. Besides being used to communicate between the

different modules, each packet contains basic ray information as well as certain properties

common to all rays in the packet, such common origin or normalized direction vector. Besides

maintaining some degree of coherence among the rays that allow special optimizations, this

structure is designed for vectorial calculation. SIMD instructions usually require a vertical data

layout. To avoid costly memory re-arrangement, these packets accommodate the data fields

vertically so they can be directly loaded in the SIMD registers and uses horizontal access

methods so a horizontal layout can also be assumed at the cost of a slight performance

penalty.

The size of these packets is not bounded to a specific machine’s SIMD width or load balancer

tile size. In the case of Manta, the size can vary up to a maximum of 64 rays, which was found

to achieve the best performance because the entire packet can fit in the L1 cache [7]. With a

variable packet size and careful design of the packet’s data layout, splitting into smaller

packets can be made so that coherence of each packet is kept.

The load balancer along with thread-bounded ray packets and the pipeline referred above by

Manta allows deploying as many threads as desired without the need of reprogramming,

scaling almost linearly up to 64 processing units (92%) and achieves 82% efficiency with 126

processors.5

5 Results obtained for the model “Boeing 777” with 350 million triangles in an Itanium2 SGI super computer.

 11

3.7 Parallel Progressive Ray Tracing

Given the extremely demanding nature of the Ray Tracing algorithm, sampling techniques can

be used to alleviate the overall workload, interpolating some of the values instead of pure ray

tracing. Usually there are regions of a given frame where the resulting output barely varies,

such as in backgrounds or large uniform surfaces, and for these regions, one requires only to

compute some of the pixels to estimate the overall characteristics for the surrounding pixels. In

fact, this technique is widely used in rasterization-based approaches at the cost of slightly less

accurate images.

The quality of the generated images through sampling approaches directly depends on the

sample generator algorithm and associated sampling frequency. A usual approach is based on

grids. If the grids are too wide then some features such as a light switch on a wall could be

discarded and produce aliasing, while too fine grids would render images with better quality

but the overhead introduced could eventually produce worst performance than an approach

without sampling. A usual solution for this problem is the use of non-uniform adaptive

sampling, generating a sample pattern tailored to the image content [19], [20]. This approach

uses regular coarse pattern on most pixels, but on regions with high variance, such as edges

and silhouettes, a high-density pattern is used. This refinement is done progressively and detail

is added to the image gradually, trading aliasing for some noise, which is often negligible.

In a general manner, generators should ensure that larger regions are refined before smaller

ones, in order to locate isolated features, and regions with higher intensity variance should be

sampled first, to assure anti-aliasing. Refinement should occur until a particular level of the

image quality is reached, for instance a defined number of samples, or until a given time limit

is passed to allow achieving a desired frame rate. Alternatively to stochastic subdivision, other

sample approaches can be used, such as division of image plane division through 2D split

planes [21] or Delaunay triangulations [22], [23].

Eldar et al. [23] brought a new method named Farthest Point Strategy for progressive image

acquisition, which approximates the whole image at each sampling stage. Notkin et al. [24]

extended this approach to parallel ray tracing, parallelizing the inherently sequential algorithm

of progressive sampling while thriving to achieve similar image quality with the same number

of samples as the sequential version.

 12

Notkin et al. used a generator based on Elder’s Delaunay generator and defined tasks as a pair

of parameters: the image region, where tiles have a fixed size, and a number of samples, that

are variable. As a pre-processing stage, tasks are assigned in a round robin manner and a

local image complexity and variance is estimated in parallel by each processor. By multiplying

the estimated variance with the time the CPU took to complete the pre-processing stage, a

weight metric has been defined. Such weights are sent to the master node that thrives to

provide a uniform weight distribution that reassigns the tiles by the available processors. This

tile distribution will remain unchanged until the end of the frame.

After the pre-processing stage, new tasks are to be assigned dynamically using a Demand

Driven approach, gradually decreasing the task size to prevent big workloads in the last

samples of each frame6. Based on the principles mentioned above for a good sample generator

(large and/or big intensity variation regions should be refined first) the master thread assesses

a weight for every tile and assigns the slave threads to process the heavier tiles first. Once the

goal number of samples has been achieved then the results are collected by the master node,

which reconstructs the image.

For a 26-processor count, a speed up of 23.8 was achieved and registered a 15% of load

imbalance. Although not achieving a linear speed up, the quality achieved was extremely high

and had less than 5% of image resolution loss, which is barely perceivable. For this approach

to be tested the scenes were assumed to fit a single’s machine memory and this scenario is

not always true on parallel ray tracing systems.

3.8 Parallel task assignment strategies in the Demand

Driven context

When dividing and balancing a given work load, the size of each task becomes an important

factor on the resulting performance. A sub-optimal task size splitting will bring an inefficient

overhead and thus cause a loss of performance. When choosing the task sizes, the extreme

situation occurs when tasks are the smallest possible, i.e. at the level of one pixel size, which

allows perfect load balancing. However the number of requests is significantly higher than the

6 The problem of big tasks being assigned at the end of each frame is referred with greater detail in section 4.7

 13

workers and then leads to overheads such as latency7. On the other extreme there exist as

many tasks as workers, which results in minimal overhead but more prone to load imbalances.

In [25], Plachetka analyses how the task size can be determined based on the image space

sub-division and the number of available processors. Then, he proposes an anti-aliasing

approach with solutions for scenes that do not fit the available memory of each processor.

Plachetka has experimentally shown that subdividing the tasks in chunks of the size of one

column in scenes where the maximum ratio ranges between the computation times of two

image regions of the same size is between 2.5 and 4 will yield the best results. Traditionally

only one primary ray is spawned per pixel. This might lead to aliasing effects, and anti-aliasing

requires spawning more rays per pixel when the difference between a given pixel and its

neighbours exceeds a given threshold. Given that the image space is subdivided, the border

regions present some challenges: either re-sampling is done on both regions, leading to

duplicate work, or communication must exist between the processes holding the different

image regions. Plachetka postulated that non-critical regions should be processed first and

then process the critical regions afterwards as independent tasks. This approach reduces the

duplicate computation and communication effort between the two processes. As anti-aliasing

tasks become interleaved with standard tasks, no overhead is added to the process and

improves load balancing when the ratio between the computational efforts of different regions

is underestimated.

