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Pseudomonas aeruginosa and Candida albicans are disparate microbial species, but both are known to be opportunistic
pathogens frequently associated with nosocomial infections. The aim of this study was to provide a better understanding of
the interactions between these microorganisms in dual-species biofilms. Several bacteriophage-resistant P. aeruginosa phe-
notypes have been isolated and were used in dual-species mixed-biofilm studies. Twenty-four and 48 h mixed-biofilms were
formed using the isolated phenotypes of phage-resistant P. aeruginosa and these were compared with similar experiments
using other P. aeruginosa strains with a defined lipopolysaccharide (LPS) deficiency based on chromosomal knockout of
specific LPS biosynthetic genes. Overall, the results showed that the variants of phage-resistant P. aeruginosa and LPS
mutants were both less effective in inhibiting the growth of C. albicans in mixed-biofilms compared to the wild-type strains
of P. aeruginosa. Conversely, the proliferation of P. aeruginosa was not influenced by the presence of C. albicans. In con-
clusion, the ability of strains of P. aeruginosa to inhibit the formation of a biofilm of C. albicans appears to be correlated
with the LPS chain lengths of phenotypes of P. aeruginosa, suggesting that LPS has a suppressive effect on the growth of

C. albicans.
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Introduction

Bacteria and fungi co-inhabit a wide variety of environ-
ments and the interactions between them can result in
substantial medical and economic impacts (Hogan &
Kolter 2002; Wargo & Hogan 2006). Pseudomonas aeru-
ginosa, a Gram-negative bacterium, and Candida albi-
cans, a dimorphic fungus, are two important
opportunistic pathogens frequently identified as the major
causes of nosocomial infections (Pierce 2005; de Bentz-
mann & Plésiat 2011). P aeruginosa is the etiologic
agent for many severe nosocomial infections including
bacteremia, wound infections, pneumonia, urinary tract
infections, and intra-abdominal sepsis (Van Delden & Ig-
lewski 1998; Christian van 2007; Driscoll et al. 2007;
Mittal et al. 2009). C. albicans is known to cause a wide
variety of both superficial and severe systemic diseases
like infections of the skin, oral cavity and esophagus,
gastrointestinal tract, urogenital and vascular systems
(Molero et al. 1998; Calderone & Fonzi 2001). Co-infec-
tion by P. aeruginosa and C. albicans is not uncommon,
particularly in the cases of respiratory tract infections in
critically ill patients who are using mechanical ventila-
tion devices. These infections are frequently associated
with the formation of a microbial biofilm inside the
endotracheal tubes (Nseir & Ader 2009). Recent studies

revealed pathogenic interactions between the two
microorganisms, whereby the morphology and virulence
of C. albicans were significantly affected by the presence
of P aeruginosa. A quorum-sensing molecule, 3-oxo-
C12 homoserine lactone, produced by P aeruginosa,
apparently influences the development of the filamentous
form of C. albicans. Intriguingly, while P. aeruginosa
forms a dense biofilm on filamentous C. albicans that
leads to the killing of the fungus, this bacterial species
neither binds to nor kills yeast-forms of C. albicans
(Hogan & Kolter 2002; Hogan et al. 2004; McAlester
et al. 2008; Nseir & Ader 2009).

Bacteriophages (phages) are viruses that specifically
infect and lyse bacteria. Frequently, during bacterial
infection, there is an increase in phage-resistant mutants
and, since the lipopolysaccharides (LPS) are frequently
identified as phage receptors in a bacterial host, phage
resistance can be linked to changes in the chain length
of LPS (Filippov et al. 2011). It has also been reported
that the LPS from various bacterial species exerted vari-
able effects on the inhibition of biofilms of C. albicans
(Bandara et al. 2009; Bandara, Lam, et al. 2010; Bandara
et al. 2013), indicating that LPS plays a critical role in
suppressing the proliferation of the fungal pathogen in
biofilm communities of mixed species.
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The inhibition of biofilms of C. albicans due to the
presence of P. aeruginosa is not clearly defined. The
present work aimed to provide a better understanding of
the interaction between P. aeruginosa and C. albicans in
dual-species biofilms and, therefore, phage-resistant
phenotypes of P. aeruginosa and LPS mutants were used
to evaluate their influence on the ability of C. albicans
to form biofilms.

Materials and methods
Bacteria, fungi, bacteriophage and culture conditions

The Pseudomonas and Candida strains used in this work
are listed in Table 1. All strains were grown at 37 °C in
Yeast Peptone Dextrose (YPD) medium, which is
composed of 10 g 17! of yeast extract (Merck), 20 g I™' of
peptone (Merck) and 20 g 1! of dextrose (Merck). Solid
YPD medium also contained 1.2% w/v of agar (Merck)
and the soft agar top-layer contained 0.6% w/v of agar.
Bacteriophages, philBB-PAA2 and philBB-PAP21, were
isolated from hospital effluents provided by Hospital de
Sdo Jodo (Porto, Portugal) (Pires et al. 2011). All
procedures related to the isolation and production of
phages were performed with Tryptic Soy Broth (Merck)
or Tryptic Soy Agar (TSA, Merck). To obtain lysates from
bacterial cultures, sonication using a medium-sized probe
(Ultrasonic Processor) was performed for 5 min at 40 W.

Production and concentration of bacteriophage

The phages were produced in 250 ml T-flasks and the
phage lysates were concentrated and purified according

Table 1. P aeruginosa and C. albicans strains used in this study.

to the protocol described by Sambrook and Russell
(2001). Briefly, a top-agar layer, containing 3 ml of the
phage solution and 3 ml of the bacterial culture grown
overnight in 90 ml of soft agar, was added to T-flasks
with a thin layer of TSA. After solidification, the
T-flasks were incubated at 37 °C overnight. Following
incubation, 90 ml of SM Buffer (5.8 g 17! NaCl, 2 g I
MgS04.7H20, 50 ml 1"' 1 M Tris-HCI pH 7.5) were
added to the T-flasks and incubated, under shaking
conditions at 5 °C for a minimum of 5 h. The lysate was
concentrated with PEG 8000 and then purified with
chloroform. The phage solutions in SM Buffer were
stored at 4 °C.

