
U
M

in
ho

|2
01

3

Universidade do Minho

Arunava Pradhan 

 June 2013 

Impacts of nanoparticles to microbes 
and invertebrates: from community 
responses to cellular targets 

Escola de Ciências

 A
ru

na
va

 P
ra

dh
an

 Im
p

a
ct

s 
o

f 
n

a
n

o
p

a
rt

ic
le

s 
to

 m
ic

ro
b

e
s 

a
n

d
 in

ve
rt

e
b

ra
te

s:
 

fr
o

m
 c

o
m

m
u

n
it

y 
re

sp
o

n
se

s 
to

 c
e

llu
la

r 
ta

rg
e

ts
 





Ph. D. Thesis in Sciences 
Specialization in Biology 

Supervised by 
Prof. Dr. Fernanda Cássio 
Co-supervised by 
Prof. Dr. Cláudia Pascoal 
Co-supervised by 
Dr. Seena Sahadevan 

Universidade do Minho

Arunava Pradhan 

 June 2013 

Escola de Ciências

Impacts of nanoparticles to microbes 
and invertebrates: from community 
responses to cellular targets 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE APENAS PARA 

EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO 

INTERESSADO, QUE A TAL SE COMPROMETE 

 

 

 

 

 

 

 

 

 

 

 

Universidade do Minho, June 2013 

                                                                                                

 

(Arunava Pradhan)           



III 
 

Acknowledgements  

First of all I am grateful to the Portuguese Foundation for Science and Technology 

(FCT) for supporting me with the Ph. D. grant (SFRH/BD/45614/2008) and the work 

developed through the projects NANOECOTOX (PTDC/AAC-AMB/121650/2010), FCT-

DAAD 2010-2011, FEDER-POFC-COMPETE and PEst-C/BIA/UI4050/2011.  

I am very much thankful to my supervisor Prof. Dr. Fernanda Cássio and my co-

supervisors Prof. Dr. Cláudia Pascoal and Dr. Seena Sahadevan for providing me the 

excellent opportunity of doing my doctoral research, all the precious scientific advices and 

supports with huge freedom and the nice friendly environment to enjoy my research and stay 

in Portugal. 

My very special gratitude to CBMA and Department of Biology of University of Minho 

for providing such a nice platform for doing research and all kind of help and also I would like 

to thank Prof. Dr. Cândida Lucas, the director of CBMA, for her fruitful advices and helps, all 

the professors, researchers, technicians and supporting staffs of the department for their 

kind and friendly nature and helpful supports.  

Starting the exciting journey in beginning of the year 2009 from India to Portugal with 

microbiology and molecular biology as my scientific background, it was a big challenge to 

establish and fulfill the research aim and objectives within four years in a new emerging field 

“nanoecotoxicology” at the new lab of a different cultural country. The journey was very 

special to me because that was the threasold period of the entire research group to stepping 

into the “nanoresearch” and I was the most fortunate person to receive the responsibility 

from my supervisors with complete freedom and faith inspite of our limited funding. Indeed, 

the target could not be achieved without the help and contribution of our whole lab group 

members. My very special thanks to Paulo for his helping hand in part of my work and 

friendship, to Sofia and Isabel for all kind of friendly helps and for sharing their knowledge 

and experiences, and to Daniela, Eva, Ana, Diana, Francisco, Bruno, Zé, Maria João, Carla, 

Bárbara for their helps and friendships. Also I would like to thank the other professors and 

group members of the lab especially Prof. Dr. Maria Teresa Almeida, Célia, Fábio and 

Joanna for their friendly advices, helps and supports; the professors and researchers from 

other labs: Prof. Dr. Margarida Casal, Prof. Dr. Pedro Gomes, Prof. Dr. Filipe Costa for their 

helping advices and Tony, Monica, Björn, Sandra, Ronaldo, Susana, Raul, Andreia, Franklin, 

Marslin, João, Andrei and many others for their friendly helps and cheering natures. Also I 

would like to thank Dr. Catarina Gonçalves and Dina from Department of Biological 

Engineering for their friendly helps and Elsa Ribeiro for her help in SEM.  

I would also like to thank our all collaborators especially from Germany, Prof. Dr. 

Gerd-Joachim Krauss, Prof. Dr. Dietmar Schlosser, Dr. Dirk Dobritzsch, Melanie Dobritzsch, 

Stefan Helm, Katharina Gerth and Anja Reupsch. My special thanks to Prof. Dr. Manuel 



IV 
 

Graça for his helpful workshop and advices on scientific paper writing and to Prof. Dr. 

Stephen J Klein and Prof. Dr. James F Ranville for their fruitful friendly scientific advices on 

nanoecotoxicology and to Prof. Dr. Klement Tockner and Prof. Dr. Guy Woodward for their 

influencing advices on career development strategies in research.  

My research life started in West Bengal University of Technology (WBUT), India. 

Therefore my immense gratitude to all my teachers and professors in WBUT especially, my 

ex-supervisor of M.Sc. thesis Dr. Shaon Ray Chaudhuri, ex-Vice Chancellor of WBUT Prof. 

Dr. Ashoke Ranjan Thakur, Prof. Dr. Subrata Kumar Dey, Dr. Jaya Bandyopadhyay, Dr. 

Srimonti Sarkar, Dr. Anindita Seal, Dr. Soumalee Basu, Dr. Indrani Roy, Prof. Dr. Timir 

Baran Samanta, Prof. Dr. Arunabha Adhikari, Prof. Dr. Bishnupada Chatterjee, Dr. Raja 

Banerjee, Dr. Joydeep Mitra for their encouraging teaching, research training, valuable 

advices and friendly support. Also I would like to thank Dr. Sukla Ghosh and all other 

professors and researchers especially Subhra da, Aditi di, Indrashis and Piyasi di from 

Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, India 

for their help and support.  

Additionally, I would like to express my very special gratitude to those who always 

support me in any situation of life, my beloved friends, Udatto, Soumen, Soma, Tanmoyda, 

Poulomi, Poonam di, Pranami, Sumita, Sumana, Sanhita di, Jayeeta and Madhu di. Thanks 

also to all my junior and senior friends from WBUT for their love, support and all help.  

Also thanks to my friends in Portugal, Swagata, Soma di, Kalyan da, Angshu boudi, 

Aneesh, Manab, Kallol da, Rima boudi, Debarati, Smriti, Raghu, Francielle and all my friends 

from Erasmus student network for always cheering and supporting me.  

My special thanks to the teachers and professors of Department of Microbiology, 

Botany, Zoology and Chemistry of Modern College of Arts, Science and Commerse under 

University of Pune, India. My special gratitude to Snehal Shinde Sir, Harsh Gaikwad Sir, 

Jayant Randive sir, Sneha Ogale Madam and Gogi Madam for growing my interest and 

motivations in science.  

 I would also like to express my very special thanks to all of my relatives who always 

supported me mentally throughout this special journey of my life, especially Babu da, Bapi 

da, my all uncles, aunts and cousins.  

The list of the people who always help and support me is very long and I am very 

much grateful to all of them.   

At the end I would like to dedicate this dissertation to my sister and parents; without 

their unconditional support, love, guidance and understanding I could not reach to this stage 

of life. Thank you so much for your eternal love and blessings on me.       



V 
 

Impacts of nanoparticles to microbes and invertebrates: from 

community responses to cellular targets 

Abstract 

The incredible development in nanotechnology since the last decade has brought 

the “nanoworld” to our regular life. However, the extensive global growth in commercial 

production and usage of nanomaterial-based products raised the question whether 

nanomaterials when released to the environment can constitute a potential risk to biota and 

ecosystem processes. Being large reservoirs, natural waters are likely to be the ultimate sink 

of nanomaterials. In forested streams, microbes, predominantly fungi, decompose plant litter 

from riparian vegetation and transfer carbon and energy via invertebrate shredders to higher 

trophic levels. Freshwater decomposers are sensitive to changes in water quality with 

implications to ecosystem functioning. Considering the recent development of 

nanotechnology, assessing the potential toxicity of nanomaterials against freshwater 

decomposers and examining their ecological and physiological responses to nanoparticle 

exposure will contribute to a safer use of nanomaterials.    

In this study, by using a microcosm approach, we found that nanocopper oxide 

(nanoCuO), nanosilver, and their ionic precursors severely affected leaf litter decomposition 

by stream-dwelling microbes, as indicated by a decrease in microbial biomass, fungal 

sporulation and species richness. Moreover, the analysis of fungal and bacterial 

communities, based on DNA fingerprints from denaturing gradient gel electrophoresis and 

fungal sporulating species, revealed shifts in species composition and changes towards a 

better adapted community under the stress induced by nano and ionic metals. Moreover, the 

negative effects of metal nanoparticles were less pronounced than those of their ionic forms. 

Nanoparticle size (12, 50 and 80 nm) and the presence of humic acid (HA) 

influenced the toxicity of nanoCuO against stream-dwelling microbial decomposers. The 

toxicity of nanoCuO increased in a dose-dependent manner and with the decrease in 

nanoparticle size. Bacteria were more sensitive than fungi to nanoCuO, because EC50 values 

for biomass of bacteria were much lower than those of fungi. Fungal reproduction was more 

sensitive to nanoCuO than leaf decomposition or microbial biomass. HA alone also had 

negative effects on microbial diversity and activity, but the presence of HA alleviated the 

negative effects of smaller size nanoCuO (12 or 50 nm). Alterations in leaf surface 

morphology further supported the impacts of nanoparticles and HA on microbial activity on 

decomposing leaves, as shown by scanning electron microscopy. 

We also showed that nanoCuO had lethal and sublethal effects on Allogamus 

ligonifer, a common invertebrate shredder in Southwest European streams that prefers high 

quality stream water. The feeding behaviour and growth of the invertebrate were affected in 

a dose-dependent manner. Effects were due to both nanoCuO and ionic copper leached 

from nanoCuO that adsorbed or accumulated in the shredder body. The feeding behaviour of 

the invertebrate shredder was more inhibited as nanoparticle size decreased. The toxicity of 
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smaller size nanoCuO to the shredder was alleviated by the presence of HA. A post-

exposure feeding experiment showed a very low recovery of the invertebrate feeding 

behaviour after stress removal.   

The exposure of aquatic fungal populations to nanoCuO led to a decrease in 

biomass production, alterations in cell-wall morphology, increased biosorption of nanoCuO 

and induction of extracellular laccase activity in a time and dose-dependent manner. Fungal 

populations from metal-polluted streams were more resistant/tolerant to the stress induced 

by nanoCuO than those from non-polluted streams. Differences in laccase activity among 

fungi appeared to be related to the presence of laccase-like genes in the copper-binding 

domain.  

Exposure to nanoCuO or ionic copper led to lower intracellular accumulation of 

reactive oxygen species (ROS), plasma membrane disruption, and DNA-strand breaks in 

fungal populations isolated from metal-polluted streams than in those from non-polluted 

streams. The activities of glutathione reductase and superoxide dismutase were higher in 

fungi from metal-polluted than from non-polluted streams, but the opposite was found for 

glutathione peroxidase activity. Results suggested that fungi from metal-polluted streams 

have higher capacity to deal with the oxidative stress induced by nanoCuO, probably due to 

their ability to maintain a high ratio of reduced glutathione (GSH) to oxidized glutathione 

(GSSG). 

In contrast to metal nanoparticles, polyhydroxy fullerene (PHF) nanoparticles 

stimulated the growth of the yeast Saccharomyces cerevisiae, which was used as model of 

eukaryotic organism. Moreover, the oxidative stress induced by cadmium ions to yeast cells 

was mitigated by the presence of PHF. A maximum growth recovery was obtained after 26h 

of exposure to 500 ppm PHF at pH 6.8. Results suggested that PHF nanoparticles have 

antioxidant and free-radical scavenging properties. 
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Efeitos das nanopartículas em microrganismos e invertebrados: das 

comunidades aos alvos celulares 

Resumo 

Na última década ocorreu um desenvolvimento exponencial da nanotecnologia o que 

trouxe o "nanomundo" à nossa vida do dia a dia. No entanto, o crescimento a nível global da 

produção e do uso de produtos com base em nanomateriais levanta a questão de saber se 

os nanomateriais, quando libertados para o meio ambiente, podem constituir um risco 

potencial para as comunidades biológicas e para os processos dos ecossistemas a elas 

associados. Os ecossistemas de água doce são susceptíveis de constituir o reservatório 

final dos nanomateriais. Nos rios e ribeiros florestados, os microrganismos, principalmente 

os fungos, decompõem o material vegetal proveniente da vegetação ribeirinha e promovem 

a transferência do carbono e da energia para os níveis tróficos superiores através da 

actividade dos invertebrados trituradores. Os decompositores de água doce são sensíveis a 

alterações na qualidade da água, com implicações para o funcionamento do ecossistema. 

Assim, a avaliação da potencial toxicidade dos nanomateriais para os decompositores de 

água doce e a análise das suas respostas ecológicas e fisiológicas à exposição a 

nanopartículas contribuirá para uma utilização mais segura dos nanomateriais. 

Neste estudo, usando uma abordagem em microcosmos, mostrámos que as 

nanopartículas de óxido de cobre, as nanopartículas de prata, e os seus precursores iónicos 

afectavam negativamente a decomposição da folhada por comunidades de microrganismos 

aquáticos, como indicado por uma diminuição da biomassa microbiana (fungos e bactérias), 

da esporulação dos fungos e da riqueza em espécies de fungos. A análise da comunidades 

de fungos, por electroforese em gradiente desnaturante do DNA microbiano e com base na 

morfologia das conídias libertadas da folhada em decomposição, revelou alterações na 

estrutura das comunidades no sentido de uma comunidade melhor adaptada ao stress 

induzido pelos metais quer nas formas nano quer iónicas. Além disso, os efeitos negativos 

das nanopartículas metálicas foram menos pronunciados do que os das suas formas 

iónicas. 

O  tamanho das nanopartículas de óxido de cobre (12, 50 e 80 nm) e a presença do 

ácido húmico (HA) influenciou a toxicidade das nanopartículas para os microrganismos 

decompositores. A toxicidade das nanopartículas de óxido de cobre aumentou com a dose e 

com a diminuição do tamanho das partículas. As bactérias foram mais sensíveis do que os 

fungos às nanopartículas de óxido de cobre, porque os valores de EC50 para a biomassa de 

bactérias foram muito mais baixos do que os dos fungos. A reprodução dos fungos foi mais 

sensível à exposição às nanopartículas de óxido de cobre do que a decomposição da 

folhada ou a biomassa microbiana. O HA sozinho também teve efeitos negativos sobre a 

diversidade e a actividade dos microrganismos. Contudo, a presença de HA mitigou os 

efeitos negativos das nanopartículas de óxido de cobre de menor tamanho (12 ou 50 nm). 

As alterações na morfologia da superfície da folhada, reveladas por microscopia electrónica 
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de varrimento, corroboraram os efeitos das nanopartículas e do HA na actividade 

microbiana nas folhas em decomposição. 

Os nossos resultados também mostraram que as nanopartículas de óxido de cobre 

tiveram efeitos letais e subletais em Allogamus ligonifer, um invertebrado detritívoro comum 

em rios do Sudoeste Europeu com elevada qualidade ecológica. A presença de 

nanopartículas de óxido de cobre afectou o comportamento alimentar e o crescimento do 

invertebrado de uma forma dependente da dose. Os efeitos negativos no animal pareceram 

ser devidos à adsorção ou acumulação no corpo do invertebrado de nanopartículas e de 

cobre iónico libertado das nanopartículas. O comportamento alimentar dos invertebrados foi 

mais inibido na presença de nanopartículas de menor tamanho comparativamente às de 

maior tamanho. A toxicidade das nanopartículas de óxido de cobre de menor tamanho para 

o invertebrado foi atenuada pela presença de HA. Uma experiência de alimentação de pós-

exposição mostrou uma baixa recuperação do comportamento alimentar dos invertebrados 

após a remoção do stress imposto pelas nanopartículas. 

A exposição de populações de fungos aquáticos às nanopartículas de óxido de cobre 

levou a uma diminuição da biomassa produzida, a alterações na morfologia da parede 

celular, ao aumento da bioadsorção das nanopartículas de óxido de cobre e à indução da 

actividade de lacases extracelulares de uma forma dependente da dose e do tempo. As 

populações de fungos isoladas de rios poluídos com metais foram mais 

resistentes/tolerantes ao stress induzido pelas nanopartículas metálicas do que as isoladas 

de rios não poluídos. As diferenças observadas na actividade das lacases entre os fungos 

pareceram estar associadas à presença ou ausência de genes do tipo das lacases. 

A exposição a nanopartículas de óxido de cobre ou a cobre iónico induziu menor 

acumulação intracelular de espécies reactivas de oxigénio e menos danos na membrana 

plasmática e no DNA de fungos isolados de rios poluídos com metais do que em fungos 

isolados de rios não poluídos. As actividades da glutationa reductase e da superóxido 

dismutase foram mais elevadas em fungos isolados de rios poluídos com metais do que em 

fungos isolados de rios não poluídos. Contudo, o oposto foi observado para a actividade da 

glutationa peroxidase. Os resultados sugerem que os fungos de rios poluídos com metais 

têm maior capacidade para lidar com o stress oxidativo induzido pelas nanopartículas de 

óxido de cobre provavelmente devido à sua capacidade de manter uma razão elevada de 

glutationa reduzida (GSH) em relação à glutationa oxidada (GSSG) nas células. 

Em contraste com o observado para as nanopartículas metálicas, as nanopartículas  

de poli-hidroxi-fulereno (PHF) estimularam o crescimento da levedura Saccharomyces 

cerevisiae, a qual foi utilizada neste trabalho como modelo de organismo eucariota. Por 

outro lado, o stress oxidativo induzido por iões de cádmio na levedura foi atenuado pela 

presença de PHF. A recuperação máxima do crescimento da levedura foi obtida após 26 

horas de exposição a 500 mg L
-1

 de PHF e a pH 6,8. Os resultados sugerem que as 

nanopartículas de PHF têm propriedades antioxidantes.  
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1.1. Historical overview and advances in nanotechnology  

The word “nano” probably evolved from the Greek word “νᾶνος” (nanos), 

meaning "dwarf", and was officially recognized by the International System (SI) of 

units as a standard metric prefix in 1960. The “nanometre” is one billionth of a metre 

(1 nm=10-9 m, SI units). Although there is no accepted international definition for a 

nanoparticle, according to the new PAS71 document developed in UK, a material 

with one or more dimensions lower than 100 nm should be considered a 

nanomaterial, 

(http://www.malvern.com/labeng/industry/nanotechnology/nanoparticles_definition.ht

m). Unlike the bulk-sized particles, nanoparticles are under the limelight of the 

current research owning to its special properties. The increased surface area per 

unit mass and discontinuous behaviour of delocalized surface electrons by quantum 

confinement effects induce changes in chemical, mechanical, optical, electric, and 

magnetic properties of nanomaterials (Burda et al., 2005; Buzea et al., 2007).  

Nanotechnology was recognised by the scientific community in the 20th 

century. However, nanomaterial-based products were already in use at least for the 

last two millenniums, as indicated by metallographic analyses of ancient products, 

such as the purple surface of shakudō or the techniques of lusterware (Northover, 

2008). Some tiny spiral-shaped metallic objects were found in the Narada River 

(eastern side of the Ural Mountains in Russia) dating from past 20,000 to 318,000 

years. These objects were composed of an alloy of copper, tungsten and 

molybdenum; the smallest size being 1/10,000th of an inch justifying the designation 

of micro to nano size metals (Igan, 2005). Metal nanoparticles, such as silver, gold 

and copper, were used in pottery during the Renaissance to generate a glittering 

effect on the surface of pots. Gold nanoparticles were used in the Roman Lycurgus 

cup dated to the 4th century AD. Iron oxide nanoparticles were used in Maya blue 

paint during ~700 AD (José-Yacamán et al., 1996). 

The first scientific description about the optical properties of metal particles 

with very minute dimensions was given by Michael Faraday (Faraday, 1857). 

Richard Zsigmondy, an Austrian-Hungarian chemist, was the first to report about 

size measurements of nanoparticles in the first decade of the 20th century 

(Zsigmondy, 1909). A number of subsequent studies further determined the size 

distribution of tiny particles in colloid chemistry and the observed nanometre size 

particles were expressed as “mµ” or “µµ” (Svedberg and Nichols, 1923; Svedberg 
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and Rinde, 1924). In 1959, the physicist Richard P. Feynman described for the first 

time the concept of “nanoscience” in a lecture to the American Physical Society 

(Gribbin and Gribbin, 1997; Park, 2007) and the term “nanotechnology” was coined 

by the Japanese scientist Norio Taniguchi in 1974 (Taniguchi, 1974). Later, Kim Eric 

Drexler disseminated the concept of nanotechnology into the public domain with the 

publication of “Engines of Creation: The Coming Era of Nanotechnology” and 

founded the field of molecular nanotechnology (Drexler, 1986).  

At present, nanomaterial-based products have become part of our daily life. 

A large number of companies are currently involved in the production and 

application of nanomaterial-based products in several areas, such as cosmetics, 

electronics, biopharmaceutical and biomedicines and laboratory equipments (Salata, 

2004; Aitken et al., 2006). Examples of different types of tailored nanomaterials and 

their applications are summarized in Table 1.1.  

 

1.2. Sources of nanomaterials in the environment 

The source of nanoparticles in the environment can be natural or 

anthropogenic. The most common natural sources of nanoparticles are combustions 

including forest and grass fires, soot, naturally occurring aerosols, volcanic 

elements, rock erosion, photochemical and biogenic reactions. Combustions, like 

forest and grass fires or from burnt charcoal, can occur naturally (by lightning and 

wind or heat) or be caused directly or indirectly by humans, leading to the production 

of smoke, soot and ash which contain large amounts of nanomaterials (Buzea et al., 

2007). Most aerosols in the environment occur naturally and contain large number of 

nanoparticulate matter; only one tenth of the aerosols are produced by human 

activities, mainly from industrial exhausts and burnt residues from vehicles in urban 

areas (Taylor, 2002). Aerosols can be produced in large quantity from the dust 

storms mainly in the desert areas. Huge amount of mineral nanoparticles with size 

ranging between 120 and 160 nm have been detected in aerosols of the desert 

Sahara (d‟Almeida and Schütz, 1983). Volcanic soils or products contain 

nanoparticles of metals including heavy metals (Yano et al., 1990; Buzea et al., 

2007). Metals and metal oxide nanoparticles (e.g. Au, Ag, TiO2, Fe-oxides and 

magnetite) often have atmospheric or geogenic sources; they are found in the dust 

aerosols, soils, rocks, sea salts and rivers (Nowack and Bucheli, 2007; Wigginton et 

al., 2007).  Carbon nanoparticles, like C60 or C70 fullerenes and their derivatives and 

CNTs, can be found in the soot, fly ashes and aerosols, hard and soft rocks, 
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fossilised dinosaur eggs and charcoals (Heymann et al., 2003; Nowack and Bucheli, 

2007). Also other organic nanoscale substances, like humic substances, can be 

present in natural colloids (Gibson et al., 2007). Biogenic source of nanoparticles 

are often reported. Naturally occurring organic nanoparticles have been isolated 

from the English ivy (Hedera helix) and have UV-protective effects (Xia et al., 2010). 

Many microorganisms, including bacteria, are able to produce metal nanoparticles, 

e.g. silver (50-100 nm) and gold (10-20 nm) nanoparticles (He et al., 2007; Minaeian 

et al., 2008). Biosynthesis of silver nanoparticles using fungi has been reported by 

Sadowski et al. (2008). Nanoparticles of Au, Ag and Au-Ag of size ranging from 15 

to 150 nm have shown to be biosynthesised by Volvariella volvacea, an edible 

mushroom (Philip, 2009).  

Anthropogenic sources of nanoparticles in the environment include aerosols, 

cosmetics, other daily life products, biomedicines and wastewater treatment plants. 

Aerosols containing nanoparticles can be generated from industrial combustion, 

automobile exhausts, smokes, multistorage building re-constructions, road 

constructions, roadside traffic, etc. (Shi et al., 2001; Buzea et al., 2007). 

Anthropogenic sources are mostly responsible for spreading and contaminating 

manufactured nanoparticles to the environment. Some of the regularly used 

materials like flame of candles, refrigerator, vacuum cleaner, cigarette, stoves, 

electrospray or other room-freshener spray and room heater may also emit 

nanoparticles indoors (Buzea et al., 2007). Metal by-products such as Pt and Rh 

with size in nanometer range are often found in aerosols (Zereini et al., 2001). 

Intense industrial and urban development led to the presence of huge amount of 

fullerenes and their derivatives in the aerosols of Mediterranean Sea atmosphere 

(Sanchís et al., 2012). Temporal association between very small size nanoparticles 

(3-7 nm) and solar radiation was observed in urban atmosphere in the absence of 

other local sources, suggesting the importance of homogeneous nucleation as a 

source of nanoparticles in urban areas (Shi et al., 2001). Increased quantity of other 

regular use products like sunscreen, cosmetics, electronics, antimicrobial paints, 

clothes, washing machines and biomedicines, which contain nanoparticles such as 

Ag, Au, CuO, ZnO, TiO2, and SiO2, may also release manufactured nanoparticles 

that will probably contaminate (intentionally or unintentionally) the environment 

through leaching into soil and natural surface waters. Other anthropogenic sources 

(unintentional) of nanoparticles that can contaminate the soil or surface waters are 
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wastewater treatment plants, filtration units in drinking water purification plants and 

metallic pipes (Wigginton et al., 2007; Kim et al., 2010; Lau, 2011).   

  

Table 1.1 Engineered nanomaterials and their potential applications for human benefit 

Type of nanomaterial Example Major application Reference 

Spherical nanometals 
Ag, Au, Zn, Cu, Si, 

Pt, Pd 

In ornaments, antimicrobial 
paints, textiles, fabrics, 

electronics consumer goods, 
biomedical and therapeutic 

research, drug delivery and gene 

therapy, antimicrobial therapy, 
anti-HIV drug development 
strategy, anticancer drug 

development 

Elechiguerra et al., 2005 

Jin and Ye, 2007 

Kim et al., 2007 

Kumar et al., 2008 

Luechinger et al., 2008 

Agasti et al., 2009 

Zhang et al., 2009 

Matthews et al., 2010 

Spherical nanometal 

oxides 

ZnO, CuO, TiO2, 

SiO2, CeO2, Al2O3, 
Fe2O3 

In ornaments, cosmetics, 
sunscreens, antimicrobial paints, 

textiles, electrospray 
disinfectants, biomedical and 

therapeutic research, drug 
delivery and gene therapy, 

antimicrobial therapy, 

Nel et al., 2006 

Jin and Ye, 2007 

Becheri et al., 2008 

Kathirvelu et al., 2009 

Hochmannova and Vytrasova, 

2010 

Matthews et al., 2010 

Wang et al., 2010 

Nanocrystals/ 

nanocrystallites/ 

quantum dots 

CdS, CdSe, CdTe, 

PbSe, GaAs, 
CdSe/ZnS, 
CdSeS/ZnS 

As semiconductor for biological 
imaging, cell tracking, pathogen 

and toxin detection, Fluorescent 
labelling of cellular proteins, 

Gene technology 

Jamieson et al., 2005 

Jin et al., 2011 

Nanotubes/nanowires of 

metals/metal oxides 

Cu, SiO2, ZnO, 

TiO2 

In electronic devices as 

semiconductor 
Mo and Kaxiras, 2007 

Carbon nanotubes 
CNT, single-walled 

or multi-walled 

In electronic devices as 
semiconductors, electrical 

circuits, batteries, computation, 
electronics, catalytic reactions, 

strength absorber, flexible 

displays, fuel cell and solar cell 

In biomedical fields, biosensing, 

drug delivery, diagnostics, tissue 
engineering and anticancer 

therapeutics 

Endo et al., 2004  

Bandaru, 2007 

Fisher et al., 2012 

Noble metal 

nanoparticles/carbon 
nanotubes nanohybrids 

CNT/DEN/Au, 

PtRu/CNT, 
Pt/CNT, 

Pt/Au/CNT, 

Pd/HPW-PDDA-
MWCNTs 

In heterogeneous catalysis, 

electrocatalysis, fuel cells and 
chemo/biosensors 

Wu et al., 2011 

Buckyball or 

buckminsterfullerenes and 
functionalized derivatives 

C60, C70, C60(OH)x,  

C3 (e,e,e-
C60(C(COOH2))3) 

Fullerenes in HIV-1 protease 
inhibition, DNA-photocleavage, 

antimicrobial therapy 

Water soluble functionalized 

derivatives of fullerene as potent 
antioxidant agent and free 

radical scavenger in prevention 

of excitotoxic and apoptotic 
death of neurons, protection 
against ischemia-reperfused 

lungs, protecting brain against 
alcoholic injury, preventing 

hepatotoxicity in rats and human 

cell lines, anti-tumour therapy 

HIV-1 protease inhibition 

Friedman et al., 1993 

Dugan et al., 1996 

Ros et al., 2001 

Chen et al., 2004 

Injac et al., 2008b 

Tykhomyrov et al., 2008 

Krishna et al., 2010 
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1.3. Aquatic environment: the ultimate sink of nanomaterials 

Increased industrial production and commercial application of engineered 

nanoparticles enhance the possibility of their release to the environment (Colvin, 

2003). Natural waters constitute a large environmental compartment and are likely 

to serve as a terminal repository of natural and engineered nanoparticles via 

industrial waste-release, soil runoff and atmospheric deposition. The average 

concentration of nanoparticles in natural waters is 107-108 L-1 (Lau, 2011). Because 

the surface properties of natural nanoparticles are often similar to those of 

engineered nanoparticles, natural nanoparticles may provide some information to 

predict the fate and behaviour of engineered nanoparticles in natural waters. Metal 

oxide natural nanoparticles, like crystalline TiO2, were found in rivers of western 

Montana, USA (Wigginton et al., 2007). Nanoparticles can be released from 

mechanical milling of rocks in slipping zones of faults (Han et al., 2011). Iron oxides 

and Pb nanoparticles with 20 nm were detected in drinking water but it was not clear 

if those nanoparticles had a natural origin in the river or an anthropogenic origin 

from the water treatment plant or from the corrosion of pipes (Wigginton et al., 

2007). Iron oxide nanoparticles with similar size were also observed in riverine and 

glacial melt water environments (Poulton and Raiswell, 2005). Ferrihydrite 

nanocrystallites and nanocrystalline iron oxides were observed in main rivers of the 

Amazon Basin in Brazil, and were involved in transporting iron and organic matter 

(Allard et al., 2004). High amounts of organic nanoparticulate fraction with particle 

size smaller than 5 nm have been reported in lakes and rivers near Birmingham, UK 

(Baalousha and Lead, 2007). Metal sulphide nanoparticles are often found in rivers 

(Rozan et al., 2000), but the actual sources of these nanoparticles are not clear.  

Natural biosynthesis of metal nanoparticles may also occur in surface 

waters. Silver nanoparticles can be produced by microbes. For example, Ag 

nanoparticles can be synthetized by several Fusarium oxysporum strains (Durán et 

al., 2005) and Fusarium sp. has been associated with plant-litter in freshwaters 

(Fernandes et al., 2009). Carbon nanoparticles, such as fullerenes, naturally 

occurring in rivers appear to be produced by algae (Heymann et al., 2003). Organic 

nanoparticles (1-5 nm) sitting on coherent nanoscale surface films (3 nm thick) can 

be formed in natural waters at low pH (Gibson et al., 2007). The presence of 

nanoparticles in salt waters has also been reported. Nanoparticles of trace metals 

were found in water samples from the San Francisco Bay estuary, USA. At the lower 

salinity sites of the estuary, about 84% of the total dissolved fraction consisted of Al, 
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Ag and Fe nanoparticles, while 16-20% of that fraction consisted of Cu and Mn 

nanoparticles with sizes <200 nm; at sites with higher salinity, Fe nanoparticles were 

the most abundant (ca. 40%), followed by nanoparticles of Al, Mn and Cu (<10%) 

and nanoparticles of Zn (<3%), and about <2% of the fraction contained Ni 

nanoparticles at the river endmember (Sañudo-Wilhelmy et al., 1996). Nanoparticles 

of bioactive metals with 200-800 nm were detected in the Narragansett Bay, RI, 

USA with a decreasing order of nanoparticle load as follows: Fe>Mn>Zn>Cu>Ni 

(Wells et al., 2000).  

There is also evidence of the release of tailored nanoparticles into streams 

from anthropogenic sources (Nowack, 2008). TiO2 nanoparticles (20 and 300 nm 

size) from the exterior facade paints were discharged into surface waters (Kaegi et 

al., 2008). Inorganic metal nanoparticles and carbon nanoparticles are often used 

for detection and removal of chemical and biological substances, including heavy 

metals, from wastewaters (Tiwari et al., 2008). Ag2S nanocrystals with 5-20 nm size 

have been found in sewage sludge products indicating the transformation of Ag 

nanoparticles during the wastewater treatment process (Kim et al., 2010). Copper 

concentration in the chemical mechanical planarization wastewaters of Taiwan often 

exceeds 100 ppm (mainly due to incineration of fly ashes), up to 49% of which may 

consist of CuO nanoparticles (Hsiao et al., 2001; Huang et al., 2006). Silver 

nanoparticles are widely used in textiles and plastic industries and they can be a 

source of Ag in natural waters. Indeed, from the estimated 500 t year−1 of global 

production of nano Ag (Muller and Nowack, 2008), about 20–130 t year−1 have been 

predicted to reach EU freshwaters mainly from ionic leaching of polymer embedded 

nanoAg from biocidal plastics and textiles, which accounts for about 15% of the total 

silver released into EU freshwaters (Blaser et al., 2008). Predicted environmental 

concentrations (PECs) of nano size Ag in Europe, with lower and upper quartiles 

(Q0.15 and Q0.85) based on regular life use of nanomaterials, are 0.5−2 ng L−1 in 

surface waters, 32–111 ng L−1 in sewage treatment plant effluents, and 1.3–4.4 mg 

kg−1 in sewage sludge (Gottschalk et al., 2009; Fabrega et al., 2011), and these 

values are predicted to increase in the near future (Balser et al., 2008; Gottschalk et 

al., 2009; Mueller and Nowack, 2008). Although a number of techniques have 

proved suitable for characterization of engineered metal nanoparticles (e.g. Ag, Al, 

Au, Cu, Fe, Si and Zn) or metal oxide nanoparticles (e.g. NiO, ZnO, SiO2, TiO2, 

Al2O3, CeO2, CuO and Fe2O3) released to the environment from textile industry 

wastewaters and waters from hospitals or hotel laundries (Rezić, 2011), studies on 
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the detection and characterization of engineered nanoparticles in natural waters are 

still scarce.  

 

1.4. Ecotoxicity of metal-based nanoparticles and carbon-based 

nanoparticles 

Metal/metal oxide nanoparticles and carbon-based nanoparticles are among 

the most widely used types of engineered nanomaterials (Griffitt et al., 2008). These 

nanoparticles represent a fundamental cornerstone of nanotechnology due to their 

contribution to various fields of applications (Table 1.1). Indeed, they are used 

worldwide in a vast range of regular life products and find applications in various 

research fields including electronics, biomedical and pharmaceutical areas.  

Metal-based nanoparticles have special catalytic and photoactive properties, 

which are different from those of carbon-based nanoparticles. For example, metal 

nanoparticles are less hydrophobic compared to most of carbon-based 

nanoparticles in aqueous environments and, thus, the aggregation or deposition 

rates of inorganic nano metals/metal oxides are relatively lower than that of carbon 

nanoparticles. The adverse impacts of nano metals/metal oxides against aquatic 

biota have been associated with their ability to generate reactive oxygen species 

(Limbach et al., 2007; Petersen and Nelson, 2010). On the other hand, there are 

controversial reports on the potential toxicity and/or antioxidative activity of 

fullerenes and their derivatives. Some studies have reported toxicity and ecotoxicity 

of fullerene via oxidative stress (Oberdörster et al., 2006). Due to differences in 

properties, surface chemistry and abiotic or biotic degradation rates it is difficult to 

have real comparative toxicity studies between metal-based and carbon-based 

nanoparticles. Very few attempts were made to compare the toxicity of these two 

types of nanomaterials in individual organisms and human cell lines.  

The OECD enlisted most of metal oxide nanoparticles (TiO2, Al2O3, CeO2, 

ZnO and SiO2), two metal nanoparticles (Ag and Fe) and four carbon-based 

nanoparticles (fullerene C60, SWCNTs, MWCNTs and carbon black) as 

representative manufactured nanomaterials seeking ecotoxicity tests and risk 

assessment (OECD, 2010). Most of the studies with carbon-based nanoparticles 

have shown very low lethal effects and much more pronounced sublethal effects on 

invertebrates; whereas most of metal and metal oxide nanoparticles have exhibited 

lethal and sublethal effects on invertebrates although depending on nanoparticle 

type and size (Cattaneo et al., 2009). Within the carbon nanoparticles, fullerenes 
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seemed to be more toxic than CNTs; however, the toxicity of fullerenes prepared 

with the solvent tetrahydrofuran (THF) is generally higher than when prepared by 

stirring and sonication in water because THF itself can be toxic (Cattaneo et al., 

2009). In a comparative study, ZnO nanoparticles induced phytotoxicity by inhibiting 

seed germination and root growth, whereas MWCNTs did not (Lin and Xing, 2007). 

Consistently, CuO and ZnO nanoparticles showed higher cytotoxicity than MWCNT 

against human lung epithelial cell lines, and the genotoxicity of CuO and TiO2 

nanoparticles was also higher than that of MWCNT (Karlsson et al., 2009). The TiO2 

nanoparticles were more phototoxic and promoted higher production of superoxide 

ions in bacteria compared to fullerenes or their hydroxyl derivatives (Brunet et al., 

2009). Blaise et al. (2008) demonstrated the toxicity of 11 nano-powders against 

various aquatic organisms; fullerene C60 was classified as “harmful” or “nontoxic”, 

while most of metal oxide nanoparticles were classified as “very toxic”, “toxic” or 

“harmful” according to the categories in the EU Commission Guideline 93/67/EEC. 

However, the pristine form of fullerene (C60) was more toxic against human cell lines 

than its derivatives (Sayes et al., 2004). 

The functionalised fullerene polyhydroxy fullerene (PHF) is commercially 

more attractive because it is reported to be non-toxic, water soluble, stable in 

aqueous environment due to the presence of hydroxyl groups and antioxidant 

properties (Lai et al., 2000; Injac et al., 2008a; Vávrová et al., 2012). PHF has been 

reported to decrease excitotoxic and apoptotic death of neurons, tumour in rat, 

prevent ischemia-reperfused lungs, alcoholic injury in brain and hepatotoxicity in rats 

and human cell lines (Table 1.1). On the contrary, few studies reported the 

cytotoxicity of PHF (Sayes et al., 2004; Xu et al., 2009; Johnson-Lyles et al., 2010; 

Wielgus et al., 2010) and have shown that under photoexcitation, PHF can generate 

free radical species (Pickering and Wiesner, 2005) leading to early apoptosis and 

lipid peroxidation (Wielgus et al., 2010). However, Kong et al. (2009) provided 

evidence of extensive mineralization of PHF (up to 47% of PHF) by direct photolysis. 