Dividing tasks based on the image region is suitable when the whole scene fits a single

processors memory. But when the scene is too complex then it must be divided among the

existing nodes. When dividing the tasks, the master node parses the scene, identifying meshes

that would not fit the processor memory. Each mesh is then assigned to the processor

currently with the lowest memory load and that processor will become the owner of it. The

owner node will keep the mesh in memory. The remaining nodes will process the mesh and

update their bounding volume hierarchy and keep the information regarding the ownership and

then release the mesh’s data. Should a processor require a mesh that is not in memory, it

requests the mesh from the owner, which has the mesh data already pre-packed. Should the

processor not have enough memory to load the requested mesh, the least recently used object

will be released, so space is made for the mesh. The mesh can be later released, if memory is

7 Latency is the overhead of assigning one task, i.e. the required time to transmit a message, plus the time of packing and unpacking it.
Although it is usually considered constant, often that is not the case, for instance, if simultaneous messages arrive at the same time.

 14

needed for other structures, but data that might later be required for other processes, such as

shading, is saved.

With his experiments he postulates that the referred approaches are scalable and bring higher

speed-ups. When comparing the approach without anti-aliasing against the anti-aliased

approach then performance begins only to decrease after 40 processors are active. As for the

objects in memory, the experiments shown that if at least 20% of the scene can be kept in

memory, then the algorithm keeps performing above average on a scalable manner. If the

available memory size reduces, requests for object data dramatically increases, significantly

decreasing the performance and scalability of the algorithm.

3.9 Ray coherence techniques

It has been previously described in section 3.5 that rays can be grouped in packets in order to

reduce the costs of traversing the ADS. The quality of these packets strongly depends on how

the rays are grouped. In order to better understand the existing level of coherence, individual

rays are studied rather than packets.

The coherence existing between the rays directly depends on the order under which they are

generated, which is traditionally done in a scan line traverse of the image plane. This approach

limits the exploration of coherence to a single dimension and inherently breaks the coherence

at the end of each line.

Considering that reloading an object or part of the ADS to higher levels of the memory

hierarchy has an associated cost, an ideal traversal sequence of the image plane would be one

that visits all the pixels in the entire area of each object before moving on to the next one,

allowing to explore coherence in two dimensions.

Knowledge of the projection area and position of an object beforehand can become too costly

and unfeasible to implement, especially if applied to the context of a real-time application.

For the purpose of this thesis, we define two assumptions:

• Information of the projection area and position are unavailable

• Traversal sequence is fixed rather than adaptive

Having these assumptions in consideration, it was defined that selection should be based

solely upon the shape of the image plane traversal line.

 15

3.10 Space filling curves

Unlike data sets of a single dimension where the algorithms for sorting and traversing are

usually trivial and straightforward, multidimensional data sets require more complex

operations. For this reason alone, single dimension processing could be preferred over multiple

processing dimensions. However, while values can be closely grouped at one of the

dimensions, they could still be far apart in other dimensions. Furthermore, it is not a trivial task

to choose which dimensions should be preferred.

The space-filling curves algorithm is used for ordering and traversing multidimensional data. It

was formulated by Peano in 1890 and consists of continuous self-similar functions that map a

single dimension interval to a multiple dimensional set. By convention, space-filling curves are

defined as contiguous mappings from the unit interval to n-dimensional hypercube units. It can

also be defined as a curve that passes through every point in an n-dimensional space once and

once only in some particular order according to some algorithm.

As such, they express graphically a mapping between one-dimensional values and the

coordinates of a point, regarded as a multidimensional value. Points are placed in a sequence

according to the order under which the curve passes through them. Although the concept of

fractal modelling was unknown at the time, Peano curves are fractals and thus considered self-

similar at multiple levels or resolutions. This implies that if any advantage is achieved with

these curves at a given scale, they will maintain the same advantage at any given scale.

Such curves tend to be good for preserving locality: points close together with respect to the

Euclidean distance in the multidimensional matrix tend to be close together in the linear

ordering defined by the curve. Out of the 272 possible Peano curve definitions [26], the Hilbert

curve appears as the one of greater advantage for image plane traversal. These advantages

were demonstrated through solid locality in [6].

Hilbert curves found application in a variety of fields that includes:

• Mathematics

• Image processing and compression

• Cryptology algorithms

• Scientific computing

• Parallel computing

 16

• Geographic information systems

• Database systems (to map multidimensional data to linearly ordered external memory

and to promote query efficiency)

• Distributed information systems (to partition multidimensional data in such way that

data sets that are close in Euclidean space are likely to be allocated to the same or

neighbouring processors).

Figure 3 - Scan Line

Figure 4 - Peano Curve

Figure 5 - Hilbert Curve

Douglas Voorhiest researched the 2D space filling curves applied on the context of image plane

traversal, providing a comparison between the traditional unidirectional scan line, the Peano

curve and the Hilbert curve traversal, represented above [27]. He defined a metric of

coherence that counts the number of times that a traversal sequence would go inside and

outside of an object projection space before all points of a given object have been visited.

Assuming that an object’s projection in the screen space is a circle, he guarantees that no

traversal direction has advantage over any other. He demonstrated that both Peano and Hilbert

curves surpassed the coherence measure of conventional scan line traversal. Results have

shown that the Hilbert curve provides better coherence results than the Peano curve. Given the

fractal property previously referred, it is expected that for any given image, the traversal of the

image plane with the Hilbert line should outperform the traditional scan line traversal order in

terms of coherence.

3.11 The Hilbert curve

Below are represented the first six iterations of the 2D Hilbert curve. One can observe the self-

similar nature of such curves where each level of the curve is composed of multiple, smaller

 17

copies of previous levels that are oriented in various patterns. Components of a curve expand

in a predictable way to multiple components of the next level.