PFU titration of the stock solution

Plaque forming unit (PFU) counting was performed
according to the double agar overlay technique (Kropin-
ski et al. 2008). Briefly, 100 pl of diluted phage solution,
100 pl of bacterial culture, and 3 ml of soft agar were
mixed into a Petri plate containing a thin layer of TSA.
The plates were incubated overnight at 37 °C and then
the PFUs were counted.

Formation of biofilms

Biofilms of single species were formed on 24-well
microplates containing 1 ml of YPD medium and 10 pl of
cellular suspension with an optical density at 600 nm
(ODggp) of 1.0, which corresponds to ~1.9 x 10° CFU ml !
for P aeruginosa ATCC 10145, 1.1 x 10° CFU ml™" for P
aeruginosa PAO1 and 1.1 x 10’ CFU ml™! for C. albicans

P, aeruginosa and C. albicans strains

Properties and remarks

Source/reference

C. albicans CECT 1472

P. aeruginosa ATCC 10145

P aeruginosa PAO1

P aeruginosa ATCC 10145 M1 to

P aeruginosa ATCC10145_M6 phiBB-PAA2

Knockout isogenic LPS mutants
derived from P. aeruginosa PAO1:
(1) wbhpL Mutant

(2) rmlC Mutant
truncated outer core

(3) wzy Mutant

(A+B+ LPS phenotype) wild-type strain, serotype O6

(A+B+ in LPS phenotype) wild-type strain, serotype O5

Isolates from 24 h of mixed biofilms infection with phage

(A—B-), deficient in the initial glycosyltransferase

affecting both B-band and A-band

(A—B-), defective in TDP-L-rhamnose biosynthesis, with

(A+B-), deficient in O-antigen polymerase for B-band

Coleccion Espaiiola de
Cultivos Tipo

American Type of
Culture Collection
University of Guelph,
Canada

This study
University of Guelph,
Canada

Rocchetta, Burrows,
et al. (1998)

Rahim et al. (2000)

de Kievit et al. (1995)

biosynthesis, produces core-plus-one O-repeat unit

(4) rmd Mutant

(A—B+), deficient in GDP-D-rhamnose biosynthesis
becomes A-band minus, not affecting B-band

Rocchetta, Pacan,
et al. (1998)




CECT 1472. Biofilms dual species were also formed in
24-microtitre plates in which the wells, containing 1 ml of
YPD medium, were inoculated with 10 ul of each cellular
suspension (ODggo of 1.0). Both biofilms of single and
dual species were formed for 24 and 48 h with the renewal
of medium every 12 h. The plates were incubated at 37 °C
with shaking at 120 rpm in an orbital shaker.

Crystal violet assay

For characterization of biofilms, the total biomass attached
to each well was measured using the crystal violet (CV)
assay as previously described (Silva et al. 2009; Pires
et al. 2011). Briefly, after the wells were washed with a
saline solution (0.9% NaCl (Merck) in distilled water),
methanol (Merck) fixation of the biomass of each well
was done, followed by CV (1% v/v in water, Merck)
staining and acetic acid (33% v/v, Merck) elution. The
eluted stain aliquots from each well were placed in a
96-well microtiter plate and absorbance at 570 nm (As7g)
was determined by using an ELISA plate reader.

XTT reduction assay

Quantification of the cellular activity of the biofilm
was measured through a reduction assay with
2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylami-
no)carbonyl]-2H-tetrazoliumhydroxide (XTT) using a
previously described method (Silva et al. 2010; Pires
et al. 2011). The wells of a 24-well microtiter plate were
washed with saline solution (0.9% NaCl) and later 1 ml
of XTT solution (200 mg 17", Sigma) containing PMS
(20 mg 1™!, Sigma) was added into each well. The plates
were incubated at 37 °C for 3 h in the dark and then the
absorbance at 490 nm (Ay9) was read with an ELISA
plate reader in 96-well microtiter plates.

Scanning electron microscopy of the biofilms

Biofilms were also analyzed by scanning electron
microscopy (SEM; S-360, Leo, Cambridge, USA) fol-
lowing standard preparative techniques. Briefly, biofilms
formed on slides cut from the bottom of 24-well micro-
plates were washed with saline solution, dehydrated with
alcohol (20% ethanol for 10 min, 50% ethanol for
10 min, 70% ethanol for 10 min, 95% ethanol for
10 min and 100% ethanol for 20 min) and were allowed
to dry prior to coating with gold.

Infection of biofilms

To investigate the pattern of growth recovery of the
Candida biofilm, once the Pseudomonas biofilm cells
were lysed, phages specific for the P aeruginosa strains
to eliminate the bacterial cells from the dual-species

biofilm were used. For this, dual-species biofilms
(P. aeruginosa ATCC 10145 + C. albicans CECT 1472
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and P. aeruginosa PAO1 + C. albicans CECT1472)
were, respectively, infected with previously characterized
phages, philBB-PAA2 (P. aeruginosa ATCC 10145 host)
and philBB-PAP21 (P. aeruginosa PAO1 host) (Pires
et al. 2011).

After biofilm formation for 24 h, all the medium and
planktonic bacteria were removed from each well and the
wells were washed twice with fresh YPD medium. After-
wards, 500 pl of fresh YPD medium and 500 pl of phage
solution or SM bulffer, in the case of control experiments,
were added. The multiplicity of infection used in infection
of biofilms was 1. The plates were incubated under
agitation (120 rpm) at 37 °C and samples were taken after
2, 6 and 24 h infection of biofilm for counting the colony
forming units (CFU) and PFUs (number of phages
attached and released from biofilms).

Counts of CFU and PFU in the attached bacteria,
yeast or phages

For both mono- and dual-species biofilms, the microdrop
technique was used to count the CFU that correspond to
the number of viable cells present in the biofilms. First,
the wells of the microplates were washed twice with
saline solution (0.9% NaCl) to remove unattached micro-
organisms and then, 1 ml of fresh saline solution was
added to each well. After this, the biofilm was scraped
with a scraper and the samples were taken, diluted in sal-
ine solution and one drop (10 pl) was placed into a Petri
plate and allowed to run down the plate (Silva et al. 2010;
Pires et al. 2011). Titers of P. aeruginosa were determined
by plating on YPD solid medium supplemented with
amphotericin B (10 pg ml™") in order to suppress fungal
growth and C. albicans was plated on YPD solid medium
supplemented with tetracycline (50 ug ml™') to suppress
the growth of P. aeruginosa. The plates were incubated at
37 °C for 16 to 18 h and then the CFUs were counted.