Moreover, white rot fungi are capable of mineralising PHF and also incorporate 

minor amounts of carbon from PHF into lipid biomass (Schreiner et al., 2009). In 

addition to its antioxidant function, possible utilisation of PHF as a nutrition source 

was also reported because it stimulated growth and lifespan of algae, fungi and 

plants (Gao et al., 2011). Increase in lifespan of mice by carboxyfullerene, another 

antioxidant functionalized fullerene, has also been reported (Quick et al., 2008).  
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In spite of the reported toxicity of carbon-based nanoparticles, metal and 

metal oxide nanoparticles are of greater concern for the environment due to their 

abundant applications, special surface properties by delocalized resonating 

electrons, lesser degradation rate and longer biological life. Moreover, considerable 

amounts of bioavailable ionic forms leached from metal/metal oxide nanoparticles 

have been reported increasing the probability of their contribution to nanoparticle 

toxicity (Franklin et al., 2007; Aruoja et al., 2009). Also, physical and chemical 

properties of water (e.g., pH, conductivity and organic matter) are expected to affect 

leaching and bioavailability of metal ions, as well as agglomeration/aggregation of 

nanoparticles, and, thus, a priority of the toxicological researchers is to examine 

such aspects to better predict the fate and behaviour of engineered metal 

nanoparticles in aqueous environments.   

 

1.5. Physico-chemical properties of metal nanoparticles  

The physico-chemical properties of metal/metal oxide nanoparticles are very 

important to understand their fate and behaviour in the environmental 

compartments. Nanoparticle toxicity to biota may also depend on the properties of 

nanomaterials. Nanoparticle chemistry, such as elemental composition and 

structure, can influence the biological activity (Navarro et al., 2008). Moreover, the 

size of metal/metal oxide nanoparticles is among the factors that influence toxicity. 

Often size is inversely related to the toxicity of metal nanoparticles by modification of 

surface properties. The uptake of nanometals can depend on the particle size; very 

small size nanometals can penetrate the blood-brain barrier, which in turn may 

cause neurotoxicity to mammals, including humans (Panyala et al., 2008). Lethal 

effects of bulk metal oxides were less severe than those promoted by nanometal 

oxides to the aquatic bacterium Vibrio fischeri and to the aquatic crustaceans 

Daphnia magna and Thamnocephalus platyurus (Heinlaan et al. 2008). In the 

microalgae Pseudokirchneriella subcapitata the lower toxicity of bulk CuO particles 

compared to nanoCuO particles was probably due to 141-folds higher bioavailability 

of nanoparticles (Aruoja et al., 2009). Also, the toxicity of TiO2 nanoparticles to the 

freshwater green alga P. subcapitata was size dependent (Hartmann et al., 2010). 

The decreased toxicity of larger particles suggests self-aggregation of metal 

nanoparticles with the increase in size. 

Nano metals/metal oxides may have different shapes, such as spheres, 

tubes, rods and wires (Pinna and Niederberger, 2008). Differences in the shape may 
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affect the dispersion, mobility and stability due to self-aggregation and biological 

sorption in aqueous conditions changing the biological activity/toxicity. For instance, 

the toxicity of CNTs can differ from that of spherical fullerene due to the variation in 

shapes. Similarly, inorganic metallic nanotubes have some special properties like 

semiconductivity (Mo and Kaxiras, 2007), which may not be found in spherical 

forms. Due to lower width, the penetration impacts of nanotubes on biological cells 

may be higher comparing to the nanospheres. The optical properties of metal-based 

nanoparticles are also influenced by shape and dielectric environment (Kelly et al., 

2003).  

The nanoparticle form can also influence their toxicity to living organisms. 

For example, TiO2 nanoparticles occur in four different forms, but anatase and rutile 

are the naturally occurring crystals more used in the industry. Both size and crystal 

structure of TiO2 nanoparticles determine toxicity but the mechanism of cell death 

depends on the crystal structure regardless of size (Braydich-Stolle et al. 2009). 

Moreover, anatase induced cell necrosis, while rutile induced apoptosis by 

generating reactive oxygen species (ROS). 

The surface/volume ratio depends on the nanoparticle size; the ratio 

increases with the decrease in size and, thus, an increased number of atoms are 

free to be displayed in the surface instead of lining to each other in the inner core 

region of the metal lattice (Lowry and Wiesner, 2007). This increases the number of 

delocalized surface electrons, which are very active as they came from the 

displayed atoms of potentially active groups. Hence, the number of these surface 

active groups per unit mass increases with the decrease in nanoparticle size, and, 

therefore, the nanoparticles become very reactive. Also, the number of 

nanoparticles per unit mass increases with the decrease in size. Therefore, 

biological interactions with metal nanoparticles tend to increase with the increase in 

surface area. Indeed, the pulmonary inflammatory response against TiO2 was higher 

when nanoparticles had higher surface area (Duffin et al., 2002). 

The surface of metal nanoparticles may have electric charge when dispersed 

in aqueous environment depending on the particle nature, shape, size and the 

surrounding environment (Kelly et al., 2003). The surface charge and chemistry of 

metal nanoparticles may affect the mobility and dispersion of nanoparticles in 

aqueous environments. Engineered nanoparticles are often made with surface 

coatings for longer stabilization and dispersion to avoid aggregation. Generally, 

organic molecules containing hydrophilic and biocompatible terminal functional 
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groups, such as –OH, –COOH, –CN, and –NH2, are used for the surface coating. 

For example, silver or gold nanoparticles may be stabilised with citrate. The surface 

charge and chemical composition may influence the surrounding ionic strength, and 

the cellular uptake or biosorption of chemicals with implications to toxicity.  

Metal nanoparticles can release metal ions, which may be a key factor in 

their toxicity against living organisms (Kahru et al., 2008; Brunner et al., 2006). 

Metal ions have been found in the medium after exposure of Saccharomyces 

cerevisiae to nanoparticles of ZnO, CuO and TiO2 (Kasemets et al., 2009). Part of 

the toxicity of metal/metal oxide nanoparticles against various aquatic organisms 

has also been explained by the presence of bioavailable metal ions leached from 

the nanoparticles (Heinlaan et al., 2008; Aruoja et al., 2009; Blinova et al., 2010). 

Also, the cytotoxicity of quantum dots, like CdSe, was partially explained by the 

liberation of free Cd2+ ions due to deterioration of CdSe lattice (Derfus et al., 2004).  

Aggregation of metal-based nanoparticles is often observed and it depends 

on the size, surface charge, surface chemistry and several environmental factors; 

aggregation can occur during nanoparticle synthesis, storage and application 

(Hartmann et al., 2010). For example, high aggregation of nanoparticles was 

observed in seawater due to high salinity (Buffet et al., 2011). Aggregation of 

nanoparticles affects their stability and may result in sedimentation that, in turn, may 

compromise the toxicity of nanoparticles against living organisms (Gajjar et al., 

2009).  

 

1.6. Aquatic ecotoxicity: impacts of metal nanoparticles and mode of 

action 

1.6.1. Lethal and sublethal effects 

Aquatic ecotoxicity of nanoparticles to organisms can result in mortality 

(acute lethal effects) or in adverse structural or functional changes (sublethal 

effects). Lethality tests are of primary importance in ecotoxicological assays to 

determine the sensitivity, viability and acute stress responses of biota (Valenti et al., 

2005). Acute toxicity induced by metal and metal oxide nanoparticles is reported in a 

wide range of aquatic organisms. Silver nanoparticles can induce toxicity to 

zebrafish embryos (LC50 at 72 h post-fertilization = 25-50 mg L-1) (Asharani et al., 

2008). In acute toxicity tests, the microalgae P. subcapitata was sensitive to several 

metal oxide nanoparticles and the order of toxicity based on EC50 (72 h) was 
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ZnO>CuO>TiO2 (Aruoja et al., 2009). The increased bioavailability of metal ions with 

the decrease in particle size contributed to explain the toxicity level of each metal 

nanoparticle (Franklin et al., 2007; Aruoja et al., 2009; Heinlaan et al., 2008). Also, 

acute lethal effects of CuO and ZnO nanoparticles were reported against aquatic 

crustaceans and protozoa, and the toxicity was mainly attributed to solubilised ions 

(Blinova et al., 2010). However, leached ionic metals only explained part of 

nanotoxicity (Kasemets et al. 2009). Acute lethal toxicity of Ag and Cu nanoparticles 

against zebrafish, daphnids and algae was higher comparing to Ni, Al, Co and TiO2 

nanoparticles although the leached Ag and Cu ions had a minor role in toxicity 

(Griffitt et al., 2008). However, toxicity can also be caused by intracellular dissolution 

of nanoparticles; the oral toxicity of Cu nanoparticles to mice was a consequence of 

the high reactivity of Cu nanoparticles that led to metabolic alkalosis and intracellular 

accumulation of copper ions (Meng et al., 2007).  

In bioassays, as those proposed by the EU Commission Guideline 

93/67/EEC, it was shown that the majority of metal oxide nanoparticles causes 

acute toxicity against many aquatic organisms, such as bacteria, invertebrates and 

fishes (Blaise et al. 2008). However, the mode of toxicity of the tested nanoparticles 

may not be similar. Nanoparticles of TiO2 under natural UV radiation were toxic to 

aquatic microbes by generation of ROS and cell membrane damage (Battin et al., 

2009). The acute lethal toxicity of metal nanoparticles is generally higher for 

organisms from lower trophic levels (filter-feeding invertebrates) compared to higher 

trophic levels (fish) (Griffitt et al., 2008).  

Although many acute toxicity tests for metal nanoparticles to aquatic 

organisms have been carried out, few studies are available on their sublethal 

effects. Sublethal effects of TiO2 nanoparticles to Arenicola marina (lugworm) were 

observed with a significant decrease in the casting rate, increase in cellular and 

DNA damages in coelomocytes. Under these conditions, nanoparticle aggregates 

were observed in the lumen of the gut and outer epithelium of the worms (Galloway 

et al., 2010). Also, TiO2 nanoparticles posed sublethal toxicity to the rainbow trout 

involving oxidative stress, organ pathologies, and the induction of antioxidant 

defences (Federici et al., 2007). Sublethal doses of CuO nanoparticles in seawater 

also caused impairment of burrowing and feeding behaviour in the marine 

invertebrate Scrobicularia plana (Buffet et al., 2011). Dietary exposure of rainbow 

trout (aged < 1 year) to TiO2 nanoparticles (10 and 100 mg kg-1 for 8 weeks) caused 

changes in Cu and Zn ion levels in the brain, with biochemical alterations in the gills 
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and gut (Ramsden et al., 2009). Also, the chronic exposure to TiO2 nanoparticles 

can result in bioaccumulation of nanoparticles that may interfere with the feeding 

and inhibit the growth and reproduction of daphnids (Zhu et al., 2010).  

 

1.6.2. Responses at the community level 

Knowledge on the structural and functional responses of aquatic organisms 

to various metal-based nanoparticles is required to predict the risks of these 

chemicals to aquatic ecosystems. There are only few studies that determined the 

impacts of nano size metals/metal oxides at the community level in aquatic 

environments. Toxicity of TiO2 nanoparticles against planktonic and biofilm 

communities was reported under natural levels of UV radiation and low TiO2 

concentrations in surface waters (up to 5.3 mg L-1) (Battin et al., 2009). The 

observed generation of intracellular ROS explained the TiO2 nanoparticle-induced 

toxicity to cells of aquatic microbial communities (Battin et al., 2009). However, the 

exposure to low concentrations of Ag nanoparticles (up to 1000 µg L-1) induced 

minor changes in genetic diversity of bacterial communities from estuarine 

sediments, as shown by the negligible differences in DGGE profiles (Bradford et al., 

2009).  

 

1.6.3. Responses at the individual level 

Although some studies have been conducted to understand the individual 

response of organisms to nanoparticles, there are many gaps that should be 

addressed to have a complete picture. Individual response of zebrafish to Ag 

nanoparticles resulted in high acute mortality of embryos or larvae, and the 

embryos/larvae that survived showed various phenotypic deformities, including bent 

and twisted notochord, blood accumulation in the blood vessels near the tail, low 

heart rate, pericardial edema, distorted yolk sac and degeneration of body parts 

(Lee et al., 2007; Asharani et al., 2008). Nanoparticles of Ag and CuO have 

bactericidal effects against the beneficial soil microbe Pseudomonas putida KT2440, 

while ZnO nanoparticles showed bacteriostatic effect (Gajjar et al., 2009). Griffitt et 

al. (2008) reported high lethality for individuals of different trophic levels, such as 

algae, daphnids and fishes, under exposure to Ag and Cu nanoparticles, while 

nanoparticles of Ni, Cu, Al, Co and TiO2 exhibited lower toxicity to organisms of 

higher trophic levels (zebrafish). ZnO and CuO nanoparticles caused mortality in the 
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aquatic ciliated protozoa Tetrahymena thermophila; however, the toxic effects of 

both nanoparticles to protozoa were caused by their solubilised fraction (Mortimer et 

al., 2010). The core–shell CuO nanoparticles induced cellular aggregation in 

Chlamydomonas reinhardtii, and inhibited the photosystem II and the electron 

transport in this green alga (Saison et al., 2010). Exposure to CeO2 nanoparticles 

and two different sizes of SiO2 nanoparticles induced lethal toxicity against D. 

magna and the larva of the aquatic midge Chironomus riparius (Lee et al., 2009). In 

a short-term toxicity study, tin dioxide nanoparticles were shown to penetrate into 

the blood of the fish Poecilia reticulata through the gills and intestine that might 

mobilize to various organs, but no acute toxic effects were found (Krysanov et al., 

2009).  

 

1.6.4. Responses at cellular and biochemical level 

Toxicity of various metal and metal oxide nanoparticles (Ag, Fe3O4, Al, MoO3 

and TiO2) in mammalian cells (rat liver derived cell line BRL 3A) has been 

associated with decreased functions of mitochondria and increased membrane 

permeability. A decrease in the mitochondrial membrane potential and a significant 

depletion of reduced glutathione (GSH) were observed in those cells after exposure 

to Ag nanoparticles (Hussain et al., 2005). Ag nanoparticles induced apoptosis or 

programmed cell death in zebrafish embryos (Asharani et al., 2008). The exposure 

of the fish Japanese Medaka to Ag nanoparticles led to high DNA damage and 

oxidative stress, induction and upregulation of genes related to metal detoxification, 

metabolic regulation and free radical scavenging activity (Chae et al., 2009). TiO2 

nanoparticles were reported to decrease the Na+/K+-ATPase activity in cells of gills 

and intestine, alteration of total glutathione levels in some organs (e.g. gills and 

liver) and minor changes in fatty acids of hepatocytes in the rainbow trout; but some 

of them had apoptotic bodies (Federici et al., 2007). Dietary exposure of rainbow 

trout to TiO2 nanoparticles reduced by 50% the activity of brain Na+/K+-ATPase and 

the thiobarbituric acid reactive substances (TBARS) in the gill and intestine 

(Ramsden et al., 2009). Ti accumulation was detected in several fish organs (gills, 

gut, liver, brain and spleen) (Ramsden et al., 2009). Metal oxide nanoparticles 

induced oxidative stress biomarkers by increasing the activity of catalase, 

glutathione-S-transferase and superoxide dismutase and the levels of 

metallothionein-like proteins in marine invertebrates (Buffet et al., 2011).  
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Histological and biochemical analysis revealed that the gills of zebrafish 

could be the primary target for Cu nanoparticles (Griffitt et al., 2007). Cu 

nanoparticles decreased gill Na+/K+-ATPase activity up to 58% and the transcription 

of stress responsive genes in the gills: the exposure to 1.5 mg L-1 Cu nanoparticles 

increased the activity of hypoxia-inducible factor 1 (HIF-1, ~24 folds), heat-shock 

protein 70  (HSP-70, 14 folds) and copper transport regulatory protein (CTR, ~12 

folds) (Griffitt et al., 2007). The exposure for 48 h to CuO nanoparticles led to 

ultrastructural changes in the midgut epithelium of daphnids, including protrusion of 

epithelial cells into the lumen, and to the presence of nanoparticles in circular 

structures, analogous to membrane vesicles from holocrine secretion (Heinlaan et 

al., 2011). Increased DNA damage has been observed in freshwater invertebrates 

after exposure to CeO2 nanoparticles (Lee et al., 2009). Aqueous exposure of the 

freshwater mussel Elliption complanata to cadmium–telluride (CdTe) quantum dots 

(1.6 to 8 mg L-1) led to high oxidative stress with lipid peroxidation, genotoxicity and 

DNA strand breaks in the digestive glands and gills, and to a decreased viability and 

activity of hemocytes, and 15% of CdTe was found in the dissolved phase (Gagné et 

al., 2008). Many studies have revealed an increase in the production of ROS in 

various biological tissues exposed to different metal-based nanoparticles (Hussain 

et al., 2005; Lin et al., 2006), which can be one of the key mechanisms of 

nanoparticle toxicity against organisms (Petersen and Nelson, 2010).  

 

1.7. Fate of metal nanoparticles in aquatic environments 

1.7.1. Stability, mobility and transformation  

The properties and behaviour of metal nanoparticles in the environment are 

very similar to the natural colloids and, therefore, various physical and chemical 

factors can interfere with their fate and stability in natural waters, such as pH, 

composition, ionic strength, salinity, natural organic matter and dissolved organic 

carbon (Omelia, 1980; Lowry and Wiesner, 2007; Hartmann et al., 2010). Blinova et 

al. (2010) found that toxicity of CuO nanoparticles to crustaceans in natural waters 

was lower (up to 140-folds) than that found in artificial freshwaters probably due to 

differences in concentration of dissolved organic carbon. Natural organic matter, 

such as humic acid, is present in natural waters (Wall and Choppin, 2003; Steinberg 

et al., 2006) and can interfere with the stability or mobility of metal nanoparticles. 

Exposure to different sizes (10, 30 and 300 nm) of TiO2 nanoparticles may alter the 
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toxicity of ionic metals; the 300 nm size nanoTiO2 reduced the toxicity of Cd2+ to 

freshwater algae by decreasing Cd bioavailability due to its sorption/complexation to 

TiO2 surface. However, the co-exposure to 30 nm TiO2 nanoparticles and Cd2+ 

promoted a growth inhibition greater than that expected from effects of Cd2+ alone 

(Hartmann et al., 2010). This indicates that in addition to nanoparticle toxicity, 

potential interactions with existing environmental contaminants are also important to 

consider when assessing toxicity of nanoparticles (Hartmann et al., 2010). Salinity 

and substances excreted by organisms may also induce aggregation of 

nanoparticles and may interfere with their toxicity against aquatic organisms 

(Nielsen et al., 2008). The electrophoretic mobility, state of aggregation, and rate of 

sedimentation of different metal oxide nanoparticles (TiO2, ZnO and CeO2) in 

seawater, freshwaters, and groundwater were affected by the presence of natural 

organic matter (NOM) and ionic strength, but not by pH; NOM adsorbed to 

nanoparticles reduced aggregation and stabilized nanoparticles (Keller et al., 2010). 

Dissolved organic matter may adsorb to metal/metal oxide nanoparticles through 

surface charge interactions interfering with the aggregation state and changing their 

mobility in aqueous environments (Chen et al., 2006). The size and shape of 

nanoparticles influence their stability and mobility. Size and shape of metal 

nanoparticles may change with pH and fulvic acids, a component of NOM (dos 

Santos et al., 2005). Except for nanosilica, nanoparticles of TiO2, Fe2O3, ZnO and 

NiO rapidly aggregated in tap water due to electric double layer compression; 

nanosilica remained stable in tap water due to electric double layer compression 

and its low Hamaker constant (Zhang et al., 2008). Highly dispersed and stable 

nanoparticles in surface waters have high mobility but the mobility of nanoparticles 

may decrease in porous media, such as ground water aquifers, where nanoparticles 

may attach to mineral surfaces or to highly surface active particles. Some water 

treatment plants use filters with active surfaces to retain nanoparticles. Depending 

on the intrinsic properties and environmental factors, the primary particles can 

agglomerate/aggregate to form bulk size in aqueous environment (Buffet et al., 

2011) affecting stability and thus their mobility and transformation.The stability of 

nanoparticles can increase with steric hindrance/steric repulsion or electrostatic 

repulsive forces, and agglomeration may occur due to hydrophobicity of the particles 

as generally found for carbon-based nanoparticles in aqueous suspension. Surface 

coating can also promote the stability of those nanoparticles which have surface 

charge weaker than required for steric or electrostatic repulsive forces as generally 



General introduction 

 

19 
 

observed for nanotubes; surface coating overcomes the weaker attractive 

electrostatic forces or van der Waal forces. However, addition of salts may lead to 

agglomeration by interfering with the surface charge and chemical composition of 

nanoparticles; this can be one of the important factors for nanoparticle mobility and 

abiotic transformation in natural waters because they are rich in salts or cations. 

Agglomeration increases nanoparticle size up to few folds of the single nanoparticle, 

but they may not settle or deposit down in aqueous suspensions due to high 

buoyancy ability against gravity (Lowry and Wiesner, 2007). The abiotic 

transformation of nanoparticles may depend on the hydrodynamics of the 

surrounding environment based on the laws of thermodynamics. For instance, 

transformation of 3 nm ZnS nanoparticles having methanol surface occurred by 

structural modification and significantly reducing distortions of surface and interior 

core due to natural binding of water to the nanoparticles at room temperature 

(Zhang et al., 2003). Oxidation may also cause transformations of nanoparticles and 

may change the stability and mobility of nanoparticles in aqueous environment. For 

example, long exposure to oxygenated water may lead the oxidation of hydrophobic 

fullerenes or zero-valence metal nanoparticles to be more stable in water (Brant et 

al., 2005; Liu et al., 2005; Oberdörster et al., 2006). Due to the existence of a huge 

number of living organisms in aquatic ecosystems, it is expected that the 

manufactured nanoparticles that are likely to be released to the surface waters 

would interact with organisms. Therefore, biotransformation of nanoparticles can 

also occur although no sufficient knowledge on this is available.  

 

1.7.2. Detection and characterization 

The available data on the fate and behaviour of manufactured nanoparticles 

is limited mainly because efficient procedures to detect and characterize 

nanomaterials in aquatic environments are lacking. Therefore, detection and 

characterization of nanomaterials in environmental samples is a big challenge in 

nanoecotoxicology. Difficulties are found for complete characterization of physico-

chemical properties and morphology of nanoparticles in natural waters and for 

distinguishing natural from engineered nanoparticles. 

 To determine and characterise the properties of nanoparticles, multiple 

approaches are used involving different methods and instruments: scanning or 

transmission electron microscopy (SEM or TEM) and atomic force microscopy 

(AFM) for determining particle diameter, surface area and aggregation state; 
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dynamic light scattering (DLS) for size distribution, dispersion and agglomeration in 

aqueous suspension without any sample distortion; zeta potential and 

electrophoretic mobility for determining surface charge; X-ray diffraction (XRD) to 

analyse crystal structure; the Brunauer, Emmett, Teller (BET) method (Brunauer et 

al., 1938) for measuring specific surface area of nanoparticles, inductively coupled 

plasma mass spectroscopy or optical emission spectrometry (ICP-MS or ICP-OES) 

and flame-atomic absorption spectroscopy (flame-AAS) for elemental composition 

analysis; SEM or TEM coupled with energy dispersive X-ray spectrometer 

(EDX/EDS) for determining chemical composition of nanoparticles, optical UV–

visible or X-ray spectroscopy for determining optical property or surface chemistry; 

mass spectroscopy (MS) or infrared spectroscopy (IR) for determining carbon-based 

nanoparticles. Examples of methods to characterize nanoparticles can be found 

elsewhere (Lead et al., 2005; Hassellöv et al., 2008; Weinberg et al., 2011).  

Nanoparticle characteristics also depend on sample handling because 

sampling inhomogeneity or agglomeration may occur. Complete and reliable 

detection and characterization of nanoparticles may require the development and 

combination of multiple advanced techniques and reduction of sampling errors. 

Currently, environmental scanning electron microscopy (ESEM) has been used for 

analysing nanoparticles in complex environmental samples including natural water 

samples (Hassellöv et al., 2008). Confocal laser scanning microscopy (CLSM) is 

also used for determining the colloidal distributions in the samples. Another powerful 

tool used in natural aquatic samples is the field-flow fractionation (FFF). The most 

commonly used is the flow-FFF, which can separate nanoparticles according to their 

size based on their diffusion coefficients in a very thin open channel (Stolpe et al., 

2005; Hassellöv et al., 2008). The flow-FFF in combination with other advanced 

techniques might be a very good tool for detection and characterisation of metal 

nanoparticles in natural waters and their interactions with environmental factors, 

such as pH and the content in natural organic matter (Stolpe et al., 2005; Baalousha 

and Lead, 2007; Gibson et al., 2007; Weinberg et al., 2011; Zänker and Schierz, 

2012).  
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1.8. Aquatic risk assessment framework for metal nanoparticles  

1.8.1. Importance of risk assessment for nanotechnology: learning from 

past mistakes 

The enhanced benefit of humans from the use of nanomaterials in daily life is 

leading to an increasing demand of manufactured nanoparticles, ultimately 

promoting higher production and wider applications of nanomaterials. A major 

concern about the increased used of manufactured or engineered nanoparticles is 

their behaviour in the environment and potential interactions with biota; this 

demands stringent environmental risk assessment. Most nanoparticles are not 

easily biodegradable, have long biological life (e.g., metal nanoparticles and some 

fullerenes) and exhibit cytotoxicity and ecotoxicity to a wide range of biota, thereby 

hampering the functioning of key ecosystem processes. We have already witnessed 

the environmental devastating results of the application of DDT and PCBs due to the 

lack of risk assessment studies despite the early warnings. Similarly to DDT or 

PCBs, some engineered nanoparticles, such as fullerenes, are lipophilic 

(Oberdörster, 2004; Oberdörster et al., 2006) and have low biodegradation rates 

resulting in their bioaccumulation. So, they may spread via biotransportation and 

biotransformation through the foodwebs in various ecosystems. In addition, the 

reported wide range of adverse biological impacts should be considered as potential 

warnings and we should focus on risk assessment studies. For that, a complete 

framework of environmental and human health risk assessment of manufactured 

nanoparticles are required, considering their interactions with the various interlinked 

ecosystems, the role of biota from different ecological niches, and the complex 

dynamics of the environmental compartments for complete understanding of their 

fate and behaviour in different environments. 

 

1.8.2. Scientific organisations, guidelines and protocols 

Due to the increasing data on potential negative effects of engineered 

nanoparticles to biota, several environmental health regulatory advisory committees 

all over the world are developing guidelines on the handling and environmental risk 

assessment of engineered nanoparticles. Most guidelines advise to consider the 

engineered nanoparticles as emergent materials with potential hazardous 

properties. The Environmental Protection Agency (EPA), created by the United 
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States for protecting human health and the environment, under the EPA 

Nanotechnology branch, developed during 2007-2012 a framework for quantifying 

nanoparticles in the environment and understanding whether engineered 

nanoparticles with great potential to be released into the environment and/or trigger 

a hazard concern, pose significant risks to human health or ecosystems, considering 

their life cycles (Neumann, 2010). They recommended that further research should 

focus on environmental detection, fate and behaviour (mobility, transformation, 

exposure pathways) of engineered nanoparticles, and necessary developments for 

assessing their biological toxicity. EPA is working with other international agencies, 

including the Organization of Economic Cooperation and Development‟s (OECD), to 

fulfil the goal of developing a safer nanotechnology-based world. The OECD 

Chemicals Committee has a significant role in the regulatory health and safety by 

testing various commercially emerging chemicals and by developing standard 

protocols/guidelines (OECD, 2010). To deal with the emerging manufactured 

nanoparticles, the OECD Working Party on Manufactured Nanomaterials (WPMN) 

has been establishing science-based and internationally harmonised standard 

approaches to ensure the efficient risk assessment of nanomaterials, to avoid 

adverse effects from the use of these materials at short and longer term (OECD, 

2010). The OECD Sponsorship Programme of Testing a Representative Set of 

Manufactured Nanomaterials was established to develop dossiers of the engineered 

nanoparticles, including detection, identification and intrinsic physicochemical 

properties of nanoparticles for determining the proper risk assessment strategies 

(OECD, 2010). Based on the outcome of a number of risk assessment studies, 

projects and publications, a test guideline was developed by OECD, the „Guidance 

Manual for the Testing of Manufactured Nanomaterials‟ (OECD, 2010), to provide 

guidance to ensure scientifically comparable risk assessment among the 

contributing partners. The guideline also provided important information and 

suggestions regarding the advanced methods for characterization, development and 

standardization of biological and environmental toxicity tests with endpoints 

considering the organisms from different ecological niches to determine and 

understand the environmental fate and behaviour of engineered nanoparticles. Due 

to significant increases in the commercial production and use of nanomaterials, 

OECD has already listed nanomaterials based on their potential frequencies of 

commercialization seeking for risk assessment (OECD, 2010). According to the EC 

(European Commission, 2011) a nanomaterial should consist of 50% or more 



General introduction 

 

23 
 

particles having one or more dimensions in the size range of 1–100 nm or when the 

volume specific surface area of the material is > 60 m2 cm-3 (Rauscher et al., 2012). 

The Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) 

is a European Union regulation addressing the production and use of chemical 

substances and their potential impacts on human health and environment. Recently, 

the European Chemicals Agency (ECHA) launched a number of guidelines on how 

to address nanomaterials in REACH registration dossiers (Rauscher et al., 2012). 

These guidelines are expected to be benefited from the recent definition of 

nanomaterials suggested by EC for further developing and designing the framework 

on human and environmental risk assessment of manufactured nanoparticles.  

 

1.8.3. Practical problems, needs of improvement and future challenges  

Although the produced guidelines and the development of scientific 

contributions for handling and assessing the human and environmental risks of 

engineered nanoparticles, knowledge on their environmental fate and behaviour is 

still limited. There is a huge discrepancy between the experimental approach 

proposed in the guidelines and the approaches followed by researchers. For 

example, there is a tendency among ecotoxicologists to use relatively short-term 

experiments with easily controlled biological model organisms. Most of the available 

guidelines do not provide suggestions on how to test impacts at the community level 

to better assess effects on ecologically complex inter-trophic relationships at long 

term. Indeed, just measuring toxicity of nanoparticles to individuals may not reveal 

the actual potential risk against humans or other organisms from different trophic 

levels; individual responses may differ from community responses because 

individuals from different species can respond in different ways.  

Although most guidelines have mentioned that nanoparticles not included in 

the OECD list can be important in the future, most assessments have focused only 

on the nanoparticles enlisted in OECD. Indeed, impacts of accidental or flash 

exposure to unlisted nanoparticles should not be ignored, as shown by the recent 

accidental oil spill in the Gulf of Mexico (2010) that greatly affected marine life and 

the associated ecosystems. Due to a wide range of reported toxicity of engineered 

nanomaterials, care should be taken until nanomaterials are proved to be safe for 

humans and environment. Actions should also be taken at the consumer level 

because potentially hazardous nanoparticles are already in use. For that, awareness 
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of consumers is needed, which can only be possible by the combined support of 

governmental and non-governmental organisations.  

Detailed studies on the detection, characterization, mobility, transformation, 

and toxicity, with clarification of the underlying mechanisms, at different trophic 

levels are needed, together with the knowledge on clearance of engineered 

nanoparticles in the environment. This will help to develop regulatory frameworks for 

a safer and cleaner environment, by controlling exposure levels (e.g., limiting the 

production and reducing the bioactivity) and or using biocompatible and 

environmentally friendly nanoparticles. 

 

1.9. Objectives and outline of the thesis 

Owing to the rapid growth of nanotechnology-based industries enormous 

amounts of nanomaterials are being manufactured and utilized since the past 

decade (Aitken et al., 2006). This will certainly lead to an increased released of 

nanomaterials to the environment, and natural surface waters are likely to serve as 

the ultimate sink of nanomaterials. In forested streams, microbes, predominantly 

aquatic fungi, decompose plant material from riparian vegetation and mediate 

carbon and energy transfer to invertebrate shredders (Graça 2001; Pascoal and 

Cássio, 2004). Freshwater decomposers are sensitive to changes in water quality 

with implications to ecosystem functioning (Pascoal et al., 2001, 2005; Fernandes et 

al., 2009). In this study, the potential impacts of nanoparticles on plant litter 

decomposition and associated biota, namely fungi, bacteria and invertebrates were 

assessed. In addition, effects of nanoparticles were also tested on the ubiquitous 

yeast Saccharomyces cerevisiae, which is a well-known eukaryotic 

model. Responses to nanoparticle exposure were assessed at different levels of 

biological organization: from community, to individual and cellular levels. 

Nanoparticle size, potential for aggregation and interactions with plant litter and 

biota were analysed to better understand effects of nanoparticles under 

experimental conditions. 

Chapter 1 provides the current knowledge on a wide range of human-

beneficial applications of nanoparticles as well as their potential toxicological risks. 

Specific characteristics, detection techniques and sources of nanoparticle 

contamination in aquatic environments are also considered.  
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In Chapter 2, we used a microcosm approach to test the effects of copper 

oxide nanoparticles (nanoCuO) and nanosilver, and their ionic precursors, on leaf 

litter decomposition by stream-dwelling microbial communities. The measured 

endpoints were leaf mass loss, fungal and bacterial biomass, and fungal 

reproduction and diversity. In Chapter 3, we examined the interactive effects of 

nanoparticle size (12, 50 and 80 nm) and of increasing concentrations of humic acid 

on the toxicity of nanoCuO against microbial decomposers of plant litter.  

In Chapter 4, we showed lethal and sublethal impacts of CuO nanoparticles 

on Allogamus ligonifer, a common invertebrate shredder in Southwest European 

streams that prefers high quality stream water. We expected that nanoparticles 

would affect the feeding behaviour and the growth of the invertebrate due to both 

nanoCuO and ionic copper leached from nanoCuO. In Chapter 5, we assessed how 

nanoparticle size and the presence of humic acids affect the toxicity of nanoCuO to 

the invertebrate shredder A. ligonifer. A post-exposure feeding experiment was also 

conducted to examine the ability of the animal to recover after stress removal.   

In Chapter 6, we investigated the physiological impacts of nanoCuO in four 

aquatic fungal populations with different background under the hypothesis that 

fungal populations collected from metal-polluted streams would be more 

tolerant/resistant to the stress induced by nanoCuO than those from non-polluted 

streams. Effects were assessed on fungal growth, morphology of fungal mycelium 

and on the activity of extracellular laccases. In Chapter 7, we examined the effects 

of CuO nanoparticles on cellular targets and antioxidant defences in five aquatic 

fungi collected from metal-polluted or non-polluted streams, under the hypotheses 

that nanoCuO might induce oxidative stress in aquatic fungi, and that fungal isolates 

from metal-polluted streams would be able to cope better with the stress induced by 

nanoCuO. The measured endpoints were: intracellular accumulation of ROS, 

plasma membrane integrity, DNA strand breaks, induction of intracellular protein 

and activities of glutathione reductase, glutathione peroxidase and superoxide 

dismutase. 

In Chapter 8, we examined the effects of cadmium ions and carbon-based 

nanoparticles, namely polyhydroxy fullerene (PHF), alone or in mixtures on cells of 

S. cerevisiae under the hypothesis that oxidative stress induced by cadmium might 

be mitigated by PHF nanoparticles due to its antioxidant and free-radical scavenging 

properties. 
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Finally, in Chapter 9, the major outcomes are integrated to provide an overall 

perspective of results and to point possible lines of future research. 
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Abstract 

The extensive use of nanometal-based products increases the chance of 

their release into aquatic environments, raising the question whether they can pose 

a risk to aquatic biota and the associated ecological processes. Aquatic microbes, 

namely fungi and bacteria, play a key role in forested streams by decomposing plant 

litter from terrestrial vegetation. Here, we investigated the effects of nanocopper 

oxide and nanosilver on leaf litter decomposition by aquatic microbes and the results 

were compared with the impacts of their ionic precursors. Alder leaves were 

immersed in a stream of Northwest Portugal to allow microbial colonization before 

being exposed in microcosms to increased nominal concentrations of nanometals 

(CuO, 100, 200 and 500 mg L-1; Ag, 100 and 300 mg L-1) and ionic metals (Cu2+ in 

CuCl2, 10, 20 and 30 mg L-1; Ag+ in AgNO3, 5 and 20 mg L-1) for 21 days. Results 

showed that rates of leaf decomposition decreased with exposure to nano and ionic 

metals. Nano and ionic metals inhibited bacterial biomass (from 68.6 to 96.5% of 

control) more than fungal biomass (from 28.5 to 82.9% of control). The exposure to 

increased concentrations of nano and ionic metals decreased fungal sporulation 

rates from 91.0 to 99.4%. These effects were accompanied by shifts in the structure 

of fungal and bacterial communities based on DNA fingerprints and fungal spore 

morphology. The impacts of metal nanoparticles on leaf decomposition by aquatic 

microbes were less pronounced compared to their ionic forms, despite metal ions 

were applied at one order of magnitude lower concentrations. Overall, results 

indicate that the increased release of nanometals to the environment may affect 

aquatic microbial communities with impacts on organic matter decomposition in 

streams.  

 

Keywords: silver nanoparticles; copper oxide nanoparticles; ionic metals; streams; 

litter decomposition; microbial communities 
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2.1. Introduction 

Owing to the rapid growth of nanotechnology-based industries enormous 

amounts of nanomaterials are being manufactured and utilized since the past 

decade (Aitken et al., 2006). Nanometal-based products have become part of our 

regular life in the form of cosmetics (Perugini et al., 2002), antimicrobial paints 

(Kaegi et al., 2008), textile fabrics (Zhang et al., 2009) and electronic devices 

(Luechinger et al., 2008). Nanometals are also employed in biomedical and 

pharmaceutical applications, like cancer therapy, protein detection, tissue 

engineering, drug delivery and gene therapy (Salata, 2004). With the accelerated 

usage of nanoparticles, aquatic ecosystems most likely will serve as terminal 

repository for the discharged nanomaterials (Kaegi et al., 2008). For instance, the 

engineered nanoparticle TiO2 was detected in aquatic environments as a 

consequence of being leached from the paint of house facades into the 

neighbouring stream (Kaegi et al., 2008). Hence, the research pertaining to impacts 

of nanoparticles and its ionic forms on aquatic biota has become a topic of major 

importance.  

Ionic metals are used as precursors for production of many nanomaterials; 

for instance, silver nitrate and copper chloride are known to be the ionic precursors 

of nanosilver and nanocopper oxide, respectively (Wang et al., 2002; Saquing et al., 

2009). A number of studies have reported toxicity of metal ions against aquatic 

organisms ranging from microbes to vertebrates (Birceanu et al., 2008; 

Gopalakrishnan et al., 2008; Azevedo et al., 2009) but very little is known about the 

effects of their nanoparticle forms (but see e.g., Navarro et al., 2004; Aruoja et al., 

2009).  

Nanosilver and nanocopper oxide are used widely (e.g., medical 

research/applications (Nair and Laurencin, 2007; Ren et al., 2009) and textiles 

(Zhang et al., 2009)) and are becoming the focus of toxicological investigations. 

