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 Abstract 
 Mature berries of grapevine (V. vinifera L.) have thousands compounds including water, 

sugars, phenolics, organic acids, amino acids and mineral salts. This complex composition depends on 

many and diverse factors including the choice of grape variety and rootstock, edaphoclimatic 

conditions and agricultural practices, like canopy management and irrigation, among others. The 

present study aimed to evaluate how edaphoclimatic conditions affect the metabolomic profile of the 

grapes from three Portuguese varieties - Alvarinho, Arinto and Padeiro de Basto – sampled in 2012 

season in two distinct ampelographic collections, at North (Estação Vitivinícola Amândio Galhano - 

EVAG; Arcos de Valdevez) and South (Instituto Nacional de Investigação Agrária e Veterinária – 

INIAV; Dois-Portos) Portugal. In parallel, it was aimed to study the genotype-dependent metabolomic 

profile upon comparison the grape metabolome from the three above-mentioned varieties cultivated in 

the same the region. From October 2011 to October 2012, the air temperature and the 

evapotranspiration values in the south were consistently higher than in the north where a higher 

amount of precipitation was associated to higher relative humidity and soil water content. To study the 

metabolome, lyophilized samples were analysed qualitatively by GC-TOF-MS at the Genome Center 

(UC Davis - USA) and free amino acids quantification was performed by an Amino acid Analyser 

system by Ansynth Service B.V. (Netherlands). Results showed that the growing region clearly 

affected the metabolome profile of the grape berries. For instance, mature grapes from Alvarinho 

contained much less tartaric and malic acids in the south than in the north, and grape berries from the 

three varieties cultivated in the north were much richer in amino acids than in the varieties from the 

south. In addition, several cultivar-dependent traits were identified in the present work. For instance, 

sorbitol and proline were very abundant in grapes from Padeiro de Basto and Tinto Cão, respectively. 

In parallel experiments, twenty-one varieties cultivated in Portugal were selected to assess in mature 

grape berries the varietal dependence of phenolic content and antioxidant capacity, and proline 

content. Berries from the Tinto Cão red variety showed the highest proline concentration followed by 

berries from the white variety Airén. The concentration of total phenolics in mature grape berries from 

red varieties was higher than in white varieties. Borraçal grapes reached values as high as 5.0 µg/mg 

FW. Additional studies were performed to evaluate how grape berry metabolism is affected in 

grapevines infected with Leafroll-associated virus-3. In infected Cabernet Sauvignon glucose and 

fructose in the berry were reduced over the control, by 19% and 17%, respectively, while the 

concentration of sucrose did not change from clean to infected plants. Contrarily, in grape berries from 

Touriga Nacional there was a significant reduction in sucrose concentration by 40% in infected plants, 

while glucose and fructose concentration did not change from clean to infected plants. The expression 

of the sugar transport genes VvHT1 and VvHT6 was also studied in response to virus infection, 

together with the activity of metabolic enzymes. The results of the present study are compared with 

other metabolic studies performed so far in grape berries from other cultivars and discussed in the 

context of the ongoing climate changes. 
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 Resumo 
 Bagos de uva (Vitis vinifera L.) na fase madura possuem milhares de compostos diferentes, 

incluindo água, açúcares, compostos fenólicos, ácidos orgânicos, aminoácidos e sais minerais. Esta 

composição complexa depende de diversos factores, incluindo o tipo de cultivar e de porta-enxertos 

utilizados, as condições edafoclimáticas e as práticas agrícolas, como a poda e o tipo rega, entre outros. No 

presente estudo pretendemos avaliar o perfil metabólico de bagos de uva de três cultivares portugueses - 

Alvarinho, Arinto e Padeiro de Basto – amostrados em 2012 de duas coleções ampelográficas localizadas 

no norte de Portugal (Estação Vitivinícola Amândio Galhano - EVAG; Arcos de Valdevez) e no Sul 

(Instituto Nacional de Investigação Agrária e Veterinária – INIAV; Dois-Portos). Em paralelo, pretendeu-se 

estudar a influência do genótipo no perfil metabólico, quando se comparou o metaboloma do bago das três 

variedades referidas cultivadas na mesma região. Entre outubro de 2011 e outubro de 2012, os valores de 

temperatura do ar bem como da taxa de evapotranspiração no sul foram consistentemente maiores do que 

no norte, onde uma maior taxa de precipitação estava associada com valores maiores de humidade relativa 

e de conteúdo de água no solo. Para estudar o metaboloma, as amostras liofilizadas foram analisadas 

qualitativamente por GC-TOF-MS (Genome Center; UC Davis - USA) e os aminoácidos livres foram 

quantificados por um Analisador de Aminoácidos (Ansynth Service; B.V.- Holanda). Os resultados 

mostraram que o tipo de região afectou significativamente o perfil metabólico dos bagos de uva. Por 

exemplo, bagos maduros de Alvarinho continham níveis de ácido tartárico e málico muito inferiores no sul 

do que no norte, e bagos de uva das três castas cultivadas no norte eram muito mais ricos em aminoácidos 

do que das castas cultivadas no sul. Adicionalmente, no presente trabalho foram identificadas várias 

características dependentes do cultivar. Por exemplo, os níveis de sorbitol e de prolina foram muito 

superiores em bagos de Padeiro de Basto e Tinto Cão, respetivamente. Em experiências paralelas foram 

selecionadas 21 castas cultivadas em Portugal para avaliar em bagos maduros o conteúdo em compostos 

fenólicos e o potencial antioxidante, bem como os níveis de prolina. Em bagos de uva do cultivar Tinto Cão 

foi medido o valor mais elevado de prolina, a que se seguiu o valor obtido em bagos da variedade Airén. 

Em bagos maduros das castas tintas foram medidos níveis mais elevados de fenólicos totais do que nas 

castas brancas. Em bagos da variedade Borraçal foram medidos valores tão elevados quanto 5,0 µg/mg peso 

fresco. Foram desenvolvidos estudos adicionais preliminares para avaliar o metabolismo do bago em 

videiras infectadas pelo vírus do enrolamento. Na casta Cabernet Sauvignon os níveis de glucose e frutose 

no bago foram inferiores em 19 e 17%, respectivamente, aos medidos em plantas saudáveis, enquanto que 

os níveis de sacarose não sofreram alteração. Ao contrário, em bagos de uva de plantas infectadas de 

Touriga Nacional observou-se uma redução significativa da concentração em sacarose de 40% enquanto 

que as concentrações de glucose e de frutose não variaram. Após infecção com o vírus do enrolamento 

foram também estudados nos tecidos do bago os níveis de transcritos dos transportadores de açúcares 

VvHT1 e VvHT6, bem como a atividade de algumas enzimas. Os resultados do presente trabalho são 

comparados com outros estudos sobre o metabolismo do bago desenvolvidos em outros cultivares e são 

discutidos no contexto das variações climatéricas em curso. 
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1  Introduction 

 
1.1  The wine is a “gift from the gods” 

 
 The genus Vitis includes more than 70 species growing widely in distinct geographical 

areas (Owens et al., 2008). The most renowned species is Vitis vinifera domesticated in Asia 

Minor or Armenia 5,000 years ago, from where it spreaded to other countries becomig one of 

the most important horticultural crops cultivated in the world. The high morphological and 

genetic diversity of vinifera has an estimated number of more than 10,000 cultivars (Liang et 

al., 2011). Worldwide, its cultivated area is approximately 8 Mha. Europe is the most 

important wine-producing region, and the combined production of Italy, France and Spain 

nowadays accounts for more than 60% of the world’s production of wine. Portugal, Germany, 

Greece, Russia, Hungary and Romania are also major players in wine production, both in 

terms of significant vineyard acreage and highly developed viticulture.  

 Throughout antiquity the conversion of grapes into wine was considered a gift from 

the gods and the best wines were reserved for the elite of the society. Nowadays, wine is an 

integral component of the culture of many countries, a form of entertainment in others, and a 

libation of choice for advocates of its health benefits. Unlike many modern foods, wine’s 

attraction relies not on strong consistent flavors, but upon a subtle array of shifting sensations 

that make its charm difficult to define (Bisson et al., 2002).  

 Wine has more than one thousand compounds, that including water, sugars, alcohol, 

phenolics, acids and mineral salts. The majority of wine compounds, such as vitamins and 

minerals, come from the grapes, while others, like ethanol and glycerol, are products of the 

winemaking process (Conde et al., 2007a). This complex composition depends on many and 

diverse factors, including grape variety, edaphoclimatic conditions and enological practices. 

The main constituent of wine is, water accounting for 75 to 90% (v/v), and this variation is 

explained by the amount of the other constituents that form the wine extract that differ from 

wine to wine. The second largest constituent is ethyl alcohol, which, according to the type of 

wine, varies from 8% to 15% (v/v). Another important constituent is sugar, which is directly 

responsible for the final alcoholic content of the wine. A normal dry wine generally has less 

than 2 g sugar/L, while in a botrytized sweet wine it can reach almost 200 g sugar/L (Dominé 

et al., 2004). 

 Most of the wine compounds are produced by the plant itself, in the leaves (including 

sugars and acids), and in the berry (including acids and phenolics). Furthermore, some 

molecules related to aroma and tastes are produced during the fruit development and ripening, 



Introduction 

 4 

being their spectrum specific to a given variety. Theses aromas, called “varietal” or primary 

aromas, are the grape’s signature, recognizable by the consumer during degustation. Thus, the 

control of growth and the fructification of grapevines in the vineyard are of utmost importance 

to wine quality (Blouin and Guimberteau, 2000). 

 

1.2  Development and composition of the grape berry 

 
 Grape berries comprise three major types of tissue: skin, flesh, and seeds, and exhibit a 

double sigmoid growth pattern (Coombe, 1992). Growth first occurs mostly by cell division 

and later by cell expansion (Figure 1). From flowering to approximately 60 days afterward, a 

first rapid growth phase occurs during which the berry is formed and the seed embryos are 

produced. Several solutes are accumulated in the berry during the first growth period, 

contributing in some extent to the expansion of the berry (Possner and Kliewer, 1985). 

 
 

 Figure 1. Grape berry development and ripening. Adapted from Kennedy, (2002). 

 

The most prevalent compounds among all the others are by far tartaric and malic acids. 

Tartaric acid is accumulated during the initial stages of berry development and its 

concentration is highest at the periphery of the developing berry. By contrast, malic acid is 

accumulated in the flesh cells at the end of the first growth phase. These acids provide the 

acidity to the wine, and are therefore critical to its quality (reviewed by Sweetman et al., 

2009). Several other compounds like minerals, amino acids, micronutrients, and aroma 
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compounds also accumulate during the first phase of berry growth and affect as well grape 

berry quality and ultimately wine quality.  

 Hydroxycinnamic and hydroxybenzoic acids are also accumulated during the initial 

growth period. They are distributed in the flesh and skin of the berry and are important for 

browning reactions and as precursors of volatile phenols (Romeyer et al., 1983).  

 The French word veraison has been adopted to describe the onset of ripening. The 

most dramatic changes in grape berries composition occurs during this second growth phase, 

or ripening phase. Berries switch from a status where they are small, hard and acidic, with 

little sugar, to a status where they are larger, softer, sweeter, less acidic and strongly flavoured 

and coloured (Figure 2).  

  
 Figure 2. Grape berry cluster (cv Padeiro de Basto) at veraison stage. 
 

 One of the most important ripening-related changes that occur at veraison is the 

beginning of a massive accumulation of sugars. Sugar content and concentration in ripe 

berries are important parameters for both table grapes and wine. For many decades, 

particularly in cooler regions, clonal selection and viticultural practices (including row 

orientation, defoliation and cluster thinning) have been oriented towards high sugar 

concentrations, which is considered beneficial for wine quality. More recently, an excess of 

sugars has been observed in many vineyards around the world, which is thought to result from 

climate change (Davies et al., 2012). The ripening of grape berries is accompanied by a 

massive accumulation of hexoses that are stored (together with aroma compounds, flavors and 

ions) in the vacuoles (Fontes et al., 2011). The grape berry is considered to be mainly a sink 
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for primary metabolites essential for plant survival, and rely on the use of available 

carbohydrate resources produced by photosynthesis to support growth and development. 

Sugars transport and allocation between photosynthetic “source tissues” and heterotrophic 

“sink tissues” is known as assimilate partitioning wich is a major determinant of plant growth 

and productivity (Kingston-Smith, 2001).  

 As in the majority of plants, sucrose is the main sugar transported via the phloem in 

Vitis, although several other solutes have been identified, including raffinose, stachiose and 

the sugar-alcohols mannitol and sorbitol (Conde et al., unpublished). Sucrose derived from 

leaf photosynthesis is exported via the phloem to the berries. The massive sugar accumulation 

in berry mesocarp after veraison is due to a combined action of monosaccharide (MSTs) and 

disaccharide transporters (DSTs). These sugar-transport proteins play crucial roles in the cell-

to-cell and long-distance distribution of sugars throughout the plant (Figure 3). From veraison 

and throughout ripening the berries accumulate roughly equal amounts of glucose and 

fructose, reaching over 1 M of each hexose, suggesting that phloem transported sucrose is 

hydrolyzed at some step during its transport from the leaves to the vacuole of the mesocarp 

cell (Coombe, 1987; Conde et al., 2006; Conde et al., 2007a; Agasse et al., 2009).  

 Phenolic compounds such as proanthocyanidins (tannins) and anthocyanins, are 

responsible for the astringency and colour of wines. These compounds are found mainly in the 

solid parts of the grapes. From veraison to ripening the total content of tannins decreases 

progressively in the pulp but increases in the seeds and skin (Delgado et al., 2004). 

Anthocyanins are synthesized from veraison onwards, enhancing their concentration in the 

skin throughout ripening. The flavour that builds in grapes is mostly the result of the 

acid/sugar balance together with the synthesis of flavour and aromatic compounds or 

precursors taking place at this period. The development of these characteristics will largely 

determine the quality of the final product (Boss and Davies, 2001).  

 Control of the ripening timing, berry size, sugar content and coloration, acidity and the 

relative assortment of volatile and non-volatile aroma and flavor compounds in table and wine 

grape cultivars are major concerns to viticulturists, but molecular and biochemical studies on 

grape berry development and ripening have resulted in significant gains in knowledge (Conde 

et al., 2007a). In addition, due to their influence in the quality of wine grapes, the effects of 

environmental factors and viticulture practices on physiological and molecular grapevine 

responses, including assimilate portioning and secondary metabolism, are also being 

increasingly under the scope of the scientific community (Castellarin et al., 2007a, 2007b; 

Vincent et al., 2007; Deluc et al., 2009; Salazar-Parra et al., 2012). 
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 Figure 3. Simplified scheme of long-distance sugar transport in plants. (a) Pathways for phloem 

loading: Sucrose (S) is synthetized in mesophyll cells through photosynthesis. S is loaded into de sieve 

elements/companion cell complex (SE/CC) via the apoplast. Apoplastic loading involves the retrieval of S 

leaking from the mesophyll or the vascular parenchyma (mechanism yet uncertain) and may occur along the 

phloem path. Hydrostatic pressure drives phloem sap movement toward sink tissue. (b) Pathways of phloem 

unloading: S enters the receiving cell by the symplastic route before veraison, using plasmodesmata, or the 

apoplastic pathway after veraison. The latter predominates in the ripening fruit and requires the activity of 

membrane transporters mediating the transport of S, and of the hexoses (Hx) resulting from S hydrolysis by 

metabolic enzymes (invertases, sucrose synthases). Hx are accumulated in the vacuole. Water fluxes respond to 

sugar concentration gradient. (1) S/H+ symporter; (2) Hx/H+ symporter; (3) S/H+ antiporter; (4) Hx/H+ 

antiporter; (5) S efflux transporter; invertase;  sucrose synthase; water flux. (c) Expression patterns of 

glucose transporters in V. vinifera according to glucose availability. Glucose levels affect both gene (rectangles) 

expression and protein (circle) amounts. Some transporters are induced (blue) and/or repressed (red) by different 

levels of glucose or not regulated by sugar concentrations (yellow) (Adapted from Agasse et al. 2009). 
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1.3  Grape berry composition is affected by environmental conditions and 

 agricultural practices and is cultivar-dependent 

 
 Vineyards can be found in Europe, Northern and Southern America, Africa and Asia. 

In spite of this worldwide distribution, the most important factor for viticulture is climate and, 

above all, temperature. Grapes clearly prefer moderate conditions, and rarely thrive where 

temperatures rise above 25ºC in the summer months. In a large part of Western Europe, the 

location of the majority of European classic viticultural regions, average July temperatures 

vary between 15 and 25°C. Rainfall and drought also play an important role, and it is almost 

impossible to grow vines with less than 200 mm of rain a year. A moderate climate, with 

adequate to relatively high rainfall, provides ideal conditions for producing both fragrant 

white wines with a good structure and acidity, and well-balanced red wines with good 

potential for maturing (Dominé, 2004). Wine quality largely depends on the vineyard and on 

the vine grower.  

 Grapevine productivity and fruit quality is significantly affected by biotic and abiotic 

stresses. These perturbations have effects on the synthesis, accumulation and regulation of 

grapevine numerous compounds. Among several limiting factors that affect growth in 

Mediterranean-type ecosystems, water deficit, along with high solar radiation and extrime 

temperatures, are the most important ones. The use of irrigation in these rough environments 

arises as a solution to avoid excessive canopy temperature, to maintain quality in fruit and 

wine production and, in more extreme cases, to guarantee plant survival (Chaves et al., 2010). 

Nevertheless, grapevine irrigation is a subject under considerable debate, as small water 

supplements may increase yield and maintain or even improve berry quality (Matthews and 

Anderson, 1989), but on the other hand, may promote excessive vegetative growth with a 

negative impact on berry color, aromas and sugar content, and in increasing titratable acidity, 

therefore decreasing wine quality and flavors (Chaves et al., 2010). The large canopy leaf area 

resulting from prolonged irrigation also tends to increase the incidence of fungal diseases 

(Dry and Loveys, 1998). Also, water supply is becoming shorter in many regions do to 

onegoing environmental changes (Deluc et al., 2009). 

 As described above, grape berries actively accumulate solutes, including sugars, 

amino acids, sodium and potassium ions and organic acids, decreasing their osmotic potential 

as response mechanisms to water stress. Also several reports suggest a protective role of 

secondary metabolites against several stresses, in particular heat, drought and light/UV 

intensity that severely affect phenolic metabolism and, thus, grape composition and 

development. The full understanding of how and when specific phenolic compounds 
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accumulate in the berry, and how the grape berry metabolism of each variety responds to the 

environment is of utmost importance and is explored in detail in the Section 2.  

 Besides phenolics (see Section 2), the grape berry content on other metabolites like 

sugars, organic acids or amino acids also depends on the genotype, environment conditions 

and agricultural practices.  

 Some studies suggest that sugar composition of mature grape berry is determined by 

the genotype (Shiraishi, 2000; Shiraishi, 2010) environment and viticultural practices 

(Jackson and Lombard, 1993; Kliever and Dokoozlian, 2005). The effects of water deficit on 

sugar content of grapevine berries are variety-dependent (Gaudillère et al., 2002). Thus, no 

significant changes were observed in Merlot sugar content under water deficits, while a 

significant increase in sugar content was observed in Cabernet Sauvignon berries (Castellarin 

et al., 2007a,b). Similarly, Deluc et al. (2009) observed an increase in berry sugar content 

under water deficits in Cabernet Sauvignon but not in Chardonnay. This may be explained 

either by differences in vigour, and therefore source/sink equilibrium, between varieties, or by 

different mechanisms underlying the response of grape berry development to water limitation 

according to the timing and intensity of water stress imposition. Indeed, it was shown that 

water deficit has more effect on berry sugar accumulation when imposed before veraison 

(Keller, 2005; Keller et al., 2006). Moreover, some reports suggest that berry sugar 

concentration is a relative stable trait for a given cultivar, being less responsive to 

environmental conditions and viticultural practices than organic acids (Keller, 1998; Sadras, 

2007). 

 More than 20 organic acids have been identified in grape berry with an unusual 

accumulation of significant concentrations of two organic acids, tartaric and malic, during the 

berry development and ripening (Ruffner et al., 1982). It as been long known that species 

within the genus Vitis and individual varieties of the cultivated grapevine Vitis vinifera show 

wide variation in the natural acidity of berries. Analyses of acid composition in developing 

and ripe berries of 26 Vitis and 78 varieties of vinifera showed differences in levels of tartaric 

and malic acids (Kliewer et al., 1967). Important research has been dedicated to the effects of 

heat and light that reaches the berry on acid composition. Lower amounts of malic acid have 

been generally reported when the berry temperature is increased in relation to respiration 

stimulation (Ruffner, et al., 1984). 

 Regarding water stress, in most cases, no titratable acidity changes have been observed 

in the must from moderately water-stressed vines (Matthews and Anderson, 1989; Esteban et 

al., 1999). However, some studies report a reduction of titratable acidity in response to deficit 

irrigation as compared with full irrigation (Sheltie, 2006; Santos et al., 2007). Malate/tartarate 
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ratio is in general lower due to malate breakdown in vines cultivatd in soils with low water 

status (Matthews and Anderson, 1989). 

 Nitrogen-containing compounds found in grapes have also been reported to vary, 

depending on cultivar, vine nutrition, vineyard management, soil type, soil moisture content, 

vine virus status, grape maturity and growing season (Kliewer and Lider, 1976; Stines et al., 

2000; Bell and Henschke, 2005; Pereira et al., 2006; Conde et al., 2007a). Among amino 

acids, some studies have shown that proline synthesis is largely increased under severe stress 

conditions. Either short-term or long-term stress leads to an increment of proline synthesis in 

plant leaves, but the net photosynthesis remained less affected, and its activity is maintained. 

Results may suggest that proline synthesis is a survival mechanism of the plant, providing an 

adaptive potential to acclimate under stress conditions (Sarker et al., 2005). 

 Like phenolics, some compounds called “varietal” or primary aromas, related to aroma 

and taste produced during the fruit development and ripening, have a spectrum specific to a 

given variety (Blouin and Guimberteau, 2000). Some amino acids are precursors to particular 

volatile compounds and recent studies have demonstrated that the addition of free amino acids 

increased a number of wine volatiles (Garde-Cerdan and Ancin-Azpilicueta, 2008; 

Hernandez-Orte et al., 2002). 

 

1.4  Viral infections in grapevine and fruit composition 

 
 Viral infections negatively impact grapevine physiology, causing significant economic 

losses every year (Guidoni et al., 2000; Vega et al., 2011). Grapevine leafroll-associated virus 

3 (GLRaV-3), which is responsible for a viral disease at phloem level, belongs to the genus 

Ampelovirus in the family Closteroviridae (Martelli et al., 2002; Gouveia et al., 2011), 

particularly widespread in grapevine population. It occurs in all of the major grape-growing 

regions of the world, decreasing the strenuousness of affected plants. GLRaV-3 genome 

consists in a linear monoparticle, positive-sense single-stranded RNA organised into 13 open 

reading frames (Ling et al., 2004). Grapevine leafroll disease can affect all native and Vitis 

vinifera cultivars, hybrids and rootstocks, infecting only dicotyledonous hosts (Cabaleiro et 

al., 1997). Even though, symptoms are not expressed in all infected vines (Fuchs, 2007). 

Infection with GLR virus leads to symptoms such as deformations and discoloration of 

completely expanded leaves near the end of the growing season (Bovey et al., 1980), and the 

reduction of yield and quality of grape berries (Goheen, 1988; Beuve et al., 2007). Symptoms 

are usually most visible in red-fruited cultivars of V. vinifera with berries showing pale 

colouring, due to reduced skin anthocyanin pigments. Leafroll disease leads to 30% to 50% 
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yield losses (Fuchs, 2007). It depresses berry sugar content delaying fruit ripening and 

titratable acidity, resulting in reduced wine quality. Some important Portuguese grapevine 

varieties are presently highly infected, including Cabernet Sauvignon and Touriga Nacional 

(Gouveia et al., 2011).  

 The infected plants are more susceptible to adverse environmental factors, such as 

cold winter temperatures, with subsequent higher level of mortality, forcing more frequent 

vine replacements and raising the economic losses (Fuchs, 2007). Phenolic compounds are 

deeply involved in the modifications induced by phloematic viruses in grapevine, with strong 

implications on the final quality of red wine (Guidoni et al., 2000). Different GLRaV-3 

variants are transmitted semi-persistently by coccid or pseudococcid mealybug vectors, 

according to recent studies (Cabaleiro et al., 1997; Jooste et al., 2011).  