To determine the number of phages attached to the
biofilms, the Small Drop method with some modifica-
tions was used (Mazzocco et al. 2008). Briefly, biofilms
were washed, resuspended in 1 ml of fresh saline
solution and scraped as described for CFU counts. Then,
samples were taken, diluted in SM buffer and 20 pl of
the diluted phage solution were added to 20 pl of the
host solution grown overnight and was incubated for 15—
20 min in order to allow the phage to bind the host.
After this, 20 pl of each sample were placed in an agar
plate and allowed to dry. The plates were incubated
overnight at 37 °C to allow for the PFU counts.

Preparation of lysates of P. aeruginosa
Cultures of P. aeruginosa ATCC 10145 were infected

with phage philBB-PAA2 for 24 h. The culture was
centrifuged (9,000 x g, 10 min, 4 °C), the supernatant
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was collected, and the lysates were filtered (0.22 pum) to
remove all non-lysed cells. The filtered lysates were
applied to 24 h old biofilms of C. albicans for the same
24 h conditions as used in the assays for phage infection
of dual-species biofilms.

Isolation of phage-resistant phenotypes of P. aeruginosa

After infection of dual-species biofilm with phage phi-
IBB-PAA2 for 24 h, several colonies of P. aeruginosa
were picked and isolated. Then, the isolated colonies
were tested for their susceptibility to the phages used in
this study — philBB-PAA2 and philBB-PAP21. In total,
six phenotype variants, named as P aeruginosa
ATCC M1 to P. aeruginosa ATCC M6 were isolated
(these strains are described as M1-M6).

Preparation of LPS

The samples of bacterial LPS were prepared according
to the protocol described by Hitchcock and Brown
(H&B) (Hitchcock & Brown 1983). Briefly, 1 ml of a
bacterial culture at ODgoy of 0.45 was centrifuged
(1 min, 10,000 x g) and the pellet was suspended in
250 ul of the lysis buffer (2% w/v SDS, 4% v/v
2-mercaptoethanol, 10% v/v glycerol, 1.0 M Tris—HCI
pH 6.8, bromophenol blue for colour). The lysates were
heated at 100 °C for 30 min, 1.5 pl of 20 mg ml™'
proteinase K (Sigma) were added to them, they were
incubated overnight at room temperature, and centrifuged
for 1 min at 10,000 x g.

SDS-PAGE Western immunoblotting of bacterial LPS

Acrylamide running gels at 12% were prepared accord-
ing to a modified Laemmli procedure with resolving gels
devoid of SDS (Laemmli 1970). Three pl samples of
H&B LPS, except for the O6 B-band blot in which the
sample used was only 1 pl, were loaded on the acrylam-
ide gel and run at 150 V for 50 min. Blotting was per-
formed for 60 min at 200 mA. Skimmed milk (5%) in
PBS was used to block the nitrocellulose (NC) blots
(Rocchetta & Lam 1997). Primary monoclonal antibodies
(mAb) specific against P. aeruginosa LPS were from cell
lines of mouse hybridoma, and the supernatants of the
culture of these were used undiluted as described previ-
ously (Emara et al. 1995) to incubate with the NC blots
overnight at room temperature. The mAb used included
MF15-4 (serotype OS5 B-band specific), MF83-1
(serotype O6 B-band specific), N1F10 (A-band specific),
5¢-101 (outer-core specific), and 5c-7-4 (inner-core spe-
cific). Secondary antibodies used were goat anti-mouse
Fab,-alkaline phosphatase conjugated and incubated at
room temperature for 60 min. The blots were developed
with the BCIP/NBT as per the manufacturer’s protocols

(Sigma). The LPS banding patterns were visualized using
the ultrafast silver nitrate-staining method that was
described previously (Fomsgaard et al. 1990).

Results
Biofilm characterization

In mono-species biofilms of P. aeruginosa ATCC 10145,
P aeruginosa PAOI1, and C. albicans CECT 1472,
respectively, no statistical differences could be discerned
in each of these cultures between cultures of 24-48 h
biofilms in terms of viable cells (p > 0.05) and total bio-
mass (p > 0.05) (Figure 1A and B). The analysis of the
metabolic activity through XTT reduction assays showed
that biofilms of both 24 and 48 h P. aeruginosa ATCC
10145 exhibited similar activities while biofilms of
P aeruginosa PAO1 had lower metabolic activity after
48 h. On the contrary, 48 h old biofilms of C. albicans
appeared to be metabolically more active than the 24 h
old biofilms (Figure 1C).

In comparison with mono-species biofilms of
C. albicans (Figure 1A), the formation of mixed biofilms
showed that P. aeruginosa caused a significant inhibition
of proliferation of C. albicans. This inhibition of
C. albicans was greater in the presence of P. aeruginosa
ATCC 10145 which resulted in ~2- and 3-log reduction
in the number of viable cells of C. albicans in 24 and
48 h old biofilms (Figure 1A), respectively, than in the
presence of P aeruginosa PAO 1 strain. However,
there was no inhibition of C. albicans in a planktonic
co-culture with P. aeruginosa, since both microorganisms
showed similar growth rates when compared to their
respective mono-species cultures (data not shown).
Neither of the two wild-type strains of P. aeruginosa
was influenced by the presence of C. albicans, since the
CFU of the viable cells of P. aeruginosa present in dual-
species biofilms were similar to the numbers observed in
the mono-species biofilms of P. aeruginosa (Figure 1A).
The total biomass in dual-species biofilms was lower in
the 48 h biofilms; this is due to the reduction observed
in the number of cells of C. albicans (Figure 1B).
However, there was no statistical difference in the meta-
bolic activity between 24 and 48 h-old mixed biofilms
(Figure 1C).