These nanoparticles can have toxic effects on various organisms, including yeasts 

(Kasemets et al., 2009), bacteria (Kim et al., 2007), fungi (Kim et al., 2008), the 

marine diatom Thalassiosira weissflogii (Miao et al., 2009), Chlamydomonas 

(Saison et al., 2010) and fish, like zebrafish (Griffitt et al., 2009), and may also pose 

risks to human health (Panyala et al., 2008; Karlsson et al., 2009). However, the 

existing data on the effects of nano-sized silver and copper oxide are mainly based 

on individual responses of organisms and are clearly insufficient to predict its 
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impacts on biotic communities (but see reports from Bradford et al. (2009) and Shah 

and Belozerova (2009) for estuarine and soil bacterial assemblages, respectively) 

and ecosystem processes.  

Predicting the risks of nanoAg or nanoCuO to aquatic ecosystems is 

currently limited by difficulties in estimating the levels of nanometals in surface 

waters. However, from the 500 t y-1 of worldwide production of nanoAg (Mueller and 

Nowack, 2008), 20–130 t y-1 are expected to reach EU freshwaters mainly from ionic 

leaching of polymer embedded nanosilver from biocidal plastics and textiles (Blaser 

et al., 2008). The concentration of copper in the chemical mechanical planarization 

waste water in Taiwan often exceeds 100 mg L-1 (mainly due to incineration of fly 

ashes (Hsiao et al., 2001)) of which 49% was nanoCuO (Huang et al., 2006). 

Hence, further research is needed on the fate of the nano and ionic forms of Ag and 

CuO and their effects on aquatic biota and processes. 

In freshwaters, plant-litter decomposition is a key ecosystem process 

associating riparian vegetation with microbial and invertebrate activities Pascoal et 

al., 2003, 2005a). Fungi, mainly aquatic hyphomycetes, have been distinguished as 

dominant microbial decomposers (Pascoal and Cássio, 2004) and are responsible 

for transferring carbon and energy from plant litter to higher trophic levels in streams 

(Graça, 2001). Bacteria have been recognized to play a role after partial breakdown 

of plant material (Pascoal and Cássio, 2004). Previous studies demonstrated that 

litter decomposition is sensitive to changes in water chemistry (Pascoal et al., 2003; 

Pascoal and Cássio, 2004; Fernandes et al., 2009) and this integrative process was 

proposed as a functional measure to assess the health of freshwater ecosystems 

(Pascoal et al., 2001, 2003).  

Even though the ionic forms of metals, such as zinc, copper and cadmium, 

have been reported to affect litter decomposition and the associated communities in 

freshwaters (Niyogi et al., 2002; Sridhar et al., 2005; Duarte et al., 2008a; 

Fernandes et al., 2009; Medeiros et al., 2010; Moreirinha et al., 2011), studies 

exploring the impacts of nanometals on this ecosystem process are unknown. 

Earlier studies on individual aquatic organisms demonstrated that the toxicity of ionic 

metals might be higher (20 – 50 times) than that of their nano forms (Heinlaan et al., 

2008; Aruoja et al., 2009), and the lower toxicity of nanometals was attributed to a 

reduced bioavailability of the leached metal ions from nanoparticles.  

The aim of this study was to investigate the effects of nanocopper oxide and 

nanosilver, and their ionic precursors, on leaf litter decomposition by freshwater 
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microbial communities. Due to the small size and reactive surface characteristics of 

nanoparticles, they are prone to aggregation and sorption onto organic materials 

(Holsapple et al., 2005), such as submerged plant detritus in streams. Therefore, a 

close interaction between nanometals and benthic microbes involved in plant litter 

decomposition is expected to occur. We hypothesized that nanometals might have 

impacts on freshwater microbial decomposer communities and their associated 

ecological functions, but the effects would be less pronounced than those of their 

ionic precursors. We also expected that bacteria might be more sensitive than fungi 

to nanometals, as previously found for ionic metals (Duarte et al., 2008b, 2009). We 

used stream-dwelling microbial communities in microcosms to mimic the natural 

environment under controlled conditions, and the measured parameters were leaf 

mass loss, fungal and bacterial biomass and diversity, and fungal reproduction. 

 

 

2.2. Material and Methods 

2.2.1. Microbial colonization in the stream 

The sampling site was located at the Maceira stream (N 41°45'58.79'', W 

8°08'49.39'', altitude 867 m) in the Peneda-Gerês National Park (Northwest 

Portugal). At the sampling site, the stream is 0.3-0.5 m deep and 0.5-1.0 m wide and 

the geological substratum was constituted by granitic rocks, pebbles, gravels and 

sand. The dominant riparian vegetation was Quercus pyrenaica Wild, Quercus robur 

L., Chamaecyparis sp. and Ilex aquifolium L.  

Leaves of Alnus glutinosa (L.) Gaertn. (alder) were collected from a single 

tree in autumn and air dried at room temperature. This leaf species was chosen 

because it is among the most common and dominant riparian trees in the Iberian 

Peninsula. The leaves were soaked in deionised water and cut into 12 mm-diameter 

disks. Sets of 40 disks were placed into each of 105 fine mesh bags (15 × 15 cm, 

0.5-mm mesh size, to prevent macroinvertebrate colonization) that were immersed 

in the stream for 7 days to allow microbial colonization. After 30 min of leaf 

immersion, 3 randomly selected leaf bags were retrieved and transported to the 

laboratory to determine initial leaf mass.  

Conductivity and pH of the stream water were measured in situ with field 

probes (Multiline F/set 3 no. 400327, WTW, Weilheim, Germany). Stream water 
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samples were collected into sterile dark glass bottles, transported in a cold box 

(4°C) to the laboratory to determine the concentrations of nitrate (HACH kit, 

programme 351), nitrite (HACH kit, programme 371) and phosphate (HACH kit, 

programme 490) using a HACH DR/2000 photometer (HACH, Loveland, CO).  

 

2.2.2. Microcosm experiment 

After retrieval from the stream, leaf disks from each of 102 bags were rinsed 

with deionised water and placed into 150 mL sterile Erlenmeyer flasks with 80 mL of 

filtered (MN GF-3 filter paper, Macherey-Nagel, Germany) and sterilized stream 

water (121°C, 20 min). Stream water had a pH of 5.9, a conductivity of 16 μS cm-1, 

and contained 40 μg L-1 N-NO3
-, 2 μg L-1 N-NO2

- and 20 μg L-1 P-PO4
3-. Stream 

water was supplemented with increasing nominal concentrations of nanometals or 

ionic metals as follows: 0, 100, 200 and 500 mg L-1 of nanocopper oxide (CuO 

nanopowder <50 nm, 99.5%); 0, 100 and 300 mg L-1 of nanosilver (Ag nanopowder, 

<100 nm, 99.5%); 0, 10, 20 and 30 mg L-1 of Cu2+ (CuCl2.2H2O, > 99%); and 0, 5 

and 20 mg L-1 of Ag+ (AgNO3, > 99%). Nano and ionic metals were purchased from 

Sigma-Aldrich (St. Louis, MO). Stock suspensions of the two nanometals were 

sonicated (42 kHz, 100 W, Branson 2510, Danbury, CT, USA) for 30 min in dark 

before used (Heinlaan et al., 2008). The pH of stock suspensions of nanometals and 

stock solutions of ionic metals were adjusted to 6.0 ± 0.2.  

All microcosms were kept under shaking (150 rpm) at 13°C (stream water 

temperature), and solutions were renewed every 7 days. After 7, 14 and 21 days of 

exposure, a set of 33 microcosms (3 replicates of each treatment per time) was 

sacrificed and leaf disks were freeze dried to determine leaf mass loss, microbial 

biomass and diversity as described below. In addition, the content of 3 leaf bags 

was used to determine leaf mass loss and microbial parameters at the beginning of 

microcosm experiment. 

 

2.2.3. Fungal sporulation rates 

After 21 days of exposure to the nano and ionic metals, suspensions of 

released fungal conidia from each replicate microcosm were mixed with Triton X-

100 (40 µl of 15%), to avoid conidial adherence to the flask, and the conidia were 

fixed with 2% formaldehyde. Then, appropriate aliquots of conidial suspensions 

were filtered (5 μm pore size, Millipore, Billerica, MA) and stained with 0.05% cotton 
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blue in lactic acid. Conidia of aquatic hyphomycetes were identified and counted 

under a light microscope (Leica Biomed, Heerbrug, Switzerland) at 400× 

magnification.  

 

2.2.4. Microbial biomass 

Concentration of ergosterol was measured to estimate fungal biomass 

associated with decomposing leaves (Pascoal and Cássio, 2004; Gessner, 2005). 

Lipids were extracted from sets of 6 leaf disks per replicate by heating (30 min, 

80°C) in 0.8% KOH-methanol and the extract was purified by solid-phase extraction 

and eluted in isopropanol. Ergosterol was quantified by high-performance liquid 

chromatography (HPLC) using a LiChrospher RP18 column (250 × 4 mm, Merck) 

connected to a Beckmann Gold liquid chromatographic system. The system was run 

isocratically with HPLC-grade methanol at 1.4 mL min-1 and 33°C. The peaks of 

ergosterol were detected at 282 nm and standard series of ergosterol (Sigma) in 

isopropanol were used to estimate the ergosterol concentration in the samples. 

Ergosterol concentration was converted to fungal biomass assuming 5.5 µg 

ergosterol mg-1 mycelial dry mass (Gessner, 2005).  

To estimate bacterial biomass, sets of 4 leaf disks per replicate were placed 

into 15 mL falcon tubes with 10 mL of phosphate buffered formalin (2% final 

concentration) and kept at 4°C until processed. Bacterial cells were dislodged from 

leaf disks in a sonication bath (42 kHz, 100 W; Branson 2510, Danbury, CT, USA) 

for 5 min (samples were cooled in ice after each 1 min of sonication) (Pascoal and 

Cássio, 2004; Duarte et al., 2009). Aliquots of 2 mL of appropriate dilutions of 

bacterial suspensions were incubated with 4′,6-diamidino-2-phenylindole (DAPI, 50 

μL of 0.1 mg mL-1; Molecular Probes) for 10 min in the dark, before filtered through 

black polycarbonate membranes (0.2 μm pore size, GTTP, Millipore, Billerica, MA). 

Filters were mounted between two drops of immersion oil on grease free slides, 

covered with cover slips and bacterial cells were counted using a fluorescence 

microscope (Leitz Laborlux Heerbrug, Switzerland) at magnification of 1000×. 

Bacterial numbers were converted to bacterial biomass considering a mean 

bacterial biomass of 20 fg cell-1 (Norland, 1993).  
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2.2.5. Denaturing gradient gel electrophoresis  

DNA was extracted from 3 leaf disks (pooling 2 half disks of each replicate) 

using the UltraClean Soil DNA kit (MoBio Laboratories, Solana Beach, CA, USA). 

The ITS2 region of fungal genomic rDNA was amplified with the primer pair ITS3GC 

and ITS4 (White et al., 1990; Duarte et al., 2008a) and the V3 region of bacterial 

16S rDNA was amplified with the primer pair 338F_GC and 518R (Duarte et al., 

2008a). The 40-bp GC tail on the 5′ end of the forward primers ensured the 

amplicon separation by denaturing gradient gel electrophoresis (DGGE). All primers 

were purchased from MWG Biotech AG. For polymerase chain reaction (PCR), 1x 

Go Taq Green Master Mix (Promega), 0.8 μM of each primer and 2 μL of extracted 

fungal or bacterial DNA were mixed gently with nuclease free water in a final volume 

of 50 μL. PCR was carried out in the iCycler Thermal Cycler (BioRad Laboratories, 

Hercules, CA, USA). DNA amplification programme was started with a denaturation 

for 5 min at 94°C, followed by 36 cycles of denaturation for 30 s at 94°C, primer 

annealing for 30 s at 55°C and extension for 1 min at 72°C, concluding with an 

extension for 3 min at 72°C (Duarte et al., 2008a). The PCR products were 

separated by DGGE using the DCode™ Universal Mutation Detection System 

(BioRad Laboratories, Hercules, CA, USA). For fungal DNA, 20–40 μL from the 

amplified products of 380–400 bp were loaded on 8% (w/v) polyacrylamide gel in 1x 

Tris–Acetate–EDTA (TAE) with a denaturing gradient from 30% to 70% (100% 

denaturant corresponds to 40% formamide and 7 M urea). For bacterial DNA, 20 μL 

from the amplified products of 200 bp were loaded on 8% (w/v) polyacrylamide gels 

in 1x TAE with a denaturing gradient from 35% to 80%. DNA mixtures of 5 species 

of fungi or bacteria were used as reference bands to calibrate the gels. The gels 

were run at 55 V for 16 h at 56°C and stained with 1x GelStar (Lonza Rockland, 

Inc., USA). The gel images were captured under UV light in a transiluminator Eagle 

eye II (Stratagene, La Jolla, CA, USA). 

 

2.2.6. Leaf mass loss 

To determine leaf mass loss, freeze-dried (Christ alpha 2–4, B. Braun, 

Germany) leaf disks from each replicate before and after stream colonization, and 

after microcosm exposure were weighed to the nearest 0.001 mg.  
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2.2.7. Nanometals in stock suspensions 

The nanometals in suspensions were analysed by UV-visible 

spectrophotometry (UV – 1700 PharmaSpec, Shimadzu, Kyoto, Japan) and by 

scanning electron microscopy (SEM, Leica Cambridge S 360, Cambridge, UK) 

coupled to an energy dispersive X-ray microanalysis setup (EDX, 15 KeV). For SEM 

analysis, 20 µl of stock suspension of each nanometal was mounted on a clean 

grease free slide in dark, air dried and coated with gold in vacuum by using a Fisons 

Instruments SC502 sputter coater. Nanosilver and nanocopper oxide showed 

plasmon peaks at 416 nm and 359 nm, respectively. Scanning electron microscopy 

confirmed the size of copper oxide nanoparticles (30 to 50 nm) and silver 

nanoparticles (near 100 nm). The presence of Cu and O in copper oxide 

nanoparticles and Ag in silver nanoparticles was confirmed by EDX (Fig. 2.1A and 

B). Additional peaks were found: Au from the coated gold, Si probably from the 

glass slide, and Na, Ca and Mg probably from the stream water. 

                       A 

 

                         B 

 

Figure 2.1 Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) microanalysis 
(insight) of nanosilver (A) and nanocopper oxide (B) in stock suspensions.  
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2.2.8. Data analyses  

Rates of leaf decomposition (k) were estimated according to the exponential 

model as follows: Wt = W0 × e-kt, where Wt is the leaf dry mass remaining at time t, 

W0 is the initial leaf dry mass and t is the time in days. Regression lines of ln-

transformed values of leaf dry mass against time were compared by analysis of 

covariance (ANCOVA) (Zar, 2009). Two-way analysis of variance (two-way ANOVA) 

(Zar, 2009) was used to determine the effects of exposure time and concentration of 

nano or ionic metal form on fungal and bacterial biomass. Each metal type and 

metal form were analysed separately. One-way ANOVA was used to test the effect 

of concentration of nano or ionic form of each metal on fungal sporulation rate and 

on the percentage contribution of each aquatic hyphomycete species to the total 

conidial production after 21 days of exposure. Significant differences between 

control and treatments were analysed by Bonferroni post-tests (Zar, 2009). To 

achieve normal distribution and homoscedasticity, data of percentage contribution of 

each fungal species to the total conidial production were arcsine square root 

transformed and the remaining data were ln-transformed (Zar, 2009). Univariate 

analyses were performed with Statistica 6.0 (Statsoft, Inc., Tulsa, OK, USA).  

Cluster analyses of fungal and bacterial communities based on relative 

intensity of each DGGE band was done by Unweighted Pair-Group Method Average 

(UPGMA) using the Pearson correlation coefficient (Fernandes et al., 2009). Each 

band in the gel was considered one operational taxonomic unit (OTU). Gel and 

cluster analyses were done with the GelCompar II program (Applied Maths, Sint-

Martens-Latem, Belgium). 

 

 

2.3. Results 

2.3.1. Effects of nano and ionic metals on microbially-mediated leaf 

litter decomposition 

The decomposition rate of alder leaves was high corresponding to 0.0368 

day–1 (Table 2.1). The exposure to nano or ionic metals led to a significant decrease 

in leaf decomposition rate (ANCOVA, P<0.05). The lowest decomposition rates 

were found at the highest concentrations of nano and ionic silver (k = 0.0214 and 
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0.0209 day–1 for 300 mg L-1 nanosilver and 20 mg L-1 ionic silver, respectively) or 

nanocopper oxide and ionic copper (k = 0.0165 day–1 and 0.0153 day–1 for 500 mg L-

1 of nanocopper oxide and 30 mg L-1 of ionic copper, respectively).  

Table 2.1 Effects of nano and ionic metals on decomposition rates (k) of alder leaves  

Treatments k (day
-1

) ± SE W0 (%)    r
2
 

Control  0.0368 ± 0.0042 105.6 0.86 

AgNP1 0.0237 ± 0.0027* 98.6 0.86 

AgNP2 0.0214 ± 0.0029* 99.4 0.81 

Ag1 0.0218 ± 0.0032* 97.3 0.79 

Ag2 0.0209 ± 0.0026* 97.1 0.84 

CuONP1 0.0208 ± 0.0022* 98.0 0.87 

CuONP2 0.0186 ± 0.0021* 98.5 0.86 

CuONP3 0.0165 ± 0.0018* 98.7 0.87 

Cu1 0.0219 ± 0.0028* 97.8 0.83 

Cu2 0.0176 ± 0.0018* 96.9 0.88 

Cu3 0.0153 ± 0.0024* 95.8 0.75 

AgNP1: 100 mg L
-1

 nanoAg; AgNP2: 300 mg L
-1

 nanoAg; Ag1: 5 mg L
-1

 Ag
+
; Ag2: 20 mg L

-1
 Ag

+
; CuONP1: 100 mg 

L
-1

 nanoCuO; CuONP2: 200 mg L
-1

 nanoCuO; CuONP3: 500 mg L
-1

 nanoCuO; Cu1: 10 mg L
-1

 Cu
2+

; Cu2: 20 mg L
-1

 

Cu
2+

; Cu3: 30 mg L
-1

 Cu
2+

; Control: without addition of any form of metals. *, treatments that differ significantly from 
control (ANCOVA, Bonferroni test, P < 0.05). SE: standard error; r

2
: coefficient of determination; W 0: initial leaf dry 

mass. 

 

After 7 days of colonization in the stream, fungal biomass on decomposing 

leaves was 10 mg g-1 leaf dry mass and increased to 53 mg g-1 leaf dry mass after 

21 days in control microcosms (Fig. 2.2A and B). Concentrations of nano and ionic 

forms of silver or ionic copper and exposure time had negative effects on fungal 

biomass (two-way ANOVAs, P<0.05; Table 2.2). Significant interactions were found 

between exposure time and concentration of ionic forms of each metal (P<0.05; 

Table 2.2). Exposure time, but not concentrations of nanocopper oxide, affected 

fungal biomass (two-way ANOVA, P<0.05 and P>0.05, respectively; Table 2.2). 

After 21 days of exposure to the highest concentration of nanosilver (Fig. 2.2A) or 

nanocopper oxide (Fig. 2.2B) a 40% inhibition of fungal biomass was found 

(Bonferroni tests, P<0.05). Fungal biomass was inhibited earlier by exposure to the 

highest concentrations of ionic silver (15 and 9 mg g-1 leaf dry mass at 20 mg L-1 for 

14 and 21 days, respectively; Bonferroni tests, P<0.05; Fig. 2.2A) or ionic copper 

(24 and 18 mg g-1 leaf dry mass at 30 mg L-1 for 14 and 21 days, respectively; 

Bonferroni tests, P<0.05; Fig. 2.2B). A significant decrease in fungal biomass was 

also observed at the longest exposure time to the lowest concentration of ionic silver 

(17 mg g-1 leaf dry mass at 5 mg L-1; Bonferroni test, P<0.05; Fig. 2.2A) or ionic 
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copper (30 and 18 mg g-1 leaf dry mass at 10 and 20 mg L-1 for 21 days, 

respectively; Bonferroni test, P<0.05; Fig. 2.2B).  

 

    

Figure 2.2 Fungal biomass on decomposing alder leaves exposed to nano or ionic silver (A), 
nanocopper oxide or ionic copper (B) in microcosms. AgNP1 and AgNP2: 100 and 300 mg L

-1
 nanoAg; 

Ag1 and Ag2: 5 and 20 mg L
-1

 Ag
+
; CuONP1, CuONP2 and CuONP3: 100, 200 and 500 mg L

-1
 

nanoCuO; Cu1, Cu2 and Cu3: 10, 20 and 30 mg L
-1

 Cu
2+

, respectively; Control: without addition of any 
form of metals. Mean ± SEM, n=3. 

 

Before microcosm exposure, bacterial biomass on decomposing leaves was 

0.02 mg g-1 leaf dry mass and increased to 0.26 mg g-1 leaf dry mass after 21 days 

in microcosms (Fig. 2.3A and B). The exposure to all concentrations of nano or ionic 

silver led to a significant decrease in bacterial biomass at all times (two-way 

ANOVAs; Bonferroni test, P<0.05, Table 2.2, Fig. 2.3A) with strongest effects for 

silver ions (0.01 mg g-1 leaf dry mass). Interactions between exposure time and 

concentration of nano or ionic forms of silver or copper were significant (P<0.05, 

Table 2.2). Bacterial biomass was negatively affected by concentration of 

nanocopper oxide or ionic copper and exposure time (two-way ANOVAs, P<0.05; 

Table 2.2). The exposure to the highest concentrations of nanocopper oxide (200 

and 500 mg L-1) or ionic copper (20 and 30 mg L-1) led to a significant decrease in 

bacterial biomass at all times, whereas the lowest tested concentrations of these 

materials (100 mg L-1 of nanocopper oxide and 10 mg L-1 of ionic copper) decreased 

the biomass only after 14 and 21 days of exposure (Bonferroni test, P<0.05, Fig. 

2.3B).  
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Figure 2.3 Bacterial biomass on decomposing alder leaves exposed to nano or ionic silver (A), 
nanocopper oxide or ionic copper (B) in microcosms. AgNP1 and AgNP2: 100 and 300 mg L

-1
 nanoAg; 

Ag1 and Ag2: 5 and 20 mg L
-1

 Ag
+
; CuONP1, CuONP2 and CuONP3: 100, 200 and 500 mg L

-1
 

nanoCuO; Cu1, Cu2 and Cu3: 10, 20 and 30 mg L
-1

 Cu
2+

, respectively; Control: without addition of any 
form of metals. Mean ± SEM, n=3. 

 

In control microcosms, sporulation rate of aquatic hyphomycetes attained 

245 × 103 spores g-1 leaf dry mass day-1 and was significantly inhibited (up to 

99.4%) by exposure for 21 days to all concentrations of nano or ionic forms of silver 

or copper (one-way ANOVAs, P<0.05; Fig. 2.4A and B; Table 2.2).  

 

   

Figure 2.4 Fungal sporulation from decomposing alder leaves after 21 days exposure to nano or ionic 
silver (A), nanocopper oxide or ionic copper (B) in microcosms. AgNP1 and AgNP2: 100 and 300 mg L

-

1
 nanoAg; Ag1 and Ag2: 5 and 20 mg L

-1
 Ag

+
; CuONP1, CuONP2 and CuONP3: 100, 200 and 500 mg 

L
-1

 nanoCuO; Cu1, Cu2 and Cu3: 10, 20 and 30 mg L
-1

 Cu
2+

, respectively; Control: without addition of 
any form of metals. Mean ± SEM, n=3. *, treatments that differ significantly from control (Bonferroni 
tests, P<0.05). 
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Table 2.2 ANOVAs of effects of exposure time, nano or ionic metal concentrations on fungal biomass, 
bacterial biomass and fungal sporulation (only significant effects are shown). Metal type and metal form 
were analysed separately 

Parameter  Effect d.f. F P-value 

Fungal biomass      

 NanoAg      

  Time 4 173.3 <0.0001 

 Concentration 2 6.223 <0.05 
 Ag

+
     

  Time 4 158.6 <0.0001 

  Concentration 2 35.92 0.0005 

  Time*Concentration 8 19.88 <0.0001 

 NanoCuO      

  Time 4 199.3 <0.0001 

 Cu
2+

     

  Time 4 185.8 <0.0001 

  Concentration 3 10.65 <0.005 

  Time*Concentration 12 4.652 <0.0005 

Bacterial biomass      

 NanoAg     

 Time 4 1950 <0.0001 

 Concentration 2 96.56 <0.0001 

 Time*Concentration 8 19.21 <0.0001 

Ag
+  

     

 Time 4 1779 <0.0001 

Concentration 2 99.56 <0.0001 

Time*Concentration 8 59.49 <0.0001 
 NanoCuO     

  Time 4 1356 <0.0001 

  Concentration 3 121.8 <0.0001 

  Time*Concentration 12 17.42 <0.0001 

 Cu
2+

     

  Time 4 1612 <0.0001 

  Concentration 3 115.8 <0.0001 

  Time*Concentration 12 19.68 <0.0001 

Fungal sporulation 
rate (21 days) 

     

 NanoAg     

 Concentration 2 358.4 <0.0001 

Ag
+
     

 Concentration 2 518.4 <0.0001 

 NanoCuO     

 Concentration 3 428.8 <0.0001 

Cu
2+

     

 Concentration 3 280.0 <0.0001 

d.f., degree of freedom 

 

2.3.2. Effects of nano and ionic metals on the structure of microbial 

decomposer community 

Based on conidial morphology, a total of 11 aquatic hyphomycete species 

were identified on decomposing leaves after 21 days in control microcosms (Table 

2.3). The exposure to nano or ionic metals decreased fungal species richness, 
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particularly in the case of copper (5 species in treatments with concentrations ≥ 200 

mg L-1 of nanocopper and 4 species with 30 mg L-1 of ionic copper; Table 2.3). In 

addition, nano or ionic metals led to shifts in fungal species composition (Table 2.3). 

In control, Articulospora tetracladia (51.2%) was the dominant species followed by 

Flagellospora sp. (32.8%) (Table 2.3). The exposure to nanosilver, nanocopper or 

ionic copper significantly increased the contribution of A. tetracladia to overall 

conidial production (one-way ANOVAs, Bonferroni tests, P<0.05), whereas ionic 

silver did not lead to any significant change (Table 2.3). The exposure to nano and 

ionic metals significantly decreased the contribution of Flagellospora sp. (Bonferroni 

test, P<0.05; Table 2.3) but increased that of Heliscus lugdunensis (Bonferroni test, 

P<0.05; Table 2.3). 

DNA fingerprinting based on DGGE showed that fungal and bacterial 

communities were affected by nano and ionic metals (Fig. 2.5A and B, Table 2.3). 

Thirty one fungal OTUs and 36 bacterial OTUs were found in control communities 

(Fig. 2.5A and B, Table 2.3). The number of fungal or bacterial OTUs decreased 

with increasing concentrations of nano or ionic metals, particularly in the case of the 

latter form of the metals, with maximum reduction at the highest concentration of 

ionic silver (Fig. 2.5A and B, Table 2.3). 

Cluster analysis of fungal communities exposed to the highest ionic silver 

concentration formed an outgroup (Fig. 2.5A). Further, fungal communities exposed 

to nanosilver clustered together and were separated from control communities or 

communities exposed to other treatments. Cluster analysis of bacteria discriminated 

3 groups: control communities, communities exposed to silver and communities 

exposed to copper (Fig. 2.5B). Bacterial communities exposed to nano and ionic 

forms of each metal were further separated.  
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Table 2.3 Microbial community composition on decomposing leaves as number and composition of 
fungal sporulating species and number of fungal and bacterial OTUs from DGGE fingerprints after 21 
days of exposure to increasing concentrations of nano or ionic metals in microcosms 

Species 
% of conidia in treatments 

Control AgNP1 AgNP2 Ag1 Ag2 CuONP1 CuONP2 CuONP3 Cu1 Cu2 Cu3 

Alatospora acuminata 
Ingold 

0.2 0.4 nd nd nd nd nd nd nd nd nd 

Anguillospora filiformis 
Greath 

4.3 1.4 2.2 6.3 nd nd nd nd nd nd nd 

Articulospora tetracladia 
Ingold 

51.2 76.0 76.1 53.2 55.5 51.6 56.1 60.7 66.7 68.0 73.3 

Culicidospora aquatica R.H. 
Petersen 

0.1 0.4 nd nd nd nd nd nd 0.4 nd nd 

Flagellospora sp.  
32.8 9.3 6.7 15.6 15.9 9.1 11.4 7.5 10.9 11.8 6.5 

Fontanospora eccentrica 
(R.H. Petersen) Dyko 

0.2 0.4 nd nd nd nd nd nd nd nd nd 

Fontanospora fusiramosa 
Marvanová, P.J. Fisher, 
Descals & Bärlocher  

3.9 2.4 2.2 6.3 5.4 5.3 4.0 4.6 3.6 2.4 nd 

Heliscus lugdunensis Sacc. 
& Therry 

1.8 6.1 8.1 12.5 17.8 27.5 24.4 22.6 12.3 11.7 15.2 

Lunulospora curvula Ingold 
0.9 2.0 2.2 nd nd 1.6 nd nd 1.7 2.4 nd 

Tricladium splendens Ingold 
0.1 nd nd nd nd nd nd nd nd nd nd 

Varicosporium elodeae W. 
Kegel 4.5 1.7 2.2 6.3 5.4 4.8 4.0 4.6 4.4 3.9 5.1 

Nº of fungal morphotypes  11 10 7 6 5 6 5 5 7 6 4 
Nº of fungal DGGE OTUs  31 26 24 20 11 26 25 23 19 17 16 
Nº of bacterial DGGE OTUs 36 28 24 24 19 27 25 24 26 25 24 

AgNP1: 100 mg L
-1

 nanoAg; AgNP2: 300 mg L
-1

 nanoAg; Ag1: 5 mg L
-1

 Ag
+
; Ag2: 20 mg L

-1
 Ag

+
; CuONP1: 100 mg 

L
-1

 nanoCuO; CuONP2: 200 mg L
-1

 nanoCuO; CuONP3: 500 mg L
-1

 nanoCuO; Cu1: 10 mg L
-1

 Cu
2+

; Cu2: 20 mg L
-1

 
Cu

2+
; Cu3: 30 mg L

-1
 Cu

2+
; Control: without addition of any form of metals. nd, not detected. 

 

  

     

Figure 2.5 DNA fingerprints from DGGE and cluster analysis of fungal (A) and bacterial (B) 
communities exposed to nano and ionic silver or nanocopper oxide and ionic copper for 21 days in 
microcosms. Dendograms were constructed from UPGMA analysis based on the Pearson coefficient of 
similarity. AgNP1 and AgNP2: 100 and 300 mg L

-1
 nanoAg; CuONP1, CuONP2 and CuONP3: 100, 

200 and 500 mg L
-1

 nanoCuO; Ag1 and Ag2: 5 and 20 mg L
-1

 Ag
+
; Cu1, Cu2 and Cu3: 10, 20 and 30 

mg L
-1

 Cu
2+

, respectively; C: Control without addition of any form of metals. 
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2.4. Discussion  

Our study shows that nano and ionic metals can have impacts on microbial 

communities and reduce leaf litter decomposition in freshwater ecosystems. The 

exposure to elevate concentrations of nano and ionic metals reduced microbial 

biomass on decomposing leaves. The biomass of bacteria was strongly inhibited 

even at short exposure times (7 days). Indeed, many nanometals including 

nanosilver and nanocopper are known to have anti-bacterial properties (< 100 mg L-

1 in axenic cultures) (Yoon et al., 2007). However, negligible effects of nanosilver or 

nanocopper on bacterial abundance, diversity (as fatty acid methyl-ester or DGGE 

profiles) or activity (as metabolic profile) are reported in communities of soil (Shah 

and Belozerova, 2009) and estuarine sediments (Bradford et al., 2009). The 

discrepancy between our results and those in the two latter studies might be 

explained by the two order of magnitude lower concentrations of the nanometals 

used in those studies and differences in environmental conditions. Indeed, pH, 

temperature and oxygen availability (Rispoli et al., 2010), as well as nanoparticle 

properties (e.g., size (Choi and Hu, 2008)) may affect nanoparticle bioavailability 

and account for different effects on biota.  

In this study, nano and ionic silver or copper inhibited bacterial biomass 

(68.6 – 96.5% of control) more than fungal biomass (28.5 – 82.9% of control) 

suggesting that the biomass of bacteria was more sensitive to these metals. This 

agrees with earlier reports showing that, contrary to bacterial biomass (Duarte et al., 

2008b, 2009), fungal biomass is not very sensitive to moderate metal stress and 

decline only under high stress levels (Niyogi et al., 2002; Duarte et al., 2008b, 

2009). The greater sensitivity of bacterial cells to nano and ionic metals may be 

partially due to the higher surface to volume ratio in bacteria, allowing a higher 

contact between nano and ionic metals and living cells. The structure of bacterial 

communities, based on DNA fingerprint, also appeared to discriminate well the 

stress imposed by ionic and nano forms of silver and copper. It is conceivable that 

the response of fungal communities become clearer at longer exposure times, as 

shown by Duarte et al. (2008a) in microbial communities exposed to copper and 

zinc ions. Moreover, a differential response of aquatic microbial communities to 

each nanometal and respective ionic form was found, suggesting different modes of 

action of these different forms of metals. This is supported by distinct gene 
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expression profiles in zebrafish gills after exposure to nano or ionic metals (Griffitt et 

al., 2009).   

The analysis of aquatic hyphomycete communities based on identification of 

released spores from decomposing leaves also showed shifts in community 

composition after exposure to nano and ionic metals. For instance, the dominant 

fungal species A. tetracladia was stimulated by exposure to all compounds, except 

ionic silver. Moreover, the co-dominant species Flagellospora sp. was inhibited by 

exposure to nano or ionic metals, being replaced by H. lugdunensis at the highest 

exposure concentrations. Articulospora tetracladia and H. lugdunensis are reported 

to occur in metal contaminated streams (Jaeckel et al., 2005; Pascoal et al., 2005b) 

and some strains of these species were found to be resistant to high concentrations 

of metals (Braha et al., 2007). The shift in species composition in this study probably 

indicates a change towards a better-adapted community, which may play an 

ecological role under the stress imposed by nanometals and/or their ionic 

precursors.  

The significant reduction in leaf decomposition rate by stream-dwelling 

microbes in the presence of nano or ionic metals was probably due to the observed 

decrease in fungal and bacterial diversity (based on spore morphology and/or 

DGGE OTUs) and activity (based on sporulation rates and/or biomass production) 

on leaf litter. Although biomass of fungi was apparently less affected by these 

stressors than that of bacteria, fungal biomass on decomposing leaves was two 

orders of magnitude higher. This agrees with previous studies pointing to a 

dominant role of fungi during litter decomposition in freshwaters (Pascoal and 

Cássio, 2004; Pascoal et al., 2005a) and is consistent with a more effective 

production of extracellular degradative enzymes by fungi than bacteria (Schneider et 

al., 2010). Therefore, it is conceivable that the observed reduction in litter 

decomposition was mainly due to the negative effects of nano and ionic metals on 

fungal activity. Unfortunately, we do not have data on the activity of plant litter 

degrading enzymes in aquatic fungi under nano or ionic metal stress. However, in 

the white rot fungus Trametes versicolor, the production of lignocellulose degrading 

enzymes, such as ß-glucosidase, cellobiohydrolase and ß-xylosidase, decreased by 

the presence of ionic copper and aggregated nanoparticles (Shah et al., 2010). 

In our study, the impacts of nano and ionic metals were more pronounced on 

fungal sporulation than on fungal biomass or diversity. This has ecological 

implications because if fungal reproductive output is affected, it may further 
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compromise fungal dispersal and survival in freshwaters with impacts to leaf eating 

invertebrates that are dependent on fungal activity. Moreover, sporulation rate was 

one of the most sensitive microbial parameters to nano or ionic metals. Also, other 

studies point to reproduction of aquatic hyphomycetes as a sensitive measure of 

water quality (Duarte et al., 2008a, 2009; Medeiros et al., 2010) with possible 

applications in stream monitoring programmes.  

Besides the impacts of nano and ionic metals on fungal communities and 

their ecological functions, the observed negative effects on bacterial communities 

cannot be neglected. Bacteria also play a role in detritus foodwebs by providing food 

and energy to higher trophic levels, particularly after partial decomposition of leaf 

litter by fungi (Pascoal and Cássio, 2004).  

Even though we used concentrations of ionic metals one order of magnitude 

lower than those of nanometals, the negative effects of ionic forms were more 

pronounced compared to their nano forms. Also, the toxicity of nanocopper oxide to 

the protozoa Tetrahymena thermophila (EC50,14h = 128 mg L-1) was 120 times lower 

than that of the ionic copper (Mortimer et al., 2010). This may be attributed to the 

low bioavailability of nano forms in water. The toxicity of nanometals to bacteria 

(Heinlaan et al., 2008), aquatic algae (Aruoja et al., 2009), and to the eukaryotic 

model yeast Saccharomyces cerevisiae (Kasemets et al., 2009) was attributed to 

soluble metal ions originating from the metal oxide particles. Conversely, others 

found that the toxicity of nanocopper and nanosilver in zebrafish and Daphnia pulex 

is unlikely to be merely explained by particle dissolution (Griffitt et al., 2008). 

Therefore, more investigation on the mechanisms of action of nanoparticles is 

needed to clarify this aspect.  

The effects of nanocopper oxide appeared to be stronger than those of 

nanosilver on leaf decomposition rate, bacterial biomass, fungal diversity and 

reproduction. However, it should be taken into account that the size of metal 

nanoparticles used in our study was lower for nanocopper oxide (30-50 nm) than for 

nanosilver (near 100 nm). Data from literature have shown that nanometal toxicity to 

several cell lines (Pan et al., 2007; Karlsson et al., 2009) and organisms, including 

aquatic species of different trophic levels, tend to increase with the decrease of 

particle size (Heinlaan et al., 2008; Van Hoecke et al., 2009). However, the toxicity 

of nanometals does not appear to be a generic response to exposure to nano-sized 

particles; rather, it seems that particular nanometals have an intrinsic property that 

confers toxicity (Karlsson et al., 2009). 
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Overall, our study provides the novel information that nanometals may be a 

threat to microbial communities that drive plant litter decomposition in streams by 

reducing diversity and activity of fungi and bacteria. Although the negative effects of 

ionic forms were more pronounced compared to their nano forms, accumulation or 

adsorption of nanometals to microbial cells is conceivable to occur (Battin et al., 

2009). If so, nanometals may enter aquatic detritus foodwebs with impacts to higher 

trophic levels. This study clearly indicates the emerging risks of nano and ionic 

forms of metals to aquatic microbiota and associated ecosystem processes. 

Moreover, our study suggests that biomass of aquatic bacteria and sporulation of 

aquatic fungi might be useful tools in ecotoxicological studies to assess nano or 

ionic metal impacts. 

 

 

References 

Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M, 2006. Manufacture and use of nanomaterials: current 
status in the UK and global trends. Occup Med 56, 300–306. 

Aruoja V, Dubourguier HC, Kasemets K, Kahru A , 2009. Toxicity of nanoparticles of CuO, ZnO and 
TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407, 1461–1468. 

Azevedo MM, Almeida B, Ludovico P, Cássio F, 2009. Metal stress induces programmed cell death in 
aquatic fungi. Aquat Toxicol 92, 264–270. 