Figure 6 - First 6 iterations of the 2D Hilbert Curve

In formal terms, consider an N dimensional lattice with 2m points per dimension such as:

Ρ = Βm *...*Βm , whereΒm = 0,1{ }

A standard Hilbert index is a functionΗ :Ρ → Βn*m , which maps each point to each index on

the Hilbert Curve when it passes through the lattice. The traditional recursive geometric

construction of the two-dimensional Hilbert Curve can be defined in four steps. We consider

the shape as the base curve that passes by four cells:

• Place a copy of the curve rotated 90º counter clock wise in the lower right cell

• Place a copy of the curve rotated 90º clock wise in the lower left cell

• Place a copy of the curve on both upper cells

• Connect the 4 disjoint curves

This procedure can be repeated recursively up to the desired level, rotating the upper level cell

back to its canonical shape.

If the basic unit of the Hilbert curve is replaced by an arc representing the connection of the

entry and exit points, we can indicate the order by which all the points in a cell are going to be

visited at a given level.

Considering the representation from Figure 7, the Hilbert indices can be calculated for a given

point of interest in the following manner:

 18

a) Find the cell containing the point of interest, i.e. determining whether the point lies on

the upper or lower half plane regarding each dimension. Assuming we are working on

an order m curve, a point is represented by Ρ = p0, p1[]∈Βm *Βm . Determining

which half plane the point lies concerning the ith coordinate is equivalent to

determining the truth value of p < 2m−1 , which is equal to the m −1()th bit of

pi,bit(pi,m −1)

b) Update key. Given the orientation at the current resolution (uniquely defined by the

entry e and exit f of the curve through the lattice), we can determine the order under

which each of the cells will be visited. Knowing that all points inside a cell are visited

before moving on to the next cell, the index of the focused cell will tell whether the

point of interest is visited in the first quarter of the curve or the second, and so on. In

other words, we may determine two bits of the Hilbert index h

c) Transform as necessary. Knowing the index i of the cell under which the point of

interest is located; we may determine the entry and exit points of the Hilbert curve

through this cell. The cell is then transformed with a rotation, (expressed as an

exclusive or), and reflected (expressed as a bitwise rotation operation) back into its

canonical orientation (entry in lower left, exit in lower right)

d) Continue until enough precision was attained. Zooming in at the cell containing our

point of interest, we can now inspect an order m - 1 Hilbert curve through a sub-cell of

our original space. We repeat this procedure for each of the remaining m - 1 levels of

precision, at each time calculating further 2 bits of the Hilbert index. At the end of the

process, we have a 2m bit Hilbert index, isolating a single point on the curve of length

22m through the Βm *Βm lattice.

This algorithm can also be extended to further dimensions [6].

Figure 7 - First four iterations of the 2D Hilbert curve in arc view

 19

 4 METODOLOGY

4.1 iRT Overview

The iRT is part of a broader project IGIDE. The main goal of IGIDE is to develop a physically

based global illumination renderer that is capable of generating accurate images at interactive

rates within dynamic time-varying virtual models. Users should be able to navigate and interact

within the virtual environment while visualizing perceptually accurate images that can be used

in a predictive manner.

As a starting version in March 2009, iRT is single threaded application that traces single rays

using work tasks in the form of rays or packets of rays, written onto a queue that feeds the

rendering process to output an image. iRT is tracing single rays (scalar code) or packets of four

rays (vectorized code based on SIMD extensions of the x86_64 architecture), using BVH as the

ADS to speed up the rendering time by reducing the number of ray-triangle intersections. The

rays processing pipeline is depicted in Figure 8 and further described in the paragraphs bellow.

Figure 8 - iRT Pipeline

A module called “Camera” represents the image plane and generates the primary rays and

adds them to a work queue. The ADS is then traversed to find the list of triangles belonging to

the voxels touched by the ray. The selected triangles are then intersected with the rays to

determine whether the rays actually intersect them or not and, in case they do, which are the

closest to the rays’ origin.

 20

The chosen triangles are then shaded according to its material and the light sources

properties. In order to determine which light sources contribute to the final colour of the

triangle, new rays are generated and added to the queue. Traversal, intersection and shading

happen in the “Kernel” module.

The result of this processing is delivered to the “Film” component, responsible for providing

the output to a screen window, a picture file or other medium. The architecture of the iRT is

represented in Figure 9.

Figure 9 - Architecture of iRT

4.2 Workload decomposition

Parallel processing offers the potential of reducing computation time by employing more than

one processor to solve the same problem. Because in ray tracing the computation of one pixel

is completely independent of any other pixel, this algorithm tends to be greatly parallelizable

and fit in a category know as embarrassingly parallel algorithms. A number of issues, which

are not present in sequential programming, play an important role. Apart from correctness and

robustness, efficiency and performance are of great importance. Choices must be made on the

assignments and data decomposition and distribution.

 21

In the context of ray tracing, decomposing the problem in independent tasks is the most

common approach. This exploits the inherently parallel nature of the algorithm, by subdividing

the image plane in smaller regions. With this approach, sequential algorithms can be easily

parallelized and improvements on the sequential algorithm can be directly applied on the

parallel approach. It also requires minimum communication between the processes, which

allows a centralized approach and offers high scalability. On the downside, this approach has

inherent issues with load balancing, as workload cannot be computed beforehand, scene must

be replicated in every processor and poses challenges for techniques that require data from

other regions, such as anti-aliasing.

Another approach, especially suited for big scenes, which do not fit in a single processors

memory, is the decomposition of the objects in the scene. With this approach scene sizes can

scale with the amount of processors, however, this requires complex designs and load

balancing becomes a difficult challenge to overcome.

Control-oriented approaches are less common but also present in ray tracing, mostly in

combination with one of the above. In this type of approaches, different processors are

responsible for different tasks, such as collision detection and shading. An example of this

approach being used together with image plane decomposition is given by Plachetka in [28],

also described in section 3.8, to solve the antialiasing problematic with image space

decomposition.

In the case of the ray tracer used within the context of this thesis, it was decided to use the

image decomposition approach, since the ray tracer is used with small and medium static

datasets, thus the scene can be easily replicated and there will be no repeated computation as

the scenes are static.

4.3 Measuring efficiency of parallelization

Let T1 be the execution time on 1 processor and Tn the execution time on n processors.