Examination of the biofilms by SEM showed that
there was a clear reduction in the numbers of cells of
C. albicans 1in dual-species biofilms compared to
mono-species biofilms of C. albicans biofilms (Figure 2).
Furthermore, on examining the 48 h-old dual-species
biofilms formed by P aeruginosa ATCC 10145 and
C. albicans CECT 1472, it was found that the biofilm of
Pseudomonas covered the entire surface even masking a
few cells of C. albicans. Whereas in the biofilms formed
by P. aeruginosa PAO1 and C. albicans CECT 1472, the
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Figure 1. Quantitative assessments of the growth of biofilm

of single (S) and mixed (M) cultures. Mono-species biofilms
are those of P aeruginosa ATCC 10145 (PA ATCC), PAOL1
(PA PAOL1), and C. albicans CECT 1472 (CA), respectively.
Dual-species biofilms are composed of CA with PA ATCC or
PA PAOI. Quantitative measurements were made at 24 h
(black bar) and 48 h (grey bar). (A) Number of viable cells
present in the biofilms; (B) biomass quantification by
measuring the intensity of CV stain at Asyg; (C) evaluation of
the metabolic activity of the biofilm by XTT reduction assay
by making measurements at Ajgo. Standard deviations are
based on two independent experiments, each being performed
in triplicate. Slgmﬁcantly different (p < 0.05) from the number
of cells in mono-species biofilms.

Candida cells were not covered by Pseudomonas. The
results obtained clearly showed that P aeruginosa
inhibited the formation of biofilms of C. albicans.

Infection of biofilms with phage

Both the phages, philBB-PAA2 and philBB-PAP21, can
be considered effective against their target Pseudomonas
cells in the dual-species biofilms, achieving an ~2- and
1.5-log reduction, respectively, in the number of viable
cells of P. aeruginosa, 6 h post infection (Figure 3). As
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expected, the reduction in the mixed biofilms of P. aeru-
ginosa caused a reciprocal increase in the amount of
cells of C. albicans. However, at 24 h post infection of
the mixed biofilms, an increase in the number of viable
cells of P. aeruginosa, ~1.5 log for P. aeruginosa ATCC
10145 strain and 1 log for P aeruginosa PAO1, was
observed as compared to the CFU numbers 6 h post
infection (Figure 3A and B). This suggests that the cells
of P aeruginosa acquired resistance to the phages
between 6 and 24 h of infection of the biofilm. This
increase in P. aeruginosa at 24 h of phage infection did
not appear to interfere with the growth of the biofilm of
C. albicans and accordingly a similar increase in the
number of C. albicans was observed. An increase of 0.5
and 1 log in the CFU of C. albicans in the presence of
P aeruginosa PAO1 and ATCC 10145, respectively, at
the 24 h time point was observed as compared with the
initial time point of phage infection (Figure 3A and B).
This increase in the number of cells of C. albicans after
phage infection was also substantiated by the results
from SEM analysis (Figure 3E and F). Interestingly, after
infecting the dual-species biofilm with phage philBB-
PAA2, the cells of C. albicans changed from the yeast to
the filamentous form (Figure 3E). This morphological
change, observed at the 24 and 48 h time points, was
not observed in mono-species biofilms of C. albicans
(Figure 2A and 2B).

To understand the reasons behind non-inhibition of
the biofilms of C. albicans in the presence of cells of
P aeruginosa after 24 h of phage infection of the
dual-species biofilm, the hypothesis that the lysates of
P aeruginosa served to provide nutrients for the prolifer-
ation of C. albicans was tested. However, no increase in
the growth of biofilm of C. albicans could be discerned
due to the supplementation with the sonicated and phage
lysates of P. aeruginosa (Figure 4). The tested number
of wviable cells of C. albicans in the biofilms
supplemented with both types of lysates of P. aeruginosa
was 0.5 log lower than that in 48 h old biofilms of
C. albicans. Hence, these results do not support the
hypothesis stated above.

The hypothesis that the resurgence in the growth of
cells of C. albicans in the phage-infected dual-species
biofilms was caused by the emergence of mutant
phenotypes of phage-resistant P. aeruginosa, which are
not able to inhibit the proliferation of the biofilms of
C. albicans. Four of these strains (M2, M4, M5 and M6)
showed resistance to the phage philBB-PAA2; and only
strain M2 was resistant to phage philBB-PAP21 also
(Table 2). Dual-species biofilms with C. albicans were
once again grown with these P aeruginosa ATCC
10145-derived phenotype variants (Figure 5). Further-
more, four defined mutant strains of P. aeruginosa PAO1
LPS (wzy, rmd, wbpL and rmIC) were also used to
assess the role of LPS in assaying the biofilms of
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Figure 2. Examination using a SEM of mono- and dual-species biofilms. 24 h (A) and 48 h (B) old biofilms formed by C. albicans
CECT 1472; (C) 48 h old dual-species biofilms formed by P. aeruginosa ATCC 10145 and C. albicans CECT 1472; (D) 48 h old
dual-species biofilm formed by P. aeruginosa PAO1 and C. albicans CECT 1472.

C. albicans (Figure 5). These strains were also tested for
susceptibility against phages, philBB-PAA2 and philBB-
PAP21, (Table 2) and it was observed that all of them
were susceptible to phage philBB-PAP21; note that the
wild-type strain P. aeruginosa PAO1 was also suscepti-
ble to this phage. Nevertheless, only the wild-type strain,
wzy and rmd mutant strains, were susceptible to phage
philBB-PAA2. The other two strains (wbpL and rmlC)
that have a shorter chain of B-band LPS were resistant
to this phage.

Dual-species biofilms formed by the different
P aeruginosa ATCC 10145-derived phenotypes variants
revealed that most of them could co-inhabit better with
C. albicans than the parental strain ATCC 10145
(Figure 5). This has led to the observed increases in the
growth of C. albicans at 24 h post phage infection of
the dual-species biofilms. This variation is more
pronounced after 48 h of formation of the biofilm
(Figure 5B) since the cells in the biofilm of C. albicans