 Genomic diversity of GLRaV-3 has been scrutinised by several authors in the last 

years, and they have recognised the existence of divergent numbers of phylogenetic groups, 

with a range from three to five. However, due to variances in the population of isolates 

considered and the genes studied, it is still lacking an overview of viral diversity (Jooste et al., 

2011; Gouveia et al., 2011). Until now, ten different viruses are known and identified as 

Grapevine leafroll-associated viruses (GLRaVs), all belonging to the family Closteroviridae 

(Fuchs, 2007). GLR is due to closteroviruses, of which grapevine leafroll-associated 

closterovirus 1 and 3 (GLRaV-1 and GLRaV-3) are regarded as the most harmful (Guidoni et 

al., 2000). 

 As reported above, leafroll has long known effects on grapevine maturity and berry 

pigmentation. However, the information available is stiel short on physiological and 

biochemical modifications exerted by the specific viruses on grape berry contente and quality. 

  

1.5  Exploitation of the grapevine genetic diversity to mitigate environmental stress 

 
 From the wild species Vitis sylvestris spp, the ancestor of the cultivated grapevine 

Vitis vinifera spp (Vavilov, 1926; Negrul and Kats, 1946), new diversity of grapevines was 

developed in few main suitable regions in the Euro-Mediterranean and Central-West Asian 

territory (Maghradze et al., 2012). The crossing of locally domesticated or introduced from 

other regions of different grapevine varieties originated thousands of grapevine varieties that 

have been selected with a wide range of phenotypic traits based on a wide genetic 

background. Although, as a general consequence of the evolution of viticultural systems and 

wine making in the last century, as well as the development of national and increasingly 

globalised international markets, most present day viticulture is based on a very narrow range 
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of cultivars in comparison to the large genetic diversity that characterized the past viticultural 

systems. 

 As discussed in Section 2, the physiology of grapevine has already suffered from 

significant impacts of global climate change in recent decades causing significant alterations 

in the biochemistry of the fruit. The combined effect of drought, high air temperature and high 

evaporative demand during summer in areas like the Mediterranean basin limits grapevine 

yield and berry development and, consequently, wine quality (Chaves et al., 2007; Costa et 

al., 2007). To remain productive and competitive, modern viticulture in Europe has to tackle 

three main concerns: innovation, quality and environmental protection. During the past 30 

years, several genetic resources conservation activities have been conducted in the grapevine 

cultivating countries, mainly through national (public) agricultural research institutions. In 

this regard, the European COST Action FA1003 – “East-West collaboration for grapevine 

diversity exploration and mobilization of adaptive traits for breeding” was implemented with 

the main objective of improving knowledge of the grapevine genetic diversity for its long-

term conservation and sustainable use. This Action aimed the characterization of grapevine 

germplasm, which was accomplished in collaboration with wine growers and professional 

organizations as key stakeholder groups, to ensure that their demands in terms of 

characterization and use of traits are taken into account. Thus, scientists and breeders are 

working together at an international level to generate knowledge about the valuable diversity 

of grapevine, its patterns, processes and correlations with traits such as resistance and grape 

quality.  

 As in other regions of the Mediterranean basin, Portugal has a long tradition in 

viticulture and a great number of grapevine cultivars. The National List of Grapevine 

Synonyms contains about 450 varieties. The high number of cultivars in Portugal and their 

dissemination all over the country resulted in different names being attributed to genetically 

identical plants (synonymous), although approximately three hundred cultivars are officially 

recognized. Some of them probably originate from the local wild germplasm, which still has a 

great diversity of autochthonous grapevine cultivars (Cunha et al., 2010). Nowadays many of 

them are hardly used and at risk of extinction (Almandanim et al., 2007). Indeed, less than 15 

native cultivars represent the majority of those presently utilized for viticulture, namely 

Alvarinho, Antão Vaz, Arinto, Fernão Pires, for the green yellow cultivars (25 800 ha) and 

Baga, Castelão, Tinta Barroca, Tinto Cão, Touriga Franca, Touriga Nacional and Trincadeira, 

for the blue black cultivars (73 630 ha). Others, not of Portuguese origin, like Aragonez (23 

500 ha) are also of great importance (Veloso et al., 2010). Traditionally, cultivar 

characterization relied on plant morphological description (Eiras-Dias et al., 1988). However, 
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these observations are time consuming and error-prone due to environmental variations that 

may alter the expression of the measured characteristics.  

 The development of wine varieties with a strong emphasis on combining wine quality 

with disease resistance and cold tolerance has been the major target of the grape-breeding 

programs. Hybridization with resistant cultivars has been one of the few techniques available 

to develop resistant grape cultivars. However, while improving grape cultivars is possible by 

conventional breeding, it is difficult and time consuming. New tools of the modern 

biotechnology such as whole genome sequencing and large scale transcriptomes (microarrays) 

make the identification of genes involved with valuable traits easier and faster, providing a 

platform to identify and implement useful genetic engineering strategies for improving 

biotic/abiotic stress tolerance in grapevines. Taking advantage of the grapevine reference 

genome it is possible to re-sequence a specific cultivars using low-cost next generation 

sequencing technologies. This is an important first step to discover large number of genetic 

markers, generally single nucleotide polymorphisms (SNPs). Recently, a large number of 

SNPs have been identified in V. vinifera varieties and a SNP genotyping array was designed, 

which will valuable for the assessment of genotype-phenotype relationship (Cabezas et al., 

2011).  

 Over the last years, developments in DNA analysis for the discrimination of cultivars 

through the application of the microsatellite (SSR) fingerprinting in viticulture have become 

the technique of choice for cultivar identification and distinction (Bowers et al., 1996; Sefc et 

al., 1999). According to the OIV, SSR are the best markers to discriminate the cultivars. In 

fact, This et al. (2004) demonstrated the usefulness of a standard set of microsatellite for 

identification of grape cultivars.  

 In order to obtain a Portuguese detailed ampelographic characterization of grapevine 

germplasm several studies have been performed over the last years with the SSR technique 

(Lopes et al., 2006; Cunha et al., 2009). Using six nuclear microsatellite loci (VVMD 5, 

VVMD 7, VVMD 27, VrZAG 62, VrZAG 79 and VVS 2) to study the differentiation of 313 

grapevine cultivars officially authorized for wine production in Portugal 244 distinct 

genotypes were detected and synonyms for 40 cultivars were identified, where 2 to 6 

(synonymous) cultivars represent seventeen genotypes (Veloso et al., 2010).  

 Investment in new varieties that would give good flavors but with improved climate 

tolerances may be an important investment for the industry and for conservationists wishing 

to avoid unfavorable land or water use outcomes. Decoupling traditional varieties from 

regional appellations is an alternative to attempt to maintain varieties. This “managed retreat” 

to new varieties may reduce water use and upland habitat loss that might be associated with 
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attempts to retain varieties (Hannah et al., 3013).  

 After the accomplishing of ampelographic characterization, other studies are needed to 

identify favorable berry characteristics in response to environmental changing. In this context, 

projects on large-scale metabolomics of grape berry are providing the basic framework for the 

characterization of key metabolites and classes of metabolites produced in response to 

environmental stress. 

 

1.6  Brief characterization of the cultivars used in the present study 

 
 Among the white varieties, Alvarinho is considered to be one of the noblest white 

varieties in Portugal. It was thus chosen to produce the first Portuguese mono-varietal wines 

and is one of the most used varieties in Vinho Verde production. It is cultivated mostly in 

North-West of Portugal and produces small and lowly compacted berry clusters. The wines 

present intense citrus and tropical flavors with fresh acidity. Arinto, also known as Pedernã, is 

a late ripening variety that produces small berries giving rise to pale wines, aromatic with 

green tonality and excellent acidity. This grape variety can be used to produce monovarietal 

citrus colored wines, intensely floral and fruity when young, with high acidity. This variety is 

highly productive, assuring a perfect balance between acidity, structure, freshness and 

minerality. Apart from its use in monovarietal wine production, Arinto grapes are also used 

for blended wines production (Ali et al., 2011). Padeiro de Basto, also known as Tinto Cão, is 

a highly-productive red variety very frequent in the Vinhos Verdes Demarcated Region. It 

produces ruby to garnet-red colour wines with a distinctive aroma and taste, harmonious and 

flavourous. Touriga Nacional is the most important grapevine cultivar in Portugal, with 

specific characteristics, such as high total acidity and lower pH values at harvest, even in 

extreme climates (Oliveira et al., 2006). It also has naturally vigorous growth and, 

subsequently, can grow in low potential soils, such as poor and rocky soils (Guichard et al., 

2004). Cabernet Sauvignon is one of the world’s most renowned grape variety for production 

of red wine. It is native of Bordeaux, France, where it grows since the 17th century (Bowers 

and Meredith, 1997). Characterized by a late and relatively vigorous maturation, with straight 

new branches, its grapes are highly resistance to bunch rot, especially when grafted in a way 

that delays the grape maturation (Rizzon and Miele, 2002).  

 Mature grapes from 21 varieties, five white: Malvasia Fina Perrum, Vital, Antão Vaz, 

Airén, and sixteen red: Cinsaut, Castelão, Moreto Trincadeira, Jaén, Aragonês Padeiro, 

Corropio, Tinto Cão, Tinta Miuda, Touriga Nacional, Alfrocheiro, Merlot, Alvarelhão, 

Alicante Bouschet, and Borraçal, were also used to study phenolics and proline content, and 
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antiocidant capacity, as described below. 

 

1.7  Objectives of the study  

 
 Over the last decade, several metabolomic studies have been performed in grape 

berries from important Vitis vinifera cultivars, including Corvina, Merlot, Touriga Nacional, 

Alvarinho and Trincadeira (Pereira et al., 2005; Krishnan et al., 2005; Pereira et al., 2006; Son 

et al., 2009; Ali et al., 2011), but promising research is still underway. In this context, the 

present work was designed to fulfill two main objectives. The first was to evaluate the 

influence of edaphoclimatic conditions in the metabolomic profile of grape berries from three 

Portuguese varieties Alvarinho, Arinto and Padeiro de Basto. To fullfill this task, grapes were 

sampled in two distinct ampelographic collections, at North (EVAG) and South (INIAV-

Dois-Portos) of Portugal, in 2012 season. The second objective was to study genotype-

dependent metabolomic profile, when the metabolome of the berry samples from the same 

region was compared.  

 In a parallel experiment, mature grape berries from tweenty one selected varieties 

collected were used to assess the varietal dependence of phenolic content and antioxidant 

capacity, as well as cultivar dependence of proline content. To accomplish this task, all grape 

berries were harvested in 2011 season from vines of the ampelographic collection at INIAV 

(Dois-Portos). 

 The third objective of the present work was to study how the metabolism of the grape 

berry is altered in grapevines infected with the Grapevine Leafroll-associated virus 3. Two 

well-known V. vinifera cultivars Cabernet Sauvignon and Touriga Nacional were used in this 

very preliminary study. Emphasis was given on the effect of virus infection on sugar 

accumulation and transport in grapes. Also, the activity of the key enzymes mannitol 

dehydrogenase (MTD) and cinnamate-4-hydroxilase (C4H) was measured in tissue extracts 

from berries sampled from clean and infected plants. Likewise, the levels of proline, total 

phenols and anthocyanins were compared in both cultivars in response to virus infection. 
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2. Berry Phenolics of Grapevine under 
Challenging Environments 

 
The work presented in this Section has been published: 
Teixeira, A; Eiras-Dias, J; Castellarin, S.D; and Gerós, H. Berry Phenolics of Grapevine under Challenging 
Environments.  Int. J. Mol. Sci. 2013, 14, 18711-18739.  
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2  Berry phenolics of grapevine under challenging environments 

 
2.1  General characterization of plant phenolics 

 
 Plant phenolics have been for many years a theme of major scientific and applied 

interest. Grape berry phenolics contribute to organoleptic properties, color and protection 

against environmental challenges. Climate change has already caused significant warming in 

most grape-growing areas of the world, and the climatic conditions determine, to a large 

degree, the grape varieties that can be cultivated as well as wine quality. In particular, heat, 

drought and light/UV intensity severely affect phenolic metabolism and, thus, grape 

composition and development. In the variety Chardonnay, water stress increases the content 

of flavonols and decreases the expression of genes involved in biosynthesis of stilbene 

precursors. Also, polyphenolic profile is greatly dependent on genotype and environmental 

interactions. This review deals with the diversity and biosynthesis of phenolic compounds in 

the grape berry, from a general overview to a more detailed level, where the influence of 

environmental challenges on key phenolic metabolism pathways is approached. The full 

understanding of how and when specific phenolic compounds accumulate in the berry, and 

how the varietal grape berry metabolism responds to the environment is of utmost importance 

to adjust agricultural practices and thus, modify wine profile. 

 Phenolic compounds can be defined as molecules naturally derived from plants or 

microbes, consisting of a phenyl ring backbone with a hydroxyl group or other substitutes. 

Phenolic compounds of the grape are divided between nonflavonoid (with a simple C6 

backbone; hydroxybenzoic acids, hydroxycinnamic acids, volatile phenols and stilbenes) and 

flavonoid compounds (flavones, flavonols, flavanones, flavan-3-ols and anthocyanins). 

Nonflavonoid phenolics are found in grapes and wine, but with the exception of 

hydroxycinnamic acids, they are present in low concentrations (Kennedy et al., 2006; Conde 

et al., 2007a). Flavonoids make up a significant portion of the phenolic material in grapes and 

include several classes (Conde et al., 2007a). They are C6-C3-C6 polyphenolic compounds, in 

which two hydroxylated benzene rings, A and B, are joined by a three-carbon chain that is 

part of a heterocyclic C ring (Figure 4). According to the oxidation state of the C ring, these 

compounds are divided into structural classes that include flavonols, flavan-3-ols (that include 

simple flavan-3-ols and their polymeric forms proanthocyanidins), and anthocyanins 

(Castellarin et al., 2012). 
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Figure 4. Flavonoid ring structure and numbering. 
 

 Grape phenolics contribute to color, flavor, texture and astringency of wine and to its 

antioxidant properties. The biosynthesis of soluble phenolics begins with the aromatic amino 

acid phenylalanine, a product of the shikimate pathway. The early precursors of the shikimate 

pathway are erythrose-4-phosphate and phosphoenol pyruvate. This pathway is responsible 

for producing phenylalanine and the other amino acids tyrosine and tryptopahne (Conde et al., 

2007a; Castellarin et al., 2012).  

 Although the biosynthesis of many secondary compounds has been elucidated in 

detail, reports on the identification of transporters of secondary compounds have been 

published only recently (Braidot et al., 2008; Martinoia et al., 2012) and a clear and precise 

understanding of flavonoid transport in plants is far from being elucidated. 

 Two distinguishable tissues compose the grape skin, representing the hydrophobic 

barrier of the pericarp. The outermost - the epidermis - is strongly cutinized, while the inner 

thick-walled layers of hypodermis (assumed to consist of several layers, depending on the 

variety), contain most of the skin flavonoids. In this fraction, the major class of flavonoids is 

represented by anthocyanins, proanthocyanidins and, to a minor extent, simple flavan-3-ols 

and flavonols (Braidot et al., 2008). A schematic structure of a ripe grape berry with the 

distribution pattern of secondary metabolites between tissues is shown in Figure 5. 
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 Figure 5. Schematic structure of a ripe grape berry and pattern phenolics biosynthesis distribution 

between several organs and tissues (indicated by arrows). a Anthocyanins are synthetized also in the inner flesh 

of the teinturier varieties (Coombe, 1987; Bavaresco et al., 1997; Gatto et al., 2008; reviewed by Adams, 2006; 

Cadot et al., 2006; Conde et al., 2007; Fontes et al., 2011 and Castellarin et al., 2011). 
 

 While there is debate about the anthropogenic influence on climate, there are clearly 

recorded periods of extreme temperature events that may have implications for grape 

cultivation and wine quality (Easterling, et al., 2000; Chuine et al., 2004; Mann et al., 2009; 

Cohen et al., 2012) Climate change imposes rapid drifts in weather patterns that determine the 

suitability of growing regions for specific types of wine (Kenny and Harrison, 1992). Climate 

changes in the future might extend the north and south latitude boundaries of areas where 

good wines are produced (Schultz and Jones, 2010). However, some areas that nowadays are 

producing high quality grapes may be affected by heat and water stress (Kenny and Harrison, 

1992). The climate changes are particularly important for grapevine cultivation, in which heat, 

drought and light intensity are just some environmental stress factors that dramatically affect 

phenolic metabolism as well as grape development and chemical composition. In this regard, 

cultural practices, such as canopy management and irrigation may be optimized to adjust 

berry and wine quality. 

 Nowadays, the genetic diversity conservation of grapevine is a big concern. The genus 

Vitis contains more than 70 species growing widely in distinct geographical areas (Owens et 
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al., 2008). The most renowned species is Vitis vinifera that was domesticated in Asia Minor or 

Armenia 5000 years ago, from where it spread to other countries. The high morphological and 

genetic diversity of vinifera has an estimated number of more than 10,000 cultivars. While 

many factors, such as viticulture practices, environmental conditions, and post-harvest 

processing activities, can all affect the content of total polyphenols or individual polyphenolic 

compounds in grapes and grape products, varietal or genetic difference is one of the most 

important factors (Liang et al., 2011). The study of the the diversity and biosynthesis of 

phenolic compounds in the grape berry, from a general approach to a more detailed level, 

such as the influence of the environmental factors, including drought and heat, and the 

genotype dependence on the production of grape phenolics, is an important research topic. 

Also the the comprehension of how and when specific phenolic compounds accumulate in the 

berry, and how the grape berry metabolism responds to the environment is of utmost 

importance to adjust agricultural practices and thus, modify wine profile. 

 

2.2  Metabolism and compartmentation of phenolics in the grape berry 

 
 Nonflavonoid phenolics 

 
 The hydroxycinnamates are the third most abundant class of soluble phenolics in grape 

berries, after proanthocyanidins and anthocyanins. Phenolic hydroxycinnamates are 

commonly accumulated in berry skin and the flesh of white and red vinifera and non-vinifera 

varieties (Singleton et al., 1986). Thus, while they are also found in red wines, they are 

usually the most abundant class of phenolics in free-run juice and white wines where they 

contribute to colour browning under oxidation with non-phenolic molecules (Waterhouse, 

2002; Adams, 2006; Kennedy et al., 2006; Conde et al., 2007a). In terms of concentration, p-

coumaric, caffeic and ferulic acids are also predominant phenolics in grape. These three 

hydroxycinnamic acids are present primarily as trans isomers, although traces of cis isomers 

have been detected. They differ by the type and number of substituents on the aromatic ring. 

When these hydroxycinnamic acids are esterified with tartaric acid, they are named coutaric 

acid (trans-p-coumaroyl-tartaric acid), caftaric acid (trans-caffeoyl-tartaric acid), and fertaric 

acid (trans-feruloyl-tartaric acid) (Castellarin et al., 2012). 

 The synthesis of hydroxycinnamates occurs mainly before veraison (Table 1). During 

ripening, their concentration decreases with the increasing fruit size and dilution of solutes, 

though its content per berry remains almost constant. Although its accumulation occurs 

predominantly in the flesh they are present in all berry tissues (Easterling, 2000, reviewed by 

Braidot et al., 2008) (Figure 5 and Table 1). In hypodermal, mesocarp and placental cells of 



Berry Phenolics of Grapevine under Challenging Environments 

 23 

the pulp, hydroxycinnamates may be conjugated with anthocyanins (Easterling, 2000; 

reviewed by Conde et al., 2007a and Castellarin et al., 2012). 

 The levels of hydroxybenzoic acids and their derivatives are commonly low in wine, 

compared to the levels of hydroxycinnamic acids. The most common hydroxybenzoic acids in 

grape berry include gentisic acid, salicylic acid, gallic acid, and p-hydroxybenzoic acid, which 

are mainly found in their free form (Vanhoenacker et al., 2001; Pozo-Bayón et al., 2003; Ali 

et al., 2010). Gentisic acid is accumulated at very low levels, as is salicylic acid, which is 

involved in signaling in plants, particularly in the induction of defense and stress responses 

(Ali et al., 2010; Castellarin et al., 2012). The most represented is gallic acid, which is found 

free as well as acyl substituent of flavan-3-ols. Other benzoic acids such as protocatechuic, 

vanillic and syringic acids are found in Riesling wine from Germany (Baderschneider and 

Winterhalter, 2001). In the seeds, gallic acid can esterify the carbon in position 3 of flavan-3-

ols (Adams, 2006). 
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 Table 1. Phenolic compounds produced and accumulated in the grape berry (Langcake et al., 1976; Harbertson, et al., 2002; Downey et al., 2003; Pena-

Neira et al., 2004; Adams, 2006; Montealegre et al., 2006; Gatto et al., 2008; Jackson, 2008; Mattivi et al., 2009; Hanlin et al., 2010; Castellarin et al., 2011; 

Fontes et al., 2011; Castellarin et al., 2012; Martinoia et al., 2012) 

Compound 
Level of synthesis a 

Location 
Berry phenological scale b 

Skin Flesh Seed Blooming Green stage Veraison Ripening 

Nonflavonoids 
   

 
    

Hydroxycinnamic acids ++ +++ ++ 
Hypodermal cells and placental cells of the pulp;  

primarily in the vacuoles of mesocarp cells. 
+++ +++ + + 

Hydroxybenzoic acids + − ++ 
     

Stilbenes +++ + ++ Berry skin and seeds. − + ++ +++ 

Flavonoids 
   

 
    

Flavonols ++ − − 
Dermal cell vacuoles of the skin tissue  

and cell wall of skin and seeds. 
++ + +++ ++ 

Flavan-3-ols ++ + +++ 
Specific vacuoles of hypodermal skin cells  

and seed coat soft parenquima. 
+ ++ +++ ++ 

Anthocyanins +++ − * − 

Cell layers below the epidermis; storage  

confined to the vacuoles and cytoplasmic  

vesicles named anthocyanoplasts. 

− − + +++ 

a,b Very abundant compound (+++) to absent (−); * Teinturiers contain anthocyanis also in mesocarp cells. 
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 A nonflavonoid compound class that, although present in trace quantities in wine, has 

been drawing attention is stilbenes (Conde et al., 2007a). These compounds occur naturally in 

a few edible plants, and several species of the genus Vitis are proficient at stilbenes synthesis, 

mainly in the skin at the mature stage (Figure 5 and Table 1). Stilbene content of the berry 

changes across varieties (Gatto et al., 2008). Their synthesis also increases upon pathogen 

infection and in response to abiotic stress (Bavaresco et al., 1997). Some stilbenes, 

particularly resveratrol, have been drawing attention for their benefits to human health.  

 Stilbenes can undergo glycosylations or methylations. Glycosylated resveratrol originate 

piceids, trans- and cis-resveratrol-3-O-β-D-glucopyranosidade as well as astringin, which is a  

3′-OH-trans-piceid. Modifications by addition of two methyl groups to the resveratrol originate 

pterostilbene (3,5-dimethoxy-4′-hydroxystilbene) with enhanced antifungal activity compared to 

the non-methylated form (Chong et al., 2009). 

 Trans-resveratrol (3,5,4′-trihydroxytilbene) is the stilbene with the simplest molecular 

structure, which is used as precursor for other compounds through various modifications of 

the stilbene unit. Cis-resveratrol is a trans-resveratrol isomer although less stable (Chong et 

al. 2009). Oligomerisation of stilbenes can be derived in dimers, trimmers and tetramers from 

oxidative coupling of resveratrol and derivatives by 4-hydroxystilbenes peroxidases. 

Viniferins are a major group of resveratrol oligomers produced by oxidation of basic 

stilbenes. The most important viniferins are α- β- γ- δ- ε-viniferins, composed essentially by 

cyclic oligomers of resveratrol (Castellarin et al., 2012). 

 

 Flavonoids 

 
 From an anatomical point of view, grape flavonoids are localized mainly in both the 

peripheral layers of berry pericarp (skin) and in some layers of the seed coat. Most of the skin 

flavonoids are abundant in the inner thick-walled layers of hypodermis. In this fraction, the 

major class of flavonoids is represented by anthocyanins, proanthocyanidins (also known as 

tannins) and, to a minor extent, simple flavan-3-ols and flavonols (Adams, 2006; Braidot et 

al., 2008) (Figure 5 and Table 1). 