Speedup is given by S = T1
Tn

, expressing how much the overall performance increased with the

increase of processing power, whereas efficiency (E) is given by E = S
n
=
T1
nTn

, measuring

the speedup gained with the increase of the computational power. This definition gives

 22

efficiency E = 100% if increasing the number of processors p by a factor of n also

increases the speed by the same factor. That is tnp = ntp . When the efficiency is 100%, there

is a linear relationship between n and tnp , meaning that the efficiency is independent from

the number of processor and the speedup varies linearly with the number of processes.

If the efficiency can be held to near 100% then intuitively we feel we are getting a good return

for the extra cost of the extra processors. If the efficiency declines from 100%, we feel that we

are paying for more processors but we are not getting a proportional increase of speed.

4.4 Static Distribution

Figure 10 - Static Distribution

Node 1 Node 2 Node 3 Node 4

One of the simplest parallel implementation of a ray tracing is to simply replicate the entire

scene in each processor and subdivide the workload into a number of disjoint tasks. Each

processor then renders a number of rays using the unaltered sequential version of the ray

tracing algorithm, until the whole frame is completed. Tasks are assigned based on the slave

id, and thus do not require any communication to know which part it should work with. Each

slave will always render the same sub region. The main advantage of this approach is the low

communication cost, besides barely having to rewrite any code to go from a sequential to a

parallel implementation. Communication is minimal as only the results of the completed tasks

need to be transferred to a chosen processor that is responsible by sorting them in the correct

order and deploying the final image to a film each frame. This is called static distribution.

The main issue regarding this approach is the load balance. In [29] is discussed two broad

classifications of load balancing in the context of ray tracing for graphical rendering: data

oriented parallelization and control-oriented parallelization. In the previous chapter, the choice

of a data-oriented approach was explained. In this kind of approach tracing a single ray does

 23

not seem to present great difficulties, but when it is done massively, it becomes an issue given

that each ray may generate unpredictable large tasks, by adding several new rays to the work

queue, while other rays leave the scene almost immediately after a single test. This generates

considerable differences in the workload of independent processors. This is mainly due to

diverse complexities of different sub regions of the image.

4.5 Static-Cyclic Distribution

When multiple computers operate in parallel to solve a single problem, some processors will

eventually be more heavily loaded than the others. As a result, some processors may have no

work left to do while others are still hardly working on the assigned task. Several methods of

load balancing to alleviate this problem have already been studied. Although it is usually not

possible to predict which subsets of rays will take the longest to trace, which makes it difficult

to avoid a load imbalance problem. A static approach to alleviate load imbalances can be

achieved by assigning multiple small regions for different areas of the image plane to each

processor, instead of a single sub region. This way, if a given sub region is more complex its

complexity will eventually be evenly distributed among all processors. The same is valid for

simpler sub regions.

Figure 11 - Static-Cyclic Distribution

Consider the Figure 12, where the dark region represents a high load section. On the left we

see the standard case of static distribution of work. Only Nodes 1 and 2 process the heavy

load. On the right figure, we can see that by dividing the tasks in smaller chunks and assigning

them cyclically, distributes the critical region among all processes. This approach, called Static-

Cyclic, assigns tasks in a Round Robin fashion, a naïve approach to share critical regions

among all processors.

 24

Figure 12 - Load Distribution with a Static-Cyclic approach

4.6 Dynamic load balance

Another option to improve the load balance is to actively do son, adding software to even out

the workload. This software entails having processors communicate with each other, sharing

information about their current load and dynamically assigning the workload. Tasks can be

distributed at runtime by a master processor. Whenever a processor finishes a sub region of

the image, it asks the master processor for a new task. The master has a global vision of

which sub regions have not been processed yet and assigns them on demand. This approach,

known as demand-driven, benefits from a centralized awareness of the workload distribution,

thus distributing it more efficiently. In this thesis, a slave is a processor responsible for

rendering the image sub regions it has been assigned, either statically or dynamically. Slaves

will generate rays and calculate their contributions to the image region. The master processor

distributes tasks among the available slaves and gathers the results generated by them. Then it

combines the results in a complete frame and outputs it. The master and all slaves are

considered to have similar resources and properties. Although they can coexist in the same

workstation, each will have exclusive access to one processing unit and memory is not shared.

Although message-passing interfaces can implement optimizations that may use shared

memory for communication between nodes in the same machine, these optimizations have not

been used and thus each node is to be considered independent and communication is

assumed to be the same between all processes.

In Figure 13 different loads have been assigned to each sub region, where the number

displayed correspond to the time units it takes a slave to complete the task. We can see that

node 1 had only 3 tasks while node 2 had 5, but the computational effort was the same for

both of them. Speedups close to linear are expected with this approach as the overhead

 25

introduced is minimal. Communication is ought to be minimal, thus it is expected that a large

number of processors can be added before a bottleneck occurs.

Figure 13 - Dynamic Load Balancing

Two main types of communication are needed in this approach: task distribution and results

gathering. While the master node has tasks to be completed, it sends new tasks to the slaves

that are idle. The second happens when the slave finished computing the results and sends its

contribution back to the master. When the rendering of a frame starts, the master knows that

every slave is free, and once a task has been sent, the master considers that the slave is busy.

When a slave returns its results, the master knows that it is free again and can send more

tasks. The master does the generation of the final frame gradually, every time it receives new

results.

Three major issues were identified with this approach:

• At the beginning of each frame, slaves are idle until a new task is received. To

overcome this, each slave will autonomously pick a given sub region, based on its id.

Once the first task is complete, the results are sent to the master, that replies with the

next task.

• A slave is idle between finishing a task and receiving a new one. To mitigate this idle

time, each slave can be assigned more multiple tasks. If the master is expected to be

highly loaded, more tasks can be assigned to each slave. This reduces the chances of

the slaves being idle, but increases the likelihood of load imbalances. If the master is

considered to be lightly loaded, just one task needs to be assigned to mitigate this

problem. The ray tracer implemented in this thesis has just one task buffer.

• When distributing the last tasks of a frame, there is no room for load balancing, as no

more tasks can be assigned to idle processors. Although this cannot be avoided, it can

be mitigated by gradually refining the tasks size.