increased by more than 1 log in the mixed cultures with
the MI1-M6 strains as compared to co-culture of
biofilms of C. albicans grown with the parental strain,
P aeruginosa ATCC 10145. Nevertheless, the number
of cells of C. albicans in these biofilms is still ~1 log
lower than the numbers obtained in mono-species bio-
films of C. albicans. A similar result was obtained with
dual-species biofilms of mutants of P. aeruginosa PAO1
LPS and C. albicans. Although the number of cells of
C. albicans cells after 24 h of formation of the biofilm
with these mutants is slightly higher compared to the
parental strain P. aeruginosa PAO1 (Figure 5A), this
increase is more significant after 48 h of formation of
mixed biofilm mainly with the mutant rmlC, which has
a defect in the biosynthesis of core oligosaccharide and
produces the shortest LPS chain among all of the
mutants tested (consisting of an inner core and lipid A
region) (Figure 5B). The number of cells of C. albicans
in dual-species biofilm with this LPS-defective strain is
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Figure 3. Phage infection of dual-species biofilm with philBB-PAA2 and philBB-PAP21. CFU counts of the viable cells of P. aeru-
ginosa ATCC 10145 and C. albicans CECT 1472 (A) or P. aeruginosa PAO1 and C. albicans CECT 1472 (B) present in mixed bio-
films before (0 h) and after infection (2, 6 and 24 h); PFU counts of phages attached to the mixed biofilms after infection (C); and of
phages released from biofilms (D); SEM images of: 24 h old biofilms of P. aeruginosa ATCC 10145 and C. albicans CECT 1472
after 24 h of infection with phage philBB-PAA2 (E); and 24 h old biofilms of P. aeruginosa PAO1 and C. albicans CECT 1472 after
24 h of infection with phage philBB-PAP21 (F). Error bars represent standard deviations from two independent experiments per-
formed in triplicate; “significantly different (» < 0.05) from the number of cells of the biofilm at 0 h; “significantly different
(p < 0.05) from the number of phages at the beginning of experiment.

only 0.5 log lower compared with 48 h mono-species The differences in the phenotype of LPS among the
biofilms of C. albicans (Figure 1). different strains of P. aeruginosa including the PAOI1
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exposed for 24 h to P. aeruginosa phage or sonicated cultured
lysates. Error bars represent standard deVlatlons from two inde-
pendent experiments performed in triplicate; “significantly dif-
ferent (p < 0.05) from 48 h biofilms of old C. albicans.

wild type and the defined LPS mutants, wzy, wbpL, and
rmlC, are clearly visible (Figure 6). The wzy mutant is
devoid of B-band LPS, while the wbpL mutants showed
faster migrating bands of the core oligosaccharide
reactive with mAb 5c-7-4 (inner-core specific) and no
reaction to mAb MF15-4 (B-band specific against
serotype O5) or 5¢c-101 (outer-core specific) indicative of
a defect in the outer-core region. Accordingly, the rmIC
mutant which causes the lowest inhibition in the cells of
C. albicans exhibits a LPS banding pattern that is devoid
of both A-band and B-band LPS and has a fast migrating
band indicative of a truncated LPS core (Figure 6, panel
A). The rmd mutant is defective in A-band LPS biosyn-
thesis, hence, as expected did not show any defect in the
production of high-molecular-weight (HMW) B-band
LPS (Figure 6, panel A). These results verified the
defects in the LPS of the mutants as were reported in
previous studies by the Lam laboratory. Therefore, the
LPS banding patterns from these mutants are useful
standards for characterizing the phenotype of the LPS in
the M1-M6 mutants. Among the ATCC 10145-derived
M1-M6 mutants, the M2 mutant (Figure 6B) is the only
strain that is resistant to both philBB-PAP21 and
philBB-PAA2 phages. M2 exhibited a LPS banding
pattern that showed a lack of HMW bands, indicating
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Figure 5. Dual-species biofilms formed by P aeruginosa

ATCC 10145 (M1-M6) or PAO1 mutant strains with C. albicans
CECT 1472. Dual-species biofilms of C. albicans CECT 1472
formed with P. aeruginosa ATCC and PAO1 phenotypes for 24 h
(A) and 48 h (B). Error bars represent standard deviations from
two independent experiments performed in triplicate; "signifi-
cantly different (p < 0.05) from the number of cells in the biofilm
of wild-type strain of P. aeruginosa ATCC 10145; Ysignificantly
different (p < 0.05) from the number of cells in the biofilm of
wild-type strain of P. aeruginosa PAO1; Tsignificantly different
(p < 0.05) from the number of cells of biofilm of C. albicans
CECT 1472 in mixed biofilms with wild-type strains of
P, aeruginosa (ATCC 10145 or PAOL1).

defects in the production of A-band and B-band LPS. In
addition, M2 LPS also showed a fast-migrating core
oligosaccharide band indicating truncation in the LPS
core. Due to truncation of the LPS core, neither A-band
nor B-band O-polysaccharides could be assembled onto
the core, hence HMW bands of A-band and B-band
polysaccharide that are linked to carriers of undecaprenol
lipid still remain, as observed in the two immunoblots
that were probed with mAb MF83-1 (B-band specific
against serotype 0O6) and mAb N1F10 (A-band specific).

Table 2. Lytic spectra of the 2 phages against the P. aeruginosa ATCC and PAO1 mutant phenotypes.

P. aeruginosa ATCC 10145

P. aeruginosa PAO 1

Wild type Ml M2 M3 M4 M5 Mo Wild type wbpL mlC wzy rmd
Phage philBB-PAA2 + + - + - - + — — + +
Phage philBB-PAP21 + + - + + + + + + + +

(+ susceptible; — not susceptible).
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Figure 6. SDS-PAGE and Western immunoblotting analysis of LPS from P. aeruginosa PAO1 and PAOl-derived isogenic LPS
mutant strains (Panel A) and P. aeruginosa ATCC 10145 and M1-M6 phenotype variants (Panel B). Silver stained SDS-PAGE gels
were displayed at the top of each of panels A and B, followed by immunoblots that were probed with mAbs, MF15-4 (B-band
specific against serotype O5), 5c-101 (outer-core specific), N1F10 (A-band specific), and Sc-7-4 (outer-core specific), and MF83-1
(B-band specific against serotype O6, which is the serotype determined for strain ATCC 10145). Note that in panel A, both mAb
MF15-4 and 5c¢-101 were used simultaneously on one of the blots to demonstrate the truncation in the LPS core in wbpL and rmIC
mutants and the lack of B-band LPS in wzy, wbpL, and rmIC mutants. On Panel B, only a B-band specific mAb MF83-1 was used
and not mAb 5c¢-101, as the latter mAb is specific against the terminal glucose of the outer core, which is absent in O6 strains. Note
the lack of high-molecular-weight bands and the fast migrating core-oligosaccharide band in the LPS sample from M2.