 Flavonols are a class of flavonoids with a 3-hydroxyflavone backbone. They differ by 

the number and type of substituents on the B ring (see Introduction), and occur conventionally 

as glucosides, galactosides, rhamnosides and glucuronides with the sugar bond attached to the 

3 position of the flavonoid skeleton. The grape berry synthetizes kaempferol, quercetin, 

myrcetin and the methylated forms isoharmnetin, laricitrin and syringetin (Mattivi et al., 

2006). Flavonols constitute the third component of flavonoids in the skin fraction (Table 1). 
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Quercetin is known to behave as UV-protectant and to play a role in co-pigmentation with 

anthocyanins (reviewed by Braidot et al., 2008). As reported below, flavonol concentration 

varies extensively among varieties, ranging from 0.018 mg to 0.176 mg per g of berry FW, 

but its content in the berry can be strongly affected by environmental factors, particularly 

sunlight exposure (among the others, see (Price et al., 1995; Downey et al., 2003; Liang, et al., 

2011). Flavonol synthesis occurs primarily during early stages of fruit development and ends 

at around veraison (Downey et al., 2003) (Table 1). 

 Flavan-3-ols are the most abundant class of phenolics in the grape berry (Singleton, 

1992). They have a monomeric (catechins) or polymeric structure known as proantocyanidins 

or condensed tannins. Catechins and proantocyanidins are located essentially in the seeds, 

then in the skins and very little in the pulp (Sun et al. 2001). Catechins are responsible for 

bitterness in wine and may also be partially associated with astringency (Adams, 2006; 

Kennedy et al., 2006; Conde et al., 2007a). The five flavan-3-ols in grapes are (+)catechin and 

its isomer (−)epicatechin, (+)gallocatechin, (−)epigallocatechin and catechin-3-O-gallate. 

Catechins are characterized by the presence of a hydroxyl group at the 3 position of the C ring 

(Su and Singleton, 1969; Waterhouse, 2002; Conde et al., 2007a; Castellarin et al., 2012). 

 Proantocyanidins are a diverse group of compounds composed by flavan-3-ols 

polymer subunits that are linked via 4–6 and 4–8 interflavan bonds. These phenolic 

compounds are the most abundant class of soluble polyphenols in grape berries. 

Proanthocyanidins vary in size, ranging from dimers to polymers with more than 40 units 

(Kennedy et al., 2001; Downey et al., 2003; Conde et al., 2007a; Castellarin et al., 2012). 

 Flavan-3-ols are detectable in highest concentration in seeds (Figure 5 and Table 1). 

Proanthocyanidins are predominantly found in the hypodermal cell layers of the berry skin 

and in the soft parenchyma of the seed coat inside the vacuole or bound to cell wall 

polysaccharides (Adams et al., 2006; Kennedy et al., 2006; Conde et al., 2007a; Castellarin et 

al., 2012). Grape proanthocyanidins have a larger average size in the skin than in the seeds. 

These proanthocyanidin compounds are responsible for the grape skin organoleptic properties 

such as astringency and bitterness in grape skin or wine (Conde et al., 2007a; Braidot et al., 

2008). 

 Anthocyanins are responsible for red, purple and blue pigmentation of the grape 

berries and, consequently, the red wine. The structures of the common anthocyanins in V. 

vinifera grapes and wine were determined in 1959 (Ribéreau-Gayon, 1959; Conde et al., 

2007a). The core of the anthocyanidin, the flavylium, has the typical C6-C3-C6 skeleton. 

Intrinsically, anthocyanins are glycosides and acylglycosides of anthocyanidins, and the 

difference of the aglycones and flavyliums (2-phenylbenzopyrilium) occurs at the 3′ and 5′ 
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positions of the B ring, due to hydroxyl or methoxyl substitutions (He et al., 2010a). 

Anthocyanins can also be esterified by acids, such as acetic, coumaric or caffeic, linked to the 

6′ position of the glucose bonded to the 3′ position of the C ring (Conde et al., 2007a; Adams, 

2006). There are 17 naturally occurring aglycones, but only six are reported in grapevine: 

malvidin, cyanidin, peonidin, delphinidin and petunidin. Traces of pelargonidin are found in 

Pinot Noir and Cabernet Sauvignon (He et al., 2010b), but the malvidin-3-O-glucoside was 

found to be the major anthocyanin present along with its acylated forms (Conde et al., 2007a). 

V. vinifera contains only 3-O-monoglycosides due to two mutations in the 5-O-

glucosyltransferase gene which implicated the loss of the dominant allele involved in the 

production of diglucosidic anthocyanins (Ford et al., 1998; Jánvár et al., 2009; He et al., 

2010a). The anthocyanins commonly found in V. vinifera grape include delphinidin, cyanidin, 

petunidin, peonidin and malvidin 3-glucosides, 3-(6-acetyl)-glucosides and 3-(6-p-

coumaroyl)-glucosides, peonidin and malvidin 3-(6-caffeoyl)-glucosides, being that malvidin-

3-O-glucoside is generally the major anthocyanin present along with its acylated forms 

(Figure 5). 

 Differently from proanthocyanidin, accumulation of anthocyanin pigments in red 

grape varieties starts from veraison and reaches its maximum in the latest phases of fruit 

maturation when the synthesis stops (Table 1). Anthocyanins are synthesized in the cytosol of 

the epidermal cells, are co-localized with proanthocyanidins in the skin hypodermal layers 

and then stored in the vacuole (Braidot et al., 2008; Fontes et al., 2011) (Figure 5 and Table 

1). In a few teinturier varieties, accumulation in the berry skin is paralleled by accumulation 

in flesh. (Braidot et al., 2008; Castellarin et al., 2012; Falginella et al., 2012). In the red flesh 

variety Alicante Bouschet, colour development began in the flesh at the stylar end of the fruit 

and progressed toward the pedicel end flesh and into the skin (Castellarin et al., 2011). 

 

 Biosynthesis pathways of phenolic compounds in wine grape 

 
 The biosynthetic pathways of different phenolics have been recently thoroughly 

reviewed by Castellarin et al., (2012) and He et al., (2010a) and are schematically presented in 

Figure 6. 

 Hydroxycinnamic acids are generated by modifications to intermediates of the 

phenylpropanoid pathway. First reaction synthesis of simple phenolics in grape involves the 

deamination of phenylalanine by the enzyme phenylalanine ammonia lyase (PAL), in which 

the product is cinnamic acid (Hrazdina et al., 1984). The enzyme cinnamate-4-hydroxylase 

(C4H) converts cinnamic acid to p-coumaric by hydroxylation. p-coumaric is esterified by the 
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enzyme CoA-ligase (4CL) producing 4-coumaroyl-CoA. In these modifications, 3-

hydroxylation of p-coumaric originate caffeic acid, which can be converted into ferulic acid 

by 3-methylation. This product is substrate of two enzymes, chalcone synthase (CHS) and 

stilbene synthase (STS). 

 

 
 Figure 6. Biosynthetic pathways of grape berry secondary compounds. Phenylalanine ammonia lyase 

(PAL), cinnamate-4-hydroxylase (C4H), 4-coumaroyl:CoA-ligase (4CL), stilbene synthase (STS), chalcone 

synthase (CHS), chalcone isomerase (CHI), flavonoid 3′-hydroxylase (F3’H), flavonoid 3′,5′-hydroxylase 

(F3′5′H), flavanone-3-hydroxylase (F3H), flavonol synthase (FLS), dihydroflavonol reductase (DFR), 

leucoanthocyanidin reductase (LAR), anthocyanidin reductase (ANR), leucoanthocyanidin dioxygenase 

(LDOX), dihydroflavonol 4-reductase (DFR), flavonoid glucosyltransferase (UFGT),  O-methyltransferase 

(OMT). Adapted from He et al. (2010a) and Castellarin et al. (2012). 

 

 The first step of the stilbene pathway is controlled by STS. The competition of STS 

and CHS for the same substrate, 4-coumaroyl-CoA, controls the entry point into the stilbene 

pathway and flavonoid pathway. In an analogous way of CHS, STS carry out three reactions 
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of condensation that produce resveratrol. Although, in the STS reaction, the terminal carboxyl 

group is removed prior to closure of the A ring, causing a different ring-folding in resveratrol 

compared to the CHS product tetrahydroxychalcone. 

 All flavonoids stem from tetrahydroxychalcone. The flavonoid pathway leads to the 

synthesis of different classes of metabolites such as flavonols, flavan-3-ols, 

proanthocyanidins, and anthocyanins (Figure 6). 

 Some mechanisms have been proposed concerning flavonoid transport in plants. 

Flavonoid uptake across the tonoplast may be mediated by a primary active transport, driven 

by ABC proteins. Very recently it was shown that the ABC protein ABCC1 that localizes to 

the tonoplast is involved in the transport of glucosylated anthocyanidins, which depends on 

the presence of GSH but not on the formation of an anthocyanin-GSH conjugate (Francisco et 

al., 2013). ABCC1 is expressed in the exocarp throughout berry development and ripening, 

with a significant increase at veraison. A genetic screen aimed to study flavonoid biosynthesis 

provided the first evidence for the involvement of MATE proteins in the transport of 

flavonoids across the tonoplast. MATE transporters are highly upregulated during maturation, 

the time when grape berries start to accumulate anthocyanins. It has also been suggested that 

flavonoid moieties, depending also on their different substituting groups (acyl, glycosyl 

and/or methoxyl), are driven to their accumulation sites by a complex vesicle trafficking 

system involving the Golgi apparatus (Braidot et al., 2008). The two grape berry MATEs, 

anthoMATE1 (AM1) and AM3, specifically transport acylated anthocyanins (Conn et al., 

2008; Gomez et al., 2009). Subcellular localization assays revealed that anthoMATE 

transporters were closely related with these small vesicles, whereas GST was localized in the 

cytosol around the nucleus, suggesting an association with the endoplasmic reticulum (Gomez 

et al., 2011). While the biosynthesis and regulation mechanisms of anthocyanin synthesis 

have been extensively studied, the knowledge on the mechanisms of their sequestration in the 

vacuole and to what extent their color is affected by vacuole storage is still limited. 

 

2.3  Impact of environment and agricultural practices in grape berry phenolics 

 
 Several regional climate models have been proposed in order to forecast the overall 

effects of individual or combined climate change-related variables (Orduña et al., 2010). 

Some models take into account air temperature and other variables, including precipitation, 

humidity, radiation, and historical viticultural records (Stock et al., 2004). Spatial modeling 

research has indicated potential geographical shifts and/or expansion of viticultural regions 

with parts of southern Europe becoming too hot to produce high-quality wines and northern 
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regions becoming viable (Kenny et al., 1992; Schultz et al., 2010; Hannah et al., 2013). For 

the Northern hemisphere, Jones et al., (2005), predicted that temperatures at regions 

producing high-quality wine between 2000 and 2049 are going to warmby 0.42 °C per decade 

and 2.04 °C overall. In the Bordeaux region, the predicted increase temperature overall trend 

would be 2.3 °C in the same period (Figure 7). 

 For vineyards, the increase in the number of days with high temperatures is 

particularly relevant. Grape production and quality are sensitive to heat waves, especially at 

certain growth stages, such as flowering and ripening. At high temperatures, replacement of 

starch by lipids in leaf chloroplasts has been reported for grapevines (Buttrose and Hale, 

1971).  Prolonged periods with temperatures above 30 °C cause a reduction in photosynthesis, 

with consequent berry size and weight reduction (Hale and Buttrose, 1973). High temperature 

conditions may have implications in premature veraison, berry abscission and reducing 

flavour development. Metabolic processes and sugar accumulation, beyond other parameters 

related to colour and aroma, may also be affected or completely stopped by high temperatures 

(Coombe, 1987; Schultz, 2000; Camps et al., 2012) 

 

 
 Figure 7. HadCM3 modeled growing season average temperature anomalies for the Bordeaux region. 

The anomalies are referenced to the 1950 – 1999 base period from the HadCM3 model. Trend values are given 

as an average decadal change and the total change over the 2000–2049 50-year period. Note: this figure is 

adapted with permission from Jones et al. (2005). Copyright Springer, 2005. 

 

 Studies carried out in European countries have highlighted harvest date advances 

associated with temperature increases. In southern France, the harvest dates advanced by 

between 18 and 21 days from 1940 to 2000 (Ganichot, 2002) and in Alsace (eastern France) 
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the harvest was two weeks earlier in 2002 than in 1972, a period during which temperature 

increased by 1.8 °C (Duchêne and Schneider, 2005). 

 In the viticultural French region of Languedoc, the climacteric evolution over the 

period 1950–2006 obeyed to two distinct climate periods, according to (Laget et al., 2008). 

Observing the evolution of mean annual and seasonal temperatures, total solar radiation, night 

freshness index, the distribution and efficiency of rainfall and potential evapotranspiration 

(pET), it was reported an increase in mean annual temperatures of +1.3 °C between 1980 and 

2006 and an increase in the mean pET of 900 mm/year since 1999. It was also concluded that 

the harvest dates advanced by up to three weeks and sugar concentrations at harvest increased 

by up to 1.5% potential alcohol. In the Bordeaux region, from 1952 to 1997 changes in the 

dates of all the phenological events and in the length of the growing season were reported for 

Cabernet Sauvignon and Merlot (Jones and Davis, 2000). Similar results were found in the 

southern hemisphere. In Australia, the date of designated maturity of Chardonnay, Cabernet 

Sauvignon and Shiraz advanced at rates of between 0.5 and 3.1 days per year between 1993 

and 2006 (Petrie and Sadras, 2008). A trend towards earlier maturity of several varieties was 

observed in 12 different Australian winegrape growing regions form 1993–2009 (Webb et al., 

2011). For most of the cases, the rate of change in the date of designated maturity was 

correlated with the rate of change in temperature. 

 

 Temperature and radiation 

 
 Of environmental factors including all external stimuli, the most influential of which 

for phenolic synthesis are light/radiation and temperature, as well as water and nutritional 

status. Phenolic synthesis and accumulation in grape berry is also determined by genetic 

factors and the interaction between genotype and environment (Orduña, 2010; Castellarin et 

al., 2012). The role of phenolics as photo-protectants explains their dependency on sun 

exposure (Orduña, 2010). In warmer climates, high light exposure can increase the 

concentration of phenolics and anthocyanins because of the higher activity of PAL 

(Roubelakis-Angelakis and Kliewer, 1986). 

  Sun exposure is generally considered to be of primary importance for high quality 

wine production. However, it is not clear whether the effect on fruit composition is due to 

visible light or ultraviolet light or both (Keller, and Torres-Martinez, 2004). 

 It has been shown that UV-B provoke several morphological, physiological and 

biochemical changes in higher plants, depending on the intensity, total dosage, plant species 

and the balance between UV-B and photosynthetically active radiation (PAR, 400–700 nm) 
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(Schreiner et al., 2004; Berli et al., 2010). On the other hand, UV-A and visible light may 

induce both protective and repair mechanisms, thus decreasing the negative impact of UV-B 

light (Jordan et al., 1992).  

 However, relatively high levels of solar UV-B were reported to enhance the 

accumulation of UV-absorbing compounds, including flavonoids and related phenolics (Berli et 

al., 2008). UV-B is also known to upregulate genes encoding PAL and CHS (Berli et al., 

2010). Phenolics transform short-wave, high-energy and highly destructive radiation into 

longer wavelength light, less destructive to the cellular leaf structures, including the 

photosynthetic apparatus (Schreiner et al., 2012). Very few studies have attempted to separate 

the effects of visible light from those of UV light (Schultz, 2000; Kolb et al., 2001). As 

discussed by Keller (Keller, 2010) this is surprising given that phenolic compounds are 

absorbed predominantly in the UV range of the spectrum and form an important part of fruit 

quality in grapes. 

 Stilbene synthesis is enhanced in response to several abiotic factors. These factors 

include UV-radiation, wounding, ozone, anoxia and metal ions. Exposure to UV light induces 

the accumulation of stilbenes in grape berry through the induction of STS expression (Petit et 

al., 2009). In berries, this is dependent on the development stage, since unripe berries respond 

to UV irradiation to a greater extent. A study on grape plantlets proved the existence of a 

positive correlation between resveratrol synthesis in leaves (induced by UV) and field 

resistance (Sbaghi et al., 1975). 

 Flavonols are thought to protect plant tissue to UV radiation whereas anthocyanins are 

thought to provide some protection to UV radiation and high extreme temperatures (Adams, 

2006). Synthesis of flavonols is a light-dependent process. Sealing grape bunches in light-

excluding boxes from before flowering until harvest completely inhibits flavonol synthesis. If 

shading is applied later in fruit development, flavonol content is reduced and no further 

accumulation is detected after the initiation of light deprivation (Price et al., 1995; Spayd, and 

Tarara, 2002; Downey et al., 2004; Adams, 2006; Castellarin et al., 2012). In Pinot Noir, 

Shiraz, and Merlot varieties, the amount of these compounds has been shown to be highly 

dependent on light exposure of the tissues in which they accumulate (Downey et al., 2004). 

Light modulates the expression of flavonol synthase (VvFLS), a key flavonol structural gene, 

and of VvMYBF1, a transcriptional regulator of flavonoid synthesis (Czemmel et al., 2009; 

Azuma et al., 2012; Koyama et al., 2012). In Cabernet Sauvignon and Chardonnay, flavonols 

are the only phenolic components in both grape leaves and berries that are consistently and 

severely increased by UV radiation (Keller and Torres-Martinez, 2004). It was suggested that 

flavonols, but not anthocyanins or hydroxycinnamic acids, are important for UV protection in 
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grapevine tissues. Similar results were recently confirmed by Koyama et al., (2012) who 

showed that UV light specifically induced flavonols while not affecting other flavonoid 

components. However, the relatively high concentrations of flavonols found even in the 

absence of UV radiation suggest that flavonols may also have a protective function against 

excess visible radiation (Keller and Torres-Martinez, 2004). In the vineyard, any cultural 

practices that favor the exposure of grape brunches to sunlight boost flavonol accumulation. 

This occurs equally in white and red grapes. 

 Flavan-3-ols and proanthocyanidins are the most stable phenolics under diverse 

growing conditions. This is also true for accumulation of these compounds in seeds. However, 

some studies have shown a positive association between temperature and the number of seeds 

and total proanthocyanidin levels per berry at harvest (Ewart et al., 1977; Del Rio and 

Kennedy, 2006). Shading treatments increased the amount of seed proanthocyanidins and 

affected their composition in Pinot Noir (Cortell and Kennedy, 2006) while had no effects in 

Shiraz (Downey et al., 2004), reiterating the importance to discriminate between irradiation 

and temperature effects (Orduña, 2010). 

 Skin flavan-3-ols and proanthocyanidins are more sensitive than seed ones to 

environmental cues; sunlight has been shown to affect their relative content (Downey et al., 

2004; Cortell and Kennedy, 2006; Koyama et al. 2012), as well as their mean degree of 

polymerization (Cortell and Kennedy, 2006; Koyama et al., 2012). Sunlight exposure 

consistently increased the relative abundance of the tri-hydroxylated gallocatechins at the 

expense of the di-hydroxylated catechins and increased the mean degree of polimeryzation. 

 When the effect of cluster temperature on proanthocyanidins biosynthesis was studied 

it was shown that there is no consistent relationship between temperature and total 

proanthocyanidins accumulation across three seasons (Cohen et al., 2012). In this field, 

experiment grape bunches were cooled during the day and heated at night (±8 °C). However, 

composition of proanthocyanidins was affected in the experiment because decreasing thermal 

time in degree-days favored a shift towards tri-hydroxylated forms. 

 Although anthocyanins and proanthocyanidins share several steps in the biosynthetic 

pathway, there are many differences in their regulation and reactivity. In fact, in contrast with 

proanthocyanidins, several authors reported that light, temperature, and their interactive 

effects, highly influence anthocyanin accumulation in berry skins (Downey et al., 2006; 

Guidoni et al., 2008). Exposure to sunlight is associated with an increase in anthocyanin 

accumulation, until the point when excessive heat causes berry temperature to become 

detrimental (Spayd, and Tarara, 2002; Tarara et al., 2008; Castellarin et al., 2012). In growth 

chambers, optimal conditions for anthocyanin accumulation occurred when grapes were exposed 
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to cool nights (15 °C) and mild, temperate days (25 °C) during ripening (Kliewer and Torres, 

1972). Higher temperatures (30–35 °C) promote the degradation of the existing anthocyanins 

(Mori et al., 2007). In the Merlot variety, attenuation of the diurnal temperature fluctuations 

led to increased ripening rates and higher anthocyanin concentrations at harvest (Cohen et al., 

2008). Moreover, absolute anthocyanin levels and chemical composition changes have also 

been related with warmer seasons, as indicated by the increased formation of malvidin, 

petunidin, and delphinidin coumaroyl derivatives (Downey et al., 2006). In another study 

(Tarara et al., 2008), the association of high temperatures with the increase of delphinidin, 

petunidin and peonidin-based anthocyanins in sun-exposed Merlot berries were observed, 

while malvidin derivatives remained unaffected. The complexity of combined solar radiation 

and temperature effects on flavonoid composition further expands the understanding of the 

effect of such environmental factors on anthocyanin biosynthesis (Orduña, 2010). 

 

 Agricultural practices and the levels of synthesized metabolites 

 
 In a vineyard, the environment varied due to the natural soil heterogeneity and the 

uneven light distribution. Physical characteristics of the vineyard can also affect flavonoid 

accumulation. These include altitude of the cultivation site, heat stress, defoliation, mineral 

supply or soil type, all of which have shown some influence. Nitrogen, potassium and 

phosphate are the nutrients commonly applied as fertilizers, although only nitrogen and 

potassium have thus far attracted viticultural research. Both low and excessively high levels of 

nitrogen have been shown to decrease color in grape berries, while high potassium has been 

reported to decrease color in grapes (Delgado et al., 2004; Downey et al., 2006; Kliewer et al., 

1977). Despite the age of the soil, which largely determine the micronutrient pool, structure 

and texture, and significantly affects plant growth (Russell, 1962; Northcote, 1995; 

Marschner, 1995) the major consequence of soil type is the capacity of the soil to hold water 

while remaining sufficiently well-drained to avoid waterlogging (Jackson and Lombard, 1993; 

McDonald et al., 1998; Downey et al., 2006). 

 Despite the relevance of these parameters, vineyard microclimate has a fundamental 

influence in the metabolite biosynthesis. The importance of the effect of canopy microclimate 

on chemical composition of berry was initially raised by Shaulis and co-workers (Shaulis et 

al., 1966) in their investigations with Concord grapevines. The amount and the distribution of 

light intercepted by the vines are determined by the architecture of the vineyard, mainly row 

orientation, height, width, porosity of the canopy, and distance between rows (Pereira et al. 

2006). The term “microclimate” was adopted by Smart et al., (1985) to define the 
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environmental conditions within the immediate vicinity of the leaves and fruit (Haselgrove et 

al., 2000). 

 Cultural practice effects on berry have long been studied; among them, leaf removal 

and cluster thinning, which modify leaf area/yield ratio and fruit-zone microclimate, could 

potentially improve grape quality (Hunter et al., 1991; Jackson and Lombard, 1993; 

Dokoozlian and Hirschfelt, 1995; Guidoni et al., 2008). The amount of intercepted light 

affects the whole plant photosynthetic capacity, water balance, and source to sink balance 

(Pereira et al., 2006; Castelan-Estrada et al., 2002). The source to sink balance is an important 

parameter that controls berry sugar, organic acids, and secondary metabolites content with 

qualitative enological potential (Smart et al., 1990). In general, berries grown under open 

canopy conditions, compared to berries grown under shaded canopy conditions, have higher 

juice sugar concentration (measured as total soluble solids), improved acid balance (lower 

juice pH and higher titratable acidity). However, while some exposure to light may be 

appropriate, high temperatures resulting from full exposure of berries are likely to inhibit 

anthocyanin metabolism (Haselgrove et al., 2000). 

 Vine vigor has been reported to impact upon the proanthocyanidins content and 

chemical composition of grape skins in Pinot noir. In the berry skin, proanthocyanidins were 

higher in low-vigor vines, with an increase in the proportion of epi-gallocatechin subunits, as 

much in polymers as on average size, observed with decreasing vine vigor (Cortell et al., 

2005; Downey et al., 2006). It seems that severe canopy shade down regulate gene expression 

in the anthocyanin biosynthesis pathway, (Jeong et al., 2004; Koyama and Goto-Yamamoto, 

2008) while photon fluxes of 100 mmol/m2/s on the berries temperature becomes the 

overriding variable in anthocyanin synthesis (Spayd and Tarara, 2002; Downey et al., 2006; 

Tarara et al., 2008; Keller, 2010). 

 Among environmental and viticultural parameters investigated in the past decades for 

various grape varieties, it is known that the water status is a potential modulator of secondary 

metabolism during the berry development (Hardie and Considine, 1976; Mathews et al., 1987; 

McCarthy, 1997; Ojeda, 2001). Many scientific articles have extensively reported the effects 

of water deficit on the accumulation of various grape secondary metabolites (Table 2). 