Blaser SA, Scheringer M, MacLeod M, Hungerbühler K, 2008. Estimation of cumulative aquatic 
exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Sci 
Total Environ 390, 396–409. 

Battin TJ, Kammer FVD, Weilhartner A, Ottofuelling S, Hofmann T, 2009. Nanostructured TiO2: 
transport behavior and effects on aquatic microbial communities under environmental 
conditions. Environ Sci Technol 43, 8098–8104. 

Birceanu O, Chowdhury MJ, Gillis PL, McGeer JC, Wood CM, Wilkie MP, 2008. Modes of metal toxicity 
and impaired branchial ionoregulation in rainbow trout exposed to mixtures of Pb and Cd in 
soft water. Aquat Toxicol 89, 222–231.  

Bradford A, Handy RD, Redman JW, Atfield A, Mühling M, 2009. Impact of silver nanoparticle 
contamination on the genetic diversity of natural bacterial assemblages in estuarine 
sediments. Environ Sci Technol 43, 4530–4536. 

Braha B, Tintemann H, Krauss G, Ehrman J, Bärlocher F, Krauss GJ , 2007. Stress response in two 
strains of the aquatic hyphomycete Heliscus lugdunensis after exposure to cadmium and 
copper ions. BioMetals 20, 93–105.  

Choi O, Hu Z, 2008. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying 
bacteria. Environ Sci Technol 42, 4583–4588.      

Duarte S, Pascoal C, Alves A, Correia A, Cássio F, 2008a. Copper and zinc mixtures induce shifts in 
microbial communities and reduce leaf litter decomposition in streams. Freshwat Biol 53, 91–
101. 

Duarte S, Pascoal C, Cássio F, 2008b. High diversity of fungi may mitigate the impact of pollution on 
plant litter decomposition in streams. Microb Ecol 56, 688–695.  

Duarte S, Pascoal C, Cássio F, 2009. Functional stability of stream-dwelling microbial decomposers 
exposed to copper and zinc stress. Freshwat Biol 54, 1683–1691. 



Chapter 2 

 

56 
 

Fernandes I, Duarte S, Pascoal C, Cássio F, 2009. Mixtures of zinc and phosphate affect leaf litter 
decomposition by aquatic fungi in streams. Sci Total Environ 407, 4283–4288. 

Gessner MO, 2005. Ergosterol as a measure of fungal biomass. In: Graça MAS, Bärlocher F, Gessner 
MO (Eds) Methods to study litter decomposition: a practical guide, Springer, Dordrecht, 
Netherlands, pp 189–196. 

Gopalakrishnan S, Thilagam H, Raja PV, 2008. Comparison of heavy metal toxicity in life stages 
(spermiotoxicity, egg toxicity, embryotoxicity and larval toxicity) of Hydroides elegans. 
Chemosphere 71, 515–528. 

Graça MAS, 2001. The role of invertebrates on leaf litter decomposition in streams – a Review. Int Rev 
Hydrobiol 86, 383–393. 

Griffitt RJ, Luo J, Gao J, Bonzango JC, Barber DS, 2008. Effects of particle composition and species 
on toxicity of metallic nanoparticles in aquatic organisms. Environ Toxicol Chem 27, 1972–
1978. 

Griffitt RJ, Hyndman K, Denslow ND, Barber DS, 2009. Comparison of molecular and histological 
changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107, 404–415. 

Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A, 2008. Toxicity of nanosized and bulk ZnO, 
CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and 
Thamnocephalus platyurus. Chemosphere 71, 1308–1316. 

Holsapple MP, Farland WH, Landry TD, Monteiro-Riviere NA, Carter JM, Walker NJ, Thomas KV, 
2005. Research strategies for safety evaluation of nanomaterials, part II: toxicological and 
safety evaluation of nanomaterials, current challenges and data needs. Toxicol Sci 88, 12–17. 

Hsiao MC, Wang HP, Yang YW, 2001. EXAFS and XANES studies of copper in a solidified fly ash. 
Environ Sci Technol 35, 2532–2535. 

Huang HL, Wang HP, Wei GT, Sun IW, Huang JF, Yang YW, 2006. Extraction of nanosize copper 
pollutants with an ionic liquid. Environ Sci Technol 40, 4761–4764. 

Jaeckel P, Krauss GJ, Krauss G, 2005. Cadmium and zinc response of the fungi Heliscus lugdunensis 
and Verticillium cf. alboatrum isolated from highly polluted water. Sci Total Environ 346, 274–
279. 

Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, 
Burkhardt M, Boller M, 2008. Synthetic TiO2 nanoparticle emission from exterior facades into 
the aquatic environment. Environ Pollut 156, 233–239. 

Karlsson HL, Gustafsson J, Cronholm P, Möller L, 2009. Size-dependent toxicity of metal oxide 
particles–A comparison between nano- and micrometer size. Toxicol Lett 188, 112–118. 

Kasemets K, Ivask A, Dubourguier HC, Kahru A, 2009. Toxicity of nanoparticles of ZnO, CuO and TiO2 
to yeast Saccharomyces cerevisiae. Toxicol in Vitro 23, 1116–1122. 

Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee 
YS, Jeong DH, Cho MH, 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine 3, 
95–101. 

Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG, 2008. Antifungal effect of silver nanoparticles 
on dermatophytes. J Microbiol Biotechnol 18, 1482–1484. 

Luechinger NA, Athanassiou EK, Stark WJ, 2008. Graphene-stabilized copper nanoparticles as an air-
stable substitute for silver and gold in low-cost ink-jet printable electronics. Nanotechnology 
19, 445201 (6 pp). 

Medeiros A, Duarte S, Pascoal C, Cássio F, Graça MAS, 2010. Effects of Zn, Fe and Mn on leaf litter 
breakdown by aquatic fungi: a microcosm study. Internat Rev Hydrobiol 95, 12–26. 

Miao AJ, Schwehr KA, Xu C, Zhang SJ, Luo Z, Quigg A, Santschi PH, 2009. The algal toxicity of silver 
engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157, 
3034–3041. 

Moreirinha C, Duarte S, Pascoal C, Cássio F, 2011. Effects of cadmium and phenanthrene mixtures on 
aquatic fungi and microbially mediated leaf litter decomposition. Arch Environ Contam 
Toxicol 61, 211–219. 

Mortimer M, Kasemets K, Kahru A, 2010. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa 
Tetrahymena thermophila. Toxicology 269, 182–189. 



Metal nanoparticles: a threat to microbial decomposers? 

57 
 

Mueller NC, Nowack B, 2008. Exposure modeling of engineered nanoparticles in the environment. 
Environ Sci Technol 42, 4447–4453. 

Nair LS, Laurencin CT, 2007. Silver nanoparticles: synthesis and therapeutic applications. J Biomed 
Nanotech 3, 301–316. 

Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao, AJ, Quigg A, Santschi PH, Sigg L, 2008. 
Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and 
fungi. Ecotoxicology 17, 372–386. 

Niyogi DK, Lewis Jr WM, McKnight DM, 2002. Effects of stress from mine drainage on diversity, 
biomass, and function of primary producers in mountain streams. Ecosystems 5, 554–567. 

Norland S, 1993. The relationship between biomass and volume of bacteria. In: Kemp PF, Sherr BF, 
Sherr EB, Cole JJ (Eds) Handbook of Methods in Aquatic Microbial Ecology, Lewis 
publishers, Boca Raton, Florida, pp 303–307. 

Pan Y, Neuss S, Leifert
 
 A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W, 

2007. Size-dependent cytotoxicity of gold nanoparticles. Small 3, 1941–1949. 

Panyala NR, Peña-Méndez EM, Havel J, 2008. Silver or silver nanoparticles: a hazardous threat to the 
environment and human health? J Appl Biomed 6, 117–119.   

Pascoal C, Cássio F, 2004. Contribution of fungi and bacteria to leaf litter decomposition in a polluted 
river. Appl Environ Microbiol 70, 5266–5273. 

Pascoal C, Cássio F, Gomes P, 2001. Leaf breakdown rates: a measure of water quality? Int Rev 
Hydrobiol 86, 407–416.   

Pascoal C, Cássio F, Marcotegui A, Sanz B, Gomes P, 2005a. Role of fungi, bacteria, and 
invertebrates in leaf litter breakdown in a polluted river. J N Am Benthol Soc 24, 784–797. 

Pascoal C, Marvanová L, Cássio F, 2005b. Aquatic hyphomycete diversity in streams of Northwest 
Portugal. Fungal Divers 19, 109–128. 

Pascoal C, Pinho M, Cássio F, Gomes P, 2003. Assessing structural and functional ecosystem 
condition using leaf breakdown: studies on a polluted river. Freshwat Biol 48, 2033–2044.  

Perugini P, Simeoni S, Scalia S, Genta I, Modena T, Conti B, Pavanetto F, 2002. Effect of nanoparticle 
encapsulation on the photostability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate. 
Int J Pharm 246, 37–45. 

Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP, 2009. Characterisation of copper 
oxide nanoparticles for antimicrobial applications. Int J Antimicrob Ag 33, 587–590. 

Rispoli F, Angelov A, Badia D, Kumar A, Seal S, Shah V, 2010. Understanding the toxicity of 
aggregated zero valent copper nanoparticles against Escherichia coli. J Hazard Mater 180, 
212–216. 

Saison C, Perreault F, Daigle JC, Fortin C, Claverie J, Morin M, Popovic R, 2010. Effect of core–shell 
copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II 
energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquat Toxicol 96, 109–
114.  

Salata OV, 2004. Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2 (6 pp).  

Saquing CD, Manasco JL, Khan SA, 2009. Electrospun nanoparticle–nanofiber composites via a one-
step Synthesis. Small 5, 944–951.  

Schneider T, Gerrits B, Gassmann R, Schmid E, Gessner MO, Richter A, Battin T, Eberl L, Riedel K, 
2010. Proteome analysis of fungal and bacterial involvement in leaf litter 
decomposition. Proteomics 10, 1819–1830. 

Shah V, Belozerova I, 2009. Influence of metal nanoparticles on the soil microbial community and 
germination of lettuce seeds. Water Air Soil Pollut 197, 143–148.  

Shah V, Dobiášová P, Baldrian P, Nerud F, Kumar A, Seal S, 2010. Influence of iron and copper 
nanoparticle powder on the production of lignocellulose degrading enzymes in the fungus 
Trametes versicolor. J Hazard Mater 178, 1141–1145. 

Sridhar KR, Bärlocher F, Krauss GJ, Krauss G, 2005. Response of aquatic hyphomycete communities 
to changes in heavy metal exposure. Int Rev Hydrobiol 90, 21–32.  



Chapter 2 

 

58 
 

Van Hoecke K, Quik JT, Mankiewicz-Boczek J, De Schamphelaere KA, Elsaesser A, Van der Meeren 
P, Barnes C, McKerr G, Howard CV, Van de Meent D, Rydzyński K, Dawson KA, Salvati A, 
Lesniak A, Lynch I, Silversmit G, De Samber B, Vincze L, Janssen CR, 2009. Fate and effects 
of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ Sci Technol 43, 4537–4546.  

Wang W, Zhan Y, Wang X, Liu Y, Zheng C, Wang G, 2002. Synthesis and characterization of CuO 
nanowhiskers by a novel one-step, solid-state reaction in the presence of a nonionic 
surfactant. Mater Res Bull 37, 1093–1100.  

White TJ, Bruns T, Lee S, Taylor JW, 1990. Amplification and direct sequencing of fungal ribosomal 
RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR 
Protocols: A Guide to Methods and Applications, Academic Press, Inc, New York, pp 315–
322. 

Yoon KY, Byeon JH, Park JH, Hwang J, 2007. Susceptibility constants of Escherichia coli and Bacillus 
subtilis to silver and copper nanoparticles. Sci Total Environ 373, 572–575. 

Zar JH, 2009. Biostatistical Analysis, fifth ed, Prentice-Hall, Upper Saddle River, New Jersey. 

Zhang F, Wu X, Chen Y, Lin H, 2009. Application of silver nanoparticles to cotton fabric as an 
antibacterial textile finish. Fibers Polym 10, 496–501.  



 

 

 

Chapter 3  
 

Toxicity of nanoCuO to microbial 

decomposers depends on nanoparticle 

size and concentration of humic acid 

in freshwaters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Abstract 

In aquatic environments, the reactive surface area of nanoparticles prone to 

interact with natural organic matter (NOM) may determine the impacts of nanometal 

oxides on biota. In streams, heterotrophic microbes, predominantly fungi, play a key 

role in detritus food webs by transferring energy from plant-litter to higher trophic 

levels. We investigated the impacts of three sizes of nanoCuO (12, 50 and 80 nm 

powder; ≤400 mg L-1) and of humic acid (HA; ≤100 mg L-1), a major component of 

NOM, on stream-dwelling microbes associated with decomposing leaf litter. Results 

showed that the exposure to increasing concentrations of decreasing size of 

nanoCuO reduced leaf decomposition, microbial biomass, and fungal reproduction 

and diversity. Alterations in leaf surface morphology further supported the impacts of 

nanoparticles on microbial activity on decomposing leaves. Bacteria were more 

sensitive than fungi to nanoCuO, because EC50 values for biomass of bacteria were 

much lower than those of fungi (50-times lower for 12 and 50 nm nanoCuO, and 12-

times lower for 80 nm nanoCuO). Fungal reproduction was more sensitive to 

nanoCuO than leaf decomposition or microbial biomass. Microbial activity on 

decomposing leaves was also inhibited by exposure to increasing concentrations of 

HA in the absence of nanoCuO. The adverse effects of smaller size nanoCuO were 

alleviated by the presence of HA.  

 

Keywords: NanoCuO size, humic acid, fungi, bacteria, leaf decomposition, streams. 
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3.1. Introduction  

The engineered nanocopper oxide (nanoCuO) has a wide range of 

applications for human welfare, mostly in the fields of electronics and biomedicines 

(Carnes and Klabunde, 2003; Dutta et al., 2003; Zhang et al., 2008; Ren et al., 

2009), and has been reported to be toxic to a wide range of living biota including 

aquatic organisms, such as bacteria, protozoa, algae and invertebrates (Heinlaan et 

al., 2008; Mortimer et al., 2010; Saison et al., 2010). However, most studies are 

based on individual responses of organisms that are inadequate to predict the 

impacts of nanoCuO on aquatic communities and associated ecosystem processes 

(but see Pradhan et al., 2011). Studies have demonstrated that effects of metal 

oxide nanoparticles on aquatic biota can differ from those of their bulk counterparts 

(Kahru et al., 2008; Aruoja et al., 2009), but only few studies have explored how 

toxicity of nanometal oxides to biota may vary with the nanoparticle size (Van 

Hoecke et al., 2009; Bang et al., 2011; Azam et al., 2012).  

In freshwaters, humic acid (HA) is a significant part of natural or dissolved 

organic matter (NOM or DOM) (Ma et al., 2001), which is often expressed as 

dissolved organic carbon (DOC) (Al-Reasi et al., 2011). Concentration of HA in 

natural waters may rise up to several hundreds mg L-1 of DOC (Wall and Choppin, 

2003); however, in oligotrophic streams, the concentration of HA ranges between 1–

100 mg L-1 (Steinberg et al., 2006). Humic acid has been reported to exhibit toxicity 

against living organisms including freshwater invertebrates (Meems et al., 2004; 

Yang et al., 2004; Timofeyev et al., 2006). However, several ionic metals can bind to 

carboxylic groups of HA decreasing metal bioavailability and toxicity (Tsiridis et al 

2005). Some reports explained changes in metal oxide toxicity to biota based on the 

quantity of DOC in the stream water (e.g. Blinova et al., 2010). The protective role of 

HA against Cu2+ toxicity to some aquatic organisms (e.g. sea urchin larvae, Lorenzo 

et al 2002; photobacterium Vibrio fischeri, Tsiridis et al., 2005) has been reported. 

However, studies on the impact of HA on nanoCuO toxicity in aquatic biotic 

communities are not available.  

In low order forested streams, plant-litter decomposition of riparian 

vegetation by microbes and invertebrates is a key ecosystem process ensuring 

organic matter turnover and energy transfer from plant litter to higher trophic levels 

(Pascoal et al., 2005a). Both fungi and bacteria play a significant role in this 

ecological process. Fungi are recognized to have a dominant role at earlier stages 
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of litter decomposition, while bacteria appear to gain importance after partial 

decomposition of plant-litter (Pascoal and Cássio, 2004). Plant-litter decomposition 

is sensitive to water quality and this integrative process was proposed as a 

functional measure to assess the health of stream ecosystems (Pascoal et al., 2001; 

Gessner and Chauvet, 2002; Pascoal et al., 2005a). In microcosm experiments, the 

structure and function of microbial communities were affected by exposure to ionic 

copper (Fernandes et al., 2009) or nanoCuO (Pradhan et al., 2011). However, no 

information is available on how microbial communities and the ecological processes 

they drive respond to different nanoparticle sizes and to the concomitant presence 

of dissolved organic matter in the stream water.  

We investigated the interactive effects between CuO nanoparticle sizes and 

humic acid on microbial communities involved in leaf-litter decomposition in streams 

under the hypotheses that: i) smaller nanoparticles would exhibit higher toxicity than 

larger nanoparticles because of their higher reactive surface area, ii) in the absence 

of nanoCuO, HA would have negative impacts on microbial communities, iii) effects 

of nanoCuO and HA would be dose-dependent, and iv) HA would alleviate 

nanoCuO toxicity to biota if interactions with nanoparticles decreased nanoCuO 

bioavailability. We used a microcosm approach with stream-dwelling microbial 

communities that were exposed to increasing concentrations of nanoCuO with three 

sizes in the absence or presence of HA. The measured endpoints were leaf 

decomposition, fungal and bacterial biomass, and fungal reproduction and diversity. 

In addition, surface of leaves unexposed or exposed to the chemicals were analysed 

by scanning electron microscopy to monitor the surface integrity and biosorption of 

the chemicals. 

 

 

3.2. Material and Methods 

3.2.1. Microbial colonization of leaves 

Leaves of Alnus glutinosa (L.) Gaertn. (alder), a common riparian tree in the 

Iberian Peninsula, were collected from a single tree in autumn just before 

abscission, and air dried at room temperature. The leaves were soaked in deionised 

water, cut into 12 mm-diameter disks, and sets of 80 disks were placed into fine-

mesh bags (15 × 15 cm, 0.5-mm size mesh for preventing invertebrate colonization). 
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Leaf bags were immersed in the Maceira Stream (N 41°45'58.79'', W 8°08'49.39'', 

altitude 867 m, National Park of Peneda-Gerês, Portugal) for 7 days to allow 

microbial colonization. Further details of the sampling site can be found in Pradhan 

et al. (2011).  

At the time of leaf immersion, stream water had a temperature of 13.8°C, a 

pH of 5.8 and a conductivity of 16 μS cm-1 measured in situ with field probes 

(Multiline F/set 3 no. 400327, WTW, Weilheim, Germany). Stream water samples 

were collected in sterile dark bottles, and transported in a cold box at 4ºC to the 

laboratory to determine the concentrations of inorganic nutrients with a HACH 

DR/2000 photometer (HACH, Loveland, CO, USA). Nutrient concentrations were: 30 

μg L-1 N-NO3
- (HACH kit, programme 351), 2 μg L-1 N-NO2

-, (HACH kit, programme 

371) and 20 μg L-1 P-PO4
3- (HACH kit, programme 490).   

 

3.2.2. Preparation of nanocopper oxide and humic acid (HA) stocks and 

characterization of nanoparticles 

Stock suspensions of three size nanocopper oxides, namely i) 12 nm CuO 

nanopowder (99.5%, Ionic Liquid Technology (IO-LI-TEC), Heilbronn, Germany), ii) 

50 nm CuO nanopowder (99.5%, Sigma-Aldrich, St. Louis, MO), and iii) 80 nm 

(99.9%, IO-LI-TEC), were prepared in autoclaved stream water (121°C, 20 min) by 

sonication at 42 kHz in a sonication bath (Branson 2510, Danbury, CT, USA) for 30 

min in dark before use (Heinlaan et al., 2008). Stock solution of humic acid (Sigma-

Aldrich, St. Louis, MO, USA) was prepared in sterile stream water by stirring for 10 h 

at room temperature prior to use. The pH of all nanoCuO suspensions and HA 

solution was adjusted to the stream water pH (5.8 ± 0.2).  

NanoCuO size in the stock suspensions was analysed by scanning electron 

microscopy (SEM, Leica Cambridge S 360, Cambridge, UK) coupled to an energy 

dispersive X-ray microanalysis setup (EDX, 15 KeV) and by dynamic light scattering 

(DLS) using a zetasizer (Malvern, Zetasizer Nano ZS), as described by Pradhan et 

al. (2011, 2012). SEM analyses of nanoCuO suspensions of 12, 50 and 80 nm 

powder revealed that the size of CuO nanoparticles ranged between 10–30 nm, 30–

50 nm and 80–120 nm, respectively (not shown). DLS showed that nanoparticles 

had an average size larger than the primary particles measured by SEM, and 

corresponded to 101.8 nm (PdI 0.137), 202.4 nm (PdI 0.181) and 267.6 nm (PdI 

0.296) for 12, 50 and 80 nm, respectively. These results suggested agglomeration of 
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nanoparticles in the stream water as described before (Buffet et al., 2011; Pradhan 

et al., 2012). 

 

3.2.3. Microcosm experiment 

Bags containing microbially-colonized leaf disks were retrieved from the 

stream and brought to the laboratory. Leaf disks from each bag were rinsed with 

deionised water and placed into 150 mL sterile Erlenmeyer flasks with 80 mL of 

filtered (MN GF-3 filter paper, Macherey-Nagel, Germany) and autoclaved stream 

water. To determine the impacts of nanoCuO and/or HA, stream water was 

supplemented with: i) increasing concentrations of each size nanoCuO (0, 50, 100, 

200 or 400 mg L-1), ii) increasing concentrations of HA (0, 20 or 100 mg L-1), and iii) 

all combinations of each concentration and size of nanoCuO with HA. Three 

replicate flasks were prepared per treatment. Microcosms were incubated at 14ºC 

under shaking at 140 rpm (Certomat BS 3, Melsungen, Germany), and solutions 

were renewed after 10 days. At the end of the experiment (20 days), leaf disks were 

collected for quantification of leaf mass loss and microbial biomass, and microcosm 

solutions were used for assessing fungal sporulation as described below.   

 

3.2.4. Leaf decomposition 

Leaf mass loss in each microcosm was determined as the difference 

between leaf dry mass at the beginning and at the end of microcosm experiment. 

Leaf disks from each replicate were freeze-dried (Christ alpha 2–4 LD Plus, B. 

Braun, Germany) to constant mass (72 h) and weighed to the nearest 0.001 mg. 

 

3.2.5. Microbial biomass 

Fungal biomass associated with decomposing leaves was estimated based 

on ergosterol concentration on leaves (Gessner, 2005). Lipids were extracted from 

sets of 6 leaf disks per replicate by heating (30 min, 80°C) in 0.8% KOH-methanol 

and the extract was purified by solid-phase extraction and eluted in isopropanol. 

Ergosterol was quantified by high-performance liquid chromatography (HPLC) using 

a LiChrospher RP18 column (250 × 4 mm, Merck) connected to a Beckmann Gold 

liquid chromatographic system running isocratically with HPLC-grade methanol at 

1.4 mL min-1 and 33°C. The peak of ergosterol was detected at 282 nm. A standard 
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series of ergosterol (Sigma) in isopropanol were used to estimate the ergosterol 

concentration which was further converted to fungal biomass assuming 5.5 µg 

ergosterol mg-1 mycelial dry mass (Gessner, 2005).  

To estimate bacterial biomass, sets of 4 leaf disks from each replicate were 

placed into falcon tubes with 10 mL of phosphate buffered formalin (2% final 

concentration) and kept at 4°C until processed. Bacterial cells were dislodged from 

leaves by sonication in a bath (42 kHz, 100 W; Branson 2510, Danbury, CT, USA) 

for 5 min, with cooling in ice after each 1 min of sonication to avoid cell damage. 

Serial dilutions of bacterial suspensions were prepared, and 2 mL aliquot of each 

bacterial suspension was mixed with 4′,6-diamidino-2-phenylindole (DAPI, 40 μL of 

0.1 mg mL-1; Molecular Probes, Eugene, OR, USA) and incubated for 10 min in the 

dark to stain bacterial cells. Bacterial suspensions were filtered through black 

polycarbonate membranes (0.2 μm pore size, GTTP, Millipore, Billerica, MA, USA), 

and filters were mounted on slides between two drops of immersion oil. Bacterial 

cells were counted under an epifluorescence microscope (1000× magnification; 

Leitz Laborlux Heerbrug, Switzerland), and bacterial numbers were converted to 

bacterial biomass considering a mean biomass of 20 fg cell-1 (Norland, 1993). 

 

3.2.6. Fungal sporulation rates 

Suspensions with released fungal conidia from each replicate microcosm 

were mixed with Triton X-100 (40 µl of 15%), to minimize conidial adherence to the 

flask, and the conidia were fixed with 2% formaldehyde. Adequate volumes of 

conidial suspensions were filtered (5 μm pore size, Millipore, Billerica, MA, USA), 

and the conidia were stained with 0.05% cotton blue in lactic acid, and identified and 

counted under a light microscope (400× magnification; Leica Biomed, Heerbrug, 

Switzerland). 

 

3.2.7. Morphology of leaves under SEM 

Freeze-dried leaves were fixed in 2.5% (v/v) glutaraldehyde for 24 h, and 

glued onto 12.7-mm diameter metallic SEM pin stub specimen mounts, coated with 

gold under vacuum and scanned by SEM-EDX as above.  

 

 

 



Toxicity of nanoCuO to microbes: role of nanoparticle size and humic acid 

 

67 
 

3.2.8. Data analyses 

Analyses of variance were used to test significant effects of chemicals on 

leaf mass loss, fungal biomass, bacterial biomass and fungal sporulation as follows: 

three-way ANOVAs were used to test the effects of concentrations of nanoCuO and 

HA at different nanoparticle sizes. Because HA did not have a significant effect on 

fungal biomass when overall data was considered, a separate one-way ANOVA was 

used to test the effects of HA concentrations in the absence of nanoCuO. Bonferroni 

post-tests were used to check in which treatments significant differences occurred 

(Zar, 2009). To achieve normal distribution and homoscedasticity, data in 

percentage were arcsine square root transformed (Zar, 2009). Analyses were 

performed with Statistica 6.0 (Statsoft, Inc., Tulsa, OK, USA). The effective 

concentration of each size nanoCuO inducing 50% of decrease (EC50, 95% C.l.) in 

leaf decomposition, fungal or bacterial biomass, and fungal sporulation rate was 

calculated using PriProbit 1.63 (Sakuma, 1998). 

 

 

3.3. Results 

3.3.1. Effects of nanoCuO and HA on fungal diversity 

After 20 days of experiment, a total of 12 fungal species were identified in 

control microcosms based on conidial morphology (Table 3.1). The exposure to 

nanoCuO decreased fungal species richness in a concentration-dependent manner, 

and effects became more pronounced as nanoparticle size decreased (4, 5 and 8 

species after exposure to 400 mg L-1 nanoCuO with 12, 50 and 80 nm, respectively) 

(Table 3.1). The exposure to 100 mg L-1 of HA alone decreased fungal richness to 8 

species (Table 3.1). However, fungal species richness was less inhibited when fungi 

were co-exposed to HA and smaller size nanoparticles (Table 3.1). 

In control, Articulospora tetracladia was the dominant species (83.3%) 

followed by Flagellospora sp. (8.3%) (Table 3.1). Exposure to the highest 

concentrations of nanoCuO and/or HA decreased the contribution of Flagellospora 

sp. but increased that of Heliscus lugdunensis (Table 3.1). The percentage 

contribution of H. lugdunensis increased with the decrease in nanoCuO size (Table 

3.1). 
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Table 3.1 Contribution of aquatic fungal sporulating species on decomposing leaves to the total spore 
production and species richness after 20 days of exposure to CuO nanoparticles (NP; 400 mg L

-1
) with 

different sizes (12, 50 and 80 nm) and/or humic acid (HA; 100 mg L
-1
) 

Fungal species 
% of conidia  

Control HA NP 12 NP 50 NP 80 NP 12 + HA NP 50 + HA NP 80 + HA 

Alatospora acuminata 
Ingold 

0.2 nd nd nd nd nd nd nd 

Anguillospora filiformis 
Greath 

1.1 0.5 nd nd 0.2 0.4 0.7 1.0 

Articulospora tetracladia 
Ingold 

83.3 76.0 66.5 69.2 72.4 73.2 75.1 74.4 

Culicidospora aquatica 
R.H. Petersen 

0.1 nd nd nd nd nd nd nd 

Flagellospora sp.  8.3 5.9 4.1 4.4 5.7 7.1 6.9 6.3 

Fontanospora eccentrica 
(R.H. Petersen) Dyko 

1.5 2.2 nd nd 1.4 1.0 1.3 1.5 

Fontanospora 
fusiramosa Marvanová, 
P.J. Fisher, Descals & 
Bärlocher  

2.2 5.3 4.0 4.3 5.1 3.3 4.0 4.5 

Heliscus lugdunensis 
Sacc. & Therry 

0.3 6.9 25.4 21.5 12.6 13.8 10.2 9.5 

Lunulospora curvula 
Ingold 

0.1 nd nd nd nd nd nd nd 

Tricladium attenuatum 
Iqbal 

0.7 1.5 nd nd 1.2 0.4 0.7 1.0 

Tricladium splendens 
Ingold 

0.2 nd nd nd nd nd nd nd 

Varicosporium elodeae 
W. Kegel 

2.0 1.7 nd 0.6 1.4 0.8 1.1 1.8 

Fungal species richness 12 8 4 5 8 8 8 8 

nd: not detected. 

 

3.3.2. Effects of nanoCuO and HA on fungal sporulation 

After 20 days, sporulation rate of aquatic hyphomycetes attained 302 × 103 

spores g-1 leaf dry mass day-1 in control microcosms. Fungal sporulation was 

significantly affected by nanoCuO size and concentration and by HA concentration 

(three-way ANOVAs, P<0.05). In the absence of HA, the effects were stronger at 

smaller size and higher concentrations of CuO nanoparticles with inhibitions of 

fungal sporulation up to 99.5% (Fig. 3.1A-C). The EC50 value increased with the 

increase in nanoparticle size (EC50: 3.0, 8.3 and 46.9 mg L-1 for nanoCuO with 12, 

50 and 80 nm, respectively; Table 2). The exposure to HA alone also inhibited 

fungal sporulation up to 82.4% at the highest HA concentration (Fig. 3.1A-C). 

However, the presence of HA alleviated the toxicity of smaller size nanoCuO (12 

and 50 nm) in a dose-dependent manner (P<0.05; Fig. 3.1A and B). Maximum 
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alleviating effects of HA on nanoCuO toxicity occurred when fungi were exposed to 

100 mg L-1 HA and 400 mg L-1 of 12 nm nanoCuO (41.4% recovery; Fig. 3.1A).   

                

Figure 3.1 Fungal sporulation rate (% of control) on decomposing alder leaves exposed for 20 days to 
increasing concentrations of three sizes of nanoCuO or humic acid (HA) alone or in mixtures. 
NanoCuO sizes were: 12 nm (A), 50 nm (B) and 80 nm (C). Mean ± SEM, n=3. *, treatments that differ 
significantly from control. Horizontal lines indicate no significant differences between HA treatments. 

 

3.3.3. Effects of nanoCuO and HA on microbial biomass 

After 20 days, fungal biomass on leaves attained 68.8 mg g-1 leaf dry mass 

in the control (not shown). When overall data was considered, fungal biomass was 
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affected by the size and concentration of nanoCuO, but not by HA (three-way 

ANOVA, P<0.05 for significant effects; Fig. 3.2A-C). Fungal biomass decreased with 

increasing nanoCuO concentration and decreasing nanoparticle size. At the highest 

concentration of nanoparticles, fungal biomass inhibitions were: 47.7, 60.8 and 

67.1% for 12, 50 and 80 nm nanoCuO, respectively (Fig. 3.2A-C). The lowest 

observed effective concentrations (LOEC) for ascending nanoCuO size were 50, 

100 and 400 mg L-1, respectively (P<0.05; Table 2). The lowest EC50 value for 

nanoCuO with smaller size also indicated higher toxicity of smaller nanoparticles to 

fungal biomass production (EC50: 272.5, 735.4, 1850.4 mg L-1 for 12, 50 and 80 nm 

nanoCuO, respectively; Table 2).  

In the absence of nanoparticles, the exposure to the highest HA 

concentration (100 mg L-1) decreased fungal biomass by 35.9% (one-way ANOVA, 

P<0.05; Fig. 3.2A-C). HA alleviated the inhibitory effects of increasing 

concentrations of 12 or 50 nm nanoCuO on fungal biomass (P<0.05; Fig. 3.2A and 

B). The highest recovery of fungal biomass (41.0%) was observed after co-exposure 

to 100 mg L-1 of HA and 400 mg L-1 of 12 nm nanoCuO (Fig. 3.2A and B). However, 

HA did not alleviate the effects of 80 nm of nanoCuO on fungal biomass (P>0.05; 

Fig. 3.2C). 
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Figure 3.2 Fungal biomass (% of control) on the decomposing alder leaves exposed for 20 days to 
increasing concentrations of three sizes of nanoCuO or humic acid (HA) alone or in mixtures. 
NanoCuO sizes were: 12 nm (A), 50 nm (B) and 80 nm (C). Mean ± SEM, n=3. *, treatments that differ 
significantly from control. Horizontal lines indicate no significant differences between HA treatments. 

 

Bacterial biomass on leaves in control microcosms was 0.31 mg g-1 leaf dry 

mass (not shown). Bacterial biomass was affected by exposure to HA and to 

nanoCuO of different sizes and concentrations (three-way ANOVA, P<0.05; Fig. 

3.3A-C). Bacterial biomass decreased significantly after exposure to all nanoparticle 

sizes at all tested concentrations (LOEC was 50 mg L-1 for all nanoCuO sizes; 
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P<0.05; Table 2; Fig. 3.3A-C). The effects were stronger at higher concentrations 

and smaller nanoparticle size, with minimum bacterial biomass at 400 mg L -1 of 

nanoCuO (6.6, 9.6 and 31.2% for 12, 50 and 80 nm nanoCuO, respectively 

comparing to control; Fig. 3.3A-C). The EC50 values showed that effect of smaller 

size nanoCuO was stronger than that of larger size nanoCuO on bacterial biomass 

(EC50: 5.0, 14.1 and 156.6 mg L-1 for 12, 50 and 80 nm nanoCuO, respectively; 

Table 2). 

Bacterial biomass decreased significantly by exposure to increasing 

concentration of HA alone, with a maximum inhibition of 56.0% at 100 mg L-1 of HA 

(P<0.05; Fig. 3A-C). Exposure to increasing concentrations of smaller size (12 nm 

and 50 nm) nanoparticles with increasing concentration of HA led to a significant 

recovery of bacterial biomass comparing to the effects promoted by nanoCuO in the 

absence of HA (P<0.05; Fig. 3.3A and B). Maximum recovery of biomass was 

observed at the highest concentrations of nanoCuO and HA (recovery: 11.4% and 

10.4% for 12 nm and 50 nm, respectively; Fig. 3.3A and B). However, HA did not 

alleviate the effects promoted by the larger size nanoCuO (80 nm) on bacterial 

biomass (P>0.05; Fig. 3.3C).  
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Figure 3.3 Bacterial biomass (% of control) on decomposing alder leaves exposed for 20 days to 
increasing concentrations of three sizes of nanoCuO or humic acid (HA) alone or in mixtures. 
NanoCuO sizes were: 12 nm (A), 50 nm (B) and 80 nm (C). Mean ± SEM, n=3. *, treatments that differ 
significantly from control. Horizontal lines indicate no significant differences between HA treatments. 
 

3.3.4. Effects of nanoCuO and HA on leaf decomposition 

After 20 days, leaf mass loss in control microcosms was 48.7%. Humic acid, 

size and concentration of nanoCuO had significant effects on leaf decomposition 

(three-way ANOVA, P<0.05; Fig. 3.4A-C). Leaf decomposition was lowest after 

exposure to the highest concentration (400 mg L-1) of smallest size nanoCuO 
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(27.3% for 12 nm, 45.0% for 50 nm and 59.1% for 80 nm, comparing to control; Fig. 

3.4A-C). The LOEC for 12, 50 and 80 nm CuO nanoparticles on leaf decomposition 

were 50, 100 and 400 mg L-1, respectively (P<0.05; Table 2). The EC50 values for 

nanoCuO increased as nanoparticle size increased (EC50: 83.1, 286.7 and 680.1 mg 

L-1 for ascending size of nanoCuO; Table 2). 

The presence of HA alone decreased significantly leaf decomposition, and a 

maximum inhibition of 67.5% was found at the highest concentration of HA (100 mg 

L-1)  (P<0.05, Fig. 3.4A-C). However, the exposure to HA alleviated the effects 

caused by 12 and 50 nm nanoCuO on leaf decomposition (P<0.05; Fig. 3.4A and 

B). The co-exposure to HA (100 mg L-1) with 200 or 400 mg L-1 of 12 nm nanoCuO 

led to a recovery in leaf decomposition of about 35.4 and 49.7%, respectively (Fig. 

3.4A). However, no significant recovery in leaf decomposition was observed when 

leaves were co-exposed to larger size nanoCuO (80 nm) and HA (P>0.05; Fig. 

3.4C). 

 

Table 3.2 Lowest observed effective concentration (LOEC) and effective concentration inducing 50% 
inhibition (EC50) of leaf decomposition (LD), fungal biomass (FB) and bacterial biomass (BB), and 
fungal sporulation (FS) after 20 days exposure to three sizes of nanoCuO 

NanoCuO 
size (nm) 

LOEC (mg L
-1
) EC50 (mg L

-1
) 

LD FB BB FS LD FB BB FS 

12 50 50 50 50 
83.1 

(45.7–117.9) 

272.5 

(145.5–6150.6) 

5.0 

(0.07–18.7) 

3.0 

(0.01–7.4) 

50 100 100 50 50 
286.7 

(192.5–650.6) 
735.4 

(378.5–6402.2) 
14.1 

(1.8–29.5) 
8.3 

(0.08–21.5) 

80 400 400 50 50 
680.1 

(427.7–1759.7) 

1850.4 

(714.9–61337.8) 

156.6 

(122.6–203.8) 

46.9 

(26.5–65.1) 
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Figure 3.4 Decomposition of alder leaves (% of control) exposed for 20 days to increasing 
concentrations of three sizes of nanoCuO or humic acid (HA) alone or in mixtures. NanoCuO sizes 
were: 12 nm (A), 50 nm (B) and 80 nm (C). Mean ± SEM, n=3. *, treatments that differ significantly 
from control. Horizontal lines indicate no significant differences between HA treatments. 