The nature of these undecaprenol-linked polysaccharide LPS banding patterns from M1 and M3-M6 were all
bands has been verified due to their sensitivity to phenol quite similar to the LPS banding pattern of wild-type
as demonstrated in an earlier study by the authors when strain of P. aeruginosa ATCC 10145 (Figure 6B) indicat-
LPS was prepared using the standard phenol and hot ing that they have very distinct phenotypes of LPS as
water method (Rocchetta & Lam 1997). In contrast, the compared to M2.
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Discussion

C. albicans and P. aeruginosa are frequently involved in
severe infections associated with polymicrobial biofilms
formed on indwelling devices (Pierce 2005). It has been
reported that the virulence of C. albicans is influenced
by the presence of P. aeruginosa as this bacterium exhib-
its antifungal behavior against Candida spp. (Bandara,
Yau, et al. 2010; Holcombe et al. 2010). However, the
interaction between Candida spp. and P. aeruginosa in a
polymicrobial biofilm is not fully understood. In the
present work, inhibition in the development and filamen-
tation of C. albicans was observed in mixed biofilms
with P aeruginosa. After 24 and 48 h of formation of
the mixed biofilm (Figure 1), the amount of viable cells
of C. albicans was significantly reduced compared with
single biofilms of C. albicans. However, the substantial
reduction in the count of C. albicans reported by Band-
ara et al. after 48 h of incubation of mixed biofilm with
P aeruginosa was not observed in the authors’ study
(Bandara, Yau, et al. 2010). Interestingly, no significant
changes occurred in the number of viable cells of P,
aeruginosa between 24 and 48 h dual-species and mono-
species biofilms of P aeruginosa. Similar results were
observed by other authors who showed that P. aerugin-
osa forms a dense biofilm on the filaments of C. albi-
cans; presumably this superimposed biofilm of P
aeruginosa is responsible for the destruction of the fun-
gus (Hogan & Kolter 2002).

In recent years, many studies have shown the
potential of using phages as antibacterial agents for the
treatment of infectious diseases (Weber-Dabrowska et al.
2001, 2003; Matsuzaki et al. 2005; Hanlon 2007; McVay
et al. 2007) and for control of bacterial biofilm (Tait
et al. 2002; Curtin & Donlan 2006; Sillankorva et al.
2008; Donlan 2009). The phages used in this study were
previously isolated from hospital effluents and were
shown to be capable of infecting a variety of strains of
P aeruginosa that are resistant to antibiotics and also to
control both exponential- and stationary-phase cells
(Pires et al. 2011). The infection of dual-species biofilms
with phage resulted in a significant reduction of viable
cells of both P. aeruginosa ATCC 10145 and P. aerugin-
osa PAOI1 as early as 2—6 h post infection. However,
after the initial reduction in the count of bacterial cells,
the number of viable cells of P. aeruginosa was found to
increase at the 24 h time point (Figure 3). This could be
interpreted as the cells of P. aeruginosa acquiring resis-
tance to the respective phages. On the other hand, the
number of cells of C. albicans present in the dual-spe-
cies biofilm steadily increased from the time of phage
infection and achieved significantly higher numbers of
viable cells after infection of the biofilm for 24 h. These
results suggest that the surviving cells of P. aeruginosa
after the phage attack have acquired changes in their

phenotype and exhibited a diminished ability to inhibit
the growth of biofilm of C. albicans. Another possible
explanation is that, after phage infection, the reduction in
the number of cells of P. aeruginosa present in the bio-
film increased the source of nutrients available for the
proliferation of C. albicans. However, after adding the
lysates of P. aeruginosa to biofilms of C. albicans (Fig-
ure 4), it was observed that the results did not support
this hypothesis. Nevertheless, the results showed a slight
decrease in the biofilms of C. albicans, suggesting that
lysates containing intracellular soluble material from P
aeruginosa, like LPS, inhibit the proliferation of biofilm.

The phenotype variants of P aeruginosa ATCC
10145, M1-M6, isolated during the course of this work,
the majority of which (4 out of 6) were phage-resistant
(Table 2), were found to exhibit a significantly reduced
ability to inhibit the proliferation of biofilm of C. albicans
as compared to the co-culture experiments using the
wild-type strain of the parental P. aeruginosa ATCC
10145. Since several studies have shown that LPS mole-
cules are the receptors of T7-like phages and changes in
the LPS structure is a major cause for bacterial resistance
to phages (Wright et al. 1980), one of the explanations for
the reduced influence of the phage-resistant phenotypes
P. aeruginosa on the growth of C. albicans is a possible
modification of the LPS, an integral component of the cell
envelopes and a major factor for virulence (Lam et al.
2011). Thus, the LPS of these ATCC-10145-derived
phenotype variants were extracted and analyzed together
with a number of defined LPS knockout mutant strains,
provided by one of the co-authors, from the collection of
strains of the University of Guelph. Among the ATCC
10145-derived phentoype variants of P. aeruginosa that
were isolated post phage infection, most of these strains
exhibit an LPS banding profile in SDS-PAGE and Western
immunoblotting analysis (Figure 6) that was quite similar
to the pattern observed in the parental ATCC strain. Only
the LPS banding pattern of the P. aeruginosa ATCC M2
strain, which was resistant to both the phages tested,
revealed a significant difference in the reduction of the
visible A-band or B-band LPS and a faster migrating band
of the core oligosaccharide. It has been reported that
bacterial LPS have a significant effect on the formation of
biofilm by Candida species (Bandara et al. 2009;
Bandara, Lam, et al. 2010). According to Bandara et al.
(2013) bacterial LPS alter the gene expression of
C. albicans during the development of the biofilm,
influencing directly the proliferation of the biofilm and
formation of hyphae. The observation revealed that the
mutant rmlC, which was truncated at the core oligosaccha-
ride and therefore lacking the outer core region and the
chains of both A-band or B-band O polysaccharide, was
the one exhibiting the lowest inhibition in the proliferation
of C. albicans. Therefore, these observations are in good



agreement with observations that were made in the
previous study (Bandara, Lam, et al. 2010). Nevertheless,
as shown in this work the phage-resistant phenotypes with
the exception of M2 did not exhibit any modification in
their LPS and yet they did not inhibit the formation of bio-
films of C. albicans compared to the wild-type strains. It
was therefore hypothesized that the phage-resistant pheno-
types have alterations in their surface receptors as pili, fla-
gella or surface proteins which have been previously
described as phage receptors (Kropinski 2008; Ceyssens
et al. 2011; Kim et al. 2012). These receptors may also be
the cause of the inhibition of proliferation of biofilm of C.
albicans. Further experiments are needed to confirm this
hypothesis.