 26

4.7 Tasks refinement

If a heavy task is assigned at the end of a frame to a given processor, the remaining

processors will be idle waiting because there are no more tasks to distribute. One way to

reduce the complexity of a task is to reduce the size of the region that must be rendered. This

offers opportunity for other slaves to help with the critical region, while avoiding that a critical

region has to be processed by a single slave at the end of the frame, when other slaves are

idle. In our approach of tasks refinement, the tasks size decreases as depicted below.

Figure 14 - Task Refinement

4.8 Non-blocking communication

While the slaves are sending the results back to the master, they are idle until the message

transmission is complete. The same is valid for the master, which cannot perform other tasks

while it is receiving the results from the slaves. Message passing interfaces offer the possibility

to have non-blocking communications, which means that processing can proceed while

communications happen in the background. With careful redesign of the algorithm in order to

avoid data concurrency, non-blocking communication was implemented. With the

communication being done independently from the rendering (using non-blocking

communication and overlapping communication with computation) then the communication

costs become cheaper to a point of negligible to the overall processing impact.

4.9 Comparing Scan Line and Hilbert line traversal

Given the fact that primary rays share similar origins and the same direction, it is highly likely

that consecutive rays will intersect the same triangle. In order to measure and visualize this

fact, Figures 16 to 23 were generated, showing blue when two consecutive primary rays hit the

 27

same triangle and black otherwise. This test was run both with a scan line and with a Hilbert

curve traversal of the image plane.

Figure 15 - Bunny - Scan Line

Figure 16 - Bunny - Hilbert Curve

Figure 17 - Office - Scan Line

Figure 18 - Office - Hilbert Curve

Figure 19 - Sibenik - Scan Line

Figure 20 - Sibenik - Hilbert Curve

 28

Figure 21 - Sponza - Scan Line

Figure 22 - Sponza - Hilbert Curve

The first thing that can be observed in the pictures is that there is a huge amount of coherence

to be exploited. Most part of the pictures is blue, indicating us that repeated work exists, which

can possibly be avoided. The following table shows the absolute count of blue dots for the

studied scenes with the two proposed approaches. The results shown are for a resolution of

256 x 256 pixels, thus the total pixel count is 65 536.

Table 1 - Coherence in Primary Rays

Results Bunny Conference Sibenik Office Sponza

Scan line 61662 53836 38427 59392 44016

Hilbert Line 61590 54168 40817 58335 45645

Coherence8 94% 83% 62% 89% 70%

Gain9 0.0% 0.1% 0.6% -0.2% 0.4%

This confirms that there is actually great coherence in the traversal order of the screen plane,

but shows us little advantage of the Hilbert line over the scan line, being sometimes even

worst. Although this showed no promises of better exploitation of coherence with Hilbert lines,

optimizations were designed and implemented given that so much coherence is available in

the primary rays. The most costly part in ray tracing is traversing the ADS10, where several tests

8
Coherence(%) = Max(Scanline,Hilbert) *100

Tpixels

9
Gain(%) = Hilbert *100

Scanline
−100

10 A BVH is used in this example but the same technique can be applied to other ADS such as KD-trees

 29

have to be made to find all the triangles that a ray intersects. It is then necessary to determine

which of the triangles is the closest to the ray origin (all the others will be occluded by the first

one and thus will not contribute to the current ray). In the ray tracer used in this thesis, finding

the closest triangle to the ray source was done in two steps: first determining the list of

triangles intersected by the ray and then identifying which one is closer. Both steps were

combined in a single one, since once the ray hits a triangle, the maximum distance a triangle

is worth being tested is known, given that any other triangle that is farther will certainly be

occluded. Following this principle, any AABB of which the nearest plane, regarding the ray’s

origin, is further than an already intersected triangle can be safely ignored, since any triangle

the ray might intersect will certainly be farther. This optimization, referred as PET (Primary

Early Termination), can greatly reduce the overall number of traversal steps. As stated before

in section 3.4, two consecutive rays share similar origins and the same directions; therefore it

is highly likely that they intersect the same triangle. Thus a new ray could be intersected with

the closest triangle of the previous ray. If the new ray also intersects the same triangle we can

start the ADS traversal with a PET condition, thus reducing even more the necessary traversal

steps, with the small cost of storing the closest triangle and intersecting it with the new ray at

the beginning of the ADS traversal of the next ray.

“The power of classical ray tracing comes from the fact that the illumination signal is

computed anew for each shading point. The direct light sources are stratified and sampled,

and the indirect environment is sampled (or approximated from prior evaluations). This means

that the method can capture sharp shadows; when a point no longer sees a source, it falls

automatically into shadow, and if the source is sufficiently small, the shadow will be sharp.

Specular reflections and refractions are also easily captured, since the proper illumination

directions are evaluated when needed. All of these components of the illumination signal may

be refined adaptively to any level of precision and confidence.” [30].

With this in mind, a similar approach to PET can be applied to hard shadow rays, with a

significant difference: a shadow ray is generated for each light source, thus the triangle is kept

for each light source. For each shadow ray targeting a given light source, it is first tested

against the stored triangle (no test is made if the last shadow ray hit the light source). If

successful, the ADS is not traversed, as an occlusion has already been found. This

optimization is referred as OCC (Occlusion Culling). Given that the order primary rays are

 30

processed determines the order secondary rays are generated, the traversal order of the image

plane directly influences the efficiency of this approach.

One last optimization used is called SET (Shadow Early Termination). In the case of shadow

rays, it is sufficient to know if the origin of the ray is occluded or not, i.e. if the shadow ray hits

any triangle. If so, the traversal of the ADS can be stopped as soon as a collision is found. This

approach has two advantages: first, it prevents unnecessary traversal steps of the ADS.

Second, the triangle with which the ray collided, and that is going to be used by the OCC, is

not necessarily the closest to the ray origin. The triangle size and orientation can vary, but

assuming that they have the same size and orientation, the further they are from the shadow

rays origin, and thus closer to the light source, the bigger the chance that it will occlude more

rays coming from nearby sources. This directly benefits the efficiency of the OCC algorithm.