 

3.3.5. Leaf litter surface after exposure to nanoCuO and HA 

After 20 days, SEM analysis revealed that the surface of control leaves had 

evidence of high decomposition because the outer and inner tissues of the leaves 

were poorly preserved (Fig. 3.5, panel I) and colonization by microbes was visible 
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(Fig. 3.5, panel II). After exposure to all nanoCuO sizes, the leaves were less 

decomposed and nanoparticles were adsorbed to leaf surface (Fig. 3.5). The 

presence of copper was confirmed by EDX (not shown). Self-aggregation and 

adsorption of nanoCuO varied with nanoparticle size: self-aggregation was lower 

and adsorption was higher in treatments with smaller size (12 and 50 nm) 

nanoparticles (Fig. 3.5, panel II). In the absence of nanoCuO, the leaves exposed to 

HA showed more preserved surfaces but evidence of microbial colonization was 

found (Fig. 3.5, panel II). Leaf surfaces seemed to be more decomposed after co-

exposure to HA and smaller size nanoCuO than when exposed to each chemical 

alone (Fig. 3.5, panel I). However, no remarkable differences in leaves were 

observed after exposure to 80 nm nanoCuO with or without HA (Fig. 3.5). Under 

these conditions, aggregation of nanoCuO and/or HA was observed on leaves.  

 

Figure 3.5 SEM visualization of surface of decomposing alder leaves unexposed or exposed for 20 
days to the highest concentration (400 mg L

-1
) of 12, 50 or 80 nm size of nanoCuO or to the highest 

concentration of humic acid (HA; 100 mg L
-1
) alone or in mixtures. Panels I and II denote different 

magnification. Black arrows indicate nanoCuO; white arrows indicate HA; black dotted arrows indicate 
microbes; white dotted arrows indicate loss of epidermal tissues/cuticle layer. 

 

3.4. Discussion 

Our study showed that leaf-litter decomposition mediated by microbes was 

affected by exposure to nanoCuO, and effects varied with nanoparticle size and 

concentration. Earlier studies reported negative effects of nanoCuO to freshwater 



Toxicity of nanoCuO to microbes: role of nanoparticle size and humic acid 

 

77 
 

and marine organisms, including bacteria, microalgae and invertebrates (Heinlaan et 

al., 2008; Aruoja et al., 2009; Buffet et al., 2011), but our study provides evidence 

that impacts at the community-level and on ecosystem processes cannot be 

neglected. Similar to that found in a previous study (Pradhan et al., 2011), 

increasing concentrations of nanoCuO had negative effects on microbial 

decomposers of plant litter, but in the present study we showed that effects became 

stronger with decreasing nanoparticle size. Indeed, the maximum inhibition to leaf 

decomposition (72.7%) was found after exposure to the highest concentration (400 

mg L-1) of the smallest size (12 nm) nanoCuO. Exposure to increasing size of 

nanoparticles promoted less but still severe impacts on this ecological process (55.0 

and 40.9% for nanoCuO with 50 and 80 nm, respectively). The lower LOEC and 

EC50 values of smaller size nanoCuO for the effects on leaf decomposition also 

supported the higher toxicity of smaller nanoparticles. The surface of leaves 

exposed to nanoCuO was more preserved than that of control leaves, and leaf-

associated microbes were hardly found under exposure conditions. Leaf surface 

integrity decreased and microbial colonization increased as nanoparticle size 

increased. Evidence of nanoparticle aggregation on leaf surface was observed after 

exposure to nanoCuO. Also, in metal-polluted streams, submerged leaves can be 

coated by a layer of metals, resulting in a low density of fungal hyphae and a well-

preserved leaf surface (Ehrman et al., 2008).     

Increasing concentrations of different size nanoCuO also affected the 

biomass of microbial communities. The lower LOEC and EC50 values for fungal and 

bacterial biomass supported the more pronounced effects of smaller than larger size 

nanoCuO. However, LOEC and EC50 values for bacterial biomass were lower than 

those for fungal biomass. These findings support that bacteria were more sensitive 

than fungi to nanoCuO, with biomass inhibitions ranging from 68.8 to 93.4% for 

bacteria and from 32.9 to 52.3% for fungi after exposure to 400 mg L -1 of nanoCuO 

with descending nanoparticle size (from 80 to 12 nm). This corroborates our earlier 

study in which bacterial biomass was inhibited up to 91.6%, while fungal biomass 

was inhibited up to 39.5% after exposure to 500 mg L-1 of 50 nm size nanoCuO 

(Pradhan et al., 2011). Interestingly, other reports also revealed that bacteria are 

more sensitive than fungi to metal stress (Niyogi et al., 2002; Duarte et al., 2008, 

2009). The higher surface to volume ratio of bacteria than fungi could be partially 

responsible for the higher bacterial sensitivity, allowing higher contact and 

interactions between nanoparticles and cells. Moreover, fungal hyphae can 
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penetrate and grow inside leaf tissues, which may protect fungi from direct exposure 

to nanoparticles.  

In our study, the effects of nanoCuO on fungal sporulation were similar to 

those found for leaf decomposition and microbial biomass, but sporulation was 

much more sensitive to nanoCuO than the other endpoints. The high sensitivity of 

fungal sporulation to nanoCuO (this study) and to other stressors (copper and zinc, 

Duarte et al., 2009; cadmium and phenantrene, Moreirinha et al., 2011; cadmium 

and temperature, Batista et al 2012) points to fungal reproduction as a potential 

measure to be used in ecotoxicity tests. 

Stronger inhibitory effects of smaller TiO2 nanoparticles (<10 nm) than larger 

TiO2 nanoparticles (30 and 300 nm) have been shown at lower exposure 

concentration to freshwater algae (Hartmann et al., 2010). Increased toxicity with 

decreased nanoparticle size of nanoCuO was illustrated on Gram-positive and 

Gram-negative bacteria (Azam et al., 2012), many of which are found in natural 

waters. The increased toxicity of smaller size nanometal oxides could be attributed 

to differences in the reactive surface area available to interact with biota (Van 

Hoecke et al., 2009). Indeed, SEM and DLS analyses indicated increased self-

agglomeration/aggregation of nanoCuO in the stream water with the increase in 

nanoparticle size, suggesting a decrease in the reactive surface area of larger 

particles comparing to smaller particles. However, the influence of size on other 

physico-chemical properties of nanoCuO cannot be ignored because it may affect its 

toxicity to biota. 

In the absence of nanoCuO, humic acid also had negative effects on 

microbial decomposers of leaf litter (inhibition of decomposition up to 42.5%, fungal 

biomass up to 35.9%, bacterial biomass up to 56.0%, and fungal reproduction up to 

82.4%). Adverse effects of HA were reported to freshwater organisms, such as 

cyanobacteria and invertebrates (Meems et al., 2004; Sun et al., 2006), probably 

due to HA ability to induce accumulation of reactive oxygen species or free radicals 

(Pflugmacher et al., 2001; Timofeyev et al., 2004, 2006). In contrast, the individual 

toxicity of HA or smaller size (12 or 50 nm) nanoCuO was reduced by co-exposure 

to both chemicals. The presence of NOM or HA can alleviate the toxicity of ionic or 

nano metals to living organisms (De Schamphelaere et al., 2002; Blinova et al., 

2010; Li et al., 2011), but our study clearly shows that particle size is a critical factor 

when assessing nanoparticle impacts because no alleviating effects were found 

when microbial decomposers were co-exposed to HA and larger size nanoCuO (80 
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nm). The alleviating effects of NOM on nanoparticle toxicity can also vary with other 

factors, including its source (Al-Reasi et al., 2011), composition (Glover et al., 2005), 

concentration and time of exposure (Fabrega et al., 2009). The effects of HA were 

consistent with alterations in leaf surface as shown by SEM-EDX. After exposure to 

the highest concentration of HA, leaves were well preserved, and adsorption of HA 

to leaf surface was visible. Leaves co-exposed to smaller size nanoCuO and HA 

had lower structural integrity, with inner tissues well colonized by microbes, and had 

less amount of adsorbed nanoCuO comparing to leaves exposed to nanoCuO 

alone. Due to their small size and high reactive surfaces, nanoparticles are prone to 

aggregation and sorption onto organic materials (Holsapple et al., 2005). Indeed, the 

surface coating of small iron oxide nanoparticles (<10 nm) by Suwannee River 

humic acid (SRHA) was demonstrated, and the coating thickness increased with 

increasing SRHA concentration (Baalousha et al., 2008). Therefore, it is conceivable 

that in our study more interactions between HA and smaller size CuO nanoparticles 

had occurred leading to a greater surface-coating by HA. The ability of humic 

substances (SHRA) to act as a physical barrier between metal nanoparticles and 

biological cells was shown by TEM (Fabrega et al., 2009), and supports the role of 

HA in alleviating nanoCuO toxicity. Additionally, the electrosteric hindrance due to 

nanoparticle surface coating by HA could also be one of the mechanisms of 

alleviating nanoparticle effects (Chen et al., 2011).  

In our study, microbial degradation of HA in the presence of nanoCuO can 

not be ignored because fungal biomass, fungal sporulation and leaf decomposition 

were slightly higher in mixtures with HA and nanoCuO than in treatments without 

nanoCuO. Fungi are able to use HA as carbon source (Mishra and Srivastava, 

1986; Steffen et al., 2002) through the activity of Cu2+ dependent extracellular 

oxidoreductase enzymes, such as laccases (Junghanns et al., 2005). Because Cu2+ 

can stimulate laccase activity in aquatic fungi (Junghanns et al., 2005) and Cu2+ can 

be leached from nanoCuO (Blinova et al., 2010; Pradhan et al., 2012), increased 

bioavailability of this ion could have contributed to microbial degradation of HA 

unbound to nanoparticles. Conversely, in the absence of nanoCuO, laccase activity 

could be compromised due to insufficient amount of copper required for the enzyme 

activity (Keum and Li, 2004) and HA would become more toxic to microbes. Further 

studies are required to better understand the mechanisms underlying the interactive 

effects between nanoCuO and HA on biological systems.     
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In our study, the exposure to nanoCuO with or without HA decreased fungal 

species richness and led to shifts in the community composition. Effects were more 

prominent with increasing nanoCuO concentration and decreasing nanoCuO size. 

Also, the presence of HA alleviated the stress imposed by nanoCuO. In the absence 

of stressors, A. tetracladia was the dominant species on decomposing leaves 

contributing with more than 80% to the total spores produced. The exposure to the 

highest tested concentrations of nanoCuO and/or HA increased the contribution of 

H. lugdunensis that became the co-dominant fungus. The species A. tetracladia and 

H. lugdunensis are reported to occur in metal-polluted streams and some strains of 

these species were found to be resistant to high concentrations of metals (Braha et 

al., 2007; Jaeckel et al., 2005; Pascoal et al., 2005b). The shift in the community 

structure of sporulating fungi suggests a change towards a better-adapted 

community to cope with the stress induced by nanoCuO and/or HA.  

Overall, our study shows that nanoCuO induced toxicity to microbial 

decomposers of plant litter by decreasing microbial biomass, fungal reproduction 

and diversity with a concomitant decrease of leaf decomposition. Bacterial 

communities were more sensitive than fungal communities to nanoCuO exposure. 

Moreover, fungal reproduction was the most sensitive measure for assessing the 

impacts of nanoparticles. NanoCuO toxicity was dose dependent and increased with 

the decrease in nanoparticle size. Humic acid, an important component of natural 

organic matter in freshwaters, also had negative effects on microbial activity and 

diversity. However, HA alleviated the toxicity induced by nanoCuO of smaller size. 

Therefore, the impacts of nanoCuO on the functional and structural properties of 

microbial decomposers in streams may be attenuated by the presence of HA, but if 

HA decrease nanoCuO bioavailability it might contribute to increase the residence 

time of nanoCuO in streams with further impacts on organic matter turnover at 

longer times. 
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Abstract 

Increased commercialisation of nanometal-based products augments the 

possibility of their deposition into aquatic ecosystems; this, in turn, may pose risks to 

aquatic biota and associated ecological functions. Freshwater invertebrate 

shredders mostly use microbially-colonized plant litter as food resource and play an 

important role in aquatic detritus food webs. We assessed lethal effects of nanoCuO 

on the shredder Allogamus ligonifer (Trichoptera, Limnephilidae) by determining the 

concentration that induced 50% of death (LC50), and sublethal effects of nanoCuO 

on the feeding behaviour and growth of the shredder by exposing the animals to: i) 

stream water supplemented with nanoCuO and microbially-colonized leaves, and ii) 

stream water (without nanoCuO) and microbially-colonized leaves pre-exposed to 

nanoCuO. Results from acute lethal tests showed that the 96 h LC50 of nanoCuO 

was very high (569 mg L–1). In the absence of nanoparticles, leaf consumption rate 

was 0.27 mg DM day-1 and the shredder growth rate was 56 µg animal DM mg-1 

animal DM day-1. A significant inhibition in leaf consumption rate (up to 47%) and 

invertebrate growth rate (up to 46%) was observed when shredders were exposed 

to the higher tested sublethal concentration of nanoCuO (75 mg L–1) through either 

contaminated stream water or pre-contaminated food. The exposure to increased 

nanoCuO concentration via water or pre-contaminated food led to higher 

accumulation of copper in the larval body. Leached water-soluble ionic copper from 

the nanoCuO adsorbed or accumulated in the shredder (up to 10.2% of total Cu) 

seemed to influence the feeding behaviour and growth of the shredder.  

 

Keywords: NanoCuO, freshwater shredder, lethal effect, sublethal effects, aqueous 

and dietary exposure, feeding behaviour 
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4.1. Introduction  

Nanoecotoxicology research is currently in the limelight due to high 

propagation of nanotechnology-based industries and nanomaterial-based products 

(Colvin, 2003; Aitken et al., 2006; Navarro et al., 2008). The extensive use of 

engineered nanomaterials may increase the possibilities of their leaching and 

deposition into aquatic reservoirs (e.g. Kaegi et al., 2008). Therefore, it is essential 

to understand the risks associated with tailored nanoparticles in aquatic ecosystems 

(Moore, 2006; MacCormack and Goss, 2008). Metal oxide nanoparticles are among 

the most frequently used nanomaterials having a broad range of applications, like in 

sunscreens and cosmetics (Nel et al., 2006), antimicrobial paints (Hochmannova 

and Vytrasova, 2010), textiles (Becheri et al., 2008; Kathirvelu et al., 2009), 

electrospray disinfectants (Wang et al., 2010), drug delivery and gene therapy (Jin 

and Ye, 2007). Over the last decade, several studies have reported that metal oxide 

nanoparticles are potentially toxic (see Reijnders, 2006 and Gajjar et al., 2009), but 

few attempts have been made to assess the ecotoxicity of nanometal oxides in 

aquatic systems (Blaise et al., 2008; Lee et al., 2009; Miller et al., 2010; Pradhan et 

al., 2011). Most studies were performed with nanometal oxides enlisted in the 

OECD guidance manual (OECD, 2010), like nanotitanium dioxide, nanozinc oxide, 

nanoaluminium oxide and nanocerium dioxide (Lovern et al., 2007; Zhu et al., 2008; 

Van Hoecke et al., 2009). However, the OECD guidance manual stresses that the 

enlisted nanoparticles have to be considered as a “snapshot in time” and those not 

included in the list can be of importance in the future (OECD, 2010).  

Although nanocopper oxide (CuO) is not in the OECD list, it is one of the 

commercially manufactured metal oxide nanoparticles with wide range of 

applications (Carnes and Klabunde, 2003; Dutta et al., 2003; Zhang et al., 2008; 

Ren et al., 2009) and, therefore, its potential toxicity should not be ignored (Blinova 

et al., 2010; Saison et al., 2010; Buffet et al., 2011). The toxicity of the nano-sized 

metals in aquatic systems can be questionable (Sharma, 2009) as they have 

different properties than their bulk or ionic forms (Christian et al., 2008). Karlsson et 

al. (2009) showed in human cell lines that nanoparticles of CuO could be more toxic 

than the bulk micrometer particles. However, the toxicity of nanoCuO and other 

metal oxide nanoparticles to yeasts (Kasemets et al., 2009) and other organisms 

that are crucial in aquatic food webs, like microalgae (Aruoja et al., 2009), protozoa 
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(Mortimer et al., 2010), bacteria and crustaceans (Heinlaan et al., 2008), was 

attributed to the leached ionic form of the metal.  

In freshwaters, invertebrate shredders decompose plant litter from the 

riparian vegetation and play a key role in detritus food web by transferring energy 

from plant litter to higher trophic levels (Graça and Canhoto, 2006). They prefer to 

feed on litter colonized by aquatic microbes, predominantly fungi, which activity 

increases the food quality and palatability to shredders (Suberkropp et al., 1983). 

Invertebrates are important test organisms in ecotoxicological studies as they are 

abundant, distributed worldwide, have short life span with high reproduction rates, 

and are sensitive to contaminants and toxicants including ionic metals (e.g., De 

Schamphelaere et al., 2004; Gerhardt et al., 2004) and nanometal oxides (Cattaneo 

et al., 2009; Galloway et al., 2010; Buffet et al., 2011). Moreover, ecotoxicological 

tests using freshwater invertebrate shredders are fast, cost-effective and easy to 

perform as invertebrates adapt quickly to the laboratory conditions.  

Most studies reporting lethal toxicity of ionic copper, nano-sized copper and 

its oxides on aquatic invertebrates are based on the assumption that metal toxicity 

to aquatic biota occurs through waterborne exposure (Griffitt et al., 2008; Heinlaan 

et al., 2008, 2011). Indeed, very few studies have shown that ionic copper can have 

sublethal toxic impacts to aquatic invertebrates through dietary exposure 

(Hatakeyama, 1989; De Schamphelaere et al., 2007), but according to our 

knowledge none of the studies reported the dietary effects of nanocopper oxide on 

stream invertebrates.  

The aim of this study was to investigate the potential impacts of nanoCuO on 

Allogamus ligonifer, a common invertebrate shredder in Southwest European 

streams that prefers high quality stream water (Bonada et al., 2008). We 

hypothesised that nanoCuO can pose toxicity to the invertebrate shredder by 

exposure to contaminated stream water and/or contaminated food, and impacts 

would be partially attributed to the bioavailable ionic copper leached from nanoCuO. 

We assessed the acute lethal effect of nanoCuO through aqueous exposure by 

monitoring the mortality of A. ligonifer up to 96 h. The sublethal toxicity was 

examined by assessing the feeding behaviour and growth rate of the invertebrate 

shredder when exposure occurred via: i) pre-contaminated food, i.e. assuming an 

input of contaminated plant litter into streams, and ii) contaminated water which, in 

turn, may contaminate plant litter entering in streams. Total copper in water, water-

soluble ionic copper, and adsorbed and accumulated copper in leaves, body and 
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case of the shredder were determined in a tentative to better understand 

nanocopper toxicity.   

 

 

4.2. Material and Methods 

4.2.1. Microbial colonization of leaves in the stream 

Leaves of Alnus glutinosa (L.) Gaertn. (alder) were collected from a single 

tree in autumn and air dried at room temperature. The leaves were soaked in 

deionised water, cut into 12 mm-diameter disks, and placed into fine-mesh bags (15 

× 15 cm, 0.5-mm mesh size to prevent invertebrate colonization). In Spring 2010, 

leaf bags were immersed in the Maceira Stream (N 41°45'58.79'', W 8°08'49.39'', 

altitude 867 m, Cávado River basin, Northwest Portugal) to allow microbial 

colonization. After 10 days, leaf bags were retrieved and leaf disks from each 

replicate bag were rinsed with deionised water and used for the feeding experiment. 

Further information on the Maceira Stream can be found elsewhere (Duarte et al., 

2009; Pradhan et al., 2011).   

 

4.2.2. Collection of invertebrates and acclimation to the laboratory 

Early-stage larvae of the caddisfly Allogamus ligonifer (McLachlan, 1876) 

with similar size (14 ± 1 mm length) were collected in the upper reach of the Cávado 

River in Spring 2010 and transported to the laboratory in plastic containers with 

stream water and sand. This stream detritivore that belongs to Limnephilidae occurs 

in Southwest Europe (Bonada et al., 2008) and is common in low-order streams of 

North Portugal (Varandas and Cortes, 2010). Further information on the Cávado 

River can be found elsewhere (Pascoal et al., 2001). In the laboratory, animals were 

placed in an aquarium with filtered (MN GF-3 filter paper, Macherey-Nagel, 

Germany) and sterile stream water and sand (121°C, 20 min) under aeration, at 

14°C with a 12 h light : 12 h dark photoperiod, and were allowed to feed on alder 

leaves for 2 weeks before the experiment.  
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4.2.3. Preparation and characterization of nanocopper oxide 

suspension 

The stock suspension of nanocopper oxide (CuO nanopowder <50 nm, 

99.5%, Sigma-Aldrich, St. Louis, MO) was prepared in sterile stream water by 

sonication at 42 kHz in a sonication bath (Branson 2510, Danbury, CT, USA) for 30 

min in dark before use (Heinlaan et al., 2008). The stream water had silica 9.6 ± 2 

mg L-1, Na+ 4.1 ± 0.4 mg L-1, Ca2+ 1.3 ± 0.3 mg L-1, K+ 0.6 ± 0.1 mg L-1, HCO3
- 8.0 ± 

0.8 mg L-1, Cl- 4.2 ± 0.4 mg L-1, and SO4
- 1.0 ± 0.2 mg L-1. The pH of nanoCuO stock 

suspension was adjusted to stream water pH (5.8 ± 0.2). The stock suspension was 

examined with UV-visible spectrophotometry (UV – 1700 PharmaSpec, Shimadzu, 

Kyoto, Japan) followed by scanning electron microscopy (SEM, Leica Cambridge S 

360, Cambridge, UK) coupled to an energy dispersive X-ray microanalysis setup 

(EDX, 15 KeV) as described by Pradhan et al. (2011). NanoCuO showed a plasmon 

peak at 359 nm, and SEM confirmed that the size of CuO nanoparticles ranged from 

30 to 50 nm as shown elsewhere (Fig. 1B in Pradhan et al., 2011).  

The size distribution was also monitored by dynamic light scattering (DLS) 

using a zetasizer (Malvern, Zetasizer Nano ZS) to check agglomeration of nanoCuO 

in the stock suspension. DLS data showed that the size distribution of nanoCuO 

ranged from 120 to 340 nm with an average size of 202 nm and poly-dispersive 

index (PdI) of 0.186 (Fig. 4.1). The stability was confirmed up to 3 weeks.  

 

 

Figure 4.1 Size distribution of nanoCuO in stock suspension by dynamic light scattering. 

 

The increased average particle size observed by DLS compared to the 

measured particle size by SEM indicated agglomeration of nanoCuO in the stream 
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water. This agrees with previous reports of CuO nanoparticles agglomeration in 

deionized water (Buffet et al., 2011) and in liquid culture medium (Karlsson et al., 

2009). Discrepancies in nanoparticle size may also be attributed to differences in 

sample preparation by each technique: in SEM, nanoparticle suspension was air-

dried and coated under vacuum and, so, only single particles were measured, while 

in DLS, the agglomerated particles could be measured with minimum perturbation of 

the aqueous suspension (Hassellöv et al., 2008).  

 

4.2.4. Acute lethality tests  

Acute lethality tests were performed to evaluate the sensitivity of the 

invertebrate to nanoCuO and to establish a range of sublethal concentrations to be 

used in the feeding experiments (see section 4.2.5). Invertebrate shredders were 

starved for 24 h and placed in 150 mL flasks containing 100 mL of nanoCuO 

suspensions (5 animals per flask, 3 replicates per treatment). The animals were 

exposed to 0, 50, 100, 250, 500 and 1000 mg L–1 nominal concentrations of 

nanoCuO prepared in sterilized stream water. The flasks were aerated with constant 

air flow and incubated for 96 h at 14°C, under a 12 h light : 12 h dark photoperiod. 

The invertebrates were not fed during the exposure period. In each 24 h, the 

animals that did not show any movement after mechanical stimulation were 

considered dead and mortality was recorded.  

 

4.2.5. Invertebrate feeding experiments  

To determine effects of nanoCuO on the feeding behaviour of the 

invertebrate shredder, one premeasured early-stage larvae of A. ligonifer was 

allocated to each of 150 mL flask containing 10 leaf disks and 100 mL sterile stream 

water. To assess the effects of nanoparticles via contaminated water, microcosms 

with stream water were supplemented with nanoCuO at 25 mg L–1 or 75 mg L–1 and 

microbially-colonized leaf disks not previously exposed to nanoCuO. To test the 

effects of nanoparticles via pre-contaminated food, microcosms were supplemented 

with stream water (without nanoCuO) and microbially-colonized leaf disks pre-

exposed (5 days) to 25 mg L–1 or 75 mg L–1 of nanoCuO. Additional microcosms 

with sterile stream water and microbially-colonized leaf disks unexposed to 

nanoCuO served as control. A total of 75 flasks were used (15 replicates).  
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For determining the contribution of microorganisms to leaf litter 

decomposition, an equal number of unexposed or pre-exposed leaf disks to 

nanoCuO was enclosed in 0.5 mm fine mesh bag (to prevent the access of 

invertebrates) and placed in each replicate microcosms of the respective treatment. 

All flasks were aerated with constant air flow and incubated at 14°C, under a 12 h 

light : 12 h dark photoperiod. The experiment was continued for 10 days until >50% 

of leaf disks were decomposed in the control microcosms. The stream water with or 

without nanoCuO was renewed every 5 days to minimise the interference of 

released fine particles or excreted compounds with nanoparticles or invertebrates. 

 

4.2.6. Leaf mass loss  

To determine leaf mass loss, leaf disks from each replicate were freeze-dried 

(Christ alpha 2–4, B. Braun, Germany) and weighed to the nearest 0.001 mg, before 

and after microbial colonization in the stream, and before and after the feeding 

experiment.  

 

4.2.7. Leaf consumption by invertebrates and microbes 

Dry mass (DM, mg) of leaves consumed by the invertebrate (Le) was 

determined as (Li – Lf) – (Li × (Ci – Cf)/Ci), where Li and Lf are the initial and final dry 

mass (mg) of leaves exposed to the invertebrates, respectively, and C i and Cf are 

the initial and final dry mass (mg) of control leaves (inaccessible to invertebrate), 

respectively. Microbial leaf decomposition rate was determined by (C i – Cf)/t where t 

is time (t=10 days). Leaf consumption rate by the invertebrate was calculated as 

Le/(If × t), where If is the invertebrate dry mass (mg) at time t (day 10), and results 

were expressed as mg leaf DM mg–1 animal DM day–1 (Ferreira et al., 2010). Total 

consumption rate was determined as ((Ci – Cf) + Le)/t and expressed as mg leaf DM 

mg–1 microcosm–1 day–1. 

 

4.2.8. Invertebrate growth rate 

Growth rate of invertebrates (µg animal DM mg–1 animal DM day–1) was 

determined as Ie/(If × t), where Ie is the dry mass (DM, µg) gained by the invertebrate 

during the elapsed time (t=10 days).  The Ie was calculated by the difference 

between final (day 10) and initial dry mass (µg), and If is the final dry mass (mg) of 
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the animal at time t (Ferreira et al., 2010). For determining initial dry mass of 

invertebrates, the diameter of the case opening of each individual was measured 

under a stereoscopic microscope at 16× before the feeding experiment, and the 

individual dry mass was estimated according to the regression model DM = 0.0069 

× CO – 0.0194 (r2 = 0.72, P<0.001, n = 37), where DM is dry mass (g) and CO is 

case opening (mm). 

 

4.2.9. Sample preparation and metal analysis 

To determine total copper (nano and ionic forms) and ionic copper (Cu2+) in 

water, equal volume of water samples of all replicate flasks were mixed. A fraction of 

25 mL of water sample was treated with analytical grade concentrated HCl (5 mL) 

for quantification of total copper (Fig. 4.2). A separate fraction of 25 mL was ultra-

centrifuged at 75,600 g for 60 min (Beckman Avanti J-25I, USA). The supernatant 

was consecutively filtered through two different size polycarbonate membranes (0.2 

and 0.05 µm pore size, Millipore, Billerica, MA), and a mixed cellulose ester 

membrane (0.025 µm pore size, Millipore). The filtrate was employed to determine 

water-soluble Cu2+ content (Fig. 4.2).  

At the end of the feeding experiment, Cu2+ leached from adsorbed or 

accumulated nanoCuO to leaves and to case and body of A. ligonifer was 

determined. For that, freeze-dried (Christ alpha 2–4, B. Braun, Germany) samples of 

leaves, larval case and body were revived in 25 mL ultrapure (Milli Q) water for 60 

min to allow the leaching of water-soluble Cu2+. Samples were ultra-centrifuged and 

filtered as described above before Cu2+ quantification (Fig. 4.2). To determine the 

adsorbed nanocopper, all pellets from ultra-centrifugation and residues from filtration 

of each sample were pooled and soaked in 25 mL of 5% HCl at 60°C; the solution 

was filtered through a polycarbonate membrane filter of 0.2 µm pore size and 

collected for analysis (Fig. 4.2). The remaining residue was mineralized in the 

furnace at 550°C (16 h for leaves, 20 h for larval case and 10 h for larval body) 

followed by digestion with HCl (1 mL) to determine the total accumulated copper. 

The digested solution was diluted with 5% HCl in a final volume of 25 mL, and 

filtered through a polycarbonate membrane (0.2 µm pore size) before quantification 

of accumulated copper (Fig. 4.2). 

Copper concentration in all biological and water samples was determined by 

flame atomic absorption spectrometry (flame-AAS; Varian SpectrAA-250 Plus 



NanoCuO can induce toxicity to the freshwater shredder A. ligonifer 

95 
 

apparatus) at the Scientific and Technological Research Assistance Centre 

(C.A.C.T.I., University of Vigo, Spain) with detection limit of 0.005 mg L–1.  

 

 

Figure 4.2 Graphical representation of sample preparation of stream water, leaves, animal case and 
animal body for further quantification of total copper, water-soluble ionic copper, adsorbed copper and 
accumulated copper by flame-AAS. Dashed lines refer to steps followed to prepare stream water 
samples, while straight lines refer to steps followed to prepare the remaining samples. 

 

4.2.10. Data analyses  

Mortality of shredders was recorded, and the concentration inducing 50% of 

death (LC50) at 96 h of exposure with the respective 95% C.l. was calculated using 

PriProbit 1.63 (Sakuma, 1998; http://bru.gmprc.ksu.edu/proj/priprobit/download.asp). 

Repeated-measures analysis of variance (ANOVA) was used to test the effects of 

concentrations of nanoCuO on the percentage of animal survival in the acute 

lethality test with matched observations of exposure time (Zar, 2009). Two-way 

ANOVAs were used to determine the effects of sublethal concentrations of 

nanoCuO and the type of exposure (pre-contaminated food or contaminated water) 
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on leaf decomposition by microbes, leaf consumption rate by invertebrates and 

invertebrate growth rate (Zar, 2009). Significant differences between control and 

treatments were analysed by Bonferroni post-tests (Zar, 2009). To achieve normal 

distribution and homoscedasticity, percentage data of invertebrate survival during 

acute tests were arcsine square root transformed and the remaining data were ln-

transformed (Zar, 2009). Multivariate correlations were used to examine the 

relationships between different forms of copper in leaves or stream water and 

different forms of copper in invertebrate body for both exposure types. Analyses 

were performed with Statistica 6.0 (Statsoft, Inc., Tulsa, OK, USA).  

 

 

4.3. Results 

4.3.1. Acute lethal effect of nanoCuO on invertebrates 

The exposure of the invertebrate Allogamus ligonifer for 96 h to nanoCuO 

had a significant effect on its survival (repeated-measures ANOVA, P<0.05). The 

mortality increased with increasing concentration of nanoCuO and exposure time 

(Fig. 4.3). The 96 h LC50 (95% C.l.) of nanoCuO was 569 (328–1780) mg L–1 and 

the lowest observed effect concentration (LOEC) corresponded to 250 mg L–1 

(Bonferroni test P<0.05).  

 

 

Figure 4.3 Acute lethal toxicity of nanoCuO to early-stage larvae of the invertebrate Allogamus ligonifer 
with respect to time. 
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4.3.2. Effects of nanoCuO on leaf consumption by invertebrates and 

microbes  

Leaf consumption rate by A. ligonifer during 10 days was 0.27 mg leaf DM 

mg–1 animal DM day–1 in control (Fig. 4.4) and was affected by both nanoparticle 

concentration and type of exposure (two-way ANOVA, P<0.05). Higher inhibition 

was observed when animals were exposed to 75 mg L–1 nanoCuO via stream water 

(0.14 mg leaf DM mg–1 animal DM day–1, Fig. 4.4A, Bonferroni P<0.05) followed by 

the treatment where the animals were fed on leaves pre-exposed to 75 mg L–1 

nanoCuO (0.20 mg leaf DM mg–1 animal DM day–1, Fig. 4.4B, Bonferroni P<0.05). 

Leaf consumption rate was not affected by exposure to the lower tested nanoCuO 

concentration (25 mg L–1) via contaminated water or pre-contaminated food (Fig. 

4.4A and B, Bonferroni P>0.05).  

 

Figure 4.4 Leaf consumption rates by the early-stage larvae of Allogamus ligonifer for 10 days at 14ºC. 
The animals were exposed to nanoCuO through contaminated stream water (A), or through pre-
contaminated leaves (B). Mean ± SEM, n=15. *, treatments that differ significantly from control 
(Bonferroni tests, P<0.05). 

 

Leaf decomposition rate by microbes during 10 days was 1.3 mg leaf DM 

microcosm–1 day–1 in control, corresponding to almost 34% of the total leaf 

consumption rate in the presence of the invertebrate (3.84 mg leaf DM microcosm–1 

day–1 in control, Fig. 4.5). Both concentration of nanoCuO and type of exposure had 

significant effects on microbial decomposition of leaf litter (two-way ANOVA, 

P<0.05). Microbial decomposition rate decreased significantly after exposure to 25 

and 75 mg L–1 nanoCuO via water (Fig. 4.5A, Bonferroni P<0.05) and to leaves pre-

exposed to 75 mg L–1 of nanoCuO (Fig. 4.5B, Bonferroni P<0.05). 
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Figure 4.5 Total leaf consumption by the shredder Allogamus ligonifer (dark grey bars) and microbial 
decomposition of leaf litter (light grey bars) during 10 days in microcosms at 14ºC. The animals and 
microbes were exposed to nanoCuO through contaminated stream water (A), or through pre-
contaminated leaves (B). Mean ± SEM, n=15. *, treatments that differ significantly from control 
(Bonferroni tests, P<0.05). 

 

4.3.3. Effects of nanoCuO on invertebrate growth  

The growth rate of the invertebrate shredder was affected by the 

concentration of nanoCuO, regardless the type of exposure, i.e. via water or pre-

contaminated food (two-way ANOVA, P<0.05 and P>0.05, respectively). In control, 

mean growth rate of the invertebrate was 56 µg animal DM mg–1 animal DM day–1 

(Fig. 4.6). The growth rate decreased significantly in treatments where animals were 

exposed for 10 days to 75 mg L–1 nanoCuO via water (30 µg animal DM mg–1 animal 

DM day–1, Fig. 4.6A, Bonferroni P<0.05), followed by treatments with animals that 

were fed on leaves pre-exposed to 75 mg L–1 nanoCuO (41 µg animal DM mg–1 

animal DM day–1, Fig. 4.6B, Bonferroni P<0.05). Similarly to that found for 

invertebrate feeding rates, the exposure to the lower tested concentration of 

nanoCuO through water or pre-exposed leaves had no effect on animal growth rates 

(Fig. 4.6A and B, Bonferroni P>0.05).  

  
Figure 4.6 Growth rates of the early-stage larvae of Allogamus ligonifer feeding on microbially-
colonized leaves for 10 days at 14ºC. The animals were exposed to nanoCuO through contaminated 
stream water (A), or through pre-contaminated leaves (B). Mean ± SEM, n=15. *, treatments that differ 
significantly from control (Bonferroni tests, P<0.05). 
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4.3.4. Copper in water, adsorbed and accumulated in leaves and 

invertebrates  

In control, total copper and dissolved ionic copper (Cu2+) in the stream water 

were below the detection limit (<0.005 mg L–1) either at the initial time (t0) or at the 

end of the feeding experiment (t10) (Table 4.1). In the stream water supplemented 

with 25 mg L–1 nanoCuO, total Cu content varied little during the experiment (t0, 

20.98; t10, 19.10 mg L–1), and dissolved Cu2+ (t0, <0.005 mg L–1) increased till 0.6 mg 

L–1 (t10). In the stream water supplemented with 75 mg L–1 nanoCuO, total Cu 

decreased 7% during the experiment (t0, 61.167; t10, 56.857 mg L–1), whereas Cu2+ 

increased 12 times (t0, 0.156; t10, 1.87 mg L–1). In microcosms with leaves pre-

exposed to nanoCuO, the initial total Cu or Cu2+ content in water was below the 

detection limit, but at the end of the experiment total Cu increased up to 0.476 and 

1.017 mg L–1 at 25 and 75 mg L–1, respectively. Also, Cu2+ increased till 0.064 mg L–

1 in treatments with water containing leaves pre-exposed to 75 mg L–1 nanoCuO 

after 10 days of exposure, but no detectable increase was observed at the lower 

tested concentration (25 mg L–1).  

After 10 days of exposure via stream water to nanoCuO, a substantial 

contamination of leaves occurred concomitantly with accumulation and adsorption of 

Cu to larval body (Table 4.1). The adsorbed Cu was higher on leaves, intermediate 

on the larval case and lower on the larval body (Table 4.1). However, when 

exposure occurred via pre-contaminated food, the adsorbed Cu was lower on the 

larval case than on the larval body.  

The accumulated Cu was also higher in leaves, intermediate in larval body, 

and lower in the larval case, regardless the type of exposure (Table 4.1). In all 

treatments, the accumulation of Cu was lower than the adsorption. The content of 

Cu2+ and Cu adsorbed or accumulated in leaves, larval case or body increased with 

increasing nanoCuO concentration in both exposure types, but it was higher when 

exposure occurred via contaminated water (Table 4.1). However, the percentage of 

Cu2+ or Cu adsorbed or accumulated in leaves and larval body with respect to the 

total copper (sum of all Cu forms) obtained from all samples (water, leaves, larval 

body and case) were higher when exposure occurred via pre-contaminated food 

(Table 4.1).  
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Table 4.1 Total and ionic copper concentrations in water, and adsorbed and accumulated in leaves 
and invertebrates after 10 days (t10) exposure to nanoCuO via pre-contaminated food or contaminated 
stream water. Exposure conditions: via contaminated water - leaves were in microcosms with stream 
water for 5 days and then were exposed to nanoCuO for further 10 days; via pre-contaminated food - 
leaves were pre-exposed for 5 days to nanoCuO and then released from nanoCuO and incubated with 
stream water in microcosms for further 10 days. 