Grapevine irrigation can alleviate water-stress-related reductions in plant growth and 

development, demonstrating the importance of cultural practice at vineyard to guarantee wine 

quality or even plant survival in regions affected by seasonal drought (Chaves et al., 2007). 

Several reports demonstrated that large fluxes of water are not essential for the optimal plant 

performance for agricultural purposes and that moderate water deficits might be used 

successfully in grapevine production through control of sink-source relationships, thereby 
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maintaining or ameliorating fruit quality (Chaves et al., 2007). Plant water status affects berry 

composition, but the effects might be contrasting according to the level and the moment in 

time when water is applied or deficit is imposed. Furthermore, grape response to moderate 

irrigation might also be cultivar-dependent as V. Vinifera varieties have been shown to respond 

differently to water stress (Koundouras et al., 2006). Overall, regulation of grapevine water 

deficit is a powerful tool to manage the amount of secondary metabolite compounds and 

improve wine quality (Kenned et al., 2002). 

 The impact of water on stilbene biosynthesis in grapes has been evaluated. The water 

deficit increases the specific steady state transcript abundance of a STS gene and 

phenylpropanoid metabolism in general. The increase of STS mRNA abundance suggests an 

increase in resveratrol accumulation (Grimplet et al., 2007). However, conflicting results have 

been reported on the effects of water deficit on resveratrol synthesis. Research conducted by 

Vezzulli et al., (2007) observed little effect of drought on resveratrol concentrations in grape 

berry skin. In another study on Cabernet Sauvignon and Chardonnay varieties, harvested at 

six and eight weeks after veraison, respectively, Deluc et al., (2011) demonstrated that water 

deficit increased the accumulation of trans-piceid (the glycosylated form of resveratrol) by 

five-fold in Cabernet Sauvignon berries but not in Chardonnay. However, the abundance of 

two stilbene-derived compounds - trans-piceid and trans-resveratrol - was not significantly 

different between the two cultivars when well-watered. Similarly, water deficit significantly 

increased the transcript abundance of genes involved in the biosynthesis of stilbene precursors 

in Cabernet Sauvignon. In contrast, the transcript abundance of the same genes declined in 

Chardonnay in response to water deficit. 

 The increased concentration of flavonols, skin-derived proanthocyanidins and 

anthocyanins has also been observed in wines from grapes grown under the decreased vine 

water status (Kennedy et al., 2002; Downey et al., 2006). 

 Recently, it was shown that the concentrations of flavonol increase under drought 

stress in a white grapevine Chardonnay, but not in a red grapevine Cabernet Sauvignon 

(Deluc, et al., 2009). Few studies have reported that water deficit may modify the skin 

proanthocyanidins (Kennedy et al., 2000; Geny et al., 2003; Roby et al., 2004; Chaves et al., 

2010) but this topic still awaits further clarification. In Shiraz, the application of water stress 

before and after veraison differently affects the grape berry polyphenol biosynthesis (Ollé et 

al., 2011). The authors showed that pre-veraison water deficit had no effect on total 

proanthocyanidin accumulation, whereas pre- and post-veraison deficits specifically affected 

the flux of anthocyanin biosynthesis in stressed grape berries sampled with equivalent sugar 

content. However, both water deficits differently affected the anthocyanin composition. Pre-
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veraison water deficit increased anthocyanin accumulation except for malvidin and p-

coumaroylated derivatives, whereas post-veraison water deficit enhanced the overall 

anthocyanin biosynthesis, particularly malvidin and p-coumaroylated derivatives. In Merlot 

variety under water stress, an increase of anthocyanin content between 37% and 57% for two 

consecutive years was reported by (Castellarin et al., 2007a). 

 Imposing water deficits from the onset of ripening until maturity in the Merlot variety 

reduced the berry weight and increased the concentration of anthocyanins and skin tannins 

(Bucchetti et al., 2011), and the application of water deficits also modulated chemical 

composition changes during berry ripening (Castellarin et al., 2007a; Castellarin et al., 

2007b). 
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Table 2. Effect of water deficit on grapevine secondary metabolism. 

Variety Compound Effect of water deficit References 

Aragonez (Tempranillo) Anthocyanins Decreased concentration. Zarrouk et al., 2012 

Barbera Resveratrol No effect. Vezzulli et al., 2007 

Cabernet Sauvignon 
Trans-piceid  

stilbene precursors 

5-fold increase in concentration. Increased transcript abundance  

of genes involved in the biosynthesis of stilbene precursors  

and phenylpropanoid metabolism in general., 

McCarthy et al., 1997; Kennedy et 

al., 2002; Chapman et al., 2005; 

Downey et al., 2006; Castellarin et 

al., 2007b; Grimplet, et al., 2007; 

Deluc et al., 2009; Deluc et al., 

2011 

 Flavonols Increased concentration in the skin and in the wine. No changes in seeds. 

 Anthocyanins 
Increased of concentration in the skin and in the wine.  

Increased expression of many genes responsible for their biosynthesis. 

Chardonnay 
Stilbene precursors Increased concentration. 

Deluc et al., 2009 
Flavonols Decreased transcript abundance of biosynthetic genes. 

Merlot 
Anthocyanins Increased concentration and biosynthesis; Castellarin et al., 2007a;  

Bucchetti et al., 2011 Proanthocyanidins Increased concentration in berry skin. 

Shiraz Anthocyanins Increased concentration. Ollé et al., 2011 
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 When Aragonez (Syn. Tempranillo) grapevines were subjected to three irrigation 

regimes (conventional sustained deficit irrigation (DI), regulated deficit irrigation (RDI) and 

non-irrigated (NI), the main compounds affected by water availability were proanthocyanidins 

and flavonols which were increased with irrigation at pea size, veraison, mid-ripening and full 

maturation phenological stages (Zarrouk et al., 2012). Concentrations of anthocyanin at full 

maturation were observed to be higher in the skin of berries belonging to DI and RDI vines 

than in NI ones. In general, although no differences in sugar accumulation were observed 

between the water treatments, a decrease in the quality parameters in grape skins in NI vines 

was observed, may resulting from high temperature and excessive cluster sunlight exposition. 

 

2.4  Varietal dependence on grape berry phenolics 

 
 Traditionally, morphological and agronomical characteristics have been the main 

criteria for differentiating grapevine cultivars, but it is well known that many of those 

characters are strongly influenced by environmental conditions (Pomar et al., 2005). 

Grapevine varieties are not genetically homogeneous and intravarietal diversity varies across 

cultivars (Moncada et al. 2005; Stajner et al. 2009). Even vines multiplied by vegetative 

propagation display a broad range of characteristics (Anderson et al., 2008). As referred to in 

the introduction, the grape phenolic profile depends greatly on the grape variety (Gatto, et al., 

2008; Mattivi et al., 2006; Yang et al., 2009; Katalinić et al., 2010). In a recent study, (Liang 

et al., 2011) showed that the polyphenol profile revealed significant differences among 344 

European grape varieties. Polyphenol variations among several varieties are summarized in 

Table 3.  

 

 



 

 

40 

 

 

 

Table 3. Varietal differences in the grape berry composition. 

 

 

Varietiy 

Nonflavonoids Flavonoids 

References Hydroxycinnamic acids  

mg·g−1 FW 

Hydroxybenzoic acids  

mg·g−1 FW 

Stilbenes  

mg·g−1 FW 

Flavonols  

mg·g−1 FW 

Flavan-3-ols  

mg·g−1 FW 

Anthocyanins  

mg·g−1 FW 

Araclinos 0.742 0.034 0.001 0.042 0.386 0.655 Liang et al., 2011 

Aragonez      0.658 Arozarena et al., 2002 

Cabernet  

Sauvignon 
0.103 0.011 

0.003-  

0.095 
0.039 1.830 

1.830 - 

1.084 

Arozarena et al., 2002; 

Bavaresco  et al., 1997; 

Castillo-Muñoz et al., 2007 

Chardonnay 0.138 0.022   0.129  Liang et al., 2011 

Coudsi 0.088 0.008 0.012 0.018 0.128  Liang et al., 2011 

Garnacha      0.474 Castillo-Muñoz et al., 2007 

Greco di Tufo   0.0002    Gatto et al., 2008 

Melon 0.822   0.049   Liang et al., 2011 

Pinot Noir 0.152 0.018 0.003 0.035 0.161 0.800 
Gatto et al., 2008;  

Liang et al., 2011 

Rofar Vidor 0.402 0.081  0.053 0.440 0.655 

Liang et al., 2011 
Royalty   0.002 0.148 0.734 5.123 

Sauvignon Blanc 0.221 0.035 0.003 0.022 0.123  

Touriga Nacional 0.754 0.024 0.006 0.176 0.33 2.632 
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 Phenolics from grape and wine have generated remarkable interest with their 

antioxidant and free radical scavenging properties. Catechins, proanthocyanidins and 

anthocyanins are the most concentrated natural antioxidants present in red grape and wine 

(Conde et al., 2007a; Mattivi et al. 2002) and it is believed that they play important beneficial 

roles in the mammalian systems (Lafay et al., 2009). The differences in phenolic composition 

observed across varieties might impact their respective health benefits.  

 Owing to its biological and agricultural importance, the genetics and biochemistry of 

the flavonoid biosynthetic pathway have been widely studied and the great intravarietal 

variability recommends the use of more precise methods to characterize and classify grape 

germplasm collections. Methods used to track back the variety and for producing a given 

wine rely on the composition in proteins, amino acids and aroma compounds, or on DNA 

analysis (Siret et al., 2000; Hernández-Orte et al., 2001; Pomar et al., 2005). To a certain 

extent, flavonol profiles have demonstrated that some of them can be used as chemical 

markers for the authentication and varietal differentiation of grapes and wines (Garde-Cerdán 

et al., 2009). Among those metabolic compounds, which have frequently been used as 

chemical markers in chemotaxonomy, in recent years the cultivar-characteristic profiles of 

monomeric anthocyanins have been widely used for the classification and differentiation of 

grape cultivars and monovarietal wines (Singleton, 1992; Monagas et al., 2003; Fanzone et 

al., 2011). Despite the strong role of the genetic background in determining the composition 

of anthocyanins, the content of anthocyanins in grapes changes during their maturation and 

seasonal conditions, and the physical and chemical characteristics of the soil also influence 

the distribution of anthocyanins in grapes (Arozarena et al., 2002; Pomar et al., 2005). For 

example, Downey et al., (2004) found that the anthocyanin fingerprint was altered by cluster 

exposition or shading to sunlight, by temperature regimes reached during the growing season, 

and by water deficit treatments (Castellarin et al., 2007a). Moreover, Guidoni et al., (2003) 

stated that cluster thinning changed the proportion of anthocyanins, increasing cyanidin and 

peonidin 3-O-glucosides whereas malvidin 3-O-glucoside and acylated anthocyanins were not 

affected. The relative proportion of anthocyanins also varies during grape ripening; however, 

this composition is practically constant in the final stages of ripening (Ryan et al., 2003). 

Nevertheless, most references coincide with the fact that the non-genetic factors such as 

several environmental conditions or viticultural practices have a greater effect on the 

concentration of anthocyanins rather than on their relative composition (Arozarena et al., 

2002; Pomar et al., 2005). Moreover, it is commonly accepted that anthocyanin concentration 

of grape berry also varies according to the genetic background, which is independent of 

seasonal conditions or production area (Ortega-Regules et al., 2006). 
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2.5  Conclusions and future perspectives 

 
 Grapevine phenolics play distinctive roles during the development of the fruit until 

full maturation. Hydroxybenzoic acids may be involved in signaling, particularly in the 

induction of defense and stress responses, and stilbenes are effective antifungal agents. 

Flavonols are thought to act as UV and extreme temperature protectants, as well as free 

radical scavengers. The astringency role of proanthocyanidins (condensed tannins) is thought 

to act as a feeding deterrent to herbivorous and other insects. Anthocyanins play important 

roles in DNA protection and defense against photo-oxidative stress. In wine, 

hydroxycinnamates contribute to colour browning under oxidation in association with 

molecules. Also, proanthocyanidins contribute to mouthfell of red wine, as well as colour 

stability by forming complexes with anthocyanins that are responsible for the colour, and also 

contribute to the sensory attributes of wine. Important nutraceutical and pharmacologic 

properties have also been attributed to grape berry phenolics, including antimicrobial, 

anticarcinogenic and antioxidant. Several reports indicate that trans-resveratrol inhibits the 

proliferation of tumor cells and had a putative protection against diabetes. Their role against 

neurodegenerative diseases were recently postulated due to the resveratrol ability to activate 

the protein SIRT1 that was related to many diseases associated with aging (Hubbard et al., 

2013). Thus, the continued study of grape phenolics has an important basic and applied 

relevance. 

 The physiology of grapevine has already suffered from significant impacts of global 

climate change in recent decades. Harvest occurs sooner and sooner, although grape growers 

tend to wait longer for ripeness. Berry sugar content (and alcohol in the wine) tends to 

increase whereas phenolic and aromatic ripeness are not always achieved. Acidity tends to 

decrease with potential effects on wine aging capacity. Water supply is becoming shorter in 

many regions (Delrot et al., 2010). The site and season conditions are the most important 

factors that influence phenolic content of a grape cultivar. In particular, light and temperature 

affect to a great extent the phenolic content of the berry. These parameters are the most 

difficult to manage, although some viticulture practices, including strategic use of irrigation, 

utilization of cover crops, row orientation, trellising, and other canopy modifications may 

optimize plant interaction with light and temperature. Thus, the development of management 

strategies for optimizing grapevine phenolic composition in challenging environments is an 

important issue in modern viticulture. The improvement and implementation of standardized 
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tools to quantitatively and qualitatively measure flavonoids in the grape berry is also an 

important research topic that could provide important developments in the future. 

 Although the inherent plasticity of grapevine response to environmental conditions 

may account for phenolic variation, several evidences introduced in this review show that 

phenolic profile is very dependent on the genotype. In this regard, the selection of new 

varieties with pleasant sensorial flavors but with improved climate tolerance may be an 

important investment for viticulturists and the wine industry. To address this challenge, 

scientists and breeders need to work together at an international level to generate knowledge 

about the valuable diversity, and patterns, processes and correlations with traits such as 

resistance and grape quality, which is the aim of the ongoing European Cost Action 

COSTFA1003 “East-West Collaboration for Grapevine Diversity Exploration and 

Mobilization of Adaptive Traits for Breeding” (2010–2013). For instance, despite the large 

number of studies on grape colour, there is still not a complete understanding of the genetics 

underlying this phenotype. In this regard, specific genes significantly associated with total 

skin and pulp anthocyanin were recently detected in red and rose cultivars from the 

Portuguese Ampelographic Collection, suggesting their involvement in anthocyanin content 

(Cardoso et al., 2012). 

 Important efforts have been undertaken by several research laboratories worldwide to 

understand and enhance the mechanisms of phenolic biosynthesis in grapevine, but this area 

of basic research is still widely open. Although the biosynthesis of many secondary 

compounds was already elucidated in some plants, the identification and characterization of 

specific transport steps have been published only recently, but a complete understanding of 

flavonoid transport and compartmentation in grape berry tissues in response to the 

environment is far from being elucidated. In addition, how the networks of phenolic 

biosynthesis are regulated and coordinated in different varieties, tissues and environments 

remains to be uncovered. In this regard, future investigation will involve the exploration of 

grapevine genetic diversity and the study of the role of specific genes or metabolic pathways 

in response to environmental conditions, taking advantage of the already available grapevine 

reference genome. 
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3  Material and Methods  

 
3.1  Berry sampling  

 
 Grape berries from three wine varieties – Alvarinho, Arinto and Padeiro de Basto -, 

were collected in 2012 season in two different Portuguese ampelographic collections located 

in North - Demarcated Region of Vinho Verde (Estação Vitivinícola Amândio Galhano  - 

EVAG) and South – Estremadura Region (Instituto Nacional de Investigação Agrária e 

Veternária - INIAV). From each variety three clusters from tree different vines were collected 

at different phenological stages: green pea, veraison and mature at 18 ºBrix. Each sample was 

stored separately and carried in a thermal luggage. Grape berries were ground with mortar and 

pestle in liquid nitrogen. The powder was stored at -80 ºC for posterior use.  

 Grape berries from Cabernet Souvignon and Touriga Nacional clean and infected with 

the Grapevine Leaf Roll virus (GLRa-V3) were also collected in 2012 season in the 

ampelographic collection of Instituto Nacional de Investigação Agrária e Veternária (INIAV). 

Three clusters from each clean and infected variety at the mature stage were sampled. Each 

sample was stored separately and carried in a thermal luggage. Part of the samples were 

ground with mortar and pestle in liquid nitrogen. The powder was stored at -80 ºC for 

posterior use.  

 In a different approach, grape berries from twenty one grape varieties, five white 

(Malvasia Fina Perrum, Vital, Antão Vaz, Airén) and sixteen red (Cinsaut, Castelão, Moreto 

Trincadeira, Jaén, Aragonês Padeiro, Corropio, Tinto Cão, Tinta Miuda, Touriga Nacional, 

Alfrocheiro, Merlot, Alvarelhão, Alicante Bouschet, and Borraçal) were collected in 2011 

season in the ampelographic collection of the Instituto Nacional de Investigação Agrária e 

Veternária (INIAV) to study in berry tissues genotype-dependent phenolics and proline 

content and antioxidant capacity. For each variety, three clusters at the mature stage were 

collected from three different vines. Each sample was stored separately and carried in a 

thermal luggage. The samples were ground with mortar and pestle in liquid nitrogen. The 

powder was stored at -80 ºC for posterior use.  

 

3.2  Sample preparation for metabolomic analysis 

 
 To provide detailed information on the grape berry metabolome in vines from two 

different regions the above-mentioned powder was lyophilized for six days. Metabolite 

extraction from the lyophilized samples and analysis by GC-TOF-MS were carried out at UC 
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Davis Genome Center Metabolomics Laboratory, as described by Fiehn et al. (2008). After 

metabolite extraction and derivatization, samples were injected in split-less mode with a cold 

injection system (Gerstel, Germany) and analyzed by GC (Agilent 6890, San Jose, USA) 

using a Rtx 5Sil MS column (30 m x 0.25 mm, 0.25 µm film thickness) and an integrated 

guard column (Restek, Bellefonte, USA). The GC was connected to a Leco Pegasus IV 

TOFMS spectrometer controlled with Leco ChromaTOF software v.2.32 (Leco, St. Joseph, 

USA). Peak detection and mass spectra deconvolution were performed with Leco Chroma-

TOF software v.2.25. GC-MS chromatograms were processed as described by Fiehn et al. 

(2008). Further analysis after deconvolution was made using the semi-automated workflow of 

the UC Davis Genome Center Metabolomics Laboratory (Fiehn et al., 2005). Metabolite data 

were normalized using the dry weight (DW) of the lyophilized samples. For all experimental 

conditions, three independent runs were performed in all metabolomic analysis.  

 

3.3  Quantification of free amino acids  

 
 Whole grape berries at mature stage from North and South regions were ground in 

liquid nitrogen and lyophilized for six days. Extraction was performed by adding 25 ml of 

milli-Q H2O to 1 g of grape berry powder and quantification of natural free amino acids 

(excluding tryptophan) was performed in a Biochrom 30 Aminoacid Analyser with a weak 

acidic cation exchange resin acting as stationary phase (200 x 4.6 mm column) and a number 

of weak acidic Li-citrate buffers acting as mobile phase. Stepwise pH, temperature and salt 

concentration gradients were applied. Detection after post column derivatization with 

Ninhydrin (135°C) at 570 or 440 nm was performed (Ansynth Service, B.V.). For tryptophan 

quantification, the sample solutions were diluted in milli-Q H2O (1:10) and analysis was 

performed using a Beckman System Gold HPLC equipped with an Allsphere C8, 250 x 4.6 

mm (stationary phase) and using a phosphate buffer/MeOH gradient (mobile phase). 

Detection was performed by fluorimetry, with emission wavelength set at 340 nm and 

excitation wavelength set at 280 nm (Ansynth Service, B.V.).  

 

3.4  Enzyme extraction from berry tissues  

 
 Extraction of total protein from frozen powders was performed as described by Stoop 

and Pharr (1993) with some alterations. Each powder was mixed with the extraction buffer in 

an approximately 1:1 (v/v) powder:buffer ratio. The protein extraction buffer contained 100 

mM 3-(N-morpholino) propanesulfonic acid  (MOPS) (pH 7.5), 5 mM MgCl2, 1 mM EDTA, 

1 mM phenylmethylsulfonyl fluoride (PMSF), 5 mM dithiothreitol (DTT) and 1% (v/v) 
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Triton X-100. The homogenates were then centrifuged at 18,000 xg for 20 min at 4 ºC and the 

supernatants were kept on ice. The total protein content was determined 

spectrophotometrically by the Bradford method (Bradford, 1976), with bovine serum albumin 

(BSA) as the standard. 

 

3.5  Enzymatic activities 

 
 Malate dehydrogenase activity 

 
 The extracts for MDH activity were obtained as described above. MDH activity assay 

was performed at 30ºC as described by Taureilles-Saurel (1995a) with some modifications. 

The reaction medium contained 50 mM of Trisaminometano (Tris-HCl) (pH 8), 1.7 mM 

NaHCO3, 1.3 mM MgSO4, 1.7 EDTA, 0.3 mM NADH and 3 mM of oxaloacetic acid in a 

final volume of 1 mL. MDH activity was determined spectrophotometrically at 340 nm by 

measuring the rate of NADH-dependent reduction of oxaloacetate to malate. The reaction was 

started by the addition of 0.05 mL of extract after equilibrium.   

 

 NADP+-dependent malic enzyme activity 

 
 The extracts for NADP+ malic enzyme activity were obtained as described above. 

NADP+ malic enzyme activity assay was performed at 30 ºC, in a total volume of 1 ml. The 

reaction mixture contained enzyme extract, 100 mM Tris-HCl (pH 7.4), 0.3 mM NADP+, and 

30 mM of malic acid (pH 7.4) to ensure the Vmax of the enzyme (different concentrations of 

malic acid were used for kinetics studies). The reduction of NADP+ was evaluated 

spectrophotometrically at 334 nm using a double beam spectrophotometer. One of the cells 

contained the reaction mixture and the blank was placed in the other. All reactions were 

initiated by the addition of 0.05 mL of protein extract. 

 

  Mannitol dehydrogenase (MTD) activity 

 
 The extracts for MTD activity were obtained as described above in the presence of 1% 

(w/w) of PVPP. MTD activity was assayed at 37 ºC, in a total volume of 1 ml. The reaction 

mixture contained enzyme extract, 300 mM Bis-Tris propane (pH 9.0), 1mM NAD+, and 200 

mM of D-mannitol to ensure the Vmax of the enzyme (Conde et al, 2007b). MTD activity was 

determined by measuring the rate of mannitol-dependent conversion of NAD+ to NADH 

spectrophotometrically at 340 nm. All reactions were initiated by the addition of mannitol. 
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  Cinnamate 4-hydroxylase (C4H) activity 

 
 The extracts for C4H activity were obtained as described above in the presence of 1% 

(w/w) of PVPP. C4H activity was assayed at 37 ºC as described by Jian-Ye et al. (2006) with 

some modifications. The reaction mixture contained enzyme extract, 300 mM Bis-Tris 

propane (pH 8.9), 150 µM NADPH, 1.25 mM glucose 6-Pi, and 125 µM of trans-cinnamic 

acid (different concentrations of trans-cinnamic acid were used for kinetics studies) in a total 

volume of 1 ml. C4H activity was determined spectrophotometrically at 340 nm by measuring 

the rate of NADPH-dependent conversion of trans-cinnamic acid to p-coumaric acid. All 

reactions were initiated by the addition of trans-cinnamic acid. 

 

3.6  Determination of proline content 

 
 Proline was extracted from 200 mg of frozen powder in 1.8 mL (w/v) of sulfosalycilic 

acid. The homogenate was centrifuged at 18,000 xg for 20 min-1 and 1 mL of supernatant was 

added to 2 mL of a solution containing 1 mL of glacial acetic acid plus 1 mL of acid 

ninhydrin solution (0.025 g of ninhydrin, 0.4 mL phosphoric acid and 0.6 mL of acetic acid). 

After 1h incubation in a boiling water bath (100ºC), the reaction was stopped on ice. 

Afterwards 2 mL of toluene was added and mixed vigorously. The separation of the aqueous 

from the organic phase allowed the extraction of the proline chromophore from the organic 

upper phase (Wren et al., 1965; Bates et al., 1973). Free proline was evaluated 

spectrophotometrically at 520 nm and its concentration was quantified using a proline 

standard (Sigma-Aldrich, St. Louis, USA). 