 31

 5 RESULTS

5.1 Experimental Setup

The following tests were performed in the Search Cluster at University of Minho11. They were

performed in a cluster with 8 Quad-Core Xeon E5130 with 4 GB of Ram, connected with a

10Gbps Myrinet network. All the results presented are the median value of 10 executions.

5.2 Load Balancing

In tables 2 to 5 we can see the results of applying the different load balancing approaches to

the different scenes.

11 More information in http://search.di.uminho.pt/

 32

Table 2 - Load Balancing – Bunnies

Results

(FPS/Efficiency12)

1 Slave 2 Slaves 4 Slaves 16 Slaves 32 Slaves

1: Static 1,0444

N/A

1,6438

78,6946%

2,879

68,9153%

11,086

66,3429%

20,1752

60,3683%

2: Static-Cyclic 1,0406

N/A

1,9204

92,275%

3,8353

92,144%

14,4389

86,7261%

27,9661

83,9882%

3: Dynamic 1,0482

N/A

2,0324

96,9497%

4,0213

95,9113%

15,4969

92,4054%

27,78

82,8236%

4: 3 + Overlap of

Comp. w/ Comm.

1,0444

N/A

2,0848

99,8064%

4,1741

99,9154%

16,9526

101,4496%

32,6008

97,5468%

5: 4 + Non-Blocking

Comm.

1,0494

N/A

2,0861

99,3921%

4,2178

100,4795%

17,0632

101,625%

32,9571

98,1431%

6: 5 + Task

refinement

1,0502

N/A

2,0851

99,2751%

4,1857

99,644%

17,1271

101,9335%

31,6754

94,2595%

12 Efficiency described in section 4.3

 33

Table 3 - Load Balancing – Office

Results

(FPS/Efficiency)

1 Slave 2 Slaves 4 Slaves 16 Slaves 32 Slaves

1: Static 0,4181

N/A

0,7862

94,0244%

1,3608

81,3762%

4,5649

68,2489%

8,5921

64,2303%

2: Static-Cyclic 0,4186

N/A

0,8207

98,0349%

1,6196

96,7365%

6,3354

94,6049%

12,5239

93,509%

3: Dynamic 0,4185

N/A

0,8253

98,6151%

1,6396

97,966%

6,5802

98,292%

12,7267

95,0538%

4: 3 + Overlap of

Comp. w/ Comm.

0,4169

N/A

0,8216

98,5422%

1,6531

99,1408%

6,768

101,4786%

13,3812

100,318%

5: 4 + Non-Blocking

Comm.

0,4197

N/A

0,8264

98,4681%

1,6523

98,4376%

6,7887

101,1138%

13,4203

99,9451%

6: 5 + Task

refinement

0,4188

N/A

0,8398

100,2703%

1,6859

100,6447%

6,8537

102,2915%

13,6187

101,6296%

 34

Table 4 - Load Balancing - Sibenik

Results

(FPS/Efficiency)

1 Slave 2 Slaves 4 Slaves 16 Slaves 32 Slaves

1: Static 0,4926

N/A

0,9685

98,3%

1,7729

89,973%

6,5675

83,3264%

12,7821

81,0886%

2: Static-Cyclic 0,4930

N/A

0,9757

98,9605%

1,9123

96,9802%

7,5436

95,641%

14,7627

93,5848%

3: Dynamic 0,4913

N/A

0,9797

99,7168%

1,9166

97,5412%

7,6176

96,9217%

14,8029

94,1716%

4: 3 + Overlap of

Comp. w/ Comm.

0,4937

N/A

0,9854

99,81%

1,9835

100,4515%

7,9782

101,0146%

15,8631

100,425%

5: 4 + Non-Blocking

Comm.

0,4949

N/A

0,9865

99,6639%

1,9845

100,249%

8,0124

101,1875%

15,91

100,4637%

6: 5 + Task

refinement

0,4943

N/A

0,9884

99,9873%

1,9797

100,1373%

7,9775

100,8814%

15,8348

100,1222%

 35

Table 5 - Load Balancing – Sponza

Results

(FPS/Efficiency)

1 Slave 2 Slaves 4 Slaves 16 Slaves 32 Slaves

1: Static 0,3960

N/A

0,7648

96,5671%

1,3287

83,8822%

4,9544

78,1978%

9,4552

74,6185%

2: Static-Cyclic 0,3981

N/A

0,7829

98,3203%

1,5664

98,3641%

6,1088

95,9054%

11,914

93,5236%

3: Dynamic 0,3978

N/A

0,7716

96,9986%

1,5216

95,6481%

6,0421

94,953%

11,562

90,8499%

4: 3 + Overlap of

Comp. w/ Comm.

0,3974

N/A

0,7838

98,6286%

1,5936

100,261%

6,4522

101,4898%

12,733

100,1418%

5: 4 + Non-Blocking

Comm.

0,3977

N/A

0,7905

99,389%

1,5961

100,337%

6,483

101,8884%

12,7882

100,492%

6: 5 + Task

refinement

0,3973

N/A

0,7949

100,0485%

1,592

100,1865%

6,503

102,312%

12,8608

101,1701%

It is clear that the Static approach holds the lowest performance, mainly due to load

imbalances. In can be observed that by just applying a cyclic distribution of tasks, an

improvement of 20% to 30% of the efficiency of the parallel algorithm. The results where the

efficiency raises above 100% can be explained with the overhead existing in running the ray

tracer with just one slave, where the communication overhead already exists. We can also

observe that in the case of the Bunny, the tasks-refinement held worst results than without it.

This is understandable given that the last tasks, the bottom right corner, are covered by a

single triangle. This gives no advantage to the approach and increases the overhead of the

algorithm, as a single triangle has to be processed by multiple processors.

 36

5.3 Spatial Coherence

To understand how much coherence exists, a colour map was implemented, colouring the

image according to the number of light sources occluded by the same triangle in consecutive

rays. The following images show on the left side the results of the scan line order and on the

right side the results of the Hilbert line order for five scenes, in order of appearance: Bunny,

Conference, Sibenik, Office, Sponza.