In conclusion, the work described here showed that
P aeruginosa effectively inhibits the proliferation of
biofilms of C. albicans due to the presence of bacterial
LPS that exert suppressive effects towards the cells of
C. albicans. Consequently, C. albicans is able to co-
inhabit better with mutant strains of P aeruginosa,
which only contain the truncated core and lipid-A region
of the LPS chain. Hence, the data showed a correlation
between the inhibition of the formation of biofilm of
C. albicans and the composition of the LPS chain of
P, aeruginosa.

Acknowledgments

D. P. P. acknowledges the grant from the project [PTDC/EBB-
BI10/114760/2009] from the Portuguese Foundation for Science
and Technology (FCT). J.S.L. holds a Canada Research Chair
in Cystic Fibrosis and Microbial Glycobiology and research in
his laboratory is supported by operating grants from Cystic
Fibrosis Canada and the Canadian Institutes of Health Research
(CIHR) [Grant MOP-14687].

References

Bandara HM, Cheung KBP, Watt RM, Jin LJ, Samaranayake
LP. 2013. Pseudomonas aeruginosa lipopolysaccharide
inhibits Candida albicans hyphae formation and alters gene
expression during biofilm development. Mol Oral Micro-
biol. 28:54-69.

Bandara HM, Lam OL, Watt RM, Jin LJ, Samaranayake
LP. 2010. Bacterial lipopolysaccharides variably modu-
late in vitro biofilm formation of Candida species. J
Med Microbiol. 59:1225-1234.

Bandara HM, Yau J, Watt RM, Jin LJ, Samaranayake LP.
2009. Escherichia coli and its lipopolysaccharide modulate
in vitro Candida Dbiofilm formation. J Med Microbiol.
58:1623-1631.

Bandara HM, Yau J, Watt RM, Jin LJ, Samaranayake LP. 2010.
Pseudomonas aeruginosa inhibits in vitro Candida biofilm
development. BMC Microbiol. 10:125.

Calderone RA, Fonzi WA. 2001. Virulence factors of Candida
albicans. Trends Microbiol. 9:327-335

Ceyssens P-J, Glonti T, Kropinski AM, Lavigne R, Chanishvili
N, Kulakov L, Lashkhi N, Tediashvili M, Merabishvili M.

Biofouling 11

2011. Phenotypic and genotypic variations within a single
bacteriophage species. species. Virol J. 8:134.

Curtin JJ, Donlan RM. 2006. Using bacteriophages to reduce
formation of catheter-associated biofilms by Staphylococcus
epidermidis. Antimicrob Agents Agents Chemother.
50:1268-1275.

de Bentzmann S, Plésiat P. 2011. The Pseudomonas aeruginosa
opportunistic pathogen and human infections. Environ Micro-
biol. 13:1655-1665.

de Kievit TR, Dasgupta T, Schweizer H, Lam JS. 1995.
Molecular cloning and characterization of the rfc gene of
Pseudomonas aeruginosa (serotype O5). Mol Microbiol.
16:565-574.

Donlan RM. 2009. Preventing biofilms of clinically relevant
organisms using bacteriophage. Trends Microbiol. 17:66—72.

Driscoll JA, Brody SL, Kollef MH. 2007. The epidemiology,
pathogenesis and treatment of Pseudomonas aeruginosa
infections. Drugs. 67:351-368.

Emara MG, Tout NL, Kaushik A, Lam JS. 1995. Diverse VH
and V kappa genes encode antibodies to Pseudomonas
aeruginosa LPS. J Immunol. 155:3912-3921.

Filippov AA, Sergueev KV, He Y, Huang X-Z, Gnade BT,
Mueller AJ, Fernandez-Prada CM. 2011. Bacteriophage-
resistant mutants in Yersinia pestis: identification of phage
receptors and attenuation for mice. PLoS ONE. 6:€25486.

Fomsgaard A, Freudenberg MA, Galanos C. 1990. Modification
of the silver staining technique to detect lipopolysaccharide
in polyacrylamide gels. J Clin Microbiol. 28:2627-2631.

Hanlon GW. 2007. Bacteriophages: an appraisal of their role in
the treatment of bacterial infections. Int J Antimicrob
Agents. 30:118-128.

Hitchcock PJ, Brown TM. 1983. Morphological heterogeneity
among Salmonella lipopolysaccharide chemotypes in silver-
stained polyacrylamide gels. J Bacteriol. 154:269-277.

Hogan DA, Kolter R. 2002. Pseudomonas-Candida interac-
tions: an ecological role for virulence factors. Science.
296:2229-2232.

Hogan DA, Vik A, Kolter R. 2004. A Pseudomonas aerugin-
osa quorum-sensing molecule influences Candida albicans
morphology. Mol Microbiol. 54:1212-1223.

Holcombe LJ, McAlester G, Munro CA, Enjalbert B, Brown
AlJ, Gow NA, Ding C, Butler G, O’Gara F, Morrissey JP.
2010. Pseudomonas aeruginosa secreted factors impair bio-
film development in Candida albicans. Microbiology.
156:1476-1486.

Kim S, Rahman M, Seol SY, Yoon SS, Kim J. 2012. Pseudo-
monas aeruginosa bacteriophage PA1Q requires type IV
pili for infection and shows broad bactericidal and biofilm
removal activities. Appl Environ Microbiol. 78:6380—6385.

Kropinski AM. 2008. Measurement of the bacteriophage
inactivation kinetics with purified receptors : methods
and protocols, volume 1: isolation, characterization, and
interactions. Humana Press. 501:157-160.

Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson
RP. 2008. Enumeration of bacteriophages by double agar
overlay plaque assay. Bacteriophages: methods and proto-
cols, volume 1: isolation, characterization, and interactions.
Humana Press. 501:69-76.

Laemmli UK. 1970. Cleavage of structural proteins during the
assembly of the head of bacteriophage T4. Nature.
227:680-685.