 

3.7  Total Phenolic content 

 

 Determination of total phenolics was performed by Folin-Ciocalteau colorimetry 

method (Waterhouse, 2002). Total phenolics from 100 mg of grape berry powder were 

extracted in 1 mL of methanol (100 %). The homogenates were shacked for 15 min. and then 

centrifuged at 18,000 xg for 20 min. Twenty µL of supernatant were added to 1.58 mL of 

deionized water plus 100 µL of folin reagent, vigorously shacked an incubated for 5 min. in 

the dark before adding 300 µL of sodium carbonate (2M). After 2 h of incubation in the dark 

the absorbance of the samples were measured at 765 nm. The phenolic concentrations were 

determined using a gallic acid [GAE] calibration curve.  
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3.8  Antioxidant profile of twenty-one Portuguese grapevine varieties 

 
 The determination of the reducing potential of de grape berry extracts followed the 

method FRAP (Ferric Reducing Antioxidant Power, Benzie & Strain, 1996). In this assay, 

antioxidant capacity was evaluated by the reduction of Fe3+ to Fe2+, which is chelated by 

2,4,6-tripyridil-S-triazine (TPTZ) to form a Fe2+–TPTZ complex absorbing at 593 nm. Total 

phenolics from 100 mg grape berry powder were extracted in 1 mL of methanol (100 %) and 

10 µL of the extract was added to 0.6 mL of working solution previously warmed at 37 ºC 

containing 2.5 mL of acetate buffer (0.3 M, pH 3.6), 0.25 mL of TPTZ solution (10 mM) and 

0.25 mL FeCl3 (20 mM). Water was added to a final volume of 1 mL. The reaction mixture 

was maintained at 37 ºC for 15 min. and the absorbance of the samples was measured at 593 

nm. All solutions were used fresh. The antioxidant efficiency of grape extracts were 

determined using a Fe2+calibration curve. 

 

3.9  Sugar content in berries from vines clean and infected vines with Grapevine 

 Leafrol Virus-3 

 
 The extracts were obtained by adding 1 mL of water : ethanol (1:5) to 100 mg of 

frozen powder and vigorously shacked. The homogenates were collected in a 2 mL eppendorf 

tube, boiled for 10 min. and centrifuged for 5 min. at 15,000 xg. The supernatant was 

collected and the solvent evaporated under a N2 flow. Ultrapure water (500 µL) was added to 

the extract before sonication for 10 min. (Breia, 2011). The extract was filtered with PTFE 0.2 

µm filter before injection. 

 Chromatographic analyses were carried out on a Hitachi Auto sampler L-2200 Elite 

LaChrom chromatograph coupled to an RI detector. The injections were 20 µL and the flow 

rate was kept constant throughout the analysis at 0.5 mL.min-1 at 60 ºC. The column used was 

a Rezex RCM monosaccharide Ca+2 (8%) and the eluent was water. Sugar concentrations of 

each sample were determined by comparison of the pick area with established calibration 

curves of each compound. 
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3.10   Expression of sugar transporters in berries from clean and infected vines with 

 Grapevine Leafrol Virus 

 
 RNA extraction procedure 

 
 The RNA extraction was done whith the RNeay Plant Mini Kit (QIAGEN) except that 

the extraction buffer was different. Briefly, 100 mg of powder was mixed with 1 mL of 

extraction buffer (2% CTAB, 2% PUP, 100 mM Tris HCl (pH 8.0), 25 mM EDTA, 2 M 

NaCl, 2% β-mercaptoetanol) and incubated at 60ºC for 20 min-1 whith occasional vortexing. 

The remaining procedures followed the instructions of the manufacturer. The integrity of the 

RNA was evaluated in agarose gels stained with SYBR® Safe (InvitrogenTM, Life 

Technologies) and quantified using Quantity One® Software (Bio-Rad Laboratories, Inc.).  

 

 cDNA synthesis  

 
 The cDNA synthesis was performed whith the Omniscript RT Kit (QIAGEN). The 

reverse transcriptase reaction medium containing 2 µL of buffer, 2 µL of oligo dT, 2 µL of 

dNTPs, 2.5 µL of RNase inhibitor, 1 µL of reverse transcriptase, 1 µg of RNA and 10.5 µL of 

RNase free water in a final volume of 20 µL. The reaction was performed at 37ºC for 1h. 

 

 Expression studies of VvHT1 and VvHT6 by RT-PCR 

 
 VvHT1 and VvHT6 primers were designed to amplify the coding region of each gene 

(Supplementary files). For VvHT1, the forward and reverse primers were, respectively, 5’-

CAC GTC CAT GGC TCC GTT CTT GCA GAA GTT C-3’ (with 31 bp, Tm = 65.7ºC, 

cytosine-guanine = 54.8%), and 5’- GCC ATC TCA GAG AGG TAG AGC GGC ACA GA-

3’ (29 bp, Tm = 65.7ºC; cytosine-guanine = 58.6%. The VvHT6 forward and reverse primers 

were, respectively, 5’-CAT ATC GGA TTG GAT TGG TCG GC-3’ (23 bp, Tm = 57.1ºC, 

cytosine-guanine = 52.2%) and 5’- TCT TCA GTA AGC TCA CCA GTT GG CC-3’(25 bp, 

Tm = 59.3ºC, cytosine-guanine = 52.0%). 

 The RT-PCR reaction was performed with the kit Hot Star Taq (QIAGEN). The 

reaction mixture contained 10 µL Hotstar Taq master mix, 1 µL of primer forward, 1 µL of 

primer reverse, 1 µL of cDNA, and 7 µL DNase free water to a final volume of 20 µL. 

Polymerase was activated with an initial step of 15 min at 95°C to enzyme activation, the 

double strand denaturation occurred at 94ºC, the annealing temperature was 55 ºC and the 
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extension temperature was 72ºC. The amplification of VvHT1 and VvHT6 was achieved after 

40 cycles for both varieties.  

 The forward and reverse actin primers used as controls were respectively 5’- GTG 

CCT GCC ATG TAT GTT GCC ATT CAG GCT G-3’ and 5’GCT CTT TGC AGT TTC 

CAG CTC TTG CTC GTA GTC A-3’ amplified for 28 cycles. RT–PCR products were 

separated in agarose gels, stained with SYBR® Safe (InvitrogenTM, Life Technologies) and 

quantified using Quantity One®  Software (Bio-Rad Laboratories, Inc.). 

 

3.11  Total anthocyanin content in berries from clean and infected vines with 

 Grapevine Leafrol Virus 

 
 The total anthocyanins were quantified by a pH differential method. The extraction of 

total anthocyanins was performed by adding 1 mL of acetone (100%) to 200 mg DW. After 

mixing on a shaker for 10 min. the mixture was centrifuged at 18,000 xg for 20 min. and 

sonicated for 10 min-1. Two dilutions of the same sample were prepared in 25 mM KCl (pH 

1.0) and sodium acetate 25 mM (pH 4.5). The quantification of anthocyanin content was 

evaluated spectrophotometrically at 520 nm and 700 nm. The total anthocyanin concentration 

was obtained from the equation: 

total anthocyanins (mg/L) = ∆A×MW×1000 × DF
ε

 , where ∆A is the absorbance variation 

between wavelengths, MW is the anthocyanin molecular weight, DF is the dilution factor and 

ε is the molecular absorbance coefficient (Nicoué et al., 2007). 
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4  Results 

 
4.1  Climateric characterization of the sampling regions 

 
 Figure 8 shows the meterological and agrometeorological elements from two regions 

very close to the vineyeards where grape samples were collected (EVAG and INIAV-Dois 

Portos, respectively): Viana do Castelo (North) and Lisboa (South). This figure refers to the 

time period of October 2011 to October 2012 and was constructed from the data provided by 

Instituto Português do Mar e da Atmosfera (IPMA, http://www.ipma.pt/pt/; ISSN 0870-4694). 

As can be seen, North and South regions were very different in what regards climatological 

characteristics. In the South the air temperature and the evapotranspiration were consistently 

higher than in the North during all the time period. In addition, the higher amount of 

precipitation in the North region resulted in higher relative humidity and soil water content 

than in the South region (Figure 8a and b). 

 

 
 

 
 
 
 
 
 

Figure 8. Meteorological and agrometeorological elements from North (Viana do Castelo; close to 
EVAG) and South (Lisboa; close to INIA - Dois Portos) regions from October 2011 until October 2012 
(http://www.ipma.pt/pt/; ISSN 0870-4694).  

 
 
 
 
 
 
 

a b 

a) 
Evapotranspiration north (ET) - dark grey bars; 
Evapotranspiration south (ET) - light grey bars south; 
Tmin North - hatched blue line; 
Tmin South - continuous blue line; 
Tmax North - hatched red line; 
Tmax South - continuous red line. 

b) 
Precipitation north (Pp) - dark grey bars; 
Precipitation south (Pp) - light grey bars; 
Soil water content north (Sw) - continuous brown line; 
Soil water content south (Sw) - hatched brown line; 
Relative humidity north (Rh) - continuous green line; 
Relative humidity south (Rh) - hatched green line. 

b 
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4.2  Changes in the metabolome of grape berries from Alvarinho, Arinto and Padeiro 

 de Basto from North and South Portugal 

 
 GC-TOF-MS broad analysis 

 
 As referred to in Material and Methods, for this study three grape varieties were 

selected – Alvarinho, Arinto and Padeiro de Basto -, and grape berries were sampled in 2012 

season in two different ampelographic collections located in the North of Portugal (EVAG) 

and in the South (INIAV). Grape berries were harvested at green pea, veraison and mature 

stages. When grape berries reached the technological stage of 18 ºBrix it was conventioned 

that the mature stage was achieved. A total of 84 metabolites were detected by GC-TOF-MS 

analysis ranging from sugars, organic acids, amino acids and polyols to some quite 

unexpected solutes, like urea (Supplementary Table 1). 

 Several sugars were detected in grape berries from all varieties and sampling places 

including sucrose, glucose, fructose, rhamnose, levanbiose and inulotriose (Supplementary 

Table 1). As expected, glucose, fructose and, in minor amounts, sucrose were the most 

important sugars. Also, equivalent levels of glucose and fructose were always detected for 

each sample. In general, the pattern of sugar accumulation did not change between varieties, 

from veraison to mature stage. In addition, given that grape berries were sampled at the same 

brix, the total amount of sugar at the mature stage did not change significantly. The most 

noticeable differences were observed in the levels of sucrose at the mature stage in Alvarinho 

and Padeiro de Basto  cultivated in the North and South. Indeed, as shown in Figure 9d and f, 

the amounts of sucrose are much lower in grapes from the South region. In Alvarinho and 

Arinto cultivars, this reduction in sucrose amount coincides with slightly higher levels of 

glucose and fructose, suggesting that in the South the invertase activity is stimulated. 
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 Figure 9. Qualitative metabolome analysis (sugars) of grape berries from Alvarinho, Arinto and 

Padeiro de Basto cultivated in the North and South Portugal. Sucrose levels during grape berry development and 

ripening (a-c). Sucrose, fructose, and glucose levels at the mature stage (d-i). Values are the mean ± SEM (n=3). 

Asterisks above the bars indicate one-way ANOVA statistical significance (*** P < 0.001; ns = non significant) 

between the same varieties in different regions; letters above the bars indicate one-way ANOVA statistical 

significance (P< 0.05) between grapes from different varieties cultivated in the same region (upper case: north 

varieties, lower case: south varieties).  

 

 Besides tartaric and malic acids – the most abundant organic acids in the berry -, the 

present metabolome analysis also detected in all samples minor amounts of other organic 

acids, including citric, fumaric, and succinic (Figure 10 and Supplementary Table 1). 

Noticeably, maleic acid was very abundant in all samples and in much higher levels than its 



Results 

!60 

trans-isomer, the fumaric acid. Maleic acid and fumaric acid do not spontaneously 

interconvert because the rotation around a carbon-carbon double bond is energetically 

unfavourable. 

 
 Figure 10. Qualitative metabolome analyses (organic acids) of grape berries from Alvarinho, Arinto 

and Padeiro de Basto cultivated in the North and South Portugal. Malic acid levels (a-c) and tartaric acid levels 

(d-f) during grape berry development and ripening. Tartaric acid and malic acid levels at the mature stage (g-i). 

Values are the mean ± SEM (n=3). Asterisks above the bars indicate one-way ANOVA statistical significance  

(* P < 0.05; **P < 0.01; ns = non significant) between the same varieties in different regions; letters above the 

bars indicate oneway ANOVA statistical significance (P< 0.05) between grapes from different varieties 

cultivated in the same region (upper case: north varieties, lower case: south varieties).  
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 The amount of organic acids decreased during grape berry development and ripening 

and, as observed for sugars, the pattern of organic acid variation was similar between 

varieties, as shown in Figure 10 for tartaric acid and malic acid. The grape berries from the 

variety Alvarinho cultivated in the North showed higher levels of malic acid and lower levels 

of tartaric acid than the other two varieties, although the differences were not significant 

(Figure 10d and g). The sampling place seemed to affect the levels of tartaric and malic acid 

in the grape berries. The most important statistically significant difference was observed in 

mature grapes from Alvarinho that contained 52% and 35% less tartaric and malic acid, 

respectively, in Dois Portos than in EVAG vineyards. 

 In a recent study Conde et al. unpublished) described that Vitis vinifera Mannitol 

Transporter 1 (VvPLT1) has a physiological role in drought tolerance as it is overexpressed in 

grape berry pulp tissues at the latter ripening stages, thus contributing to increased unloading 

rates and significant accumulation of polyols in the fruit under severe water stress conditions. 

In the present metabolome analysis sorbitol, ribitol, galactinol erythritol were also detected in 

all varieties (Supplementary Table 1).  

 Sorbitol seemed to be the most important polyol in grape berries from Padeiro de 

Basto and its levels steadily increased after veraison contrarily to the observed in the other 

two varieties. At the mature stage the levels of sorbitol in Padeiro de Basto where 7.3-fold and 

13-fold higher than in Alvarinho and Arinto, respectively, in the North region (Figure 11d-f). 

In the varieties cultivated in the South the levels of polyols were generally higher than in the 

North, although the differences were only statistically significant in the case of galactinol in 

grape berries from Arinto. Yet, in Alvarinho the amounts of ribitol in the berries were lower 

in the South than in the North. 
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 Figure 11. Qualitative metabolome analysis (polyols) of grape berries from Alvarinho, Arinto and 

Padeiro de Basto cultivated in the North and South Portugal. Sorbitol levels during grape berry development and 

ripening (a-c). Sorbitol, ribitol, and galactinol levels at the mature stage (d-i). Values are the mean ± SEM (n=3). 

Asterisks above the bars indicate one-way ANOVA statistical significance (* P < 0.05; ns = non significant) 

between the same varieties in different region; letters above the bars indicate one-way ANOVA statistical 

significance (P< 0.05) between grapes from different varieties cultivated in the same region (upper case: north 

varieties, lower case: south varieties). 

 

 As explored in the Section 2, grape berry phenolics contribute to organoleptic 

properties, colour and protection against environmental challenges. In the present metabolome 

analysis only few secondary metabolites were detected, including well-known 

hydroxycinnamates, such as benzoic acid, 3,4-dihydroxibenzoic and caffeic acid, catechin and 
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epicatechin (Figures 12-13 and Supplementary Table 1). The pattern of nonflavonoid 

accumulation/degradation during development and ripening of the grape berries was 

dependent on the cultivar and on the collecting region, in particular for benzoic acid, as 

shown in Figure 12. At the mature stage the levels of benzoic acid were significantly affected 

by the edaphoclimatic conditions in Alvarinho and Arinto cultivars because benzoic acid 

levels were 5.7-fold and 3.7-fold higher, respectively, in the South region than in the North. 

Contrarily, the levels of caffeic acid seemed to be slightly lower in grape berries from the 

varieties cultivated in the South, but the differences were not statistically significant. 

 Catechin levels during the development and ripening of the grape berries followed a 

similar decreasing pattern for all varieties cultivated in Dois Portos or EVAG. At maturity, 

catechins are more abundant in the white varieties Alvarinho and Arinto than in Padeiro de 

Basto. The catechin isomer, epicatechin, is more abundant in grape berries from Arinto than 

in Alvarinho and Padeiro de Basto. The growing region affected the levels of catechin and 

epicatechin in grape berries from all varieties. Catechins decreased in average by 30% from 

the North to the South while epicatechins decreased by 48% (Figure 13). 
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  Figure 12. Qualitative metabolome analysis (non-flavonoid phenolics) of grape berries from Alvarinho, 

Arinto and Padeiro de Basto cultivated in the North and South Portugal. Benzoic acid and dihydroxybenzoic acid 

levels during grape berry development and ripening (a-f). Caffeic acid and benzoic acid levels at the mature 

stage (g-l). Values are the mean ± SEM (n=3). Asterisks above the bars indicate one-way ANOVA statistical 

significance (* P < 0.05; ***P < 0.001; ns = non significant) between the same varieties in different region; 

letters above the bars indicate oneway ANOVA statistical significance (P< 0.05) between grapes from different 

varieties cultivated in the same region (upper case: north varieties, lower case: south varieties). 
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 Figure 13. Qualitative metabolome analysis (flavan-3-ols) of grape berries from Alvarinho, Arinto and 

Padeiro de Basto cultivated in the North and South Portugal. Catechin levels during grape berry development 

and ripening (a-c). Catechin and epicatechin levels at the mature stage (d-i). Values are the mean ± SEM (n=3). 

Asterisks above the bars indicate one-way ANOVA statistical significance (***P < 0.001; ns = non significant) 

between the same varieties in different regions; letters above the bars indicate one-way ANOVA statistical 

significance (P< 0.05) between grapes from different varieties cultivated in the same region (upper case: north 

varieties, lower case: south varieties). 

 

 Changes in the total phenolics as accessed by Folin-Ciocalteau colorimetric method 

 
 The total phenolics evaluated in our laboratory along the grape berry development and 

ripening shows a very similar decreasing pattern in the three varieties from Dois Portos and 

EVAG (Figure 14a-c). At the maturity, the highest concentration value was found in grape 

berries from Padeiro de Basto cultivated in the North. Regarding the effect of sampling 
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region, the total phenolic content in grape berries from Arinto and Padeiro de Basto increased 

by 92% and 47%, respectively, from the South to the North (Figure 14e and f). In the 

Alvarinho cultivar the total phenolic content did not change significantly between the two 

regions. 

 

 Figure 14. Total phenolics determined by Folin-Ciocalteau colorimetric method in grape berries from 

Alvarinho, Arinto and Padeiro de Basto cultivated in North (EVAG) and South (INIAV) Portugal. Results are 

expressed as microgram of gallic acid per miligram of berry DW. Values are the mean ± SEM (n=3). Asterisks 

above the bars indicate one-way ANOVA statistical significance (*P < 0.05; ns = non significant) between the 

same varieties cultivated in North and South; letters above the bars indicate one-way ANOVA statistical 

significance (P< 0.05) between the different varieties cultivated in the same region (upper case: north varieties, 

lower case: south varieties). 

 

 Changes in free amino acid content as assessed by an Aminoacid Analyser system  

 
 Previous GC-TOF-MS analysis detected thirteen amino acids in grape berries from all 

varieties from North and South (Supplementary Table 1). To complement these results, a 

quantitative approach was performed by an Aminoacid Analyser system for all amino acids, 

except tryptophan that was quantified by HPLC. The analysis was performed in grape berries 

mature stage 
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at the mature stage, and nineteen of the twenty free amino acids were detected and quantified. 

Cysteine was not detected in all samples.  

 As can be seen in Figures 15-17, arginine was the most abundant amino acid in all 

varieties and regions, eventually reflecting its role as precursor of the remaining amino acids. 

Proline and glutamic acid were also very abundant, with 504 and 502 mg/kg DW, 

respectively, in grape berries from Alvarinho in the North region.  

 The total amino acid content in the grape berries from each variety was as follows (in 

mg/Kg DW in North and South regions, respectively): Alvarinho, 4415 and 3056; Arinto, 

3769 and 2340; and Padeiro de Basto, 3350 and 1406. Besides the observed genopype-

dependent differences, data revealed that edaphoclimatic conditions also severely affected the 

content in amino acids in the grape berry. Thus, the concentration of free amino acids in grape 

berries is much higher in vines cultivated at EVAG than at Dois Portos (Figures 15e-17e). For 

instance, the total amino acid content in mature grapes from Padeiro de Basto increased by 

138 % from the South to the North. 
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Figure 15. Free amino acid content as assessed by an Aminoacid Analyser system in grape berries from 

Alvarinho cultivated in North (EVAG) and South (INIAV) Portugal. The nineteen amino acids identified were 

grouped according its acidic/basic nature or charge characteristics: basic (a), acidic (b), polar (c), nonpolar (d). 

Concentration-fold difference between amino acids in mature grapes from Alvarinho cultivated in North and 

South regions (e). 

 

 
 
 
 
 
 
 
 

Alvarinho 
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  Figure 16. Free amino acid content as assessed by an Aminoacid Analyser system in grape berries 

from Arinto cultivated in North (EVAG) and South (INIAV) Portugal. The nineteen amino acids identified were 

grouped according its acidic/basic nature or charge characteristics: basic (a), acidic (b), polar (c), nonpolar (d). 

Concentration-fold difference between amino acids in mature grapes from Arinto cultivated in North and South 

regions (e). 

 
 
 
 
 
 
 
 

Arinto 
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 Figure 17. Free amino acid content as assessed by an Aminoacid Analyser system in grape berries from 

Padeiro de Basto cultivated in North (EVAG) and South (INIAV) Portugal. The nineteen amino acids identified 

were grouped according its acidic/basic nature or charge characteristics: basic (a), acidic (b), polar (c), nonpolar 

(d). Concentration-fold difference between amino acids in mature grapes from Padeiro de Basto cultivated in 

North and South regions (e). 

 

4.3  Changes in key metabolic steps in grape berries from Alvarinho, Arinto and 

 Padeiro de Basto from North and South Portugal  

 
 Malate dehydrogenase (MDH) catalyses the reversible conversion of oxaloacetate 

(OAA) to malate maintaining the cytosolic equilibrium between these two key metabolic 

Padeiro de Basto 
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intermediates. NADP-dependent malic enzyme (NADP-ME) catalyses the reversible 

conversion of malate to pyruvate, and, thus, it is also involved in malate metabolism, 

depending on the isoform involved, cellular conditions and the availability of substrates. 

MDH and NADP-ME activities were measured in cell extracts from whole berries at different 

developmental stages sampled from Alvarinho, Arinto and Padeiro de Basto varieties 

cultivated at INIAV (Dois Portos) and EVAG. As can be seen in Figure 18, the activity 

pattern of MDH during grape berry development and ripening seems to depend on the 

genotype and environment. In mature grape berries the highest activity of MDH was 

measured in Alvarinho cultivated in the North. From the North to the South there was a 

reduction in MDH activity by 49%. The remaining varieties also showed a reduction in MDH 

activity from the North to the South, although in Padeiro de Basto this variation was very 

short. 

 
 Figure 18. Malate dehydrogenase (MDH) activity in cell extracts of grape berries from Alvarinho, 

Arinto and Padeiro de Basto varieties cultivated in North (EVAG) and South (INIAV, Dois Portos) Portugal. 

Values are the mean ± SEM (n=3). 

 

 Figure 19 shows the activity pattern of NADP-ME during grape berry development 

and ripening in Alvarinho, Arinto and Padeiro de Basto cultivated at INIAV (Dois Portos) and 

EVAG. The most noticeable difference was observed in Arinto cultivar at the veraison stage, 

both in the North and South regions, when the activity of NADP-ME increased by 273% from 

the pea stage to the veraison before decreasing abruptly to 3.6 µmol h-1 mg protein-1 at the 

mature stage. At maturity, the activity of NADP-ME was not very much different between 

varieties and sampling places.  
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 Figure 19. NADP-dependent malic enzyme activity (NADP-ME) in cell extracts of grape berries from 

Alvarinho, Arinto and Padeiro de Basto varieties cultivated in North (EVAG) and South (INIAV, Dois Portos) 

Portugal. Values are the mean ± SEM (n=3).  

 

 Mannitol dehydrogenases (VvMTDs) catalyses the conversion of mannitol to fructose 

and are likely to play important roles in polyol metabolism in grape berries. As in the case of 

MDH and NADP-ME, the total activity of MTD was measured in cell extracts from whole 

berries at different developmental stages sampled from Alvarinho, Arinto and Padeiro de 

Basto varieties cultivated at INIAV (Dois Portos) and EVAG. The biochemical activity of 

VvMTD steadily increased during ripening in grape berries from Padeiro de Basto vines 

cultivated in the North reaching its maximum rates of mannitol conversion to fructose (3.2 

µmol h-1 mg protein-1) at the mature stage (Figure 20c). Contrarily to the observed in Arinto 

and Padeiro de Basto cultivars, in grape berries from Alvarinho the activity of VvMTD 

decreases from veraison to the mature stage both in the South and in the North. 