The colours represent:

 1 Light Source Occluded 2 Light Sources Occluded

 3 Light Sources Occluded 4 Light Sources Occluded

 5 Light Sources Occluded 6 Light Sources Occluded

 7 Light Sources Occluded 8 or more Light Sources Occluded

Figure 23 - Bunny - Scan Line

Figure 24 - Bunny - Hilbert Curve

Figure 25 - Office - Scan Line

Figure 26 - Office - Hilbert Curve

 37

Figure 27 - Sibenik - Scan Line

Figure 28 - Sibenik - Hilbert Curve

Figure 29 - Sponza - Scan Line

Figure 30 - Sponza - Hilbert Curve

In the tables bellow, the same results are represented numerically.

 38

Table 6 - Spatial Coherence with Scan Line Traversal

Results Bunny Office Sibenik Sponza

Primary Rays 61662 59392 38427 44016

1 Light Source 1758 31639 39161 5093

2 Light Sources 26967 12850 7609 18237

3 Light Sources 152 3608 1200 17728

4 Light Sources 0 2466 391 10708

5 Light Sources 0 1521 0 3968

6 Light Sources 0 569 0 2802

7 Light Sources 0 877 0 1787

8+ Light Sources 0 821 0 6920

Total13 56148 98736 59543 212424

13 The total is the sum of successes multiplied by the number of lights. E.g. In the case of the scan line for the bunny scene, Total = 1x1758 +
2x26967 + 3x152 = 56148.

 39

Table 7 - Spatial Coherence with Hilbert Curve Traversal

Results Bunny Office Sibenik Sponza

Primary Rays 61590 58335 40817 45645

1 Light Source 1725 32051 41049 5216

2 Light Sources 27061 12673 8552 16841

3 Light Sources 91 3607 1457 15888

4 Light Sources 0 1997 614 11134

5 Light Sources 0 1072 0 4827

6 Light Sources 0 429 0 3038

7 Light Sources 0 472 0 2077

8+ Light Sources 0 416 0 8385

Total 56120 89176 64980 220388

 Table 8 shows the gain of the Hilbert Curve traversal in comparison to the Scan Line traversal.

The gain is calculated with the following formula:

Gain(%) = Hilbert *100
Scanline

−100

Table 8 – Gain of Traversing the Image Plane with the Hilbert Curve against Scan Line

Results Bunny Office Sibenik Sponza

Primary Rays -0,1168 -1,7798 6,2196 3,701

These results show that although the approach changes the performance of the algorithm, it

does not conclude under which conditions each algorithm is better.

 40

Below are the results of applying the above cited techniques for exploiting coherence, i.e., SET,

OCC and PET, for different scenes with different numbers of light sources.

Table 9 - Exploiting Coherence with Scan Line Traversal

Results

(FPS/Gain)

Bunny

3 LS

Office

8 LS

Sibenik

4 LS

Sponza

8 LS

Base 1,0444 0,4181 0,4926 0,3960

SET

1,2148

16,3142%

0,5158

23,3670%

0,5751

16,7463%

0,6226

57,2009%

OCC

1,2921

23,7161%

0,5572

33,2636%

0,6355

29,006%

0,6815

72,0758%

PET

1,0546

0,9686%

0,426

1,8851%

0,5441

10,4534%

0,4113

3,8540%

OCC-PET

1,3088

25,3155%

0,5741

37,2955%

0,7234

46,8477%

0,7294

84,1785%

SET-OCC-PET

1,3071

25,1467%

0,5745

37,4002%

0,7246

47,0925%

0,7307

84,5166%

 41

Table 10 - Exploiting Coherence with Scan Line Traversal

Results

(FPS/Gain)

Bunny

3 LS

Office

8 LS

Sibenik

4 LS

Sponza

8 LS

Base 1,0413 0,4203 0,5091 0,3964

SET

1,2216

17,3103%

0,518

23,2305%

0,5943

16,7331%

0,6241

57,4298%

OCC

1,2891

23,7922%

0,5507

31,0216%

0,6763

32,8405%

0,7017

77,0081%

PET

1,0577

1,5705%

0,4285

1,9446%

0,5632

10,6246%

0,4132

4,2169%

OCC-PET

1,318

26,5638%

0,569

35,3643%

0,7881

54,7834%

0,7665

93,3401%

SET-OCC-PET

1,3137

26,1501%

0,5689

35,3384%

0,7883

54,8289%

0,7649

92,9385%

The results show that the spatial coherence present in the scene can be exploited. In fact

results have shown performance improvements of over 90% when many light sources are

present in the scene. The most successful approach exploiting coherence was the occlusion

culling. When combined with the PET approach, the improvements correspond to the

cumulative improvement of each algorithm, showing that they complement each other. As for

the SET approach, it seems to loose significance when the occlusion culling is also present.

This is expected as they both exploit the same feature, which is the fact that consecutive

shadow rays to a given light source are often occluded by the same triangle.

 42

As for the difference between the scan line and the Hilbert curve traversals, the tests show that

there is no significant advantage of one over the other. This was already expected given the

results shown in Table 6.

The tested approaches might have not been the best, given that they only benefit two

consecutive rays, which is still a one-dimensional approach. Optimizations that would target a

given region, where the two dimensions influenced the efficiency of the approach, would

possibly benefit the Hilbert Curves.

 43

 6 CONCLUSIONS

6.1 Achieved goals

This study has shown that iRT could be successfully parallelized, achieving linear speed-ups,

as expected given the embarrassingly parallel nature of the algorithm. To achieve such speed-

ups, the resort to multiple techniques was necessary. Those include:

• Dynamic load balancing

• Efficient work load decomposition

• Adaptable tasks granularity

• Non-blocking communication

To the success of this approach much contributed the high performance of the network, that

kept the communication costs to a minimum and the efficiency of the Message Passing

Interfaces, that allowed to scale the application between different processors but also cores

within the same processor.

This studied also demonstrated the significant amount of coherence existent in the image

plane and how the image plane traversal order can change the efficiency of optimizations that

thrive on such spatial coherence. Strategies such as PET, OCC and SET improve the efficiency

of the algorithm, avoiding unnecessary computation, thus increasing the overall performance.