Sample Concentration Control 

NanoCuO exposure 

Via contaminated water 
Via pre-contaminated 

food 

 Added nanoCuO  
(mg L–1) 

0 25 75 25 75 

Water Cu (mg L–1) t0 / t10 t0 / t10 t0 / t10 t0 / t10 t0 / t10 

 Total Cu  nd/nd 20.982/ 19.1 61.167/ 56.857 nd/0.476 nd/1.017 

 Cu2+  nd/nd nd/0.6 0.156/1.87 nd/nd nd/0.064 

 (a) % of Cu2+  - nd/3.141 0.255/3.289 - nd/6.293 

Leaves Cu after exposure  t10 t10 t10 t10 t10 

 Adsorbed Cu (mg g–1) 0.007 11.676 15.832 2.359 3.316 

 (b) % of adsorbed Cu - 25.836 13.353 59.261 48.092 

 Accumulated Cu (mg g–1) 0.003 4.086 12.889 0.485 1.229 

 (b) % of accumulated Cu - 7.266 10.271 11.827 17.323 

 Cu2+ (mg g–1) nd 0.076 0.113 0.011 0.013 

 (b) % of Cu2+ - 0.168 0.095 0.277 0.191 

 (c) % of Cu2+  - 0.48 0.392 0.385 0.285 

Larval 
case 

Cu after exposure t10 t10 t10 t10 t10 

 Adsorbed Cu (mg g–1) 0.021 1.394 3.112 0.064 0.162 

 (b) % of adsorbed Cu - 2.929 2.061 1.823 2.139 

 Accumulated Cu (mg g–1) 0.013 0.162 0.619 0.016 0.021 

 (b) % of accumulated Cu - 0.282 0.384 0.366 0.223 

 Cu2+ (mg g–1) 0.003 0.084 0.158 0.005 0.013 

 (b) % of Cu2+ - 0.176 0.104 0.138 0.170 

 (c) % of Cu2+  8.108 5.122 4.063 5.882 6.633 

Larval 
body 

Cu after exposure t10 t10 t10 t10 t10 

 Adsorbed Cu (mg g–1) 0.011 0.893 2.962 0.241 0.529 

 (b) % of adsorbed Cu - 0.374 0.56 1.699 1.88 

 Accumulated Cu (mg g–1) 0.052 0.3 0.942 0.14 0.496 

 (b) % of accumulated Cu - 0.079 0.111 0.756 1.857 

 Cu2+ (mg g–1) nd 0.065 0.331 0.035 0.116 

 (b) % of Cu2+ - 0.027 0.063 0.249 0.411 

 (c) % of Cu2+  - 5.167 7.816 8.413 10.167 

nd: below detection limit. 

(a) With respect to total copper (nano and ionic forms). 
(b)

 
With respect to total copper (adsorbed, accumulated and ionic) obtained from all samples (water, leaves, larval 

case and body) of each treatment.  

(c)
 
With respect to total copper (adsorbed, accumulated and ionic) obtained in each sample. 

 

After 10 days of exposure to nanoCuO via contaminated water, the total Cu 

or Cu2+ in water and accumulated Cu in leaves were positively correlated with 

adsorbed and accumulated Cu in the larval body (Table 4.2, P<0.05). In the 

exposure via pre-contaminated leaves, total Cu in water and accumulated Cu in 

leaves were significantly correlated with the adsorbed Cu in the larval body (Table 

4.2, P<0.05). In the latter exposure route, Cu2+ in water was not correlated with 

adsorbed or accumulated Cu in the larval body. 
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Table 4.2 Multivariate correlations between copper in water or leaves and copper in the body of 
Allogamus ligonifer after 10 days exposure to nanoCuO via contaminated water or pre-contaminated 
leaves. 

Route of  
nanoCuO 
exposure 

Sample Concentration 

Copper in larval body (mg g–1) 

 Adsorbed Cu       Accumulated Cu           Cu2+ 

r P-value  r  P-value r P-value 
Contaminated 
water 

Water       

  Total Cu (mg L–1) 0.9992 0.026 0.9980 0.040 0.9888 0.095 
  Cu2+ (mg L–1) 0.9997 0.015 0.9989 0.029 0.9911 0.085 
 Leaves        
  Adsorbed Cu 

(mg g–1) 
0.8796 0.316 0.8689 0.330 0.8227 0.385 

  Accumulated Cu 
(mg g–1) 

0.9998 0.013 0.9991 0.027 0.9917 0.082 

  Cu2+ (mg g–1) 0.9111 0.270 0.9018 0.285 0.8608 0.340 
Pre-
contaminated 
leaves 

Water        

  Total Cu (mg L–1) 0.9996 0.018 0.9558 0.190 0.9823 0.120 
  Cu2+ (mg L–1) 0.8965 0.292 0.9823 0.120 0.9558 0.190 
 Leaves        

  Adsorbed Cu 
(mg g–1) 

0.9544 0.193 0.8397 0.365 0.8943 0.295 

  Accumulated Cu 
(mg g–1) 

0.9983 0.037 0.9775 0.135 0.9948 0.065 

  Cu2+ (mg g–1) 0.9027 0.283 0.7547 0.456 0.8223 0.385 

r, coefficient of correlation 

 

 

4.4. Discussion 

Acute lethality tests are of primary importance in ecotoxicology to assess 

sensitivity, viability and acute stress response of biota for predicting the impacts of 

toxicants or contaminants to ecosystem functioning (Valenti et al., 2005). Although 

very few studies on toxicity of metal oxide nanoparticles to aquatic biota are 

available (see Petersen and Nelson, 2010), acute toxicity of nanoCuO to freshwater 

crustaceans, Daphnia magna and Thamnocephalus platyurus, and to the ciliate 

protozoan Tetrahymena thermophila was shown based on mobility, mortality or 

growth inhibition (Blinova et al., 2010). In the current study, the 96 h acute lethality 

test on the shredder Allogamus ligonifer showed that this freshwater invertebrate 

was able to survive up to 100 mg L–1 of nanoCuO in the stream water. However, 

survival of this species was severely affected when exposed to higher 

concentrations of nanoCuO during the acute toxicity test. Although there is no 

estimated or predicted data for nanoCuO concentration in aquatic environments, 

copper concentration in the chemical mechanical planarization waste water of 

Taiwan often exceeds 100 ppm, 49% of which can be nanoCuO (Hsiao et al., 2001; 
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Huang et al., 2006). Therefore, the obtained high lethal concentrations of nanoCuO 

cannot be ignored.  

Feeding behaviour of invertebrates is one of the most accepted and sensitive 

monitoring tools in ecotoxicology for assessing sublethal effects of metals (Pestana 

et al., 2007) and nanometals (Galloway et al., 2010; Buffet et al., 2011). In control, 

the feeding rate of A. ligonifer (0.27 mg leaf DM mg–1 animal DM day–1) was within 

the typical range reported for stream invertebrate shredders (0.04 to 0.5 mg leaf DM 

mg–1 animal DM day–1; Arsuffi and Suberkropp, 1989). After exposure of animals to 

contaminated stream water or pre-contaminated leaves with two sublethal 

concentrations of nanoCuO (25 and 75 mg L–1), we found a significant reduction of 

leaf consumption and growth rates of the shredder by exposure to the higher 

concentration of nanoCuO (75 mg L–1) via water or pre-contaminated food. The 

outcome of our study shows that the nanometal toxicity to aquatic organisms can 

occur via food or water, and not only via waterborne exposure as often assumed for 

ionic metals (see Brinkman and Johnston, 2008). Results also indicate that 

examining sublethal effects of nanometals can be more rational and useful to 

assess toxicity than merely rely on lethal effects. Maximum decrease in leaf 

consumption rate (47% inhibition) and growth rate (46% inhibition) was obtained 

when the animals were exposed to nanoCuO via contaminated water. This agrees 

with the recent report on decreased feeding rates of the marine invertebrate 

Scrobicularia plana exposed to nanoCuO via water (Buffet et al., 2011). In our study, 

the decrease in leaf consumption and invertebrate growth appeared to be lower 

after exposure via pre-contaminated food than via contaminated water. We should 

point out that in the latter case food also became contaminated by nanoCuO. Our 

results encourage the use of feeding behaviour of invertebrate shredders as an 

endpoint for assessing toxicity of metal nanoparticles in aquatic environments.  

In this study, the decrease in invertebrate feeding and growth by nanoCuO 

exposure may be related to the food avoidance behaviour of shredders (Wilding and 

Maltby, 2006). Alder leaves have a high nutrient content, and leaves that are well 

colonized by microbes are more palatable for invertebrate shredders, including 

Trichoptera (Arsuffi and Suberkropp, 1989; Graça, 2001; Chung and Suberkropp, 

2009). We previously reported that ionic copper (Duarte et al., 2008) and nanoCuO 

(Pradhan et al., 2011) have negative effects on microbes colonizing leaf litter. In our 

study, alder leaves were pre-colonized by microbes, so leaf quality and palatability 

for shredders might also be affected by the impacts of nanoCuO on microbial 
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communities. Indeed, we found a severe reduction in microbial decomposition 

during invertebrate feeding under nanoCuO exposure, particularly when exposure 

occurred via contaminated water. Thus, the stress induced by nanoparticles may 

have affected the invertebrate shredder directly or indirectly due to the effects on 

microbes.  

Under aqueous exposure, great amounts of copper were adsorbed and 

accumulated in the leaves (at 75 mg L–1: 15.832 and 12.889 mg g–1, respectively). 

This was accompanied by high levels of Cu adsorption and accumulation in the 

larval case and body. However, the percentage of adsorbed or accumulated Cu in 

leaves or larval body was lower when exposure occurred via water than via pre-

contaminated food. Copper adsorbed and/or accumulated in larval body were mainly 

correlated with Cu in the stream water or accumulated in leaves in both exposure 

types. The accumulation of Cu in the shredder body increased with the increase in 

CuO nanoparticle concentration in water or food, suggesting the intake of CuO 

nanoparticles. The ionic copper, leached from the CuO nanoparticles, may play an 

important role in enhancing the toxicity or ecotoxicity (Kahru et al., 2008; Aruoja et 

al., 2009; Kasemets et al., 2009). Blinova et al. (2010) using a Cu-sensor bacteria 

reported about 12% dissolution of Cu2+ from nanoCuO in freshwaters. Before our 

feeding experiment, Cu2+ in water attained 0.156 mg L–1 in microcosms 

supplemented with the higher concentration of nanoCuO (75 mg L–1) via water. 

During the feeding experiment, the Cu2+ content increased, particularly when 

exposure occurred via contaminated water. Consistently, the highest levels of Cu2+ 

associated with the larval body were found after exposure to the higher sublethal 

concentration of nanoparticles via water. This may be a consequence of Cu2+ 

leached from nanoCuO, as nanoparticles were the only source of Cu2+. Taking into 

account that toxicity of nanometals can depend on the leached ionic metal (Heinlaan 

et al., 2008; Mortimer et al., 2010), Cu2+ might have contributed to the inhibition of 

invertebrate feeding and growth after aqueous or dietary exposure to 75 mg L–1 of 

nanoCuO. Moreover, Cu2+ in stream water correlated significantly with adsorbed and 

accumulated Cu in larval body when exposure occurred via water, probably 

explaining the strongest inhibition of invertebrate growth and feeding under these 

conditions.  

In our study, the leached ionic copper may have greatly contributed to the 

toxicity of nanoCuO at lethal or sublethal concentrations. This is supported by 

previous studies on nanoCuO toxicity to aquatic organisms including crustaceans 
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(Heinlaan et al., 2008; Blinova et al., 2010). But further investigation is needed 

pertaining to the mechanisms of toxicity and other possible factors that might be 

involved in toxicity. Some studies reported that leached metal ions are insufficient in 

explaining the toxicity of nanoparticles. Griffitt et al. (2008) showed very low 

dissolution of nanocopper that could account only for 10-15% of the toxicity to 

Daphnia pulex and zebrafish. Lower dissolution of nanoCuO was reported by Buffet 

et al. (2011). However, the toxicity can be further argued by intracellular dissolution 

of nanoparticles. The oral toxicity of copper nanoparticles was attributed to the high 

reactivity of nano Cu that could lead to metabolic alkalosis or intracellular dissolution 

leading to excessive accumulation of copper ions (Meng et al. 2007). Perhaps this is 

the explanatory bridge between the observed negative effects on larval feeding and 

growth and the high amounts of accumulated copper inside the larval body after 

exposure to the higher concentration of nanoCuO (75 mg L–1) via water or pre-

contaminated food. Accumulated Cu and adsorbed Cu2+ into leaves and larval body 

was higher after exposure to higher sublethal concentration of nanoCuO via 

contaminated stream water than via pre-contaminated food, probably contributing to 

the strongest inhibition of invertebrate feeding and growth in the former exposure 

type.   

Overall, we found that copper oxide nanoparticles can have toxic effects on 

the invertebrate shredder A. ligonifer. Nanoparticle exposure led to lethal effects to 

this shredder only at very high concentrations. However, at sublethal levels, 

nanoCuO was potent to decrease the feeding and growth rates of the shredder 

through both aqueous and dietary exposure. Results also suggested that leached 

ionic copper play a role in the toxicity of nanoCuO, but further investigation is 

needed to comprehend the actual mode of action of nanometal oxides.  
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Abstract 

Nanoparticle size and the presence of natural organic matter (NOM) may 

alter the toxicity of nanoCuO to aquatic biota. Invertebrate shredders play a key role 

in plant-litter decomposition in streams with important consequences to higher 

trophic levels. We investigated the feeding behaviour of the freshwater shredder 

Allogamus ligonifer in the absence or presence of two sublethal concentrations of 

nanoCuO (50 and 100 mg L-1) with three particle sizes (12, 50 and 80 nm) in the 

absence or presence of humic acid (HA, 100 mg L-1) as a proxy of NOM. In addition, 

we examined the ability of animals to recover when released from the stress 

induced by exposure to nanoCuO and/or HA. In the absence of nanoCuO and HA, 

the feeding rate of the shredder was 0.416 mg leaf DM mg-1 animal DM day-1. The 

exposure to increased nanoCuO concentrations significantly inhibited the shredder-

feeding rate, with smaller size nanoparticles having greater effects (up to 83.3% for 

12 nm particle size). The exposure to HA alone inhibited in 52.7% the shredder-

feeding rate. However, the co-exposure to nanoCuO and HA alleviated the inhibitory 

effects promoted by smaller size nanoCuO on the feeding rate (recovery of 29.5 and 

25.9% for 12 and 50 nm, respectively). The post-exposure feeding experiment 

showed a slight improvement in the invertebrate feeding rate after stress removal. 

Shredders pre-exposed only to HA or lower concentration of 80 nm nanoCuO 

recovered faster.   

 

Keywords: NanoCuO, particle size, humic acid, invertebrate shredder, feeding 

behaviour, stress recovery. 
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5.1. Introduction  

Nanocopper oxide (nanoCuO) is one of the most frequently used nanometal 

oxide with applications in electronics, catalysis, gas sensors and antimicrobial 

therapy (Carnes and Klabunde, 2003; Dutta et al., 2003; Zhang et al., 2008; Ren et 

al., 2009). The enhanced use of this nanomaterial increases the probability of its 

release into the environment, ultimately reaching surface waters. There is a lack of 

global data on the amounts of nanoCuO in natural waters, but in industrial 

wastewaters copper can exceed 100 mg L-1 of which up to 49% consisted of 

nanoCuO (Huang et al., 2006). Although not yet included in the OECD list (OECD, 

2010) for toxicological and risk assessment studies, nanoCuO can be toxic to 

aquatic organisms (bacteria and invertebrates, Heinlaan et al., 2008; ciliated 

protozoa, Mortimer et al., 2010; and green algae, Saison et al., 2010). However, the 

toxicity of metal oxide nanoparticles may depend on their physicochemical 

properties, which may vary with the particle size and environmental factors (Aruoja 

et al., 2009, Hartmann et al., 2010).  

Natural organic matter (NOM) is commonly present in freshwaters up to 100 

mg L-1 (Wall and Choppin, 2003; Steinberg et al., 2006), and is known to affect 

stability and bioavailability of metals and metal oxide nanoparticles with implications 

to their toxicity (Lowry and Wiesner, 2007; Wigginton et al., 2007; Blinova et al., 

2010). About 30% of NOM in natural waters consists of humic acid (HA; Ma et al., 

2001). Some authors found that HA can mitigate the toxicity of metals or metal-

based nanoparticles to freshwater organisms (copper ions to crustaceans, De 

Schamphelaere et al., 2002; silver nanoparticles to bacteria, Fabrega et al., 2009; 

iron nanoparticles to bacteria, Chen et al., 2011). Conversely, HA was reported to 

exhibit toxicity against organisms, including freshwater invertebrates (Meems et al., 

2004; Timofeyev et al., 2006).  

Freshwater invertebrates are often used in ecotoxicology because they are 

easy to manipulate and maintain under laboratorial conditions, and they have shown 

high sensitivity to anthropogenic stressors, such as ionic copper (De 

Schamphelaere et al., 2004; Gerhardt et al., 2004) or nanoCuO (Cattaneo et al., 

2009; Buffet et al., 2011; Pradhan et al 2012). However, most toxicological studies 

on aquatic invertebrates with ionic or nano copper have assessed lethal toxicity 

(Griffitt et al., 2008; Heinlaan et al., 2008, 2011), and only few assessed sublethal 
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toxicity by examining the feeding behaviour (Hatakeyama, 1989; De Schamphelaere 

et al., 2007; Pradhan et al., 2012) or burrowing activity (Buffet et al., 2011).  

In low-order forested streams, invertebrate shredders play a key role in plant 

litter decomposition that falls from riparian vegetation (Graça and Canhoto, 2006). 

Freshwater shredders prefer to feed on plant-litter colonized by microbes, 

predominantly aquatic fungi, because their activity on leaves increases the food 

quality and palatability for shredders (Graça, 2001). Allogamus ligonifer is a 

common invertebrate shredder in Southwest European streams with good ecological 

quality (Bonada et al., 2008). In a previous study, we showed that sublethal 

concentrations of nanoCuO affect the feeding behaviour and growth of A. ligonifer 

(Pradhan et al., 2012). In this following up study, we investigated how effects of 

nanoCuO on the feeding behaviour of A. ligonifer depended on the particle size and 

the presence of humic acid, under the hypotheses that i) smaller size nanoparticles 

would be able to induce higher toxicity than larger size nanoparticles; ii) HA would 

mitigate the toxicity of nanoparticles depending on the nanoparticle size and 

concentration; iii) HA might have negative impacts on invertebrates; iv) invertebrate 

recovery from nanoCuO exposure would depend on the severity of stress. To test 

these hypotheses, we measured leaf consumption by the invertebrate shredder and 

fine particulate organic matter (FPOM) production after exposure to nanoCuO 

and/or HA and after releasing the animals from exposure to these chemicals.   

Nanoparticles in the stream water and on FPOM were analysed by SEM-EDX and 

DLS to examine the interactions among nanoCuO, HA and FPOM.  

  

5.2. Material and Methods 

5.2.1. Microbial colonization of leaves 

Leaves of Alnus glutinosa (L.) Gaertn. (alder), a common riparian tree in the 

Iberian Peninsula, were collected from a single tree in autumn and air dried at room 

temperature. The leaves were soaked in deionised water, cut into 12 mm-diameter 

disks, and placed into fine-mesh bags (15 × 15 cm; 0.5-mm size mesh for 

preventing invertebrate colonization). Leaf bags were immersed in the Maceira 

Stream (N 41°45'58.79'', W 8°08'49.39'', altitude 867 m, Cávado River basin, 

Northwest Portugal) to allow microbial colonization. After 7 days of immersion, leaf 

bags were retrieved from the stream and leaf disks from each replicate bag were 
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rinsed with deionised water and used for feeding experiments. Detailed information 

on the Maceira Stream can be found in Pradhan et al. (2011). 

 

5.2.2. Collection and maintenance of invertebrate shredders 

Allogamus ligonifer (McLachlan, 1876) is an invertebrate shredder that 

belongs to the Limnephilidae family. A. ligonifer is reported to occur in Southwestern 

European streams (Bonada et al., 2008) and it is quite common in low-order 

streams of North Portugal (Varandas and Cortes, 2010). Early-stage larvae of the 

caddisfly, with similar size (14 ± 1 mm length), were collected from the upper reach 

of the Cávado River during autumn 2011. The animals were transported to the 

laboratory in plastic containers with stream water and sand. In the laboratory, the 

animals were placed in an aquarium with filtered (MN GF-3, Macherey-Nagel, 

Germany) and autoclaved (121°C, 20 min) stream water and sand, at 14°C under 

aeration with a 12 h light : 12 h dark photoperiod, and were allowed to feed on alder 

leaves for 4 weeks before the experiment. Detailed information on the Cávado River 

can be found in Pascoal et al. (2001). 

 

5.2.3. Preparation and characterization of nanoCuO in the absence and 

presence of HA 

Stock suspensions of nanocopper oxide with three different sizes, namely i) 

12 nm CuO nanopowder (99.5%, Ionic Liquid Technology: IO-LI-TEC, Heilbronn, 

Germany), ii) 50 nm CuO nanopowder (99.5%, Sigma-Aldrich, St. Louis, MO), and 

iii) 80 nm (99.9%, IO-LI-TEC), were prepared in autoclaved stream water by 

sonication at 42 kHz (Branson 2510, Danbury, CT, USA) for 30 min in dark before 

use (Heinlaan et al., 2008). The pH of all nanoCuO stock suspensions was adjusted 

to the stream water pH (5.8 ± 0.2). Stock solution of humic acid (Sigma-Aldrich, St. 

Louis, MO) was freshly prepared in sterile stream water by overnight (10 h) stirring 

before use. The stream water contained silica 9.6 ± 2 mg L-1, Na+ 4.1 ± 0.4 mg L-1, 

K+ 0.6 ± 0.1 mg L-1, Ca2+ 1.3 ± 0.3 mg L-1, Cl- 4.2 ± 0.4 mg L-1, HCO3
- 8.0 ± 0.8 mg L-

1, and SO4
- 1.0 ± 0.2 mg L-1.  

NanoCuO suspensions with three different size nanoparticles and mixed 

suspensions containing nanoCuO and HA were examined before and after the 

feeding experiment by scanning electron microscopy (SEM, Leica Cambridge S 360, 

Cambridge, UK) coupled to an energy dispersive X-ray microanalysis setup (EDX, 
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15 KeV) as described by Pradhan et al. (2011). Size distribution of particles in the 

stream water was also examined by dynamic light scattering (DLS) using a zetasizer 

(Malvern, Zetasizer Nano ZS) for checking agglomeration (Pradhan et al. 2012).  

 

5.2.4. Feeding experiment  

For assessing the individual or combined effects of nanoCuO size and HA on 

the feeding behaviour of the invertebrate shredder, two premeasured larvae of A. 

ligonifer were allocated to each 150-mL flask containing 10 microbially-colonized 

leaf disks and 100 mL of autoclaved stream water supplemented or not with 

nanoCuO (50 mg L–1 or 100 mg L–1) and/or HA (100 mg L–1). Seven replicates were 

used per treatment. Microbially-colonized leaf disks used in the microcosms were 

previously exposed for 20 days to similar concentration of the respective chemical.  

The contribution of microorganisms to leaf litter decomposition was 

determined by enclosing an equal number of leaf disks treated as above in 0.5 mm 

fine-mesh bags (to prevent the access of invertebrates), which were placed in each 

replicate microcosms of the respective treatment.  

All flasks were aerated with constant air flow and incubated at 14°C, under a 

12 h light : 12 h dark photoperiod. The experiment was run for 5 days. 

 

5.2.5. Post-exposure feeding experiment 

After the feeding experiments with nanoCuO and/or HA, the two 

invertebrates of each microcosm were placed in flasks with autoclaved stream 

water, and the water was renewed every 30 min until 6 h. Then, the rescued 

invertebrates of each treatment were placed in 150-mL flask with 100 mL of 

autoclaved stream water and allowed to feed on microbially-colonized leaves (10 

disks) non-exposed to the chemicals. Animals were kept under the conditions of 

aeration and photoperiod described above, and the feeding rates were determined 

after 5 days. Microbial contribution to litter decomposition was determined by using 

10 microbially-colonized leaf disks enclosed in fine-mesh bags as above.  

 

5.2.6. Leaf mass loss 

For determination of leaf mass loss, leaf disks from each replicate were 

freeze-dried (Christ alpha 2–4, B. Braun, Germany) and weighed to the nearest 

0.001 mg before and after the feeding and post-exposure feeding experiments.  
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5.2.7. Leaf consumption by invertebrates and microbes 

Leaf mass consumed by the invertebrate shredder (Le) was determined as 

(Li – Lf) – (Li × (Ci – Cf)/Ci), where Li and Lf are the initial and final dry mass (DM, 

mg) of leaves exposed to the invertebrates, respectively, and C i and Cf are the initial 

and final dry mass (DM, mg) of control leaves that are inaccessible to invertebrates, 

respectively (Pradhan et al., 2012). Leaf decomposition rate by microbes was 

determined by (Ci – Cf)/t, where t is time (t=5 days). Leaf consumption rate by the 

invertebrate was calculated as Le/(If × t), where If is the dry mass (DM, mg) of 

invertebrates at time t (day 5), and results were expressed as mg leaf DM mg–1 

animal DM day–1 (Pradhan et al., 2012). 

 

5.2.8. FPOM quantification and visualization under SEM 

After the feeding experiments the fine particulate organic matter, i.e. 

invertebrate faeces and leaf detritus, was sieved (0.5 mm mesh) and collected on 

membranes by filtration (0.45 µm pore size, Millipore, Billerica, MA, USA).  FPOM 

on the membranes was washed twice with ultrapure (Milli Q) water and freeze-dried 

(Christ alpha 2–4, B. Braun, Germany) before weighed to the nearest 0.001 mg. 

FPOM was, then, fixed in 2.5% (v/v) glutaraldehyde for 24 h, and dehydrated in 

ethanol (v/v) as follows: 20%, 8 h; 40%, 6 h; 60%, 4 h; 80%, 2 h; and 100%, 1 h. 

The filters containing the FPOM were glued onto 20-mm diameter metal mounts, 

coated with gold under vacuum and scanned by SEM-EDX as above. 

 

5.2.9. Data analyses 

Three-way ANOVAs were used to determine the effects of concentration and 

size of nanoCuO in the absence or presence of HA on leaf decomposition rate by 

microbes or leaf consumption rate by invertebrates (Zar, 2009). Significant 

differences between control and treatments were analysed by Bonferroni post-tests 

(Zar, 2009). To achieve normal distribution and homoscedasticity, the data in 

percentage were arcsine square root transformed (Zar, 2009). Analyses were 

performed with Statistica 6.0 (Statsoft, Inc., Tulsa, OK, USA). 
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5.3. Results 

5.3.1. Characterization of CuO nanoparticles and HA in the stream water  

The CuO nanoparticles in stream water were observed under SEM (Fig. 5.1) 

and the presence of Cu was further confirmed by EDX analysis (not shown). DLS 

analysis of stream water supplemented with nanoCuO showed that suspensions of 

nanoparticles with 12, 50 or 80 nm had average sizes of 101.8 nm (PdI 0.137), 

202.4 nm (PdI 0.181) and 267.6 nm (PdI 0.296), respectively (Table 5.1). Taking 

into consideration the manufacturer information on the size of primary nanoparticles, 

the higher values found by DLS indicated agglomeration of nanoCuO in the stream 

water. The average size of all CuO nanoparticles increased in the presence of HA 

(1.2 times for 50 and 80 nm particles, and 1.5 times for 12 nm particles; Table 5.1). 

After the feeding experiment, the average size of nanoparticles in the stream water 

further increased, indicating agglomeration with time mainly for 80 nm nanoCuO 

(Table 5.1, Fig. 5.1). However, in the presence of HA, the size of smaller 

nanoparticles decreased after the feeding experiment (147.9 vs. 124.3 nm and 

248.1 vs. 232.8 nm for 12 and 50 nm sizes, respectively), although sizes were still 

higher than those in the absence of HA (Table 5.1, Fig. 5.1). The decrease in PdI 

values after the feeding experiment in mixtures of smaller size nanoCuO with HA 

confirmed higher nanoparticle dispersion and stability (Table 5.1). In contrast, the 

presence of HA increased the size of 80 nm nanoparticles (330.4 nm) after the 

feeding experiment indicating increased aggregation/agglomeration with time as 

supported by the PdI (Table 5.1). 

 

 

Table 5.1 Size distribution of nanoCuO in the stream water before and after the feeding experiment in 
the presence or absence of humic acid (HA) 

Treatments PdI Z-average (d.nm) Size range (d.nm) 

Before / after the feeding experiment 

NanoCuO size (nm)    

12  0.137 / 0.161 101.8 / 116.0 20–290 / 40–320 
50  0.181 / 0.207 202.4 / 220.1 80–340 / 90–420   
80  0.296 / 0.367 267.6 / 319.8 110–590 / 120–700   

12 + HA 0.224 / 0.182 147.9 / 124.3 50–475 / 40–360  
50 + HA 0.249 / 0.218 248.1 / 232.8 100–620 / 90–480  
80 + HA 0.380 / 0.405 323.6 / 330.4 110–760 / 105–790 

d.nm: diameter in nanometer unit. PdI: polydispersity index.  
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Figure 5.1 Scanning electron microscopy (SEM) of nanoCuO with 12, 50 and 80 nm size in the 
absence and/or presence of humic acid (HA) in the stream water before (day 0) and/or after (day 5) the 
invertebrate feeding experiment. Black arrows indicate nanoCuO and white arrows indicate HA. 

 

5.3.2. Effects of nanoCuO and HA on invertebrate feeding and microbial 

decomposition 

In the absence of nanoCuO or HA, the feeding rate of the invertebrate 

shredder A. ligonifer was 0.416 mg leaf DM mg-1 animal DM day-1. The feeding rate 

of the shredder was significantly affected by the presence of HA, and by the size 

and concentration of nanoCuO (three-way ANOVA, P<0.05). The strongest 

inhibitions of feeding rates were 83.3, 74.0 and 53.0% after exposure to 100 mg L-1 

of 12, 50 and 80 nm of nanoCuO, respectively (P<0.05; Fig. 5.2A-C). The feeding 

rate was not significantly reduced by exposure to the lowest concentration of 80 nm 

nanoCuO (P>0.05; Fig. 5.2C), but decreased significantly after exposure to the 

lowest concentration of smaller nanoparticles (69.7 and 58.2% inhibition with 12 and 

50 nm, respectively) (P<0.05; Fig. 5.2A and B). In the absence of nanoCuO, the 

exposure to HA significantly inhibited the shredder feeding rate by 52.7% (P<0.05; 

Fig. 5.2A-C). However, the co-exposure to HA and to the highest concentration of 
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smaller size nanoparticles attenuated the negative effects of nanoCuO on the 

feeding rate in 29.5 and 25.9% for 12 and 50 nm, respectively (P<0.05; Fig. 5.2A 

and B), but this was not observed for the largest nanoparticles (P>0.05; Fig. 5.2C).  

                

Figure 5.2 Leaf consumption rate by the invertebrate shredder Allogamus ligonifer exposed to 
increasing concentration of nanoCuO with 12 nm (A), 50 nm (B) and 80 nm (C) in the presence or 
absence of humic acid (HA). Mean ± SEM, n=7. *, treatments that differ significantly from control 
(Bonferroni tests, P<0.05). Horizontal lines indicate no significant differences between treatments. 

 

In the absence of nanoCuO and HA, leaf decomposition rate by microbes 

was 0.616 mg leaf DM microcosm–1 day–1, corresponding to 7.8% of the total leaf 

consumption rate (microbes and invertebrates). Leaf decomposition by microbes 

was affected by the presence of HA, the concentration and the size of nanoCuO 

(three-way ANOVA, P<0.05). The highest inhibition of microbial decomposition rates 

was found after exposure to the highest concentration of nanoCuO with 12 nm or 50 

nm, and corresponded to a reduction of 76.8 and 67.4%, respectively (P<0.05; Fig. 
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5.3A and B). The exposure to 80 nm did not show any significant effect (P>0.05; 

Fig. 5.3C). In the absence of nanoCuO, HA decreased in 70% the microbial 

decomposition rate (P<0.05; Fig. 5.3A-C). Similarly to that found for the invertebrate, 

the presence of HA attenuated the negative effects of 12 and 50 nm nanoCuO on 

microbial decomposition rate, which recovered up to 26.2% (P<0.05; Fig. 5.3A and 

B). Moreover, the mitigation effect of HA was not observed when microbially-

colonized leaves were co-exposed to nanoCuO with 80 nm (P>0.05; Fig. 5.3C).  
 

 

 

 

Figure 5.3 Microbial decomposition rate of leaves exposed to increasing concentration of nanoCuO 
with 12 nm (A), 50 nm (B) and 80 nm (C) in the presence or absence of humic acid (HA). Mean ± SEM, 
n=7. *, treatments that differ significantly from control (Bonferroni tests, P<0.05). Horizontal lines 
indicate no significant differences between treatments. 

 

In the post-exposure feeding experiment, invertebrates that were not 

exposed to nanoCuO or HA had a feeding rate of 0.422 mg leaf DM mg-1 animal DM 

day-1, similar to that found in the feeding experiment in the absence of stressors. In 

the post-exposure experiment, the feeding behaviour of shredders was significantly 
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affected by pre-exposure to HA and nanoCuO with diferent sizes and concentrations 

(three-way ANOVA, P<0.05; Fig. 5.4A-C). The feeding recovery of animals rescued 

from exposure to 100 mg L-1 of nanoCuO with 12, 50 and 80 nm in the absence of 

HA was very low (Fig. 5.4A-C vs. Fig. 5.2A-C), and corresponded to 3.4, 4.6 and 

9.2%, respectively (Table 5.2). A slightly higher recovery in the feeding rates 

occurred after release from exposure to the smaller size nanoCuO and HA (P<0.05; 

Fig. 5.4A and B vs. Fig. 5.2A and B; Table 5.2).   

 

Figure 5.4 Leaf consumption rate by the invertebrate shredder Allogamus ligonifer in the post-
exposure feeding experiment in which animals were previously exposed for 5 days to increasing 
concentrations of nanoCuO with 12 nm (A), 50 nm  (B) and 80 nm (C) in the presence or absence of 
humic acid (HA) and then placed in stream water without the chemicals for further 5 days. Mean ± 
SEM, n=7. *, treatments that differ significantly from control (Bonferroni tests, P<0.05). Horizontal lines 
indicate no significant differences between treatments. 
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Animals rescued from exposure to HA without nanoCuO showed a 

significant decrease in the post-exposure feeding rate (P<0.05; Fig. 5.4A-C), which 

corresponded to a feeding rate recovery of 14.9% comparing to the exposure 

conditions (Table 5.2). Shredders rescued from exposure to the lowest 

concentration of the largest CuO nanoparticle in the absence of HA had the highest 

recovery in the feeding rates (16.7%, Table 5.2). 

 

Table 5.2 Recovery of invertebrate feeding rates after release from exposure to different size nanoCuO 
and/or humic acid (HA) 

Treatments NanoCuO (mg L
-1

) 
Feeding rate recovery (%) 

Without HA With HA 

Absence of nanoCuO 0 0 14.0 

12 nm nanoCuO 50 6.9 8.9 
100 3.4 4.8 

50 nm nanoCuO 50 7.8 10.6 
100 4.6 5.0 

80 nm nanoCuO 50 16.7 5.0 
100 9.2 9.0 

 

  

5.3.3 Effects of nanoCuO and HA on FPOM production   

In the absence of nanoparticles and HA, 32.6 mg of FPOM was produced 

per microcosm. The presence of HA reduced FPOM production to 61.7% (Table 

5.3). FPOM production decreased with exposure to increasing concentrations of 

nanoCuO and decrease in nanoparticle size (Table 5.3). Maximum reductions in 

FPOM production were found in treatments with 100 mg L-1 of 12 and 50 nm 

nanoCuO leading to 21.2% and 30.4% production of the FPOM, respectively (Table 

5.3). The co-exposure to 100 mg L-1 of both HA and nanoCuO with 12 or 50 nm 

increased the production to 45.1 and 56.7%, respectively; however, similar FPOM 

production was observed under exposure to 80 nm nanoCuO with or without HA 

(Table 5.3). 

 During the post-exposure feeding experiment, the production of FPOM in 

control (31.9 mg per microcosm) was similar to that found in the exposure 

experiment. The recovery in FPOM production was very low in microcosms with 

animals previously exposed to nanoCuO, mainly in treatments with 100 mg L-1 of 12 

nm nanoCuO (recovery of 0.7%, Table 5.3). The highest recoveries in FPOM 

production (9.4 and 8.8%) were obtained in microcosms with invertebrates 
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previously exposed to 50 mg L-1 of the largest nanoparticles without HA, and to HA 

without nanoparticles (Table 5.3).   

 

Table 5.3 Fine particulate organic matter (FPOM) produced in microcosms after exposure to increasing 
concentrations of 12, 50 and 80 nm size nanoCuO and/or humic acid (HA) during the exposure feeding 
experiment or the post-exposure feeding experiment 

Treatments 
NanoCuO 
(mg L

-1
) 

FPOM production (% of control) 

 Exposure experiment Post-exposure experiment 

Without HA With HA Without HA With HA 

Absence of nanoCuO 0 100.0 61.7 100.0 70.5 

12 nm nanoCuO 50 51.8 62.0 53.6 64.3 
100 21.2 45.1 21.9 48.0 

50 nm nanoCuO 50 60.4 66.6 63.0 69.0 
100 30.4 56.7 32.6 59.6 

80 nm nanoCuO 50 83.4 82.2 92.8 90.0 
100 70.6 69.3 74.3 72.7 

 

 

SEM analysis revealed that the surface of FPOM produced in control 

microcosms was granular with 3-7 µm diameter average grain size (Fig. 5.5). The 

surface morphology of FPOM altered after exposure to nanoCuO and/or HA, even 

after stress release, i.e. in the post-exposure feeding experiment (Fig. 5.5). The 

surface of FPOM in treatments with nanoCuO without HA seemed to be less 

granular and covered with nanoCuO (Fig. 5.5). In treatments with smaller size 

nanoparticles, the size and self-aggregation of nanoparticles seemed to decrease 

while the number of nanoparticles seemed to increase (Fig. 5.5). The presence of 

Cu from nanoCuO was further confirmed by EDX (not shown). Layers of HA and 

alteration of the granular surface of FPOM were found in microcosm exposed to HA, 

this effect decreased remarkably after release from the chemicals (Fig. 5.5). FPOM 

from microcosms with HA and smaller nanoCuO (12 and 50 nm) had less amount of 

nanoparticles on the surface, which was less altered than that found in the absence 

of HA. However, this difference was not observed in FPOM from treatments with 80 

nm nanoparticles (Fig. 5.5). NanoCuO were also observed on FPOM produced 

during post-exposure experiment in the microcosms containing invertebrates 

rescued from exposure to nanoCuO with or without HA (Fig. 5.5). However, the 

amount of nanoCuO on FPOM was lower and the FPOM surface was less altered 

after the post-exposure experiment than after the exposure experiment (Fig. 5.5).  
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Figure 5.5 Scanning electron microscopy analysis of the FPOM produced in microcosms during the 
feeding experiment under exposure or not to 100 mg L

-1
 nanoCuO and/or to HA, and during the post-

exposure feeding experiment after removal of the chemicals. Black arrows indicate nanoCuO and white 
arrows indicate HA layer. 

 

 

5.4. Discussion 

Most ecotoxicological studies assessing the impacts of nanometal oxides, 

including nanoCuO, on stream invertebrates used acute lethality tests (Heinlaan et 

al., 2008; Blinova et al., 2010), which may not demonstrate the actual hazard of 

nanoparticles because lethality can be achieved at high concentrations with low 

environmental realism. Indeed, studies assessing sublethal effects by examining the 

feeding behaviour of invertebrates pointed it as one of the most sensitive and widely 

accepted tools for monitoring ecotoxicity of ionic metals (Pestana et al., 2007) and 

nanometal oxides (Galloway et al., 2010; Buffet et al., 2011; Pradhan et al., 2012). 