 
 Figure 20. Mannitol dehydrogenase (MTD) activity in cell extracts of grape berries from Alvarinho, 

Arinto and Padeiro de Basto varieties cultivated in North (EVAG) and South (INIAV, Dois Portos) Portugal. 

Values are the mean ± SEM (n=3).  
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 The enzyme cinnamate 4-hydroxylase is a cytochrome P450 that catalyses the 

oxidative reaction of trans-cinnamic acid into 4-hydroxy-cinnamate in a NADPH-dependent 

reaction.  This compound has important antioxidative properties in wine. This reaction is one 

of the first steps of phenylpropanoids biosynthesis from phenylalanine, which leads to the 

production of several secondary metabolites. In Alvarinho and Padeiro de Basto there was a 

steadily decrease in C4H activity from green pea to mature stage. At the maturity, the 

activities of C4H in grape berries from the three varieties were lower in the South than in the 

North, particularly in Alvarinho and Padeiro de Basto where the activity of C4H decreased by 

75% and 53% respectively (Figure 21d and f).  

 
 Figure 21. Cinnamate 4-Hydroxylase (C4H) activity in cell extracts of grape berries from Alvarinho, 

Arinto and Padeiro de Basto varieties cultivated in North (EVAG) and South (INIAV, Dois Portos) Portugal at 

green pea, veraison and mature stages (a - c). Activity of C4H at the mature stage in North (EVAG) and South 

(INIAV, Dois Portos) grapes. Values are the mean ± SEM (n=3). Asterisks above the bars denote one-way 

ANOVA statistical significance (*P < 0.05; ns = non significant) between the same varieties in different region; 

letters above the bars indicate one-way ANOVA statistical significance (P< 0.05) between the different varieties 

of the same region (upper case: north varieties, lower case: south varieties). 
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4.4  Total phenolics, antioxidant potential and proline content in mature berries from 

 twenty-one grapevine varieties  

 
 Proline profile  

 
 As shown before, proline is one of the most abundant amino acids in berries, and may 

act as antioxidant and osmoprotectant in plant cells, besides its role as energy source. To 

investigate if proline levels in the grape berry could be a drought-stress resistance marker, its 

quantification was performed in mature grape berries from 21 Portuguese varieties from Dois 

Portos by the acid-ninhydrin colorimetric method. As shown in Figure 22, proline content is 

cultivar-dependent. Berries from the Tinto Cão red variety showed the highest proline 

concentration with 1734.5 mg/Kg FW followed by berries from the the white variety Airén 

with 1659.8 mg/Kg FW. In the red variety Corropio proline was not detected and was almost 

absent in Castelão with 51.3 mg/Kg FW. Although a genotype-dependence was clearly 

observed, results does not compare with those of the previous Section, probably because 

sampling was performed in different seasons and both the extraction and quantification 

methods were different.  

 
 Figure 22. Free proline content in grape berries from twenty-one Portuguese grapevine varieties 

determined by the ninhydrin colorimetric method. Values are the mean ± SEM (n=3).  

 

 Total phenolic profile and antioxidant potential 

 
 As expected, mature grape berries from red varieties showed higher concentrations in 

total phenolics than white ones. Borraçal grapes reached values as high as 5.0 µg/mg FW. The 
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very important Portuguese grapevine cultivar, Touriga Nacional, showed also very high 

content in total phenolics. 

 As referred to in material and methods, the antioxidant capacity was evaluated with 

the method of Ferric Reducing Antioxidant Power (FRAP). As can be seen in Figure 23 

(insert) there is a clear positive correlation between the antioxidant capacity of the grape berry 

extracts and their total phenolic content. Thus, as for total phenolic content, the highest 

antioxidant activity was found in grape berries from the red Borraçal variety while the lowest 

was found in the white grape berries from Airén variety. 

 

 
 Figure 23. Total phenolics in mature grape berries from 21 Portuguese varieties determined by Folin-

Ciocalteau method. Values are the mean ± SEM (n=3). Inset: Correlation between total phenolic content and 

antioxidant activity determined by the FRAP method.  

 

4.5  Changes in the metabolism and metabolites in grape berries from vines infected 

 with the GLRa V-3  

 
 Two infected cultivars were available at Dois Portos for these preliminary studies: 

Cabernet Sauvignon and Touriga Nacional. Mature grape berries from Cabernet Sauvignon 

cultivar infected with GLRaV-3 showed significant reduction in glucose and fructose 

concentrations, by 19% and 17%, respectively (Figure 24a and b), while the concentration of 

sucrose did not change from clean to infected plants. Contrarily, in grape berries from Touriga 

Nacional there was a significant reduction in sucrose concentration by 40% in infected plants 
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(Figure 24c), while glucose and fructose concentration did not change from clean to infected 

plants (Figure 24a and b). 

 The study of the relative expression of VvHT1 and VvHT6 in grapes from Touriga 

Nacional and Cabernet Sauvignon cultivars clean (control) and infected with GLRaV-3 was 

performed by RT-PCR. As shown in Figure 24d, VvHT1 expression is repressed in Cabernet 

Sauvignon infected grapes, while VvHT6 is up-regulated. In Touriga Nacional, the transcript 

levels of VvHT1 are similar in berries from both clean and infected plants, while transcription 

of VvHT6 is severely repressed in infected plants. 

 

 
 Figure 24. Sugar content in grape berries from Cabernet Sauvignon and Touriga Nacional cultivars 

clean (control) and infected with GLRa-V3, determined by HPLC (a-c). Transcript levels of VvHT1 and VvHT6 

in berries from Cabernet Sauvignon and Touriga Nacional clean and infected with GLRaV-3 (d). Values are the 

mean ± SEM (n=3). Asterisks indicate one-way ANOVA statistical significance between control and infected 

grapevines (*P< 0.05; ns = non significant).  

 

 Virus infection did not cause a variation in the concentration of the sugar-alchool 

mannitol in grape berries from Cabernet Sauvignon (Figure 25a). Noticeably, this sugar 

alcohol was not detected in grape berries from the Touriga Nacional variety. As shown in 

Figure 25b, in berries from Cabernet Sauvignon MTD activity was lower in infected plants 

(0.36 µmol h-1 mg protein-1) than in clean ones (0.58 µmol h-1 mg protein-1) although this 
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reduction was not statistically significant. In Touriga Nacional, although this polyol was not 

detected in the berry, the specific activity of MTD was 0.43 µmol h-1 mg protein-1 in both 

clean and infected plants. 

 Figure 25c shows that the concentration of free proline decreases after virus infection 

in grape berries from both grape varieties. This reduction in proline content was by 40% and 

48% in infected Cabernet Sauvignon and Touriga Nacional cultivars, respectively.  

 Total phenols evaluated by Folin-Ciocalteau method showed a slight increase in 

berries from virus-infected Cabernet Sauvignon, while in Touriga Nacional there was a 

significant reduction in total phenols by 26% after virus infection (Figure 25d).  

  

 Figure 25. Manitol (a) and proline (c) content in berries from Cabernet Sauvignon and Touriga 

Nacional cultivars clean (control) and infected with GLRa-V3. Mannitol dehydrogenase (MTD) activity (b) and 

total phenolic content (d) determined by Folin-Ciocalteau method in grape berries from both cultivars before and 

after virus infection. Values are the mean ± SEM (n=3). Asterisks indicate one-way ANOVA statistical 

significance between control and infected grapevines. (*P< 0.05; **P< 0.01; ***P< 0.001; ns = non significant). 

 

 Anthocyanin levels were determined by a pH differential method, described by Nicoué 

et al. (2007). Figure 26a shows anthocyanin concentration in grape berries from clean and 

infected Cabernet Sauvignon and Touriga Nacional cultivars. As can be seen, the amount of 

anthocyanins decreased in response to virus infection in both grape varieties. It has been 

shown that phenylpropanoid pathway is affected by viral infection in a consistent way (Vega 

et al., 2011). Our results showed that the activity of C4H in grape berry extracts from both 



Results 

!78 

infected cultivars was lower than in grapes from clean plants (Figure 26b). Additional 

experiments will be necessary to further consolidate these data. 

 

 
 
 Figure 26. Total anthocyanin content (a) and cinnamate-4-hydroxylase (C4H) activity (b) in grape 

berries from Cabernet Sauvignon and Touriga Nacional cultivars clean (control) and infected with GLRa-V3. 

Values are the mean ± SEM (n=3). One-way ANOVA statistical significance between control and infected 

grapevine was calculated (ns = non significant). 
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5  Discussion 

 
5.1   The metabolome of berries from Alvarinho, Arinto, and Padeiro de Basto is 

 dependent on the genotype and environment  

 
 Edaphoclimatic conditions, which may include temperature, precipitation, soil water 

content, composition and structure, evapotranspiration and relative humidity, clearly affected 

the metabolome profile of the grapes from Alvarinho, Arinto and Padeiro de Basto cultivars 

cultivated at Dois Portos (South Portugal) and EVAG (North Portugal). Also, genotype-

dependent variations were evident. It should be stressed that the microclimate within the 

vineyard and cultural practices may greatly influence vine physiology and growth and the 

composition of the berries. These specific conditions were not considered in this work and 

may, per se, be object of independent studies. Also, clonal variations within each grape 

variety and season-dependent transcriptional changes (Santo et al., 2013) may also account 

for important biochemical variability in the grape composition.  

 It has been shown that sugar concentration in the berry is dependent on development 

stage (Coombe 1992), environment, and viticulture practices (Jackson and Lombard 1993, 

Kliewer and Dokoozlian 2005; Clingeleffer, 2010), as well as on the genotype (Shiraishi, 

2000; Liu et al., 2006; Shiraishi et al., 2010). Contrarily, sugar concentration was considered a 

relatively stable trait for a given cultivar (Keller et al., 2005). In this context, a number of 

metabolomic analysis have been carried out to compare grape berry composition at various 

developmental stages (Ali et al., 2011), or looking at differences between cultivars and 

growing seasons (Pereira et al., 2006) or regions (Son et al., 2009). In our metabolome study, 

aimed to characterize three important Portuguese grape varieties - Alvarinho, Arinto and 

Padeiro de Basto -, approximately twenty different sugars were detected. Glucose, fructose 

and, in minor amounts, sucrose where the most important sugars in all varieties and regions, 

and sugar amount increased from veraison to the mature stage. Significant differences in 

sugar content, at the mature stage, between cultivars and regions were not expected, because 

maturity was considered when soluble solids reached 18 ºBrix for all varieties and regions. 

However, there was a very consistent difference between North and South in what regards 

sugar composition. The observed decrease of sucrose levels in the varieties cultivated in the 

South is very interesting and deserves further confirmation. This could be caused by 

stimulation of invertase activity by the warmer climate of Dois Portos. In agreement, a recent 

comparative analysis in tomato revealed that the activity of cell wall invertases (CWIN) may 

be modulated by heat (Li, et al. 2012). 



Discussion  

!82 

 Tartaric and malic acids typically account for 90% of total acids in grape berries. In 

our metabolome analysis, besides tartaric and malic acids, other organic acids, including 

maleic, citric, fumaric, and succinic were also detected in all samples but in relatively low 

amounts. In the non-climacteric fruit Vitis vinifera, malate metabolism has been a strong 

focus of research, as the balance of acids in winegrape must is central for supporting desirable 

growth (and preventing undesirable growth) of microorganisms responsible for wine 

fermentation. Malate concentration can also affect final wine characteristics through 

involvement in secondary processes such as carbonic maceration and malolactic fermentation, 

and can even alter the growth capabilities of malolactic bacteria (Kunkee, 1991). Since grapes 

do not contain large amounts of citrate, and the large quantity of tartrate present in the fruit is 

not used in primary metabolic pathways, malate is the only high-proportion organic acid that 

is actively metabolized throughout ripening of grapes (reviewed by Sweetman et al., 2009). It 

has been described that organic acids in the berry are responsive to environmental conditions 

and viticulture practices (Jackson and Lombard 1993, Keller et al., 2005). Our results 

confirmed that the amount of organic acids decreased during grape berry development and 

ripening after green pea stage, but the pattern of organic acid variation was similar between 

varieties. Pre-veraison grapes accumulate malate mostly through the metabolism of sugars 

that have been translocated to the berry, but also potentially through fruit photosynthesis 

(Hale, 1962, Breia et al., 2012). In post-veraison fruit, malate released from the vacuole 

becomes available for catabolism through various avenues, including the TCA cycle and 

respiration, gluconeogenesis, amino acid interconversions, ethanol fermentation, and the 

production of complex secondary compounds such as anthocyanins and flavonols (Farineau 

and Laval-Martin, 1977; Ruffner, et al. 1982b; Famiani et al., 2000). Interestingly, it has been 

reported that after veraison tartaric acid concentration decreases mostly through dilution due 

to volume increase of the fruit, but we observed a strong decrease in tartaric acid per dry 

weight of the berry, suggestion that it is substantially catabolized during ripening, at least in 

Alvarinho, Arinto and Padeiro de Basto. 

 Results also showed relatively high levels of malic acid and low levels of tartaric acid 

in mature grape berries from Alvarinho cultivated in the North when compared with two other 

varieties. Also, mature grapes from Alvarinho contained much less tartaric and malic acid in 

the South than in the North. Thus, the sampling place effectively affected the levels of tartaric 

and malic acid in the grape berries. In agreement, several reports emphasize that 

environmental factors affect malate concentration of the berries during ripening. Elevated 

temperature clearly decreases the concentration of malic acid, whereas grapevines grown in 

cool climates show higher amounts of malic acids (Keller et al., 2005; Koundouras et al., 
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2006; Pereira et al., 2006). However, it has been described that tartaric acid concentration is 

not significantly affected by temperature or water stress (Parra et al., 2010), contrarily to the 

observed in our work.  

 Results showed that in all varieties and environments there was an increase of malate 

dehydrogenase (MDH) activity (Figure 18) from veraison to mature stage, which could be 

related with malic acid degradation (Figure 10). These results are in agreement with previous 

report by Taureilles-Saurel et al. (1995a). However the metabolism of malic acid is by far 

more complex. It is admitted that cytosolic and mitochondrial MDH isoforms would, 

respectively, participate in malate synthesis and catabolism in response to metabolic changes 

occurring during grape development (reviewed by Sweetman et al., 2009). However, it is 

admitted that the extraction and activity measurement conditions favors the cytosolic isoform 

of MDH (Taureilles-Saurel et al., 1995b). However, if cytosolic malate is transported and 

sequestered in the vacuole, then cytosolic MDH activity will be driven toward malate 

synthesis from OAA, until the equilibrium is re-established. Alternatively, if malate is 

abundant and OAA is further metabolized to compounds such as phosphoenolpyruvate (PEP) 

or aspartate, then MDH activity will favour the conversion of malate to OAA. It is in such (or 

similar) situations that MDH is henceforth suggested to be involved in malate ‘‘synthesis” or 

‘‘degradation” (reviewed by Sweetman et al 2009). A reduction in MDH activity from the 

North to the South in mature grapes was evident in Alvarinho cultivar, however the levels of 

malic acid in mature grapes are lower in the south. Cool regions typically produce grapes with 

higher concentration of malic acid and, conversely, grapes grown in warmer regions tend to 

have lower acidity (reviewed by Conde et al 2007a). This negative temperature correlation 

with malic acid levels could be due to the effect of temperature on the balance between malic 

acid synthesis and catabolism. 

 Both the variety and environment seemed to influence NADP-dependent malic 

enzyme activity pattern during grape berry development, but a correlation between malic acid 

levels and enzyme activity is difficult to establish due to the complexity of the organic acid 

metabolism where MDH, NADP-dependent malic enzyme, phosphoenolpyruvate 

carboxykinase (PEPCK) and phosphoenolpyruvate carboxylase (PEPC) may be involved. 

Some transcriptional studies on organic acid metabolic enzymes have been reported so far 

(Deluc et al., 2007, Sweetman et al., 2011). The study of these enzymes at both the 

transcriptional and at the protein activity levels may shed some light to the metabolic 

pathways of organic acids, which are highly intermingled. 



Discussion  

!84 

 It has been shown that the accumulation of compatible solutes consisting of non-toxic 

organic molecules, such as polyols protects the cells against deleterious osmotic and 

metabolic imbalances caused by stress (Conde et al 2011a; Pillet et al., 2012; Conde et al. 

unpublished). The involvement of polyols in abiotic stress plant tolerance has been a fierce 

research topic throughout the years. Mannitol is the most widespread polyol in nature and has 

been observed in >100 vascular plant species of several families including the Apiaceae 

(celery, carrot and parsley), Rubiaceae (coffee) and Oleaceae (olive and privet) (Lewis, 1984). 

In olive and celery, mannitol synthesis takes place in mature leaves from mannose-6-

phosphate by the conjugated action of a NADPH-dependent mannose-6-phosphate reductase 

(M6PR) and a mannose-6-phosphate phosphatase, and is then translocated through the 

phloem to heterotrophic sink tissues where it can be either stored or oxidized to mannose via 

the action of a 1-oxireductase, NAD+-dependent mannitol dehydrogenase (MTD), and used as 

a carbon and energy source (reviewed by Stoop et al., 1996; Noiraud et al., 2001b). Sorbitol is 

synthesized in mature leaves from glucose-6-phosphate by the consecutive activity of an 

aldose-6-P-reductase (Negm and Loescher 1981) and a specific phosphatase, and, generally, 

sinks have little or no capacity to synthesize polyols like mannitol or sorbitol (Loescher and 

Everard 1996; Nawodnik and Lohaus 2008). However, in grapevine, the knowledge on the 

metabolism of polyols is very limited. In our laboratory siginificant efforts have been done to 

understand plant response to drought throught the production of polyols, in the context of the 

PhD dissertations of Paulo Silva (2013) and Artur Conde (2013). The metabolome analysis of 

the present study identified sorbitol, ribitol, galactinol, erythritol in grape berries from all 

varieties, and sorbitol was the most abundant polyol in mature berries from Padeiro de Basto. 

Regarding the effect of edaphoclimatic conditions, it was suggested that the levels of polyols 

were generally higher in the varieties cultivated in the South, eventually because they were 

subjected to more intense heat and drought stress than the vines cultivated in the North. 

Mannitol was not detected, but we confirmed that berry tissues from all varieties showed 

MTD activity, eventually to convert mannitol to fructose. 

 Total amino acid content is known to vary between cultivars and according 

microclimate conditions in response to sun exposure (Cantagrel et al., 1962; Henschke and 

Jiranek, 1992; Pereira et al., 2006). Several factors may affect nitrogen nutrition of 

grapevines, such as vine cultivar and rootstock, climate and season, N levels in the soil, 

cultural practices, canopy shading and microclimate. Grapevines are able to absorb both NO3
- 

and NH4
+ ions from the soil. The reduction of NH3

- is started by nitrate reductase, forming 

NO2
- which is then reduced to NH4

+ by nitrite reductase in the chloroplast. Besides other 
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fates, one of the main roles of NH4
+ is the incorporation into amino acids. In the present study 

we decide to further investigate how the amino acid content changes between the Portuguese 

cultivars Alvarinho, Arinto and Padeiro de Basto from one cultivating region to another. As 

shown, GC-TOF-MS qualitative analysis (Supplementary Table 1) performed at the Genome 

Center (UC Davis) only detected twelve amino acids in all grape berry samples, but the 

quantitative approach requested to Ansynth Service B.V. performed with an amino acid 

analyzer and HPLC provided information about all twenty free amino acids in the mature 

grapes. Due to time and economic constrains, only one analysis was performed, however, to 

minimize the error due to the absence of biological replicates three equal parts of lyophilized 

powder from one different cluster from each vine (3 vines) were mixed before analysis. We 

showed that the mature grape berry is full of amino acids. From the twenty free amino acids, 

only cysteine was not present. Arginine, proline and glutamic acid were the most abundant. In 

agreement, it has been shown that proline and arginine are the two most abundant amino acids 

in the musts (Kliewer, 1970; Huang and Ough, 1989; 1991; Asensio et al 2002). Proline may 

contribute to a sweet taste in the berry, and some biological functions are attributed to this 

amino acid that include acting as an energy source, antioxidant and osmoprotectant (Coruzzi 

et al. 2000; Forde et al., 2007; Deluc et al., 2009). Previous experiments showed that water 

deficit significantly increased proline concentrations in Cabernet Sauvignon berries but not in 

Chardonnay (Deluc et al., 2009). In our results, proline concentration was higher in Alvarinho 

and Padeiro de Basto cultivars in the North region, with more abundant levels of water in the 

soil. Alvarinho (North) was the variety with higher amino acid content in the mature berries. 

The pattern of amino acid content did not change very much between genotypes, but 

edaphoclimatic conditions severely affected the content of amino acids, which is much higher 

in the North in all varieties. In this regard, the amino acid content in pulp and skin of Merlot 

showed different patterns in response to sun exposure (Pereira et al; 2006). Because the levels 

and type of aminoacids may significantly influence the secondary aromas of wines 

(Hernandez-Orte, Cacho, and Ferreira, 2002), aroma analisys by GC-MG of micro-

fermentations with berries from North and Southn could bring interesting outputs to the wine 

scientific community. 

 

 Grape secondary compounds have been for many years a theme of major scientific 

and biotechnological interest. Grape berry phenolics contribute to organoleptic properties, 

colour and protection against environmental challenges. This issue was extensively explored 

in Section 2, where environmental changes and genotype-dependent modifications on 

phenolic content were subject of particular attention. The qualitative metabolomic profile of 
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the three grape varieties in both regions revealed few phenolic compounds as only some 

hydroxycinnamates, catechin and epicatechin were detected. Future studies may relay on LC-

MS analysis and different extraction protocols to more accurately study grape berry secondary 

metabolites. 

 Benzoic acid is the precursor of several common hydroxybenzoic acids, usually found 

in wine, such as gallic acid, gentisic acid, p-hydroxybenzoic acid, protocatechuic acid (3,4-

Dihydroxybenzoic acid), syringic acid, salicylic acid, and vanillic acid (Peña-Neira et al., 

2000; Pozo-Bayón et al., 2003; Monagas et al., 2005a). We found that benzoic acid that was 

much more abundant in mature grape berries from Alvarinho and Arinto cultivated in the 

South. However, 3,4-dihydroxybenzoic acid showed a decreasing pattern in all varieties from 

both regions along the development and similar AU levels at mature stage.  

 The acid 3,4-dihydroxybenzoic is involved in several reactions as phenylalanine, 

tyrosine and tryptophan biosynthesis, toluene degradation, polycyclic aromatic hydrocarbon 

degradation, aminobenzoate degradation or biosynthesis of phenylpropanoids (KEGG - Kyoto 

Encyclopedia of Genes and Genomes; Kanehisa and Goto, 2000). In an extensive screening of 

344 European grape cultivars for two consecutive years, hydroxybenzoic acids concentration 

at the mature stage was in average 0.016 mg g-1 FW (Chen et al., 2006). It was also showed 

that hydroxybenzoic acid concentration was highly variable from one year to another, 

contrarily to the observed for other phenolic compounds such as anthocyanins, flavanols, 

hydroxycinnamic acids, or flavonols. It was suggested that phenolic content of grape berries 

is highly variable, and that each phenolic compounds may change differently in response to 

environmental factors. In agreement, we showed that the levels of caffeic acid seemed to be 

slightly lower in the grape berries from the varieties cultivated in the South than in the North, 

especially in Padeiro de Basto, contrarily to benzoic acid.  

 It was reported flavan-3-ols compounds account for 36% of total non-anthocyanin 

polyphenols and procyanidin B1 is the most abundant flavanol in grape berry, accounting for 

64% of total flavanols. Catechins account on average for 20% of total flavanols, epicatechin 

and epicatechin gallate account for no more than 10% of total flavanols (Chen et al 2006). In 

our metabolomic approach only (+) catechin and its isomer (-) epicatechin were identified. 

Both catechins and epicatechins significantly decreased from the North to the South 

suggesting that their levels in mature grapes are dependent on the growing region. 