Lam JS, Taylor VL, Salim ST, Hao Y, Kocincova D. 2011.
Genetic and functional diversity of Pseudomonas aerugin-
osa lipopolysaccharide. Front Microbiol. 2: 118.



12 D.P. Pires et al.

Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T,
Kuroda M, lkeuchi M, Tani T, Fujieda M, Wakiguchi H,
Imai S. 2005. Bacteriophage therapy: a revitalized therapy
against bacterial infectious diseases. J Infect Chemother.
11:211-219.

Mazzocco A, Waddell TE, Lingohr E, Johnson RP. 2008.
Enumeration of bacteriophages using the small drop plaque
assay system. In: Clokie M, Kropinski A, editors. Bacterio-
phages: methods and protocols, volume 501: isolation, char-
acterization and interactions. New York (NY): Humana
Press; p. 81-85.

McAlester G, O’Gara F, Morrissey JP. 2008. Signal-mediated
interactions between Pseudomonas aeruginosa and
Candida albicans. ] Med Microbiol. 57:563-569.

McVay CS, Velasquez M, Fralick JA. 2007. Phage therapy of
Pseudomonas aeruginosa infection in a mouse burn wound
model. Antimicrob Agents Chemother. 51:1934-1938.

Mittal R, Aggarwal S, Sharma S, Chhibber S, Harjai K. 2009.
Urinary tract infections caused by Pseudomonas
aeruginosa: a minireview. J Infect Public Health. 2:101—
111.

Molero G, Diez-Orejas R, Navarro-Garcia F, Monteoliva L, Pla
J, Gil C, Sanchez-Pérez M, Nombela C. 1998. Candida
albicans: genetics, dimorphism and pathogenicity. Int
Microbiol. 1:95-106.

Nseir S, Ader F. 2009. Pseudomonas aeruginosa and Candida
albicans: do they really need to stick together? Crit Care
Med. 37:1164-1166.

Pierce GE. 2005. Pseudomonas aeruginosa, Candida albicans,
and device-related nosocomial infections: implications,
trends, and potential approaches for control. J Ind Microbiol
Biotechnol. 32:309-318.

Pires D, Sillankorva S, Faustino A, Azeredo J. 2011. Use of
newly isolated phages for control of Pseudomonas aerugin-
osa PAO1 and ATCC 10145 biofilms. Res Microbiol.
162:798-806.

Rahim R, Burrows LL, Monteiro MA, Perry MB, Lam JS.
2000. Involvement of the rml locus in core oligosaccharide
and O polysaccharide assembly in Pseudomonas aerugin-
osa. Microbiology. 146:2803-2814.

Rocchetta HL, Burrows LL, Pacan JC, Lam JS. 1998. Three
rhamnosyltransferases responsible for assembly of the
A-band D-rhamnan polysaccharide in Pseudomonas
aeruginosa: a fourth transferase, WbpL, is required for the
initiation of both A-band and B-band lipopolysaccharide
synthesis. Mol Microbiol. 28:1103-1119.

Rocchetta HL, Lam JS. 1997. Identification and functional
characterization of an ABC transport system involved in
polysaccharide export of A-band lipopolysaccharide in
Pseudomonas aeruginosa. J Bacteriol. 179:4713-4724.

Rocchetta HL, Pacan JC, Lam JS. 1998. Synthesis of the A-band
polysaccharide sugar D-thamnose requires Rmd and WbpW:
identification of multiple AlgA homologues, WbpW and
ORF488, in Pseudomonas aeruginosa. Mol Microbiol.
29:1419-1434.

Sambrook J, Russell DW. 2001. Molecular cloning: a
laboratory manual. New York (NY): Cold Spring Harbor
Laboratory Press.

Sillankorva S, Neubauer P, Azeredo J. 2008. Pseudomonas
fluorescens biofilms subjected to phage philBB-PF7A.
BMC Biotechnol. 8:79.

Silva S, Henriques M, Martins A, Oliveira R, Williams D, Aze-
redo J. 2009. Biofilms of non-Candida albicans Candida
species: quantification, structure and matrix composition.
Med Mycol. 47:681-689.

Silva S, Henriques M, Oliveira R, Williams D, Azeredo J.
2010. In vitro biofilm activity of non-Candida albicans
Candida species. Curr Microbiol. 61:534-540.

Tait K, Skillman LC, Sutherland IW. 2002. The efficacy of
bacteriophage as a method of biofilm eradication. Biofouling.
18:305-311.

van Christian D. 2007. Pseudomonas aeruginosa bloodstream
infections: how should we treat them? Int J Antimicrob
Agents. 30:71-75.

Van Delden C, Iglewski BH. 1998. Cell-to-cell signaling and
Pseudomonas aeruginosa infections. Emerg Infect Dis.
4:551-560.

Wargo MJ, Hogan DA. 2006. Fungal-bacterial interactions: a
mixed bag of mingling microbes. Curr Opin Microbiol.
9:359-364.

Weber-Dabrowska B, Mulczyk M, Gorski A. 2001. Bacterio-
phage therapy for infections in cancer patients. Clin Appl
Immunol Rev. 1:131-134.

Weber-Dabrowska B, Mulczyk M, Gorski A. 2003. Bacterio-
phages as an efficient therapy for antibiotic-resistant septice-
mia in man. Transplant Proceed. 35:1385-1386.

Wright A, McConnell M, Kanegasaki S. 1980. Lipopolysaccha-
ride as a bacteriophage receptor. In: Randell LL, Philipson
L, editors. Virus receptors: receptors and recognition.
London: Chapman and Hall; p. 28-57.



	Abstract
	 Introduction
	 Materials and methods
	 Bacteria, fungi, bacteriophage and culture conditions
	 Production and concentration of bacteriophage 
	 PFU titration of the stock solution
	 Formation of biofilms
	 Crystal violet assay
	 XTT reduction assay
	 Scanning electron microscopy of the biofilms
	 Infection of biofilms
	 Counts of CFU and PFU in the attached bacteria, yeast or phages
	 Preparation of lysates of P. aeruginosa
	 Isolation of phage-resistant phenotypes of P. aeruginosa
	 Preparation of LPS
	 SDS-PAGE Western immunoblotting of bacterial LPS

	 Results
	 Biofilm characterization
	 Infection of biofilms with phage

	 Discussion
	Acknowledgments
	References