The amount of spatial coherence identified leaves the door open for other optimizations that

benefit from properties that are common to objects that appear near in the image plane.

6.2 Future work

Results have shown that the traversal algorithm has impact on the performance of the

proposed coherence optimizations, although it was not clear under which circumstances each

approach thrives. It is suggested as a future work that the strengths and weaknesses of each

approach are identified and exploited.

 44

Although the optimizations designed and implemented work on a bi-dimensional plane, the

benefits are available only for two consecutive rays. Locality could be better exploited with

algorithms that cover an area, for instance an anti-aliasing algorithm. Such approaches could

potentially further benefit from the Hilbert curve traversal order.

 45

 7 BIBLIOGRAFY

[1] A. Oliveira, L. P. Santos, and A. Proença, “Refinement criteria for high fidelity
interactive walkthroughs,” presented at the GRAPHITE '06: Proceedings of the 4th international
conference on Computer graphics and interactive techniques in Australasia and Southeast
Asia, 2006.

[2] T. Whitted, “An improved illumination model for shaded display,” Seminal graphics,
Jul. 1998.

[3] M. J. Muuss, “Towards Real-Time Ray-Tracing of Combinatorial Solid Geometric
Models,” Proceedings of BRL-CAD Symposium, pp. 1–15, Feb. 2008.

[4] Keates, “Interactive Ray Tracing on a Virtual Shared-Memory Parallel,” pp. 1–14, Nov.
2007.

[5] G. Peano, “Sur une courbe, qui remplit toute une aire plane,” Mathematische
Annalen, vol. 36, no. 1, pp. 157–160, Mar. 1890.

[6] Hamilton, “Compact Hilbert indices: Space-filling curves for domains with unequal side
lengths,” Inf Process Lett, vol. 105, no. 5, pp. 9–9, Feb. 2008.

[7] J. Bigler, A. Stephens, and S. G. Parker, “Design for Parallel Interactive Ray Tracing
Systems,” Interactive Ray Tracing 2006, IEEE Symposium on, pp. 187–196, 2006.

[8] I. Wald, P. Slusallek, C. Benthin, and M. Wagner, “Interactive Rendering with Coherent
Ray Tracing,” Computer Graphics Forum (Proceedings of EUROGRAPHICS), vol. 20, no. 3, pp.
153–164, 2001.

[9] A. Reshetov, “Multi-Level Ray Tracing Algorithm,” pp. 1–10, Sep. 2005.

[10] O. Karlík, “Utilization of generic programming in Ray Tracing,” 2009.

[11] I. Wald, S. Boulos, and P. Shirley, “Ray tracing deformable scenes using dynamic
bounding volume hierarchies,” ACM Transactions on Graphics (TOG), vol. 26, no. 1, p. 6,
2007.

[12] I. Wald, W. R. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt, S. G. Parker, and P.
Shirley, “State of the Art in Ray Tracing Animated Scenes,” Eurographics 2007 State of the Art
Reports, vol. 28, no. 6, pp. 1691–1722, 2009.

[13] M. Nunes, L.P. Santos, “Workload distribution for ray tracing in multi-core systems,”
2009.

[14] I. Wald, P. Slusallek, C. Benthin, and M. Wagner, “Interactive distributed ray tracing of
highly complex models,” pp. 277–288, 2001.

[15] K. Dmitriev, V. Havran, and H.-P. Seidel, Faster Ray Tracing with SIMD Shaft Culling.
2004.

 46

[16] A. Reshetov, “Faster Ray Packets - Triangle Intersection through Vertex Culling,” CORD
Conference Proceedings, pp. 105–112, Sep. 2007.

[17] S. Boulos, I. Wald, and P. Shirley, “Geometric and arithmetic culling methods for
entire ray packets,” University of Utah, 2006.

[18] I. Wald, C. P. Gribble, S. Boulos, and A. Kensler, “SIMD Ray Stream Tracing-SIMD Ray
Traversal with Generalized Ray Packets and On-the-fly Re-Ordering,” SCI Institute, University of
Utah, Technical Report# UUSCI-2007-012 (Aug. 2007), pp. 1–8, 2007.

[19] M. A. Z. Dippé and E. H. Wold, “Antialiasing through stochastic sampling,” presented
at the SIGGRAPH '85: Proceedings of the 12th annual conference on Computer graphics and
interactive techniques, 1985.

[20] D. P. Mitchell, “Generating antialiased images at low sampling densities,” vol. 21, no.
4, pp. 65–72, 1987.

[21] J. Painter and K. Sloan, “Antialiased ray tracing by adaptive progressive refinement,”
vol. 23, no. 3, 1989.

[22] F. P. Preparata and M. I. Shamos, “Computational geometry: an introduction,”
Computational geometry: an introduction, Sep. 1985.

[23] Y. Y. Eldar, M. M. Lindenbaum, M. M. Porat, and Y. Y. Y. Zeevi, “The farthest point
strategy for progressive image sampling.,” IEEE Trans Image Process, vol. 6, no. 9, pp. 1305–
1315, Dec. 1996.

[24] I. Notkin and C. Gotsman, “Parallel Progressive Ray-tracing,” vol. 16, no. 1, pp. 43–
55, 1997.

[25] T. Plachetka, “Perfect load balancing for demand-driven parallel ray tracing,” Euro-Par
2002 Parallel Processing, pp. 91–120, 2002.

[26] “Space-filling curve,” Wikipedia.org. [Online]. Available:
http://en.wikipedia.org/wiki/Space-filling_curve. [Accessed: 20-Oct.-2012].

[27] J. Arvo, “Graphics Gems II - James Arvo - Google Books,” 1991.

[28] T. Plachetka, “Tuning of algorithms for independent task placement in the context of
demand-driven parallel ray tracing,” presented at the EG PGV'04: Proceedings of the 5th
Eurographics conference on Parallel Graphics and Visualization, 2004.

[29] D. Badouel, K. Bouatouch, and T. Priol, “Distributing data and control for ray tracing in
parallel,” Computer Graphics and Applications, IEEE, vol. 14, no. 4, pp. 69–77, 1994.

[30] A. S. Glassner, Principles of Digital Image Synthesis. 1995.