 Because the analysis performed at the UC Davis was by far incomplete regarding 

secondary metabolites, we decided to study changes in the total phenolics by the Folin-

Ciocalteau colorimetric method. It was observed that total phenolic concentration, measured 

as gallic acid equivalents, decreased in all varieties and regions from the green to the mature 
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stage, contrasting with previous results (Matthews et al., 1988; Zarrouk et al., 2012). At 

maturity, the highest concentration value was found in grape berries from Padeiro de Basto 

cultivated in the North, probably due to the contribution of anthocyanins. In Arinto and 

Padeiro de Basto varieties, total phenolics were much higher in the North than in the South. 

These results were quite unexptected because vines from the South may suffer more intense 

environmental stresses, incluing water limitation and drought. In agreement, in Tempranillo 

grapevines subjected to drought conditions, total phenolic content of the skin was higher in 

RDI and NI vines when it was compared to FI during two consecutive years (Zarrouk et al., 

2012). However, the sun exposure of grape clusters can influence the flavanol content of 

grape berries. In a previous study it was shown that total phenolics content in grapes from 

shaded clusters was lower than in grapes from clusters exposed or moderately exposed to the 

sun (Price et al., 1995). 

 Gene expression and post-transcriptional modifications of several enzymes of the 

secondary metabolism may depend on the genotype and environment. Secondary metabolism 

begins from the condensation of phosphoenolpyruvate (PEP; from the glycolysis pathway) 

and erythrose 4-phosphate (E4P; from the pentose phosphate pathway) to produce 3-deoxy-D-

arabino-heptulosonate 7-phosphate (DAHP) by the action of 3-deoxy-D-arabino-

heptulosonate 7-phosphate synthase (DAHPS), the first step of shikimate pathway. This 

pathway is defined as seven metabolic steps ending with the synthesis of chorismate, the 

precursor of the aromatic amino acids, tyrosine, tryptophan and phenylalanine, substrates for 

downstream enzymes of the phenylpropanoid pathway. The phenylpropanoid pathway is of 

pivotal importance in secondary plant metabolism, where a myriad of phenolic secondary 

metabolites unique to plants are produced (phenolic acids, flavonoids, lignins, and stilbenes). 

The enzymes phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H) and 4-

coumarate: coenzyme A ligase (4CL) are considered to be crucial to phenylpropanoid 

metabolism (Weisshaar and Jenkins, 1998; Brenda, 1999). Thus, the transcript abundance of 

3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DHPS), chorismate mutase and PAL 

was significantly increased in water deficit in Cabernet Sauvignon, however, the transcript 

levels of these genes were not increased by water deficit in Chardonnay. In a similar way, the 

shikimate concentration was increased by water deficits in Cabernet Sauvignon, but not in 

Chardonnay (Deluc et al., 2009). In the present study, the region seemed to affect the activity 

of C4H in mature grapes from Alvarinho and Padeiro de Basto as a very significant reduction 

occurred in the South region. This variation may explain, at least in part, the observed 

reduction in some secondary metabolites in the South (catechin and epicatechins, as shown by 

GC-TOF-MS) and total phenolics in Arinto and Padeiro de Basto, as show by Folin-
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Ciocalteau colorimetric method. Some reports show the activity of PAL, C4H and 4CL during 

development and ripening of the grape berry (Hrazdina et al., 1984; Chen et al., (2006) but 

there is no clear picture about their expression and activity pattern during development. Still, 

there is litle information regarding the effect of environment x genotype on the activity of 

these enzymes. So, the data of the present work open good perspectives to further explore the 

influence of the environment and genotype on secondary metabolism in the grape berry. In 

addition, recently available high-throughput RNA sequencing approaches will likely help to 

elucidate in a near future the complexity of secondary metabolism in the grape berry in 

challenging environments. 

 
5.2  Total phenolics, proline content and antioxidant potential are genotype-

 dependent traits 

 
 In the second part of this project we aimed at exploring in more detail the genotype-

dependency of specific markers of berry quality, including proline content, total phenolics, 

and antioxidant activit. For that purpose a set of 21 Portuguese varieties were selected from 

the germplasm collection of the Estação Agronómica Nacional (Dois Portos) and grape 

samples were collected at the mature stage, as described in Material and Methods.  

 The levels of proline content are clearly different between varieties. Tinto Cão berries 

had the highest proline concentration, while in Corropio proline was not detected. As referred 

before, this amino acid may act as antioxidant and osmoprotectant in plant cells, besides its 

role as energy source (Coruzzi et al 2000; Forde et al. 2007; Deluc et al. 2009). Several 

reports show that increases in proline concentration are one of the most common responses of 

organisms to dehydration (Yancey et al. 1982; Delauney and Verma 1993; Cramer et al 

2007). As referred above, water deficit significantly increased proline concentrations in 

Cabernet Sauvignon berries with no significant effect in Chardonnay. Given that proline 

levels in the grape berry may represent a drought-stress resistance marker further 

investigation is necessary to evaluate the real capacity of Tinto Cão, Malvazia Fina, 

Trincadeira and Touriga Nacional to resist to water limitation more than Corropio or Castelão. 

Besides the remarkable cultivar-dependence, care has to be taken when comparing these 

results with those of the previous Section, because two different methods were used in grapes 

from different seasons (2011 and 2012). 

 Regarding the total phenolic content, as expected, mature grape berries from red 

varieties showed higher concentrations in total phenolics than white ones, due to the 

contribution of anthocyanins that accumulate in red varieties at the mature stage. Thus, 
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Alicante Bouschet, which is a teinturier, and Borraçal, whith a thick and dark exocarp, 

exhibited the highest amount of total phenolics and, consequently, higher antioxidant activity. 

These analyses are relatively easy to perform and could be extended to characterize all 

Portuguese varieties, particularly including seeds analysis, because they have been used in 

important sectors, including oil production and in cosmetics industry due to their strong 

antioxidant capacity. Thus, the ongoing work may have an important biotechnological 

dimension enabling farmers and enologists to select specific varieties to prepare wines with a 

desired antioxidant activity.  

 
5.3  The metabolism of the grape berries from Touriga Nacional and Cabernet 

 Sauvignon is modified in grapevines infected with the GLRa V-3 virus 

 
 Leafroll has long known effects on grapevine maturity and berry pigmentation 

(Goheen, 1970). Our results showed that the metabolism of the grape berries is altered in 

Cabernet Sauvignon and Touriga Nacional infected with GLRaV-3. Although these studies 

were preliminary, it was shown that virus infection modified sugar accumulation and sugar 

transporter expression. Several monossacharide (VvHT) and disscharide transporters 

(VvSUC) cooperate in sugar transport across the plasma membrane of grape cells whose 

expression may be affected by environmental conditions and sugar status of the berry (Kuhn 

et al., 1997; Conde et al., 2006). In the present study it was not observed a significant change 

in glucose and fructose amounts in the berries from clean and infected vines of Touriga 

Nacional, although the VvHT1 transcription sufered a significant reduction. Contrarily, in 

Cabernet Sauvignon, a significant reduction of glucose and fructose was observed. These 

results are in agreement with a previous study in the same variety infected with GLRa-V3. 

The authors showed that VvHT1 and its transcription factor MSA mRNA levels were 

significantly repressed in virus-infected grape berries (Vega et al., 2011), which was 

consistent with decreased amounts of glucose and fructose found in mature berries. Regarding 

the putative tonoplast transporter VvHT6, our results showed that it was upregulated in 

infected vines of Cabernet Sauvignon and severely repressed in infected vines from Touriga 

Nacional. To verify possible causes of virus-induced alterations of some photosynthetic 

parameters, the expression level of some genes involved in sucrose metabolism in cv. Merlot 

were previously evaluated (Repetto et al. 2012). Expression levels of SuSy (sucrose 

synthase), CWINV (cell wall invertase) and five genes encoding neutral invertases (NI 1-5) 

were measured. Interestingly, transcript profiles of six INV and one SuSy did not reveal any 

difference in gene expression level between virus-infected and non-infected plants (Repetto et 
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al., 2012). From the available data, we may conclude further studies are still necessary to 

complete the puzzle regarding the metabolic changes induced by GLRa V-3 virus in 

grapevine. 

 As discussed before, the involvement of polyols in abiotic stress plant tolerance has 

been a fierce research topic throughout the years, however, the role of polyols on plant 

response to abiotic stress is far from being understood. In our study only mannitol was 

detected by HPLC in Cabernet Sauvignon whose levels were not modified in infected vines. 

In berries from Touriga Nacional mannitol was not detected suggesting that its acumulation is 

cultivar dependent.  

 The knowledge on the modification of the activity of metabolic enzymes upon virus 

infection in grapevine is for while very short. Our results showed that the activity of mannitol 

dehydrogenase (MTD) was not significantly modified upon infection of both cultivars. 

However, MTD activity decreased in berries from Cabernet Sauvignon upon infection, but 

more replicates are necessary to confirm this result. It is known that phenylpropanoid pathway 

is affected by viral infection in a consistent way (Vega et al., 2011), however our study 

showed that cinnamate-4-hydroxilase (C4H) activity was not significantly modified upon 

virus infection. Future studies should also focus on the activity of phenylalanine ammonia 

lyase (PAL) that converts L-phenylalanine or tyrosine into trans-cinnamic acid.  

 Regarding proline, the present study showed that its concentration is lower in berries 

from infected than in clean plants. As report before (Lee et al., 2009) the levels of valine, 

methionine and glutamate in Pinot Noir response to virus infection may depend on the 

location of the vineyard but, in general, GLRaV infection did not greatly impact N-containing 

compounds. Contrarily, more arginine and less proline at harvest were found in berries from 

infected Burger grapes with GLRaV than in healthy plants (Kliewer and Lider, 1976). 

Therefore, more investigation is needed to clarify the influence of virus infection on amino 

acid metabolism in the berry, including proline biosynthesis and degradation.  

 To the best of our knowledge, very few papers (Gutha et al., 2010) describe alterations 

of phenylpropanoid pathway in response to GLRa-V3 infection. It was reported that 17 

flavonoid biosynthetic pathway genes showed higher expression levels in virus-infected 

symptomatic leaves than in virus-free plants. Among them, CHS3, F3’5’H, F3H1, LDOX and 

LAR1 showed more than 10-fold increase in leaves from virus-infected plants. In the present 

study we found a slightly decrease of cinnamate-4-hydroxylase activity and in the amount of 

anthocyanins in grape berries from clean to virus-infected plants, but the results are very 

preliminary. In agreement, more recent reports postulated an anthocyanin reduction yield in 

GLRa-V3 infected grapevines (Vega et al., 2011). The repression of some key genes in 
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anthocyanin biosynthesis has been observed in response to virus infection (Gutha et al., 

2010). 

 

5.4  Final considerations and future perspectives 

 
 The physiology of grapevine has already suffered from significant impacts of global 

climate change over the last decades. In this context, the study of the influence of 

edaphoclimatic conditions in the metabolomic profile of grape berries is of utmost importance 

to help the farmers select the proper genotype and to adjust the agricultural practices in order 

to keep good levels of productivity and maximizing wine quality. This topic was the main 

target of our research.  

Grape berries from three important Portuguese wine varieties from two distinct 

ampelographic collections, in Northern (EVAG) and Southern (INIAV-Dois-Portos) Portugal, 

were analysed with up-to-date approaches and equipments, including GC-TOF-MS and the 

Amino Acid Analyser System. Edaphoclimatic conditions clearly affected the metabolome 

profile of the grape berries from Alvarinho, Arinto and Padeiro de Basto cultivars. Thus, it 

was observed that mature grapes from Alvarinho contained much less tartaric and malic acid 

in the South than in the North, and that grape berries from the North are much richer in 

aminoacids. It is well known that organic acids are essential for the fresh character of the 

wine and free amino acids may play import role in the aroma development.  

In addition, several cultivar-dependent traits were identified in this work. For instance, 

sorbitol and proline were very abundant in grapes from Padeiro de Basto and Tinto Cão, 

respectively.  

Biotic stresses, including fungal and virus infections, also negatively impact grapevine 

physiology and productivity, causing significant economic losses every year. The preliminary 

studies developed in this context, confirmed that grape berries metabolism is altered in 

Cabernet Sauvignon and Touriga Nacional infected with GLRaV-3, but the puzzle regarding 

the metabolic changes induced by GLRa V-3 virus still needs further investigation.  

Several “omics” approaches, including genomic, transcriptomic and metabolomic, are 

now being explored in several laboratories worldwide to study and mitigate the influence of 

biotic and abiotic stresses in grapevine productivity, in the context of the ongoing climate 

changes. Also, the exploitation of grapevine genetic diversity is of utmost importance to 

select cultivars more adapted to a specific region or microlimate. As referred to before, the 

investment in new varieties that would give good flavors but with improved climate 

tolerances may be an important investment for the industry and for conservationists wishing 
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to avoid unfavorable land or water use outcomes.  

Several laboratories and institutions of our country, including our own at Universidade 

do Minho, the CITAB researcher unit (UTAD), the Instituto Superior de Agronomia (ISA), 

the Insituto de Tecnologia e Química e Biológica (ITQB) and Instituto Nacional de 

Investigação Agrária e Veternária (INIAV), among others, are working together to study the 

grapevine physiology/echophysiology and fruit maturation and composition at the 

biochemical and molecular levels, and to explore/preserve the tipicity or our important 

cultivars, including Touriga Nacional, Arinto, Padeiro de Basto, and Alvarinho, among many 

others. The active involvement of our research teams in several European Cooperation 

Actions (COST) and National and International European projects, such as Innovine, is 

promoting important progresses at the scientific level with important repercussions in the 

agronomic sector. 
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7 Supplementary files 
7.1 Metabolomic profile  

Table 1. Changes in the metabolome of grape berries from Alvarinho, Arinto and Padeiro de Basto from North and South Portugal as assessed by GC-TOF-MS.  
Carbohydrate metabolism and glycolysis 

 Metabolite 

St
ag

e*
 

 Alvarinho   Arinto   Padeiro de Basto  
North South North South North South 

mean SD mean SD mean SD mean SD mean SD mean SD 

1 sucrose 
G 31913 1587 1192 57 22028 55 1321 72 38302 405 431 77 
V 84120 2986 23329 261 56769 1617 16893 525 69028 1895 14928 98 
M 146376 727 23372 1314 102057 9859 67126 73 123143 9192 29961 382 

2 glucose 
G 99509 1821 88904 578 105312 28 121881 3764 116848 1457 92160 177 
V 517015 8247 314704 1173 484160 3340 378761 4873 575225 2324 539029 8520 
M 566069 3132 557481 7239 609915 43094 615787 7921 734059 34156 606181 17545 

3 fructose 
G 39513 610 44198 132 56012 293 58680 1448 56300 25 44350 71 
V 1607560 117535 1296052 4992 1617848 52406 1258729 46720 583464 16814 1670545 92695 
M 611684 7250 611345 8516 1628774 407852 623696 25295 739760 50995 591713 29971 

4 xylulose NIST 
G 541 92 1451 354 399 20 984 153 1975 184 3052 186 
V 155 31 179 18 157 4 171 13 263 26 278 4 
M 143 9 179 19 152 22 173 183 213 54 199 42 

5 inulotriose 
G 320 18 186 17 177 27 218 39 228 29 150 13 
V 443 49 219 51 288 35 244 39 332 19 285 28 
M 474 75 353 34 456 54 567 29 485 28 406 25 

6 fucose + rhamnose 
G 975 146 842 88 1045 37 1377 461 888 271 627 78 
V 715 60 646 85 1300 15 1165 3 741 85 794 93 
M 640 16 628 61 680 81 865 215 549 135 537 47 

Continued on next page -  * G, Green pea; V, veraison; M, Mature 
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Table 1. Changes in the metabolome of grape berries from Alvarinho, Arinto and Padeiro de Basto from North and South Portugal as assessed by GC-TOF-MS.  
Carbohydrate metabolism and glycolysis 

 Metabolite 

Stage* 

 Alvarinho   Arinto   Padeiro de Basto  
North South North South North South 

mean SD mean SD mean SD mean SD mean SD mean SD 

7 arabinose 
G 703 36 1368 110 1070 92 1615 583 627 66 1221 236 
V 309 14 267 42 344 58 449 18 298 21 331 35 
M 275 36 254 32 242 76 264 29 231 64 228 50 

8 beta-gentiobiose 
G 359 16 322 38 295 10 354 79 352 46 308 21 
V 837 47 326 35 471 31 504 209 1557 28 698 71 
M 1218 19 744 126 499 126 680 40 3036 851 2046 66 

9 glycero-
guloheptose NIST 

G 618 22 882 85 744 51 1039 16 563 85 446 25 
V 557 46 487 13 847 40 848 76 388 60 358 38 
M 516 22 617 37 767 83 881 54 602 61 488 80 

10 levanbiose 
G 192 21 199 65 237 22 216 74 183 12 182 14 
V 2379 143 1175 88 3229 225 1770 77 2782 164 2145 128 
M 2740 67 2215 250 2615 573 3538 94 2607 648 2551 79 

11 glycerol-3-
galactoside 

G 1130 37 1743 42 799 21 1068 874 771 56 1127 33 
V 433 33 523 22 667 24 1135 60 547 51 917 31 
M 217 25 770 86 330 54 497 91 396 128 591 56 

12 rhamnose 
G 982 75 1073 180 861 54 1426 420 1300 7 827 109 
V 734 209 734 48 877 35 995 60 901 279 883 133 
M 642 18 1101 490 734 117 984 112 581 163 543 51 

13 3,6-
anhydrogalactose 

G 977 33 2196 64 1228 71 1686 108 1236 22 1991 33 
V 673 21 163 19 111 5 351 274 572 49 126 21 
M 135 40 107 11 128 33 144 26 125 36 132 15 

14 sorbitol 
G 311 35 372 13 322 30 314 257 308 26 313 8 
V 670 739 704 21 915 481 626 444 246 66 70 54 
M 300 54 563 148 168 21 282 111 2206 658 2485 165 

Continued on next page -  * G, Green pea; V, veraison; M, Mature!
 



 

 

!

10
9 

Table 1. Changes in the metabolome of grape berries from Alvarinho, Arinto and Padeiro de Basto from North and South Portugal as assessed by GC-TOF-MS.  
Carbohydrate metabolism and glycolysis 

 Metabolite 

St
ag

e*
 

 Alvarinho   Arinto   Padeiro de Basto  
North South North South North South 

mean SD mean SD mean SD mean SD mean SD mean SD 

15 ribitol 
G 210 36 233 51 173 35 297 67 132 65 166 63 
V 174 33 163 2 169 16 173 12 165 29 178 15 
M 222 37 163 20 150 74 164 167 139 38 162 27 

16 galactinol 
G 6594 252 5634 250 4677 215 8524 2202 3100 261 2985 170 
V 1139 128 994 95 1997 43 3506 428 1045 71 2447 158 
M 673 101 1051 227 1168 213 1716 68 962 216 1379 84 

17 erythritol 
G 177 24 379 102 262 24 386 79 274 21 278 17 
V 558 111 362 89 577 53 806 51 568 77 701 87 
M 941 45 930 146 591 140 832 46 662 104 718 65 

18 1,5-
anhydroglucitol 

G 286 79 326 47 2260  342 70 289 32 214 24 
V 2680 57 1938 170 769 89 578 79 892 14 717 53 
M 854 56 777 35 3762 1418 2076 76 1193 25 660 46 

19 conduritol beta 
epoxide 

G 3223 14 2119 82 3612 78 3754 45 2762 85 1978 37 
V 3140 58 1401 32 3192 83 3868 85 2758 84 2298 12 
M 3020 62 1909 91 2986 118 3128 51 2589 91 2729 65 

20 levoglucosan 
G 428 61 199 65 237 22 216 74 183 12 182 14 
V 223 4 1175 88 3359 37 1770 77 2782 164 2076 57 
M 205 30 2085 153 2915 341 3538 94 2952 354 2551 79 

Continued on next page -  * G, Green pea; V, veraison; M, Mature!
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Table 1. Changes in the metabolome of grape berries from Alvarinho, Arinto and Padeiro de Basto from North and South Portugal as assessed by GC-TOF-MS. 
TCA cycle and other acids 

 Metabolite 

Stage* 

 Alvarinho   Arinto   Padeiro de Basto  
North South South North North South 

mean SD mean SD mean SD mean SD mean SD mean SD 

21 tartaric acid 
G 218819 9687 339258 713 325248 4735 335119 41010 322475 2717 292950 808 
V 48821 726 41213 215 76480 2073 86611 1887 88020 1249 97759 1438 
M 32707 91 15615 135 39972 25 37183 668 50529 368 36286 427 

22 malic acid 
G 448984 8024 397530 6036 359020 3824 366609 17489 408478 1215 300821 2614 
V 222137 7145 258947 4217 304769 7503 518102 11539 212593 5111 247296 4075 
M 110346 2098 71910 1666 93831 17557 80549 3629 85315 17413 64009 1081 

23 citric acid 
G 22943 276 18021 226 18368 65 20286 503 23769 297 17391 353 
V 21450 564 15657 493 28150 656 51943 1662 16690 618 16698 412 
M 13643 505 10977 74 13660,5 44,5 13367 341 7876 1780 7669 204 

24 fumaric acid 
G 1534 73 1381 75 1194 109 913 78 1067 42 954 45 
V 3758 122 981 117 3396 111 7924 513 1569 120 4623 222 
M 488 55 2187 98 264 50 502 22 272 65 729 47 

25 maleic acid 
G 90455 3630 57873 2293 52111 675 62387 4145 72013 2194 60514 1319 
V 238465 11137 137729 3744 192553 7169 477995 16352 139651 3584 291279 3584 
M 25731 428 93122 2104 36034 49966 37627 1076 37489 52499 51244 946 

26 succinic acid 
G 1358 1 1047 51 1205 25 1041 115 1394 51 915 15 
V 370 10 135 41 466 70 570 54 251 55 432 18 
M 185 63 254 39 462 128 371 35 263 49 180 22 

27 ribonic acid 
G 889 40 1269 123 540 44 1211 323 1529 55 1092 40 
V 195 31 285 28 176 29 160 18 177 46 204 65 
M 193 44 318 67 173 49 214 214 126 73 167 46 

28 stearic acid 
G 16778 703 15311 260 12360 190 13905 31 13499 476 16771 155 
V 11640 89 18598 344 16244 300 13622 462 17588 382 20461 399 
M 11225 71 19336 207 18246 1538 20158 510 24131 18 13194 863 

29 benzoic acid 
G 4418 77 894 68 753 32 3247 303 3436 39 2896 14 
V 3157 61 1168 34 4159 37 3922 95 3355 6 4382 119 
M 755 2 3942 68 1406 85 4835 23 985 73 927 48 

30 aspartic acid 
G 3471 187 1710 69 2336 172 875 112 5150 96 894 121 
V 1478 45 1723 58 3098 124 3517 143 1691 38 1033 70 
M 1863 44 515 14 3092 31 2048 16 1191 165 439 22 

Continued on next page -  * G, Green pea; V, veraison; M, Mature 
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Table 1. Changes in the metabolome of grape berries from Alvarinho, Arinto and Padeiro de Basto from North and South Portugal as assessed by GC-TOF-MS. 
TCA cycle and other acids 

 Metabolite 

St
ag

e*
 

 Alvarinho   Arinto   Padeiro de Basto  
North South South North North South 

mean SD mean SD mean SD mean SD mean SD mean SD 

31 lactic acid 
G 2491 80 1029 38 956 64 1831 33 1623 532 1569 104 
V 2218 37 773 71 1935 62 1690 62 1783 37 1474 44 
M 637 51 1652 29 1836 151 2266 49 944 64 786 87 

32 glutamic acid 
G 2542 66 2081 76 1944 84 1149 158 2442 21 850 9 
V 913 22 596 24 660 99 1142 40 774 23 468 68 
M 2506 35 405 50 980 47 436 91 2308 42 336 20 

33 oxalic acid 
G 7006 554 4129 16 7308 60 5052 639 5493 116 3923 33 
V 1827 387 635 56 1256 8 1118 100 1363 288 1968 179 
M 1267 35 1124 313 2738 157 6277 705 3452 315 945 121 

34 myristic acid 
G 295 0 335 22 323 19 285 43 307 9 347 9 
V 236 84 194 25 179 42 193 64 208 74 196 57 
M 193 23 312 65 221 71 241 21 227 44 160 13 

35 lauric acid 
G 1088 83 1313 30 814 54 917 101 1020 54 1132 20 
V 851 80 1184 23 786 79 910 54 728 43 911 49 
M 323 14 1205 60 590 66 1087 25 662 61 724 123 

36 lactobionic acid 
G 507 28 536 48 455 32 499 126 498 27 405 15 
V 483 10 323 44 203 49 381 18 204 28 193 38 
M 123 37 382 19 146 13 364 23 181 75 151 26 

37 glucuronic acid 
G 594 86 847 58 742 40 1738 419 637 41 871 60 
V 230 28 252 62 230 32 179 46 163 20 177 69 
M 159 16 197 13 149 42 160 19 156 48 184 11 

38 galactonic acid 
G 192 54 329 8 220 28 394 102 355 12 320 8 
V 295 18 313 21 227 11 161 10 174 20 219 26 
M 382 28 308 80 253 46 378 66 237 52 263 25 

39 digalacturonic 
acid 

G 265 5 286 49 265 7 510 15 197 18 229 31 
V 204 24 153 23 205 51 312 24 158 13 178 23 
M 169 16 169 14 177 28 144 27 177 62 151 26 

40 
dehydroascorbic 

acid 
 

G 5816 175 2113 50 3829 35 3060 146 9148 98 2546 67 
V 1787 27 686 15 1876 80 503 37 1848 51 799 113 
M 1593 24 540 39 1271 13 1025 25 1663 37 849 104 

Continued on next page -  * G, Green pea; V, veraison; M, Mature!
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Table 1. Changes in the metabolome of grape berries from Alvarinho, Arinto and Padeiro de Basto from North and South Portugal as assessed by GC-TOF-MS. 
TCA cycle and other acids 

 Metabolite 

Stage* 

 Alvarinho   Arinto   Padeiro de Basto  
North South South North North South 

mean SD mean SD mean SD mean SD mean SD mean SD 

41 2-ketogulonic acid 
G 11259 104 18726 91 3948 54 7786 64 5951 69 9033 70 
V 188 22 605 54 169 15 313 25 158 56 166 26 
M 146 21 143 19 146 31 139 43 187 49 131 2 

42 
3,4-

dihydroxybenzoic 
acid 

G 1244 40 1409 78 1812 7 1492 77 2327 23 1002 22 
V 467 5 401 16 618 91 464 83 335 55 386 46 
M 342 22 298 43 255 39 222 46 245 48 348 48 

43 
3-

hydroxypropionic 
acid 

G 915 177 245 12 260 11 548 86 462 19 369 39 
V 446 18 159 4 528 66 551 40 415 22 544 50 
M 122 3 486 49 338 66 640 14 189 82 126 10 

 
 
 

Amino acid and nitrogen metabolism 

 Metabolite 

Stage* 

 Alvarinho   Arinto   Padeiro de Basto  
North South North South North South 

mean SD mean SD mean SD mean SD mean SD mean SD 

44 citrulline 
G 186 32 167 27 156 13 124 18 157 20 158 20 
V 1996 60 516 17 957 344 685 47 714 55 361 21 
M 1529 127 1542 99 1141 281 802 223 607 177 675 79 

45 ethanolamine 
G 20514 130 20992 491 22239 439 23266 2039 17721 346 16600 369 
V 4697 121 3752 65 6126 184 7136 77 4917 96 5360 127 
M 1644 161 4579 224 2854 480 4591 319 2545 606 5155 167 

46 hydroxylamine 
G 200 105 160 15 164 54 137 45 207 128 120 24 
V 515 77 135 26 343 184 249 85 166 59 125 22 
M 360 175 462 38 170 68 151 33 131 61 327 121 

47 ornithine 
G 140 13 112 21 128 12 115 23 164 66 134 24 
V 1049 152 300 79 600 99 407 127 433 60 173 14 
M 768 83 254 123 479 145 303 66 232 59 149 15 

Continued on next page -  * G, Green pea; V, veraison; M, Mature!
 