In our study, the feeding rate of A. ligonifer in control microcosms (0.42 mg leaf DM 

mg–1 animal DM day–1) was within the typical range for freshwater invertebrate 

shredders (0.04 to 0.5 mg leaf DM mg–1 animal DM day–1; Arsuffi and Suberkropp, 

1989). Exposure to nanoCuO prominently inhibited the shredder feeding rate as 

previously found for marine and freshwater invertebrates (Buffet et al., 2011; 

Pradhan et al., 2012), and toxicity was correlated with the accumulation and 
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adsorption of nano and/or leached ionic copper in the invertebrate body and food 

(Pradhan et al. 2012).  

In the present study, the inhibitory effects of nanoCuO were stronger as 

nanoparticle size decreased and concentration increased; maximum inhibition of 

invertebrate feeding rate (83.3% inhibition) was found after exposure to the highest 

concentration (100 mg L-1) of nanoCuO with the smaller size (12 nm). One should 

point out that the size of nanoparticles determined by DLS in our study was higher 

than the size of primary particles indicated by the manufacturer or by SEM-EDX 

analysis, probably due to nanoparticle agglomeration in aqueous environments 

(Buffet et al., 2011; Pradhan et al., 2012). Previous studies showed that the toxicity 

of nanometal oxides was higher than their bulk size particles (Aruoja et al., 2009; 

Karlsson et al., 2009; Kasemets et al., 2009), however, only few attempts were 

taken for size-based comparative toxicity assessment of nanometal oxides to 

aquatic organisms (Hartmann et al., 2010). Our findings on nanoCuO effects were 

supported by earlier observations with CeO2 nanoparticles against freshwater 

invertebrates in which chronic toxicity tended to increase with the decrease in 

nanoparticle size (Van Hoecke et al., 2009). The size-dependent toxicity of 

nanoCuO to the invertebrate shredder might be related to the increased free 

reactive surface to volume ratio of smaller nanoparticles and lower aggregation with 

higher dispersion and stability in aqueous suspension, as shown by the lower 

polydispersity index, comparing to similar concentrations of nanoCuO with larger 

sizes. 

In our study, the negative effects of nanoparticles to the invertebrates were 

accompanied by morphological alterations of the surface of FPOM, produced by the 

invertebrate feeding activity, and by the presence of a considerable amount of 

nanoparticles associated with FPOM, mainly after exposure to smaller size 

nanoparticles. The release from nanoparticle exposure led only to a slight recovery 

of invertebrate feeding rate. The feeding recovery was lower for shredders 

previously exposed to smaller nanoparticles than to larger nanoparticles. The 

presence of nanoparticles on the surface of FPOM after animals were rescued from 

exposure to nanoCuO suggested that the ingestion of contaminated leaves led to 

accumulation of nanoparticles in the gut of shredders and this might have 

contributed to the low feeding recovery. This agrees with our earlier observation of a 

positive correlation between Cu accumulation in nanoCuO-contaminated leaves and 

in the shredder body (Pradhan et al., 2012).  
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In our study, the presence of HA inhibited in 52.7% the feeding rate of A. 

ligonifer. Adverse effects of high concentrations of NOM on freshwater crustaceans 

(Meems et al., 2004; Timofeyev et al., 2006) and bivalve zebra mussel (Pflugmacher 

et al., 2001) or HA on cyanobacteria (Sun et al., 2005) were previously reported. 

Although the exact mode of action of NOM or HA was not revealed, the toxicity of 

these compounds was mainly explained by their ability to induce oxidative stress 

(Timofeyev et al., 2006). Interestingly, the release from HA exposure led to a 14.0% 

recovery of the invertebrate feeding rate, an increased production of FPOM and less 

alterations in the surface of FPOM. Moreover, in our study, the presence of HA 

reduced the negative effects of smaller size (12 or 50 nm) nanoCuO on leaf 

consumption by the invertebrate shredder. This agrees with other studies in which 

NOM or HA contributed to alleviate the toxicity induced by ionic metals or 

nanometals, including nanoCuO (De Schamphelaere et al., 2002; Blinova et al., 

2010; Chen et al., 2011; Li et al., 2011). The mechanisms behind the mitigation 

effects of NOM/HA on nanoparticle-induced toxicity are unclear and effects may 

vary with the NOM source, concentration and exposure time (Fabrega et al., 2009; 

Al-Reasi et al., 2011). For instance, commercial HA (Sigma-Aldrich) was less 

effective than other NOM sources in alleviation of Ag+ toxicity (48 h EC50) to Daphnia 

magna (Glover et al. 2005). Nanoparticles tend to aggregate and adsorb onto 

organic materials due to their small size and reactive surface (Holsapple et al., 

2005). Thus, it is conceivable that in the presence of HA, smaller nanoparticles have 

lower chance to interact with leaves and invertebrates than larger nanoparticles, 

contributing to explain the lower toxicity of the latter particles. Although nanoparticle 

adsorption to leaves or uptake by the invertebrates was not measured in this study, 

FPOM surface had lower amounts of smaller nanoparticles in the presence than in 

the absence of HA. The interaction and coating of nanoparticles with HA were also 

shown by TEM (Fabrega et al., 2009; Chen et al., 2011). Thus, our findings 

supported that HA could alleviate nanoparticle toxicity by acting as a physical barrier 

and masking the active nanoparticle surfaces reducing nanoparticle interactions with 

biota (Fabrega et al., 2009; Chen et al., 2011). Furthermore, our study highlighted 

that the role of HA in alleviating nanoparticle toxicity depended on nanoparticle size.   

The decreased rate of invertebrate feeding by exposure to nanoCuO or HA 

could be also related to food avoidance behaviour (Wilding and Maltby, 2006). In our 

study, we examined the consumption of high quality food (alder leaves), which was 

previously colonized by microbes that increase leaf palatability for invertebrate 
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shredders (Arsuffi and Suberkropp, 1989). Thus, in the present study, the treatment 

of microbially-colonized leaves with nanoparticles and/or HA, prior to the feeding 

experiment, might have affected leaf quality and palatability for shredders. Indeed, a 

severe decrease in microbial decomposition was accompanied by a strong inhibition 

of invertebrate feeding in the presence of smaller size nanoCuO or HA. Similarly to 

that found for the invertebrate feeding behaviour, the inhibitory effects of smaller 

nanoparticles on microbial decomposition were mitigated by HA. This suggests that 

in addition to direct effects of nanoCuO and/or HA on invertebrates, indirect effects 

might also have occured through effects on microbes.  

Overall, our study shows that nanoCuO induced sublethal toxicity to the 

invertebrate shredder A. ligonifer in a dose-dependent manner, and toxicity 

increased with the decrease in nanoparticle size. Humic acid, an important 

component of NOM, alleviated the toxicity of smaller nanoparticle sizes but not of 

larger nanoparticles. In the absence of nanoparticles, HA had negative effects on 

the feeding behaviour of invertebrate shredders. After release from exposure to 

nanoCuO and/or HA, the recovery of leaf consumption by the shredders was very 

low. The recovery of feeding rate was higher for invertebrates rescued from pre-

exposure to HA alone or to lower concentration of nanoCuO with larger size. 

 

 

References 

Al-Reasi HA, Wood CM, Smith DS, 2011. Physicochemical and spectroscopic properties of natural 
organic matter (NOM) from various sources and implications for ameliorative effects on metal 
toxicity to aquatic biota. Aquat Toxicol 103, 179–190.  

Arsuffi TL, Suberkropp K, 1989. Selective feeding by shredders on leaf-colonizing stream fungi: 
comparison of macroinvertebrate taxa. Oecologia 79, 30–37. 

Aruoja V, Dubourguier HC, Kasemets K, Kahru A, 2009. Toxicity of nanoparticles of CuO, ZnO and 
TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407, 1461–1468.  

Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A, 2010. Ecotoxicity of nanoparticles of CuO and 
ZnO in natural water. Environ Pollut 158, 41–47. 

Bonada N, Zamora-Muñoz C, El Alami M, Múrria C, Prat N, 2008. New records of Trichoptera in 
reference Mediterranean-climate rivers of the Iberian Peninsula and North of Africa: 
Taxonomical, faunistical and ecological aspects. Graellsia 64, 189–208. 

Buffet PE, Tankoua OF, Pan JF, Berhanu D, Herrenknecht C, Poirier L, Amiard-Triquet C, Amiard JC, 
Bérard, JB, Risso C, Guibbolini M, Roméo M, Reip P, Valsami-Jones E, Mouneyrac C, 2011. 
Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and 
Hediste diversicolor to copper oxide nanoparticles. Chemosphere 84, 166–174.  

Carnes LC, Klabunde KJ, 2003. The catalytic methanol synthesis over nanoparticle metal oxide 
catalysts. J Mol Catal A: Chem 194, 227–236. 

Cattaneo AG, Gornati R, Chiriva-Internati M, Bernardini G, 2009. Ecotoxicology of nanomaterials: the 
role of invertebrate testing. Invertebrate Surviv J 6, 78–97. 



Chapter 5 

128  
 

Chen J, Xiu Z, Lowry GV, Alvarez PJJ, 2011. Effect of natural organic matter on toxicity and reactivity 
of nano-scale zero-valent iron. Water Res 45, 1995–2001. 

De Schamphelaere KAC, Heijerick DG, Janssen CR, 2002. Re-finement and field validation of a biotic 
ligand model predicting acute copper toxicity to Daphnia magna. Comp Biochem Physiol C 
Toxicol Pharmacol 133, 243–258. 

De Schamphelaere KAC, Vasconcelos FM, Allen HE, Janssen CR, 2004. The effect of dissolved 
organic matter source on acute copper toxicity to Daphnia magna. Environ Toxicol Chem 23, 
1248–1255. 

De Schamphelaere KAC, Forrez I, Dierckens K, Sorgeloos P, Janssen CR, 2007. Chronic toxicity of 
dietary copper to Daphnia magna. Aquat Toxicol 81, 409–418. 

Dutta A, Das D, Grilli ML, Di Bartolomeo E, Traversa E, Chakravorty D, 2003. Preparation of sol–gel 
nano-composites containing copper oxide and their gas sensing properties. J Sol–Gel Sci 
Technol 26, 1085–1089. 

Fabrega J, Fawcett SR, Renshaw JC, Lead JR, 2009. Silver nanoparticle impact upon bacterial growth: 
effect of pH, concentration, and organic matter. Environ Sci Technol 43, 7285–7290. 

Galloway T, Lewis C, Dolciotti I, Johnston BD, Moger J, Regoli F, 2010. Sublethal toxicity of nano-
titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete. Environ 
Pollut 158, 1748–1755. 

Gerhardt A, de Bisthoven LJ, Soares AMVM, 2004. Macroinvertebrate response to acid mine drainage: 
community metrics and on-line behavioural toxicity bioassay. Environ Pollut 130, 263–274.    

Glover CN, Playle RC, Wood CM, 2004. Heterogeneity of natural organic matter amelioration of silver 
toxicity to Daphnia magna: effect of source and equilibration time. Environ Toxicol Chem. 24, 
2934–2940.  

Graça MAS, 2001. The role of invertebrates on leaf litter decomposition in streams – a Review. Int Rev 
Hydrobiol 86, 383–393. 

Graça MAS, Canhoto C, 2006. Leaf litter processing in low order streams. Limnetica 25, 1–10. 

Griffitt RJ, Luo J, Bonzongo JC, Barber DS, 2008. Effects of particle composition and species on 
toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27, 1972–1978. 

Hartmann NB, Kammer FVD, Hofmann T, Baalousha M, Ottofuelling S, Baun A, 2010. Algal testing of 
titanium dioxide nanoparticles - testing considerations, inhibitory effects and modification of 
cadmium bioavailability. Toxicology 269, 190–197. 

Hatakeyama S, 1989. Effect of copper and zinc on the growth and emergence of Epeorus latifolium 
(Ephemeroptera) in an indoor model stream. Hydrobiologia 174, 17–27. 

Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A, 2008. Toxicity of nanosized and bulk ZnO, 
CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and 
Thamnocephalus platyurus. Chemosphere 71, 1308–1316. 

Heinlaan M, Kahru A, Kasemets K, Arbeille B, Prensier G, 2011. Changes in the Daphnia magna 
midgut upon ingestion of copper oxide nanoparticles: A transmission electron microscopy 
study. Water Res 45, 179–190.  

Holsapple MP, Farland WH, Landry TD, Monteiro-Riviere NA, Carter JM, Walker NJ, Thomas KV, 
2005. Research strategies for safety evaluation of nanomaterials, part II: toxicological and 
safety evaluation of nanomaterials, current challenges and data needs. Toxicol Sci 88, 12–17. 

Huang HL, Wang HP, Wei GT, Sun IW, Huang JF, Yang YW, 2006. Extraction of nanosize copper 
pollutants with an ionic liquid. Environ. Sci. Technol. 40, 4761–4764. 

Karlsson HL, Gustafsson J, Cronholm P, Möller L, 2009. Size-dependent toxicity of metal oxide 
particles – a comparison between nano- and micrometer size. Toxicol Lett 188, 112–118. 

Kasemets K, Ivask A, Dubourguier HC, Kahru A, 2009. Toxicity of nanoparticles of ZnO, CuO and TiO2 
to yeast Saccharomyces cerevisiae. Toxicol in Vitro 23, 1116–1122. 

Li L-Z, Zhou D-M, Peijnenburg WJGM, van Gestel CAM, Jin S-Y, Wang Y-J, Wang P, 2011. Toxicity of 
zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn. 
Environ Int 37, 1098–1104. 



Effects of nanoCuO size and NOM on shredders 

129 
 

Lowry GV, Wiesner MR, 2007. Environmental considerations: occurrences, fate, and characterization 
of nanoparticles in the environment. In Nanotoxicology: characterization, dosing and health 
effects (ed: Monteiro-Riviere NA, Tran CL), Informa Healthcare USA, Inc., NY, 369–389.  

Ma H, Allen HE, Yin Y, 2001. Characterization of isolated fractions of dissolved organic matter from 
natural waters and a wastewater effluent. Water Res 35, 985–996. 

Meems N, Steinberg CEW, Wiegand C, 2004. Direct and interacting toxicological effects on the 
waterflea (Daphnia magna) by natural organic matter, synthetic humic substances and 
cypermethrin. Sci Total Environ, 319, 123–136. 

Mortimer M, Kasemets K, Kahru A, 2010. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa 
Tetrahymena thermophila. Toxicology 269, 182–189. 

OECD, 2010. Guidance Manual for the testing of manufactured nanomaterials: OECD‟s sponsorship 
programme, ENV/JM/MONO(2009) 20REV. OECD Environment, Health and Safety 
Publications, Series on the Safety of Manufactured Nanomaterials No. 25, Organisation for 
Economic Co-operation and Development, Paris. 

Pascoal C, Cássio F, Gomes P, 2001. Leaf breakdown rates: a measure of water quality? Int Rev 
Hydrobiol 86, 407–416. 

Pestana JLT, Ré A, Nogueira AJA, Soares AMVM, 2007. Effects of cadmium and zinc on the feeding 
behaviour of two freshwater crustaceans:Atyaephyra desmarestii (Decapoda) and 
Echinogammarus meridionalis (Amphipoda). Chemosphere 68, 1556–1562. 

Pflugmacher S, Tidwell LF, Steinberg CEW, 2001. Dissolved humic substances directly affect 
freshwater organisms. Acta hydrochim  hydrobiol 29, 34–40. 

Pradhan A, Seena S, Pascoal C, Cássio F, 2011. Can metal nanoparticles be a threat to microbial 
decomposers of plant litter in streams? Microb Ecol 62, 58–68. 

Pradhan A, Seena S, Pascoal C, Cássio F, 2012. Copper oxide nanoparticles can induce toxicity to the 
freshwater shredder Allogamus ligonifer. Chemosphere 89, 1142–1150. 

Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP, 2009. Characterisation of copper 
oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33, 587–590. 

Saison C, Perreault F, Daigle JC, Fortin C, Claverie J, Morin M, Popovic R, 2010. Effect of core-shell 
copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II 
energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquat Toxicol 96, 109–
114. 

Steinberg CEW, Kamara S, Prokhotskaya VYu, Manusadžianas L, Karasyova T, Timofeyev MA, Zhang 
J, Paul A, Meinelt T, Farjalla VF, Matsuo AYO, Burnison BK, Menzel R, 2006. Dissolved 
humic substances – ecological driving forces from the individual to the ecosystem level? 
Freshwater Biol 51, 1189–1210. 

Sun BK, Tanji Y, Unno H, 2005. Influences of iron and humic acid on the growth of the cyanobacterium 
Anabaena circinalis. Biochem Eng J 24, 195–201. 

Timofeyev MA, Shatilina ZM, Kolesnichenko AV, Bedulina DS, Kolesnichenko VV, Pflugmacher S, 
Steinberg CEW, 2006. Natural organic matter (NOM) induces oxidative stress in freshwater 
amphipods Gammarus lacustris Sars and Gammarus tigrinus (Sexton). Sci Total Environ 366, 
673–681. 

Van Hoecke K, Quik JT, Mankiewicz-Boczek J, De Schamphelaere KA, Elsaesser A, Van der Meeren 
P, Barnes C, McKerr G, Howard CV, Van de Meent D, Rydzyński K, Dawson KA, Salvati A, 
Lesniak A, Lynch I, Silversmit G, De Samber B, Vincze L, Janssen CR, 2009. Fate and effects 
of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ Sci Technol 43, 4537–4546. 

Varandas SG, Cortes RMV, 2010. Evaluating macroinvertebrate biological metrics for ecological 
assessment of streams in northern Portugal. Environ Monit Assess 166, 201–221. 

Wall NA, Choppin GR, 2003. Humic acids coagulation: influence of divalent cations. Appl Geochem 18, 
1573–1582. 

Wigginton NS, Haus KL, Hochella MF, 2007. Aquatic environmental nanoparticles. J Environ Monit, 9, 
1306–1316. 



Chapter 5 

130  
 

Wilding J, Maltby L, 2006. Relative toxicological importance of aqueous and dietary metal exposure to 
a freshwater crustacean: implication for risk assessment. Environ Toxicol Chem 25, 1795–
1801. 

Zar JH, 2009. Biostatistical analysis, fifth ed, Prentice Hall, Upper Saddle River, New Jersey. 

Zhang X, Zhang D, Ni X, Song J, Zheng H, 2008. Synthesis and electrochemical properties of different 
sizes of the CuO particles. J Nanopart Res 10, 839–844. 

 

 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Chapter 6  
 

Physiological responses to nanoCuO 

in fungi from non-polluted and 

metal-polluted streams 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Abstract 

Nanocopper oxide (nanoCuO) is among the most commercially used metal 

oxide nanoparticles increasing the chance of their release in freshwaters. Aquatic 

fungi are the major microbial decomposers of plant litter in streams. Fungal laccases 

are multicopper oxidase enzymes that are involved in the degradation of lignin and 

various xenobiotic compounds. Therefore, it is interesting to study the effects of 

nanoCuO on laccase activity in fungal decomposers with different background. We 

investigated the effects of nanoCuO (5 levels, ≤ 200 mg L–1) on four fungal isolates 

collected from metal-polluted and non-polluted streams. The exposure to nanoCuO 

decreased the biomass produced by all fungi in a concentration- and time-

dependent manner. Inhibition of biomass production was stronger in fungi from non-

polluted (EC50(10 days) ≤ 31 mg L-1) than from metal-polluted streams (EC50(10 days) ≥ 

65.2 mg L-1). NanoCuO exposure led to cell shrinkage and mycelial degeneration, 

particularly in fungi collected from non-polluted streams. Adsorption of nanoCuO to 

fungal mycelia increased with the concentration of nanoCuO in the medium and was 

higher in fungi from non-polluted streams. Extracellular laccase activity was induced 

by nanoCuO in two fungal isolates in a concentration-dependent manner, and was 

highly correlated with adsorbed Cu and/or ionic Cu  leached from nanoCuO. Putative 

laccase gene fragments were also detected in these fungi. Lack of substantial 

laccase activity in the other fungal isolates was corroborated by the absence of 

laccase-like gene fragments in these fungi. 

 

Keywords: NanoCuO, fungal biomass, mycelial morphology, biosorption, laccases 
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6.1. Introduction  

Nanocopper oxide (nanoCuO) is among the most commercially used metal 

oxide nanoparticles having a broad range of applications in electronics, medical and 

pharmaceutical fields and daily life products (Carnes and Klabunde, 2003; Dutta et 

al., 2003; Ren et al., 2009; Zhang et al., 2008). Unlike their bulk forms, metal oxide 

nanoparticles have special intrinsic properties, and gained recent ecotoxicological 

attention (Navarro et al., 2008; Rousk et al., 2012) as their increased 

commercialisation enhances the chance of these nanoparticles to reach the 

environment. Natural surface waters are likely to serve as the ultimate sink of 

nanomaterials, and there is some evidence on the occurrence of metal or metal 

oxide nanoparticles in streams (e.g. Wigginton et al., 2007; Kaegi et al., 2008).  

Ionic forms of many metals are known to be toxic to aquatic biota and the 

processes they drive (Duarte et al., 2009). Recent studies have pointed to potential 

ecotoxicity of nanometal oxides to aquatic organisms (Blaise et al., 2008; Lee et al., 

2009; Miller et al., 2010; Pradhan et al., 2012). Moreover, nanoparticles of CuO are 

likely to be more toxic than their bulk particles to a variety of aquatic organisms 

(Heinlaan et al., 2008; Aruoja et al., 2009; Mortimer et al., 2010).  

In streams, aquatic fungi play an important role in organic matter turnover 

and energy transfer to higher trophic levels (Graça, 2001). Our earlier study showed 

that nanoCuO and Cu2+ strongly affected the activity and diversity of aquatic fungal 

communities (Pradhan et al., 2011). However, information on how fungal 

populations with different background respond to nanoCuO remains unexplored. 

Adaptive mechanisms underlying the tolerance/resistance against several metal 

ions, including Cu2+, were shown in aquatic fungi contributing to explain their 

survival in metal-polluted environments (Jaeckel et al., 2005; Azevedo et al., 2007; 

Guimarães-Soares et al. 2007; Krauss et al., 2011). 

Laccases are extracellular multicopper-containing oxidoreductase enzymes, 

which catalyze one-electron oxidation of aromatic amines, phenolic and nonphenolic 

compounds with concomitant reduction of oxygen to water through its copper 

reduction centre (Junghanns et al., 2005; Castilho et al., 2009). Due to their high 

redox potential (≈ +800 mV), fungal laccases have a wide range of applications in 

lignin degradation, wastewater treatment, food processing, and as biosensors 

(Wesenberg et al., 2003; Brondani et al., 2009; Brijwani et al., 2010). Fungal 

laccases are also capable to degrade humic acids (Steffen et al., 2002), which are 
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present in natural organic matter in soils or surface waters (Steinberg et al., 2006). 

Moreover, Cu2+ stimulates laccase activity in fungi, including those involved in plant 

litter decomposition in streams (Junghanns et al., 2005, 2008). Conversely, laccase 

activity of the terrestrial wood decomposing fungus Trametes versicolor decreased 

by short-term exposure to Cu nanoparticles, while no effects were observed in the 

presence of Cu2+ (Shah et al., 2010). This suggests that nanoCu can have a different 

mode of action than its ionic form, making it important to better understand the 

effects of nanometal oxides on laccase activity.  

We investigated the effects of nanoCuO on four fungal isolates belonging to 

three species: two isolates were collected from non-polluted streams and the other 

two isolates were collected from metal-polluted streams. We hypothesized that i) 

nanoCuO induces toxicity to aquatic fungi by inhibiting biomass production and 

leading to mycelial morphological alterations, ii) fungal populations from non-

polluted streams would be more affected by nanoCuO than those from metal-

polluted streams, and iii) copper ions leached from nanoCuO would modulate 

laccase activity in fungi. For that, we examined the morphology of fungal mycelia, 

biomass production and extracellular laccase activity after exposure to increasing 

nanoCuO concentrations at two exposure times. In addition, we quantified total 

adsorbed copper to fungal mycelia, and leached ionic and nanoparticulate copper in 

the growth medium to better understand the effects of nanoCuO on aquatic fungi. 

Finally, because laccase activity in aquatic fungi is highly dependent on the growth 

conditions, the presence of laccase-like multicopper oxidase genes was checked 

under non-exposure conditions. 

 

 

6.2. Material and Methods 

6.2.1. Fungal cultures and exposure conditions  

Four aquatic fungal isolates were used for the experiment, namely 

Articulospora tetracladia UMB-072.01 (At72) and Phoma sp. UHH 5-1-03 (P5), 

collected from non-polluted streams, and A. tetracladia UMB-061.01 (At61) and 

Clavariopsis aquatica WD(A)-00-1 (Ca1), collected from polluted streams. The 

isolate At72 was collected from foam in the Maceira stream at the Peneda-Gerês 

National Park (Portugal), while At61 was collected from decomposing leaves in a 
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metal-polluted site of the Este River, near the industrial park of the city of Braga 

(Portugal). The isolate Ca1 was collected from a stream (Waldau/Zeitz, Germany) 

containing high Fe and Mn in the sediment and polluted with tar oil residues leached 

from former lignite-processing industries, while P5 was isolated from water in the 

Saale River (Germany). Further information of sampling sites can be found 

elsewhere (Portuguese streams, Pascoal et al. 2005; German streams, Junghanns 

et al., 2005, 2008, Sridhar et al., 2008).  

One agar plug (12-mm of diameter) of each fungal culture was homogenized 

(Ultraturrax, IKA, Staufen, Germany) in 1 mL of 1% (v/v) malt extract (ME) liquid 

medium, and 0.75 mL of the homogenate was transferred, aseptically, into 250-mL 

Erlenmeyer flasks containing 75 mL of 1% ME. After 48 h of fungal growth, 

nanoCuO was added to the cultures at the following final concentrations: 0, 5, 25, 

100 and 200 mg L-1.  Fungal cultures were then incubated for 3 and 10 days on a 

shaker (140 rpm), at 14°C, in the dark. Experiments were run in triplicates.   

 

6.2.2. Preparation and characterization of nanoCuO suspensions 

The stock suspension of copper oxide nanoparticles (CuO nanopowder <50 

nm, 99.5%, Sigma-Aldrich, St. Louis, MO, USA) was prepared by suspending 

nanoCuO powder in sterile (121°C, 20 min) Milli Q water and the suspension was 

sonicated in a water bath (42 kHz, 100 W; Branson 2510, Danbury, CT, USA) for 30 

min in the dark before use (Pradhan et al., 2012).  

NanoCuO in the stock suspension and growth medium was examined by 

scanning electron microscopy (SEM; Leica Cambridge S 360, Cambridge, UK) 

coupled to an energy dispersive X-ray (EDX) microanalysis setup (15 keV), as 

described in Pradhan et al. (2012). Briefly, 20 μl of nanoCuO suspension was 

loaded on a clean grease-free slide in the dark, air-dried and coated with gold in 

vacuum. Coated slides were scanned by SEM-EDX to confirm the presence of CuO 

nanoparticles. Size distribution of nanoCuO in stock suspension and growth medium 

was monitored by dynamic light scattering (DLS) (Malvern Zetasizer Nano ZS, 

Malvern Instruments Limited, UK) to check nanoparticle agglomeration. 

 

6.2.3. Visualization of mycelial morphology 

Fungal mycelia were harvested by filtration (5 μm pore size; Millipore, 

Billerica, MA, USA), washed with Milli Q water and re-suspended in 2 mL 
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phosphate-buffered saline (1× PBS, GIBCO, pH 7.4). Mycelia were fixed in 2.5% 

(v/v) glutaraldehyde for 24 h, and dehydrated in ethanol (v/v) as follows: 20%, 8 h; 

40%, 6 h; 60%, 4 h; 80%, 2 h; and 100%, 1 h. Mycelial suspensions (20 μL) were 

loaded on slides, coated with gold in vacuum, and scanned by SEM-EDX as above. 

 

6.2.4. Activity of extracellular laccase 

The activity of laccase (EC 1.10.3.2) was quantified by using the 

methodology described in Junghanns et al. (2008). Briefly, the oxidation of 2,2'-

azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) was followed in McIlvaine 

buffer (pH 4.0) at 420 nm (ε420 = 36 mM–1 cm–1) in 96-well flat-bottom microtiter 

plates (VWR, Darmstadt, Germany), using a microplate reader (SLT Spectra, 

Tecan, Crailsheim, Germany). Each well contained 160 µL of buffer, 20 µL of ABTS 

(20 mM) and 20 µL of mycelium-free medium. The measured values were corrected 

with a blank containing 20 µL of buffer instead of mycelium-free medium. Enzyme 

activity was expressed as units (U), where 1 U equals to 1 µmol product formed per 

minute. 

 

6.2.5. Fungal biomass quantification 

Fungal mycelia were harvested and washed, as above, dried at 80°C to 

constant mass (48 ± 8 h), and weighed to the nearest 0.001 g. 

 

6.2.6. Biosorption and metal analysis 

To quantify the biosorption of nanoCuO to fungal cell-walls, mycelia were 

harvested and washed, as above, and soaked for 12 h at 60°C in a mixture 

containing 4% HCl and 1% formic acid to dissolve nanoCuO to ionic Cu, and 1 mM 

EDTA as chelating agent. The solution was filtered through a polycarbonate 

membrane (0.2 µm pore size; Millipore, Billerica, MA) before copper quantification.  

To quantify ionic Cu leached from nanoCuO and the nano form of copper in 

the culture medium, the mycelium-free medium was centrifuged at 75,600 g for 90 

min (Beckman Avanti J-25I, USA). The supernatant containing the leached Cu2+ was 

filtered through a polycarbonate membrane (0.2 µm pore size). The filtered 

supernatant, the residue from filtration, and the pellet from centrifugation of each 

sample were treated, individually, with 5% HCl and 10% HNO3 at 60°C for 8 h, 
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before copper quantification by inductively coupled plasma mass spectrometry (ICP-

MS, X Seris 2, Thermo Scientific). 

 

6.2.7. Screening for laccase-like multicopper oxidase genes 

The genomic DNA was extracted from the four aquatic fungi grown in the 

absence of nanoCuO using the UltraClean Soil DNA kit (MoBio Laboratories, Solana 

Beach, CA, USA). Putative laccase gene fragments flanked by conserved 

sequences of laccase genes near the two pairs of histidines in two out of the four 

laccase copper binding regions of asco- and basidiomycetes (domains II and III; 

Lyons et al., 2003) were amplified with the degenerate primer pair Lac2for, 5ʹ GGI 

ACI WII TGG TAY CAY WSI CA 3ʹ and Lac3rev, 5ʹ CCR TGI WKR TGI AWI GGR 

TGI GG 3ʹ (Lyons et al., 2003; Castilho et al., 2009). Ambiguous bases were defined 

as follows: R=A/G, W=A/T, Y=C/T, S=C/G, K=T/G and I=inosine. For polymerase 

chain reaction (PCR), 1× Go Taq Green Master Mix (Promega corporation, 

Madison, WI, USA), 60 μM of each primer and 2 µL DNA (5 ng µL-1) were mixed 

gently with nuclease-free water in a final volume of 25 μL. DNA amplification 

programme started with a denaturation for 3 min at 95°C, followed by 35 cycles of 

denaturation for 30 s at 95°C, primer annealing for 30 s at 45°C and elongation for 2 

min at 70°C, followed by a final elongation for 5 min at 70°C. A PCR reaction without 

DNA template served as negative control. DNA amplification was performed in a 

Doppio thermal cycler (VWR International, Leuven, Belgium). Five µL of each 

amplification product was loaded on 1.3% agarose gel (BioRad, Danbury, CT, USA) 

and electrophoresis was carried out for 45 min at 90 V in 1 × Tris-acetate-EDTA 

(TAE) buffer. The GeneRulerTM 50 bp DNA ladder (Thermo Scientific, Wilmington, 

DE, USA) was used as a marker. GelStar (Lonza Rockland, Inc., USA) was used for 

detecting the bands on the gel. The gel images were captured under UV light in a 

transiluminator Eagle eye II (Stratagene, La Jolla, CA, USA).  

 

6.2.8. Data analyses 

Two-way ANOVAs (Zar 2009) were used to assess how fungal endpoints 

(fungal biomass production and laccase activity) varied with the fungal isolate and 

nanoCuO concentration. Data were analysed for both time periods, separately. 

Bonferroni post-tests (Zar 2009) were used to check which treatments differed 

significantly from the respective control. Data in percentage were arcsine square 
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root transformed to achieve normal distribution and homoscedasticity (Zar 2009). 

The effective nanoCuO concentration inducing 50% of decrease in fungal biomass 

(EC50) after 3 and 10 days of exposure was calculated using PriProbit 1.63 

(Sakuma, 1998). Correlations were used to examine the relationships between 

fungal biomass or laccase activity and adsorbed copper to fungal mycelia or leached 

ionic copper or nanoparticulate copper in the growth medium. Analyses were done 

with Statistica 6.0 (Statsoft, Inc., Tulsa, OK). 

 

 

6.3. Results 

6.3.1. Characterization of nanoCuO by SEM and DLS  

SEM analysis of nanoCuO in the aqueous stock suspension showed that the 

size of CuO nanoparticles ranged from 30 to 50 nm (not shown). However, DLS 

showed a single peak ranging between 100–340 nm with a z-average of 216 nm 

(Fig. 6.1) and a polydispersity index (PdI) of 0.196 in the stock suspension. In the 

growth medium (1% ME), the PdI increased to 0.387 and an additional peak 

between 75–165 nm (z-average of 114.4 nm) with 7.2% of area intensity was 

observed. Also, in the growth medium, the major peak shifted to 220–550 nm (z-

average of 379.6 nm) corresponding to 92.8% area intensity (Fig. 6.1). This 

suggests that nanoparticle agglomeration increased in the growth medium 

compared to aqueous stock suspension probably due to interactions between 

components of the medium and nanoparticles and/or self-agglomeration. However, 

the additional smaller peak in the growth medium indicated that self-agglomeration 

of a little fraction of nanoparticles decreased, probably by increased affinity of O 

groups from nanoCuO towards H+ due to decreased pH of the medium (pH ≤5.5) 

compared to that of the aqueous stock (pH 6.0). 
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Figure 6.1 Size distribution of nanoCuO by dynamic light scattering in aqueous stock suspension and 
in 1% ME medium. 

 

6.3.2. Mycelial morphology and nanoCuO adsorption 

SEM analysis of fungal mycelia revealed that the exposure to nanoCuO 

promoted alterations in mycelial morphology, namely shrinkage and degeneration of 

cell-walls in all fungal isolates (Fig. 6.2). The morphological changes in fungal 

mycelia increased with exposure time (from 3 to 10 days) and with increasing 

concentrations of nanoCuO. Adsorption of nanoCuO to fungal mycelia was detected 

(pointed arrows; Fig. 6.2) and the presence of Cu was confirmed by EDX (Fig. 6.3). 

A clear difference in mycelial morphological alterations and nanoCuO adsorption 

was observed between fungi from non-polluted streams (At72 and P5) and metal-

polluted streams (At61 and Ca1): the exposure to 200 mg L-1 of nanoCuO led to 

more severe effects on mycelia of At72 and P5 and to more nanoCuO adsorbed to 

mycelia (Fig. 6.2 and 6.3). 
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Figure 6.2 SEM visualization of mycelial morphology of aquatic fungi isolated from non-polluted 
streams (At72, Articulospora tetracladia UMB-072.01; and P5, Phoma sp. UHH 5-1-03) and from 
metal-polluted streams (At61, A. tetracladia UMB-061.01; and Clavariopsis aquatica WD(A)-00-1, Ca1) 
unexposed or exposed to increasing concentrations of nanoCuO (100 and 200 mg L

-1
) for 3 days and 

10 days.   
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Figure 6.3 EDX profiles showing copper adsorption to mycelia of aquatic fungi isolated from non-
polluted streams (At72, Articulospora tetracladia UMB-072.01; and P5, Phoma sp. UHH 5-1-03) and 
from metal-polluted streams (At61, A. tetracladia UMB-061.01; and Clavariopsis aquatica WD(A)-00-1, 
Ca1) unexposed or exposed to 200 mg L

-1
 of nanoCuO for 3 days and 10 days. 
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6.3.3. Copper in the growth medium and adsorbed to fungal mycelia  

In the absence of nanoCuO, copper adsorption to mycelial surface was not 

detected in any fungal isolate (Fig. 6.4A). Under nanoCuO exposure, copper 

adsorbed to mycelia increased with nanoCuO concentration, and the highest copper 

adsorption was found after exposure to 200 mg L-1 of nanoCuO in mycelia of fungal 

isolates from non-polluted streams, namely P5 (1752.5 µg microcosm-1) and At72 

(978 µg microcosm-1) (Fig. 6.4A). The amount of nanoparticulate copper in the 

growth medium increased with increasing nanoCuO concentration, and was higher 

in cultures of fungi from non-polluted streams (At72 and P5, 3418.9 and 1890.1 µg 

microcosm-1, respectively) than from metal-polluted streams (Ca1 and At61, 1464.3 

and 143.4 µg microcosm-1, respectively) (Fig. 6.4B). Large amounts of Cu2+ leached 

from nanoCuO were found in the growth medium of all fungal isolates, and the 

amount increased with the increase of nanoCuO concentration in the medium (Fig. 

6.4C). After exposure to the highest nanoCuO concentration, the amount of leached 

Cu2+ in the medium was highest in P5 cultures (7838.6 µg microcosm-1) and lowest 

in At72 cultures (3528.8 µg microcosm-1) (Fig. 6.4C). 
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Figure 6.4 Biosorption of copper to fungal mycelia (A), nanoparticulate copper in the culture medium 
(B) and ionic copper in the culture medium (C). Aquatic fungi isolated from non-polluted streams (At72, 
Articulospora tetracladia UMB-072.01; and P5, Phoma sp. UHH 5-1-03) and from metal-polluted 
streams (At61, A. tetracladia UMB-061.01; and Clavariopsis aquatica WD(A)-00-1, Ca1) were 
unexposed or exposed to increasing concentrations of nanoCuO (5, 25, 100 and 200 mg L

-1
) for 3 

days. 
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6.3.4. Effects of nanoCuO on fungal biomass production 

In the absence of nanoCuO, the biomass of each aquatic fungus increased 

with exposure time (Table 6.1). The top biomass producer was At61 (0.96 and 2.48 

g L-1 after 3 and 10 days, respectively) while the worst biomass producer was Ca1 

(0.67 and 2.1 g L-1 after 3 and 10 days, respectively) (Table 6.1). The exposure to 

nanoCuO significantly decreased biomass produced by all fungi in a concentration-

dependent manner (two-way ANOVAs, P<0.05), and effects were more severe at 

the longer exposure time (Fig. 6.5A and B for 3 and 10 days, respectively). LOEC 

values for nanoCuO were 5 mg L-1 for fungal isolates collected from non-polluted 

streams (At72 and P5) and were 5 times higher for fungal isolates from metal-

polluted streams (At61 and Ca1) (Table 6.1). Also, EC50 values for nanoCuO 

estimated after 3 days of exposure were lower for fungi collected from non-polluted 

streams (At72, 28.3 mg L-1 and P5, 41.2 mg L-1) than for fungi from metal-polluted 

streams (At61, 80.5 mg L-1 and Ca1, 108.7 mg L-1) (Table 6.1). Although a similar 

pattern was observed at the longer exposure time (10 days), EC50 values decreased 

for all fungal isolates (Table 6.1).   