 
 



 

 

!

11
3 

 
 

Table 1. Changes in the metabolome of grape berries from Alvarinho, Arinto and Padeiro de Basto from North and South Portugal as assessed by GC-TOF-MS. 
Amino acid and nitrogen metabolism 

 Metabolite 

St
ag

e*
 

 Alvarinho   Arinto   Padeiro de Basto  
North South North South North South 

mean SD mean SD mean SD mean SD mean SD mean SD 

48 oxoproline 
G 17219 5 21098 318 12582 188 6712 194 12335 130 7468 118 
V 2656 58 1103 62 2561 166 2879 70 2026 83 850 83 
M 2481 114 994 37 2249 462 1363 360 2355 624 972 50 

49 putrescine 
G 2792 141 2827 42 4563 41 3622 207 8472 132 3879 111 
V 829 66 533 26 863 24 881 34 1112 78 963 145 
M 754 108 447 273 916 233 557 193 979 139 1453 70 

50 sarcosine 
G 1380 244 1635 185 1516 529 1753 432 1692 183 1531 346 
V 1986 167 1866 126 1861 167 1697 52 1629 165 1573 225 
M 1727 21 1643 27 1760 349 1767 52 1734 490 1452 125 

51 shikimic acid 
G 35818 1329 52362 1025 89963 359 148681 33501 87738 131 38109 283 
V 2487 6 4440 48 1546 106 2314 139 1782 46 3358 92 
M 5855 196 4162 111 16603 596 15191 203 5359 225 5305 294 

52 urea 
G 504 64 141 25 129 40 133 86 404 11 121 23 
V 525 34 408 48 505 47 494 58 296 129 133 18 
M 412 37 119 22 618 131 487 23 467 146 606 23 

Continued on next page -  * G, Green pea; V, veraison; M, Mature!
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Table 1. Changes in the metabolome of grape berries from Alvarinho, Arinto and Padeiro de Basto from North and South Portugal as assessed by GC-TOF-MS. 
Amino acids 

 Metabolite 

Stage* 

 
Alvarinho 

  
Arinto 

  
Padeiro de Basto 

 North South North South North South 
mean SD mean SD mean SD mean SD mean SD mean SD 

53 proline 
G 1434 56 1483 57 953 59 1400 82 997 136 1123 163 
V 5467 52 1792 4 2629 67 3179 107 2368 161 1725 36 
M 10926 465 6028 66 9604 902 9382 169 5992 972 4482 545 

54 asparagine 
G 968 54 1174 11 525 78 835 549 888 20 930 58 
V 362 22 522 15 274 3 329 38 550 36 296 29 
M 255 24 225 89 334 81 232 58 303 61 207 7 

55 glutamine 
G 23201 561 21806 136 13598 190 6953 589 14111 1243 8558 195 
V 2480 53 894 85 2012 30 1884 44 1169 52 452 19 
M 793 29 600 28 1633 81 483 25 744 42 489 78 

56 glycine 
G 765 8 869 50 728 42 852 77 560 9 625 53 
V 654 64 341 39 642 69 807 39 420 10 231 25 
M 466 13 459 34 718 119 600 55 368 93 496 14 

57 isoleucine 
G 494 41 642 22 440 40 498 71 467 37 461 79 
V 994 40 497 16 823 59 849 34 526 87 259 30 
M 1180 10 950 63 909 61 593 20 458 96 347 28 

58 leucine 
G 660 6 1135 69 813 59 721 480 688 77 702 101 
V 1628 7 557 46 959 44 1014 15 1819 124 113 4 
M 2093 52 1642 91 1322 81 964 42 1213 125 505 29 

59 phenylalanine 
G 980 36 911 11 1315 68 1550 101 637 32 635 97 
V 848 22 432 24 563 31 1284 80 2173 1271 866 175 
M 1100 16 822 95 524 83 658 14 812 107 371 90 

60 serine 
G 7917 2 8862 52 5880 149 7073 954 7108 399 7208 405 
V 4708 126 1757 91 3329 167 3021 90 1650 104 829 65 
M 3335 90 2162 4 2973 303 1920 91 1277 70 719 59 

61 threonine 
G 2294 286 2300 162 1834 18 2611 100 1633 144 1875 179 
V 3947 128 1904 15 3163 76 2124 36 1657 286 828 214 
M 4413 60 3188 242 4778 303 3650 6 1510 313 1125 121 

62 tryptophan 
G 938 128 888 38 436 17 760 9 1550 80 680 37 
V 2807 107 1557 43 2903 136 2643 74 1913 77 1467 108 
M 2323 76 1948 123 3343 106 2780 88 2081 70 1199 130 

Continued on next page -  * G, Green pea; V, veraison; M, Mature 
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Table 1. Changes in the metabolome of grape berries from Alvarinho, Arinto and Padeiro de Basto from North and South Portugal as assessed by GC-TOF-MS. 
Amino acids 

 Metabolite 

St
ag

e*
 

 
Alvarinho 

  
Arinto 

  
Padeiro de Basto 

 North South North South North South 
mean SD mean SD mean SD mean SD mean SD mean SD 

63 tyrosine 
G 555 107 697 63 600 4 719 2 556 26 560 37 
V 1981 77 515 58 1444 58 1138 62 1508 35 505 78 
M 2737 93 737 5 2073 156 1325 85 1196 21 504 93 

64 valine 
G 2202 171 2764 2 2092 35 2456 278 2050 14 1567 163 
V 2765 63 817 42 1451 19 1544 73 737 93 301 3 
M 3460 42 2449 90 1982 183 1595 105 1134 115 801 49 

 
 

 
Glyoxylate metabolism, signaling and others 

 Metabolite 

St
ag

e*
 

 
Alvarinho 

  
Arinto 

  
Padeiro de Basto 

 North South North South North South 
mean SD mean SD mean SD mean SD mean SD mean SD 

65 FAD 
G 1030 19 2556 93 1389 39 2232 556 1335 41 2324 115 
V 125 7 159 24 119 17 199 19 128 27 137 26 
M 119 11 124 13 131 29 137 11 134 17 109 20 

66 GABA 
G 29661 326 16129 292 16764 157 14141 1161 18342 592 12755 313 
V 13025 626 6981 121 14101 121 19185 402 11416 168 8625 387 
M 4639 25 11997 11 8746 1492 9419 465 6117 483 14786 103 

67 glyceric acid 
G 835 69 1259 43 133 4 752 69 228 190 510 13 
V 1371 61 1280 47 953 120 965 57 927 52 599 37 
M 106 11 250 227 148 23 111 9 145 29 110 27 

68 idonic acid NIST 
G 4796 174 6936 245 2279 36 4133 1037 3390 92 3462 49 
V 4355 176 5248 41 1324 43 880 77 1269 89 2005 51 
M 4475 126 5119 216 1180 255 1884 93 1350 110 1494 90 

69 phosphoric acid 
G 7020 705 9487 607 5164 232 8747 2214 3414 508 5175 388 
V 3612 171 3235 146 5004 212 6286 237 3639 373 4146 342 
M 3607 300 4950 91 4050 631 6103 302 4643 356 3546 205 

Continued on next page -  * G, Green pea; V, veraison; M, Mature 
 
 
!



Continued 

 

11
6 

 
Glyoxylate metabolism, signaling and others 

 Metabolite 

Stage* 

 
Alvarinho 

  
Arinto 

  
Padeiro de Basto 

 North South North South North South 
mean SD mean SD mean SD mean SD mean SD mean SD 

70 pipecolic acid 
G 525 70 633 105 159 37 134 12 200 32 206 19 
V 610 28 523 24 203 18 224 22 229 33 129 3 
M 681 34 402 24 206 39 205 13 316 35 184 19 

71 propane-1,3-diol 
NIST 

G 1061 57 1077 51 1046 71 1112 303 1025 42 1216 249 
V 1099 50 1022 83 1193 33 1144 139 1082 70 1129 66 
M 1070 69 1075 71 1198 240 1117 59 1200 112 1057 301 

72 quinic acid 
G 1402 163 2259 26 1146 42 2318 645 1031 46 944 58 
V 329 39 473 8 392 28 373 18 187 5 213 24 
M 220 7 216 16 257 62 389 15 153 43 165 18 

73 lyxose 
G 449 92 1117 1305 621 78 2554 2674 805 113 710 90 
V 439 54 353 69 724 211 824 83 542 601 807 130 
M 284 5 267 100 687 144 824 49 381 37 461 118 

74 ribose 
G 170 21 279 75 113 97 352 62 214 28 236 21 
V 74 38 151 6 195 17 182 19 176 12 129 60 
M 176 20 59 8 178 13 127 82 165 31 81 38 

75 1-monostearin 
G 111 25 138 26 146 8 113 5 127 39 107 3 
V 118 24 686 24 123 22 122 9 99 5 107 18 
M 120 7 128 14 115 23 114 15 123 66 150 18 

Continued on next page -  * G, Green pea; V, veraison; M, Mature 
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Table 1. Changes in the metabolome of grape berries from Alvarinho, Arinto and Padeiro de Basto from North and South Portugal as assessed by GC-TOF-MS. 
Oxidative stress 

 Metabolite 

St
ag

e*
 

 
Alvarinho 

  
Arinto 

  
Padeiro de Basto 

 North South North South North South 
mean SD mean SD mean SD mean SD mean SD mean SD 

76 dehydroascorbic 
acid 

G 5816 175 2113 50 3769 106 3060 146 8996 271 2546 67 
V 1727 106 686 15 1821 111 503 37 1904 103 837 104 
M 1593 24 540 39 1146 216 1025 25 1464 345 849 104 

77 threonic acid 
G 15350 23 24303 340 19867 216 28681 6722 16732 536 18807 237 
V 2487 6 4440 48 1546 106 2314 139 1782 46 3358 92 
M 699 9 1463 80 427 77 491 8 1097 253 805 71 

 
 
 

Lipid metabolism 

 Metabolite 

St
ag

e*
 

 
Alvarinho 

  
Arinto 

  
Padeiro de Basto 

 North South North South North South 
mean SD mean SD mean SD mean SD mean SD mean SD 

78 myristic acid 
G 295 0 335 22 323 19 285 43 307 9 347 9 
V 236 84 194 25 179 42 193 64 166 2 196 57 
M 193 23 312 65 221 71 241 21 227 44 160 13 

79 pelargonic acid 
G 944 14 486 4 372 3 744 209 778 73 645 82 
V 640 80 546 41 1012 73 1294 30 713 46 2199 158 
M 297 72 1492 43 528 194 1400 59 495 103 435 27 

80 palmitic acid 
G 2687 167 3023 74 2515 226 2511 47 2177 51 2656 160 
V 2147 234 2764 102 2645 64 2558 182 2897 185 2912 14 
M 1830 46 3330 212 2999 348 3314 546 3581 712 2747 60 

Continued on next page -  * G, Green pea; V, veraison; M, Mature 
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Table 1. Changes in the metabolome of grape berries from Alvarinho, Arinto and Padeiro de Basto from North and South Portugal as assessed by GC-TOF-MS. 
Secondary metabolism 

 Metabolite 

Stage* 

 Alvarinho   Arinto   Padeiro de Basto  
North South North South North South 

mean SD mean SD mean SD mean SD mean SD mean SD 

81 ethanolamine 
G 1272 1215 1409 78 1812 7 1799 535 2270 100 1002 22 
V 466 472 401 16 544 142 464 83 335 55 386 46 
M 342 22 298 43 255 39 222 46 245 48 348 48 

82 epicatechin 
G 1033 10 1054 53 1229 60 621 128 1770 55 557 19 
V 10669 218 8753 35 18150 93 32438 1444 5297 46 6176 100 
M 2296 62 1431 66 4036 549 2208 65 1667 146 674 83 

83 catechin 
G 27779 1540 36209 42 35653 305 23711 807 44757 806 18740 73 
V 25011 810 22951 23 16303 81 30378 838 4782 59 8388 57 
M 5360 30 3821 50 2621 416 2237 75 1236 123 599 27 

84 caffeic acid 
G 270 57 492 33 278 32 454 113 523 74 431 35 
V 207 10 161 28 230 70 230 61 217 20 178 12 
M 175 21 152 19 152 40 152 29 239 84 145 16 
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7.2 VvHT1 coding region 

>(gi|4138723:1-133, 237-559, 1424-2053, 2140-2613) Vitis vinifera hexose transporter 1 gene, 

 

ATGCCGGCTGTCGGAGGCTTTGATAAGGGTACCGGGAAGGCCTATCCCGGTAACCTTACTCCTTACGT
GACTGTGACATGTGTTGTTGCAGCCATGGGTGGTTTGATCTTTGGTTACGATATTGGAATTTCTGGTG
GGGTCACGTCCATGGCTCCGTTCTTGCAGAAGTTCTTCCCTTCTGTGTACCGGAAGGAGGCTTTGGAC
AAGTCCACGAATCAGTACTGTAAGTTTGATAGTGAGACACTGACGTTGTTCACATCGTCGCTTTATCT
GGCTGCTCTTCTCTCGTCGCTGGTGGCCGCGACGGTGACCCGAAAGTTCGGGAGAAAGCTGTCAATGC
TATTCGGAGGACTGCTCTTTTGTGCCGGTGCCATCATCAATGGCGCTGCTAAAGCTGTTTGGATGTTG
ATTGTCGGTCGTATACTGCTGGGTTTTGGTATTGGGTTTGCCAATCAGTCTGTGCCGCTCTACCTCTC
TGAGATGGCTCCATACAAATACAGAGGAGCCCTCAACATTGGCTTCCAATTATCCATCACAATTGGTA
TTCTTGTGGCCAATATATTGAACTACTTCTTTGCAAAGATCAAGGGGGGTTGGGGATGGAGGTTGAGC
TTGGGTGGCGCTGTGGTCCCTGCGCTCATCATCACCGTCGGGTCCCTTGTCCTCCCGGACACACCCAA
CTCCATGATCGAGCGTGGGCAGCACGAGGGAGCGAAAACAAAACTGAGAAGAATCCGGGGTGTCGATG
ATGTTGAAGAGGAATTCAATGACCTTGTTGTAGCCAGTGAAGCCTCCAAGCTTGTTGAGCACCCCTGG
AGAAATCTCTTGCAGAGGAAGTACAGGCCACACCTCACAATGGCCATCCTCATTCCCTTCTTCCAGCA
GCTTACCGGGATTAATGTCATTATGTTTTATGCCCCTGTTCTCTTCAAAACCATTGGCTTTGCGGATG
ATGCTTCCCTGATGTCTGCTGTGATAACCGGCGGGGTTAATGTTCTTGCAACCATAGTTTCAATCTAC
GGTGTTGATAAGTGGGGAAGAAGGTTTCTTTTCCTTGAGGGTGGCACTCAAATGCTCATATGTCAGGT
TATTGTGGCAACGTGCATTGGTGTTAAATTCGGAGTGGATGGAGAACCTGGTGCTTTGCCCAAGTGGT
ATGCCATAGTTGTGGTGCTGTTCATTTGCGTCTATGTTTCAGGGTTTGCATGGTCCTGGGGTCCTCTA
GGTTGGTTGGTCCCTAGTGAAATTTTCCCCCTGGAAATCCGATCTGCTGCACAGAGTGTAAACGTCTC
CGTTAACATGTTTTTCACATTCATCATAGCCCAAATCTTCTTAAATATGCTGTGTCACATGAAGTTTG
GTTTGTTCCTCTTCTTTGCCTTCTTTGTGGTGGTGATGTCCTTCTTCATTTACTTCTTCTTGCCTGAG
ACCAAGGGCATCCCAATTGAAGAGATGGCTGAAGTATGGAAAAGTCACTGGTTCTGGTCCCGGTATGT
CAACGATGGTTCTTACAGCGGCGTCGAACTGGTCAAGGAAAACTACCCTGTTAAGAATGTATGA 
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7.3 VvHT6 coding region  

>gi|61613104|gb|AY861386.1| Vitis vinifera hexose transporter 6 (HT6) mRNA, complete cds 

GTGGCATGAAATTCTCCAGAACTCAACGGTTACGCTTGATTCTTATTTGTCTAGTTCTCCAGATTCGC
CCTCAACACACTCTCTTTCTCGAGCCCCCTTCCCTGATTTTGGTGTCTTCAAAGAGGTTAGGCCAAGA
TTGGGGGTAAAGTTGATTGCTGAGAAACCATGAACGGAGCTGTGCTAGTGGCTATTGCAGCCGCGATT
GGTAACTTTCTGCAAGGATGGGATAATGCTACTATTGCAGGGGCTATTGTTTACATAAAGAAGGAGCT
TGATTTGGAGAGCACTGTAGAAGGGCTTGTTGTGGCTATGTCCCTCATTGGAGCCACATTGGTCACAA
CATGCTCAGGAGCCATATCGGATTGGATTGGTCGGCGTCCAATGTTAATAGTCTCATCAATGCTTTAT
TTTATCAGTGGTTTGATAATGTTATGGTCACCAAATGTCTATGTTCTACTTATAGCTAGGTTACTTGA
TGGATTTGGAATTGGTCTAGCAGTTACTCTTGTTCCCATTTATATATCTGAGACTGCCCCAGCAGATA
TAAGGGGATCATTAAATACTCTTCCACAATTCACTGGTTCTGGTGGAATGTTTTTATCATACTGCATG
GTTTTTGGGATGTCATTGTTAAGCTCACCAAGCTGGAGGTTAATGCTTGGGATTCTTTCAATTCCATC
CCTTCTTTATTTTACTTTGACAGTATTTTACTTGCCCGAATCCCCACGGTGGCTTGTAAGTAAAGGAA
GGATGGTTGAGGCTAAAAAGGTTCTTCAAAGATTACGTGGCAGGGAAGATGTTTCAGCTGAAATGGCT
TTGCTGGTTGAGGGTCTTGGGATTGGGGGTGAAACATCCATAGAAGAGTACATAATAGGGCCAACTGG
TGAGCTTACTGAAGATCAGGATCCAGATGCTGTGAAAGACCAAATCAAGTTATATGGACCTGAAGCTG
GCCTCTCCTGGGTTGCCAAACCTGTTCCTGGTGGACAGAGTACCCTTAGTCTTGTGCCTCGCCAAGGA
AGCTTGGCAACCCAGACTCTACCTCTTATGGATCCTCTCGTCACTCTGTTCGGTAGTGTCCATGAAAA
GCCCCCTGAAACGGGAAGTATGCGAAGCATGCTTTTTCCCAATTTTGGCAGCATGTTCAGTACAGCAG
ATCCTCAGATTAAAACTGAACAGTGGGATGAAGAGAGCCTACAGCAGGAAGGTGAAGACTACGCATCA
GATGGTGGGGGAGACTCTGACCATGATTTGCAAAGTCCATTAATATCTCGCCAGACAAGCAGCATGGA
AAAGGACATGGTGCCCCCTCCTTCCCATAGCAGCATAATGAGCATGAGGCGTCATAGCAGTCTGATGC
AAGGAACTGCTGGTGAGGCAGCTGGTGGTATGGGAATTGGTGGTGGTTGGCAGTTGGCATGGAAATGG
TCTGAGAGAGAAGGTGAAGATGGAAAGAAGGAAGGAGGATTTAAAAGGATTTATTTGCATGAGGAGGG
AGTCCCCGGATCCCGACGTGGGTCTCTTGTTTCACTTCCTGGTGGAGATGTTCCTGCAGAGGGCGATT
ATATCCAGGCTGCTGCTCTAGTGAGTCAGCCTGCTCTTTACTCTAAGGAGCTTATGGATCAGGATCCG
GTTGGACCTGCAATGGTTCACCCAGCTGAAACTGCTTCAAGAGGGCCA 
ATGTGGGCTGCTCTTCTTGAACCAGGAGTCAAGCATGCATTGTTTGTCGGGGCCGGAATTCAGATACT
TCAGCAGTTCTCTGGCATCAATGGAGTTTTGTACTACACTCCTCAGATTCTTGAGGAGGCAGGTGTTG
AAGTTCTTCTCGAGAGCTTGGGGCTTGGTACGGAGTCTGCATCGTTCCTTATCAGTGCATTCACAACC
CTCTTGATGCTTCCTAGTATAGTCGTCGCCATGAAGCTCATGGATATCGTTGGCAGAAGGCGCATGCT
GCTCACTACAATTCCTGTGCTGATCGTCACACTTCTCGTCCTAGTCATCGGCGACCTTGTGACCACGA
CCACAGTGATCCATGCAGCGATCTCTACTGCATGTGTTATCATCTATTTCTGCTGTTTTGTGACGGCG
TATGGACCAATCCCTAACATCCTCTGCTCTGAGATCTTCCCCACAAGGGTCCGAGGCCTGTGCATTGC
CATATGCGCTCTAGTTTACTGGATTGGGGACATCATCGTCACCTATACGTTACCGGTGATGCTGACTT
CAATCGGGTTGACGGGTATCTTTGGAATTTATGCAGTTGTGTGTGTGATTTCTTGGGTGTTTGTGTTC
TTGAAGGTGCCCGAGACAAAAGGCATGCCACTTGAAGTGATTGCTGAGTTCTTTGCAGTTGGAGCAAG
GCAGGTTACTGCAGCAAAGAATGACTGAATGCGGGGGAAGCTTTGAACACTTTGTTGGGGGATTCTGC
CCTTCTTCC 
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