 

Table 6.1 Biomass production by aquatic fungi in the absence of nanoCuO and toxicity parameters 
(LOEC- lowest observed effective concentration and EC50- median effective concentration) in aquatic 
fungi exposed for 3 and 10 days to nanoCuO. At72, Articulospora tetracladia UMB-072.01 and P5, 
Phoma sp. UHH 5-1-03, isolated from non-polluted streams; At61, A. tetracladia UMB-061.01 and Ca1, 
Clavariopsis aquatica WD(A)-00-1, isolated from metal-polluted streams. 

Fungi 

Fungal biomass*   

(g dry mass L
-1
) 

LOEC (mg L
-1
) EC50 (mg L

-1
) 

3 days  10 days  3 days  10 days 3 days  10 days 

At72 0.96 ± 0.05 2.48 ± 0.1 5 5 
28.3 

(22.2–35.5) 

24.0 

(19.4–29.2) 

At61
 

1.11 ± 0.08 2.72 ± 0.17 25 25 
80.5 

(61.6–109) 
65.2 

(52.9–81) 

Ca1 0.67 ± 0.07 2.1 ± 0.21 25 25 
108.7 

(81.3–155.3) 
77.4 

(55.5–115.1) 

P5 0.86 ± 0.05 2.29 ± 0.12 5 5 
41.2 

(32.2–52) 

31.0 

(24.1–39.2) 

*Mean ± SD, n=3.   

 

After 3 days of exposure to nanoCuO, biomass of all fungal isolates was 

negatively correlated with copper adsorbed to mycelia (P<0.05, Table 6.2). Fungal 

biomass was also negatively correlated with Cu2+ leached from nanoCuO in the 

growth medium, except in the case of P5 (Table 6.2). Apart from Ca1, biomass of 

the other fungi was not significantly correlated with nanoparticulate copper in the 

medium. 
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Table 6.2 Correlations between fungal biomass or extracellular laccase activities and copper adsorbed 
to mycelia or nanoparticulate or leached ionic copper in the medium after 3 days of exposure to 
nanoCuO. At72, Articulospora tetracladia UMB-072.01 and P5, Phoma sp. UHH 5-1-03, isolated from 
non-polluted streams; At61, A. tetracladia UMB-061.01 and Ca1, Clavariopsis aquatica WD(A)-00-1, 
isolated from metal-polluted streams. 

Parameter 
Aquatic 

fungi 

Copper (µg microcosm
-1

) 

Adsorbed Cu to 
fungi 

Nanoparticulate  

Cu in medium 

Leached Cu
2+  

in medium 

r P r P r P 

Fungal biomass (g L-1)       
At72 -0.9322 0.021 -0.8733 0.0531 -0.9834 0.0026 
At61 -0.9852 0.0022 -0.8172 0.0912 -0.9466 0.0147 

Ca1 -0.9486 0.0139 -0.9391 0.0179 -0.9677 0.0069 
P5 -0.8958 0.0397 -0.8623 0.0601 -0.8476 0.0698 

Laccase activity (U L-1)        

Ca1 0.9939 0.0006 0.9116 0.0311 0.9887 0.0014 
P5 0.8899 0.0431 0.6850 0.2019 0.8579 0.0629 

r, Coefficient of correlation 

 

Figure 6.5 Biomass of aquatic fungi isolated from non-polluted streams (At72, Articulospora tetracladia 
UMB-072.01; and P5, Phoma sp. UHH 5-1-03) and from metal-polluted streams (At61, A. tetracladia 
UMB-061.01; and Clavariopsis aquatica WD(A)-00-1, Ca1) unexposed or exposed to increasing 
concentrations of nanoCuO (5, 25, 100 and 200 mg L

-1
) for 3 days (A) and 10 days (B). 
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6.3.5. Activity of extracellular laccase 

In the absence of nanoCuO, the activity of extracellular laccase at day 3 was 

only detected in P5 (3.2 U L-1; Fig. 6.6A). At day 10, laccase activity increased 

mainly in P5 (11.6 U L-1; Fig. 6.6B). The exposure to nanoCuO led to an increase in 

fungal laccase activity in a concentration-dependent manner (two-way ANOVAs, 

P<0.05; Fig. 6.6). The highest laccase activity was observed in P5 (15 and 546.2 U 

L-1 after 3 and 10 days, respectively), followed by Ca1 (3 and 69.3 U L -1 after 3 and 

10 days, respectively). Only minor ABTS oxidation activity was detected in the other 

fungal strains (Fig. 6.6A and B).  

After 3 day of exposure to nanoCuO, a significant correlation was found 

between laccase activity and adsorbed copper to P5 and Ca1 mycelia (P<0.05, 

Table 6.2). Additionally, extracellular laccase activity of Ca1 was also correlated with 

both forms (ionic and nano) of copper in the growth medium (Table 6.2). 

 

Figure 6.6 Activity of extracellular laccase in aquatic fungi isolated from non-polluted streams (At72, 
Articulospora tetracladia UMB-072.01; and P5, Phoma sp. UHH 5-1-03) and from metal-polluted 
streams (At61, A. tetracladia UMB-061.01; and Clavariopsis aquatica WD(A)-00-1, Ca1) unexposed or 
exposed to increasing concentrations of nanoCuO (5, 25, 100 and 200 mg L

-1
) for 3 days (A) and 10 

days (B). 
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6.3.6. Laccase-like multicopper oxidase genes 

Gel electrophoresis revealed the presence of laccase-like multicopper 

oxidase gene fragments in the laccase copper binding regions II and III in the PCR 

amplified products of the fungal isolates Ca1 and P5, which were grown in the 

absence of nanoCuO (Fig. 6.7). We observed four less intense bands of about 900 

bp, 750 bp, 350 bp and <200 bp and a prominent band of about 600 bp in Ca1, 

while only a strong single band of about 500 bp was observed in P5 (Fig. 6.7). No 

DNA bands were found for At72 and At61 (Fig. 6.7). 

 

Figure 6.7 Fragments of laccase-like genes lac2 and lac3 (pointed with black arrow) in agarose gel 
obtained from aquatic fungi isolated from non-polluted streams (At72, Articulospora tetracladia UMB-
072.01; and P5, Phoma sp. UHH 5-1-03) and from metal-polluted streams (At61, A. tetracladia UMB-
061.01; and Clavariopsis aquatica WD(A)-00-1, Ca1). M: DNA ladder; (-) negative control. 

 

 

6.4. Discussion 

In this study, the exposure to nanoCuO led to a decrease in the biomass 

produced by all fungi in a concentration- and time-dependent manner. These results 

agree with our previous report in which nanoCuO inhibited biomass production by 

stream-dwelling fungal communities on decomposing plant litter (Pradhan et al., 

2011). However, compared to fungal communities, fungal isolates in malt extract 

medium seemed to be more sensitive to nanoCuO. Indeed, the inhibition of biomass 

production by the four fungal isolates after 10 days exposure to 200 mg L -1 

nanoCuO varied between 64.9–93.9%, whereas fungal biomass at the community 

level was inhibited only in 16.1 and 19.3% after 7 and 14 days of exposure to a 

similar nanoCuO concentration. Two main reasons might account to explain these 

differences: i) the high number of fungal species or strains in stream-dwelling 

communities increases the chance of encountering more tolerant/resistant species 
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and/or ii) fungal mycelia growing inside plant litter are somehow protected against 

direct contact with nanoCuO.  

Our results clearly showed that fungal isolates collected from non-polluted 

streams were more sensitive to nanoCuO comparing to fungal isolates from metal-

polluted streams, as shown by the lower LOEC and EC50 values for biomass 

production. Although there is a lack of information on the tolerance/resistance of 

aquatic fungi against nanoCuO, biomass production by fungi collected from metal-

polluted streams was less affected by ionic metals than that of fungi from non-

polluted streams (Jaeckel et al., 2005; Miersch et al., 2005). The exposure to Cu2+ 

led to a lower inhibition of biomass production by Heliscus submersus isolated from 

a metal-polluted stream compared to Varicosporium elodeae from a non-polluted 

stream (Azevedo et al., 2007). Also, the growth of strains of Articulospora tetracladia 

and Tetracladium marchalianum collected from copper-polluted streams was much 

less affected by Cu2+ than strains of the same species isolated from non-polluted 

streams (Miersch et al., 1997). Similarly, we found intraspecific differences in the 

biomass production under nanoCuO stress within isolates of A. tetracladia collected 

from metal-polluted (At61) and non-polluted streams (At72). Adaptive mechanisms 

of exposure to high levels of metal ions have been shown in aquatic fungi and 

include changes in the activity of antioxidant enzymes (Azevedo et al. 2007) and in 

the levels of glutathione (GSH) or other thiol-containing compounds (Guimarãres-

Soares et al., 2006, 2007; Braha et al., 2007).  

The differential inhibition pattern of biomass production after nanoCuO 

exposure in fungal isolates with different background was consistent with the 

alterations in mycelial morphology, with evidence of more severe cell-wall shrinkage 

and mycelial degeneration in fungi from non-polluted streams. A similar alteration in 

cell-wall morphology was previously shown in aquatic fungi after exposure to Cu2+ 

(Azevedo et al., 2007). SEM-EDX analyses showed higher biosorption of 

nanoparticulate copper to mycelia of fungi from non-polluted streams (P5 and At72) 

than from metal-polluted streams (Ca1 and At61). Moreover, our results agree with 

those found by others showing that Cu2+ biosorption in aquatic fungi increase in a 

dose-dependent manner (Braha et al., 2007).  

In this study, mean size of most nanoCuO in the growth medium was larger 

(379.6 nm with PdI of 0.387) than that measured in the stream water (202 nm; PdI, 

0.186; Pradhan et al., 2012), but nanoCuO toxicity to fungal populations in the 

growth medium (this study) was higher than to fungal communities in the stream 
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water (Pradhan et al., 2011). The presence of nanoCuO with smaller particle size 

(114.4 nm) in the growth medium found in our study might also have contributed to 

the increased toxicity because smaller nanoparticles are generally more toxic to 

living organisms (Van Hoecke et al., 2009). Also, the lower pH (≤5.5) of the growth 

medium compared to the stream water (pH 5.8; Pradhan et al., 2012) may have 

played a role in nanoCuO toxicity by promoting the leaching of Cu2+ from 

nanoparticles. In our study, negative correlations between fungal biomass (except 

for P5) and the amount of Cu2+ in the medium were found. However, some studies 

reported that leached Cu2+ alone could not fully explain nanoparticle toxicity (Griffitt 

et al., 2008; Buffet et al., 2011). Negative correlations between adsorbed copper 

and fungal biomass were also found in our study in all fungi. The toxicity of 

nanoCuO may occur directly by adsorption of nanoparticles to cells or indirectly by 

the entrance of nanoCuO followed by its degradation in the lysosomes leading to an 

intracellular accumulation of Cu2+ (Petersen and Nelson, 2010).  

Laccases, as multicopper oxidoreductase enzymes, are modulated by 

copper availability in the media (Junghanns et al., 2005; Castilho et al., 2009). Also, 

growth conditions such as nutrient availability and pH are recognised to affect the 

activity of these enzymes in aquatic fungi (Abdel-Raheem, 1997). In our study, 

Phoma sp. (P5) was the only fungus able to show laccase activity (11.6 U L -1) in 1% 

malt extract without nanoCuO, and laccase activity in this fungus did not exceed 

20.9 U L-1 in 2% malt extract (Junghanns et al., 2005). Earlier studies showed that 

Cu2+ stimulates laccase activity in P5 and C. aquatica (Ca1) (Junghanns et al., 

2005, 2008), and depletion of these ions can inactivate the enzyme (Keum and Li, 

2004). However, a reduction of laccase activity in the white-rot fungus T. versicolor 

was found after short-term exposure to highly aggregated nanoCu (Shah et al., 

2010). In our study, the exposure to nanoCuO stimulated laccase activity in P5 and 

Ca1, and laccase activity in these fungi was correlated with adsorbed nanoCuO to 

fungal mycelia. In addition, the highest Cu2+ amount was measured in the growth 

medium of P5 followed by Ca1, suggesting that Cu2+ leached from nanoCuO might 

have contributed to the stimulated laccase activity. The clearly measurable 

extracellular laccase activities in P5 and Ca1 are well corroborated by the detection 

of one and five laccase-like gene fragments, respectively, in these fungi. Moreover, 

our results regarding these putative laccase gene fragments are in agreement with 

the presence of one single and five putative laccase genes detected upon targeting 

laccase copper binding regions I and III in P5 and Ca1, respectively (Junghanns et 
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al., 2009; Solé et al., 2012). Such differences in the laccase gene inventory might 

have contributed to the observed differences in laccase activities between P5 and 

Ca1. By contrast, even under nanoCuO exposure, only minor laccase activities 

(perhaps representing unspecific ABTS oxidation activities attributable to other 

factors than laccase) could be detected in the isolates of A. tetracladia (At72 and 

At61). These findings agree with the absence of laccase-like gene fragments in the 

A. tetracladia strains.  

Overall results suggested that nanoCuO induce toxicity to aquatic fungi by 

inhibiting fungal biomass production and altering the mycelium morphology in a 

dose- and time-dependent manner. Laccase activity varied greatly among fungi and 

appeared to be related to the presence of laccase-like genes with a copper oxidase 

domain. Laccase activity and fungal biomass production were related to the 

amounts of nanoCuO adsorbed to mycelium and Cu2+ leached from nanoCuO in the 

growth medium. Different physiological responses to nanoCuO exposure were found 

in fungi collected from non-polluted and metal-polluted streams as shown by i) 

stronger inhibition in biomass production, ii) more pronounced alterations of mycelial 

morphology, and iii) higher nanoparticle biosorption in fungi from non-polluted 

streams. These differences were also observed at the intraspecific level (At61 and 

At72), further supporting higher tolerance/resistance to nanoCuO-induced stress in 

fungi from metal-polluted streams.   
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Fungi from metal-polluted streams 

have high ability to cope with the 
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Abstract 

Increased commercialization of products based on nanometal oxides 

increases the chance of their release into aquatic environments making it relevant to 

assess their potential impacts on aquatic biota. Aquatic fungi are worldwide 

distributed and play a key role in organic matter turnover in freshwater ecosystems. 

We investigated the biochemical and physiological responses induced by exposure 

to nanoCuO (5 levels, ≤ 200 mg L–1) on five fungal isolates collected from metal-

polluted or non-polluted streams. The exposure to nanoCuO led to lower 

intracellular ROS accumulation, plasma membrane disruption and DNA-strand 

breaks in fungi from metal-polluted streams than in those from non-polluted streams. 

The activities of glutathione reductase and superoxide dismutase were higher in 

fungi from metal-polluted than from non-polluted streams, although the opposite was 

found for glutathione peroxidase activity. Overall results showed that fungi from 

metal-polluted streams have higher capacity to deal with the oxidative stress 

induced by nanoCuO, probably due to their ability to maintain a high GSH:GSSG 

ratio.  

.  

 

Keywords: NanoCuO, ROS accumulation, DNA-strand breaks, plasma membrane 

disruption, antioxidant enzymes  
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7.1. Introduction  

Copper oxide nanoparticles (nanoCuO) are among the commercially used 

metal nanoparticles with a wide range of applications in research and daily-life 

products (Dutta et al., 2003; Zhang et al., 2008; Ren et al., 2009). Because 

commercialization of products based on nanoCuO has been growing quickly, the 

chance of their release into aquatic environments increases. NanoCuO is reported 

to induce toxicity in biological systems (e.g., yeasts, Kasemets et al., 2009; human 

cell lines, Karlsson et al., 2009), but only few studies were conducted on aquatic 

organisms (e.g. Mortimer et al., 2010; Saison et al., 2010). Although some studies 

have revealed lethal and sublethal effects of nanoCuO (marine invertebrates, Buffet 

et al., 2011; freshwater invertebrates, Pradhan et al., 2012), the mechanisms 

underlying the toxicity of metal nanoparticles are not fully understood.  

The toxicity of nanosized metals and metal oxides to living cells has been 

attributed to their ability to induce oxidative stress by producing intracellular reactive 

oxygen species (ROS). This generally leads to i) mitochondrial membrane 

depolarization, ii) DNA-strand breaks, and iii) cell membrane damage by lipid 

peroxidation (Lin et al., 2006; Limbach et al., 2007; Karlsson et al., 2009; Lee et al., 

2009; Petersen and Nelson, 2010). For instance, TiO2 nanoparticles induced 

oxidative stress in planktonic assemblages in biofilms or free-living cells in stream 

microcosms (Battin et al., 2009), and the exposure to nanoCuO altered the activity 

of several antioxidant enzymes (SOD, superoxide dismutase; CAT, catalase; and 

GST, glutathione-S-transferase) in marine invertebrates (Buffet et al., 2011). Most of 

these antioxidant enzymes are associated with the ascorbate-glutathione cycle, in 

which the reduced form of glutathione (GSH) is converted in its oxidized form 

(GSSG) via formation of a disulfide linkage under oxidative stress. The maintenance 

of a high GSH:GSSG ratio is crucial for regulating the cellular redox state and 

controlling the oxidative stress to prevent cellular damage (Penninckx, 2002; Huang 

et al., 2010). The two major enzymes involved in maintaining the GSH:GSSG ratio 

are glutathione reductase (GR) and glutathione peroxidase (GPx), which also play 

key roles in oxidative stress defense (Israr et al., 2006); GR mediates the 

conversion of GSSG to GSH with the help of NADPH, while GPx converts GR to 

GSSG when encountered with peroxides/hydroperoxides (Townsend et al., 2003). 

The antioxidant activity of SOD is associated with the conversion of O2•−
 radicals 

into H2O2, which is consumed by CAT or peroxidases (Fridovich, 1986).  
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Aquatic fungi are worldwide distributed and play a key role in organic matter 

decomposition within trophic networks in streams (Graça 2001; Pascoal et al., 

2005a). Several reports document their occurrence in metal-polluted streams and 

have provided evidence that fungi may develop adaptive mechanisms towards 

tolerance/resistance against metals, helping them to survive in metal-polluted 

environments (Jaeckel et al., 2005; Azevedo et al. 2007; Braha et al., 2007; 

Guimarães-Soares et al. 2007; Miersch and Grancharov, 2008; Krauss et al., 2011). 

Metals, including copper, are able to induce oxidative stress in aquatic fungi leading 

to plasma membrane damage and DNA-strand breaks with increased accumulation 

of intracellular ROS (Azevedo et al., 2009). Interestingly, various antioxidant 

enzymes associated with the ascorbate-glutathione cycle exhibit different activities 

under metal exposure in fungal isolates from non-polluted and metal-polluted 

streams (Azevedo et al., 2007; Braha et al., 2007). This raises the question whether 

fungal populations with different background (i.e., adapted or not to metal stress) 

may show different physiological and biochemical responses under exposure to 

metal or metal oxide nanoparticles. 

We investigated the impacts of CuO nanoparticles on cellular targets and 

antioxidant defenses in five aquatic fungi collected from metal-polluted or non-

polluted streams, under the hypotheses that i) nanoCuO induces oxidative stress to 

aquatic fungi, and ii) fungal isolates from metal-polluted streams would better cope 

with the stress induced by nanoCuO than isolates from non-polluted streams, 

resulting in less cellular damages in the former fungal strains. We assessed 

intracellular accumulation of ROS, plasma membrane integrity, and DNA-strand 

breaks, as well as the activities of GR, GPx and SOD representing antioxidant 

enzymatic responses after exposure to increasing concentrations of nanoCuO. 

 

 
7.2. Material and Methods 

7.2.1. Preparation and characterization of nanoCuO stock suspension 

Nanocopper oxide (nanopowder <50 nm, 99.5%; Sigma-Aldrich, St. Louis, 

MO) stock suspension was mixed with autoclaved Milli Q water (121°C, 20 min), and 

sonicated (42 kHz, 100 W; Branson 2510, Danbury, CT) for 30 min in the dark 

before use (Pradhan et al., 2012). The stock suspension was characterized by 

spectrophotometry (UV–1601, Shimadzu, Kyoto, Japan), followed by scanning 
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electron microscopy (SEM, Leica Cambridge S 360, Cambridge, UK) coupled to an 

energy dispersive X-ray (EDX) microanalysis setup (15 keV), as described in 

Pradhan et al. (2011). NanoCuO showed a plasmon peak at 359 nm, and SEM-EDX 

confirmed that the size of CuO nanoparticles ranged between 30–50 nm as shown 

elsewhere (Fig. 1b in Pradhan et al., 2011). Size distribution of nanoparticles was 

monitored by dynamic light scattering (DLS) using a zetasizer (Malvern Zetasizer 

Nano ZS, Malvern Instruments Limited, UK) as described by Pradhan et al. (2012). 

Size distribution of nanoCuO ranged between 100–340 nm with an average size of 

216 nm and polydispersity index (PdI) of 0.196. The stability of the stock suspension 

was confirmed up to 3 weeks.   

 

7.2.2. Fungal cultures and exposure conditions 

Five fungal isolates were used: two were obtained from non-polluted 

streams, namely Articulospora tetracladia UMB-072.01 (At72) and Phoma sp. UHH 

5-1-03 (P5), while the other three were obtained from metal-polluted streams, 

namely A. tetracladia UMB-061.01 (At61), Heliscus lugdunensis H-4-2-4 (H4) and 

Clavariopsis aquatica WD(A)-00-1 (Ca1). The isolate At72 was collected in the 

Maceira stream at the Peneda-Gerês National Park (Portugal), while At61 was 

isolated in the Este River at the industrial park of the city of Braga (Portugal). The 

isolate H4 was collected from a stream in the Mansfelder Land area (Germany), the 

isolate Ca1 was collected from a stream with high levels of Fe and Mn in sediments 

and tar oil residues leached from former lignite-processing industries (Waldau/Zeitz, 

Germany), and P5 was isolated in the Saale River (Germany). Further information of 

sampling sites can be found elsewhere (Portuguese streams, Pascoal et al. 2005b; 

German streams, Junghanns et al., 2005; Braha et al., 2007; Junghanns et al., 

2008, Sridhar et al., 2008). 

One agar plug (12 mm diameter) of 15 day-old cultures of each fungus 

grown on malt extract medium (ME, 1% w/v; agar, 1.5% w/v) was homogenized 

(Ultraturrax IKA, Staufen, Germany) in 1 mL sterile liquid medium (ME 1%), and 

0.75 mL of the homogenate was inoculated in 250 mL Erlenmeyer flask containing 

75 mL of ME medium. Each fungus was exposed to increasing concentrations of 

nanoCuO (0, 5, 25, 100 and 200 mg L-1) and to 25 mg L-1 of Cu2+ (CuCl2.2H2O, 

>99%; Sigma-Aldrich, St. Louis, MO) in triplicates. Chemicals were added after 48 h 

of growth. Fungal cultures were incubated at 14°C on a shaker (140 rpm) in the 

dark. Fungal mycelia were collected after 3 and 10 days of exposure to the 
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chemicals for assessing intracellular accumulation of ROS, plasma membrane 

integrity, DNA-strand breaks, total protein concentration and activity of antioxidant 

enzymes. 

 

7.2.3. Detection of intracellular reactive oxygen species 

The accumulation of intracellular ROS was assessed with MitoTracker Red 

CM-H2XRos (Molecular Probes, Eugene, OR). The dye in its reduced form does not 

fluoresce until it enters an actively respiring cell, where it is oxidized by intracellular 

ROS to form a red fluorescent compound, which is sequestered in mitochondria 

(Azevedo et al. 2009). A solution of the dye (1 mM) in dimethyl sulfoxide (DMSO; 

≥99.9%, Sigma-Aldrich) was prepared in the dark before use. Mycelium 

suspensions were washed twice in phosphate-buffered saline (1× PBS, pH 7.4; 

GIBCO) by centrifugation (1000 rpm; 5 min), and incubated with 40 μg mL−1 of 

MitoTracker Red for 15 min at room temperature in the dark. Mycelia were scanned 

under an epifluorescence microscope (1000×; Leica DM5000B, Germany), and 

images were acquired with a digital camera (Leica DFC 350 FX R2) using the 

software LAS AF V1.4.1. 

 

7.2.4. Assessment of plasma membrane integrity 

The effects of nanoCuO on plasma membrane integrity were assessed by 

propidium iodide (PI; Molecular Probes, Eugene, OR), a membrane impermeable 

dye, which enters the cells and binds to nucleic acids when plasma membrane 

disruption occurs (Azevedo et al., 2007). Mycelium with intense red fluorescence 

was considered to have plasma membrane disruption. Fungal mycelia were washed 

as above and incubated with PI (5 μg mL−1) for 15 min at room temperature in the 

dark. Stained mycelia were placed on a grease-free slide and covered with a cover-

slip after mixing with an anti-fading and anti-photobleaching reagent (Vectashield 

Mounting Medium for fluorescence, H-1000; Vector Laboratories). Mycelia were 

scanned under an epifluorescence microscope as above.  

 

7.2.5. TUNEL assay and DAPI staining 

DNA-strand breaks in fungal mycelia were visualized by terminal 

deoxynucleotidyl transferase mediated dUTP nick end labelling (TUNEL) using the 

In situ Cell Death Detection Kit Fluorescein (Roche) (Azevedo et al., 2009). TUNEL 
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labels the free 3‟-OH termini with FITC-labelled dUTP, and green fluorescence was 

detected by epifluorescence microscopy. Fungal mycelium was fixed with 

formaldehyde (4%, v/v) and cell wall was digested with zymolyase (0.5 µg µL−1) in 2-

mercaptoethanol (1%, v/v) during 2 h at 37°C under shaking (150 rpm). Then, 

mycelia were washed twice in PBS (1×, pH 7.4) by centrifugation at 1000 rpm for 5 

min. Mycelia were then mounted on grease free slides and incubated with a 

permeabilization solution (0.1% (v/v) Triton X-100 in 0.1% sodium citrate) for 10 min 

at room temperature, rinsed twice in PBS (1×, pH 7.4) and incubated with the 

TUNEL reaction mixture. Slides were incubated in the dark under a humidified 

atmosphere for 1 h at 37°C. To co-localize DNA, slides were incubated for 15 min 

with 50 µL of 0.1 µg µL–1 of 4',6-diamidino-2-phenylindole (DAPI; Sigma), which 

forms a blue fluorescent complex with the double-stranded DNA. Then, slides were 

washed with PBS (1×, pH 7.4), and 10 µL of a mixture containing 100 µL of the anti-

fading agent Vectashield and 2 µL of RNase (0.5 µg mL−1) was added to each slide. 

Mycelia were observed by epifluorescence microscopy. 

 

7.2.6. Preparation of cell-free extracts 

Fungal mycelia were harvested by filtration (5 μm pore size, Millipore, 

Billerica, MA), washed three times with Milli Q water, and pressed between two 

layers of filter paper to remove the excess of water. Mycelia were mixed with sterile 

glass beads and ground in a liquid nitrogen in a cooled mortar. The mixture was 

homogenized in a buffer solution (1:5, w/v), containing 100 mM KH2PO4, 100 mM 

Tris/HCl (pH 7.8), 5 mM EDTA and 2% polyvinylpyrrolidone (PVP), and sonicated 

(42 kHz, 100 W, Branson 2510, Danbury, CT, USA) for 5 × 30 s at 0-4°C (cooled on 

ice after each sonication cycle). The cell-free extract was obtained by centrifugation 

(4000 g for 10 min and 13,800 g for 30 min; at 4°C) and used to measure 

concentration of intracellular protein and antioxidant enzymatic activities. 

 

7.2.7. Activity of antioxidant enzymes and concentration of intracellular 

protein  

The activity of glutathione reductase (GR) was measured according to a 

modified method of Esterbauer and Grill (1978). The cell-free extract (25 µL) was 

added to a 200 µL reaction mixture containing 100 mM potassium phosphate buffer 

(pH 7.8), 100 mM Tris/HCl, 30 mM EDTA, 3 mM MgCl2, 0.1% BSA, 1.6 mM GSSG 
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and 0.25 mM NADPH. The oxidation of NADPH was followed at 340 nm (extinction 

coefficient: 6.2 mM-1 cm-1). The GR activity was calculated from the slope of NADPH 

absorbance curve.  

The activity of glutathione peroxidase (GPx) was measured according to a 

modified method of Anderson and Davis (2004). The cell-free extract (25 µL) was 

added to a 200 µL reaction mixture containing 100 mM potassium phosphate buffer 

(pH 7.8), 100 mM Tris/HCl, 1.25 mM EDTA, 1.25 mM NaN3, 1.0 mM GSH, 0.25 mM 

NADPH, 0.6 U GR (from yeast) and 1.2 mM cumene hydroperoxide. GPx activity 

was calculated from the slope of NADPH absorbance curve as above. 

The activity of superoxide dismutase (SOD) was determined according to a 

modified method of Beyer and Fridovich (1987) and Jevremović et al. (2010) by 

measuring the reduction of nitroblue tetrazolium (NBT) at 560 nm. The cell-free 

extract (25 µL) was added to a 200 µL reaction mixture containing 12.5 mM 

potassium phosphate buffer (pH 7.8), 0.1 mM EDTA, 16.5 mM L-methionine, 0.08 

mM NBT and 0.04 mM riboflavin. The reaction mixture was kept under a fluorescent 

light for 5 min. One SOD unit was defined as the enzyme amount inhibiting by 50% 

the NBT reduction rate. 

All enzymatic activities were measured spectrophotometrically (UV–1601, 

Shimadzu, Kyoto, Japan) at 25°C. Total intracellular protein concentration in cell-

free extracts was determined according to Bradford (1976) using BSA as standard.  

 

7.2.8. Data analyses 

Two-way ANOVAs (Zar 2009) were used to assess how measured endpoints 

varied with fungal isolate and nanoCuO concentration. Data were analysed for each 

time, separately. Significant differences between treatments and respective controls 

were analysed by Bonferroni post-tests (Zar 2009). Data in percentage were arcsine 

square root transformed to achieve normal distribution and homoscedasticity (Zar 

2009). Analyses were done with Statistica 6.0 (Statsoft, Inc., Tulsa, OK). 

 

7.3. Results 

7.3.1. Intracellular accumulation of reactive oxygen species 

Intracellular accumulation of ROS did not occur in the absence of nanoCuO 

or Cu2+ as indicated by the absence of red fluorescence after MitoTracker Red CM-
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H2XRos staining of fungal mycelia (Fig. 7.1). The exposure to nanoCuO or Cu2+ led 

to intracellular accumulation of ROS as shown by red fluorescence (Fig. 7.1). 

Intracellular ROS accumulation promoted by nanoCuO was dose dependent. 

Mycelia exposed to the highest nanoCuO concentrations (100 and 200 mg L -1) and 

to 25 mg L-1 of Cu2+ showed higher intracellular ROS accumulation after 10 than 

after 3 days of exposure (Fig. 7.1B versus Fig. 7.1A). The exposure to nanoCuO led 

to higher ROS accumulation in fungi from non-polluted streams (At72 and P5) than 

from metal-polluted streams (Fig. 7.1). Moreover, accumulation of ROS was higher 

after exposure to 25 mg L-1 of Cu2+ than to the same concentration of nanoCuO (Fig. 

7.1). 

 

Figure 7.1 ROS accumulation, shown by red fluorescence after MitoTracker Red CM-H2XRos staining, 
in mycelia of aquatic fungi isolated from non-polluted streams (At72, Articulospora tetracladia UMB-
072.01; and P5, Phoma sp. UHH 5-1-03) and from metal-polluted streams (At61, A. tetracladia UMB-
061.01; H4, Heliscus lugdunensis H-4-2-4; and Clavariopsis aquatica WD(A)-00-1, Ca1) exposed to 
increasing concentrations of nanoCuO (0, 5, 25, 100 and 200 mg L

-1
) and to 25 mg L

-1
 of Cu

2+
 for 3 

days (A) and 10 days (B). 

 

7.3.2. Plasma membrane integrity 

In the absence of nanoCuO or Cu2+, plasma membrane disruption was not 

observed in fungi after 3 and 10 days of experiment, as indicated by the absence of 
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red fluorescence after PI staining (Fig. 7.2A and B). The exposure for 3 days to 

nanoCuO or Cu2+ led to plasma membrane disruption of fungal mycelia, and the 

effects increased with increasing nanoCuO concentration (Fig. 7.2A). At the longer 

time (10 days), the intensity of red fluorescence and the frequency of PI-positive 

cells further increased after exposure to higher nanoCuO concentrations or to 25 mg 

L-1 of Cu2+ (Fig. 7.2B). Under exposure to the highest nanoCuO concentrations (100 

and 200 mg L-1), plasma membrane disruption was higher in fungi isolated from non-

polluted streams, namely At72 and P5, comparing to fungi from metal-polluted 

streams (At61, H4 and Ca1), particularly after 10 days of exposure (Fig. 7.2B). 

Effects of 25 mg L-1 of Cu2+ on plasma membrane disruption were more pronounced 

than those promoted by the same concentration of nanoCuO (Fig. 7.2). 

 

Figure 7.2 Plasma membrane damage, shown by red fluorescence after propidium iodide staining, in 
aquatic fungi isolated from non-polluted streams (At72, Articulospora tetracladia UMB-072.01; and P5, 
Phoma sp. UHH 5-1-03) and from metal-polluted streams (At61, A. tetracladia UMB-061.01; H4, 
Heliscus lugdunensis H-4-2-4; and Clavariopsis aquatica WD(A)-00-1, Ca1) exposed to increasing 
concentrations of nanoCuO (0, 5, 25, 100 and 200 mg L

-1
) and to 25 mg L

-1
 of Cu

2+
 for 3 days (A) and 

10 days (B). 
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7.3.3. DNA-strand breaks 

In the absence of nanoCuO or Cu2+, fungal nuclei showed blue fluorescence 

indicative of DAPI bound to double-stranded DNA, and no TUNEL-positive 

phenotype was detected (absence of green fluorescence) (Fig. 7.3). The exposure 

for 3 days to increasing nanoCuO concentrations resulted in a TUNEL-positive 

phenotype, indicative of DNA-strand breaks, as shown by an increased green 

fluorescence and a decreased blue fluorescence of DAPI in fungal hyphae (Fig. 

7.3A).  

 

Figure 7.3 In situ detection of DNA-strand breaks by fluorescence staining with TUNEL (green) and 
DAPI (blue) isolated from non-polluted streams (At72, Articulospora tetracladia UMB-072.01; and P5, 
Phoma sp. UHH 5-1-03) and from metal-polluted streams (At61, A. tetracladia UMB-061.01; H4, 
Heliscus lugdunensis H-4-2-4; and Clavariopsis aquatica WD(A)-00-1, Ca1) exposed to increasing 
concentrations of nanoCuO (0, 5, 25, 100 and 200 mg L

-1
) and to 25 mg L

-1
 of Cu

2+
 for 3 days (A) and 

10 days (B). 

 

The occurrence of DNA-strand breaks increased after 10 days of exposure 

to increasing nanoCuO concentration (Fig. 7.3B). Also, fungal isolates from non-

polluted streams (At72 and P5) showed higher number of cells with TUNEL-positive 
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phenotype than isolates from metal-polluted streams, mainly after 10 days of 

exposure (Fig. 7.3B). At this exposure time, 25 mg L-1 of Cu2+ seemed to induce 

higher number of cells with DNA-strand breaks than the same concentration of 

nanoCuO in At72 and P5 (Fig. 7.3). 

 

7.3.4. Total intracellular protein 

In the absence of nanoCuO, concentration of total intracellular protein 

differed with the fungal isolate and the exposure time (Table 7.1). Upon exposure to 

nanoCuO, the intracellular protein increased in a dose- and time-dependent manner 

in all fungi (two-way ANOVAs, P<0.05, Table 7.1; Fig. 7.4A and B). Exposure to 

increased nanoCuO concentrations led to higher levels of intracellular protein in 

fungi from non-polluted streams than in those from metal-polluted streams (two-way 

ANOVAs, P<0.05, Table 7.1; Fig. 7.4A and B). Maximum increase in intracellular 

protein was found after 10 days of exposure to the highest nanoCuO concentration 

as follows: At72, 13.5×; P5, 6.8×; At61, 5.4×; H4, 2.5×; and Ca1, 2×. 

 

Table 7.1 Total intracellular protein concentration in aquatic fungi isolated from non-polluted streams 

(At72, Articulospora tetracladia UMB-072.01; and P5, Phoma sp. UHH 5-1-03) and from metal-polluted 

streams (At61, A. tetracladia UMB-061.01; H4, Heliscus lugdunensis H-4-2-4; and Clavariopsis 

aquatica WD(A)-00-1, Ca1) exposed or not to increasing concentrations of nanoCuO for 3 days and 10 

days 

NanoCuO 

(mg L
-1

) 

Total intracellular protein (mg g
-1 

fungal dry mass) 

At72 At61 H4 P5 Ca1 

3d 10d 3d 10d 3d 10d 3d 10d 3d 10d 

0 0.010 0.010 0.010 0.011 0.051 0.038 0.024 0.025 0.028 0.029 
5 0.010 0.010 0.010 0.012 0.052 0.045 0.024 0.030 0.028 0.027 

25 0.016 0.021* 0.012 0.015 0.055 0.054 0.032 0.045 0.041 0.040 
100 0.034* 0.044* 0.017 0.040* 0.061 0.063 0.054* 0.086* 0.042 0.052* 
200 0.117* 0.135* 0.030* 0.059* 0.074 0.094* 0.125* 0.167* 0.052 0.059* 

*, treatments that differ significantly from the respective control (Bonferroni tests, P<0.05). 

 

7.3.5. Activity of oxidative stress enzymes 

The activity of GR increased significantly with increasing concentration of 

nanoCuO in all fungi for both exposure times (two-way ANOVAs, P<0.05, Table 7.2; 

Fig. 7.4C and D). In the absence of nanoCuO, the GR activity after 3 days of 

experiment varied from 0.903 to 1.048 nanoKat mg-1 protein in H4 and Ca1, 

respectively (Table 7.2). At this time, the exposure to nanoCuO increased the 

relative GR activity more in fungi collected from metal-polluted streams (up to 185.4, 
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175.1 and 172.4% for At61, H4 and Ca1, respectively) than in fungi from non-

polluted streams (145.9% and 157.5% for At72 and P5, respectively) (Fig. 7.4C). 

After longer time, GR activity increased remarkably in fungi isolated from metal-

polluted streams (At61, 226.8%; H4, 205.9%; Ca1, 250.2%) compared to fungi from 

non-polluted streams (At72, 137.3%; P5, 169.2%) (Fig. 7.4D).  

In the absence of nanoCuO, the GPx activity ranged from 0.756 to 1.653 

nanoKat mg-1 protein in At72 and At61 after 3 days of experiment (Table 7.2). 

Maximum GPx activity was found in AT61 after 10 days and corresponded to 1.706 

nanoKat mg-1 protein (Table 7.2). Exposure to increased concentrations of 

nanoCuO significantly increased the activity of GPx in all fungi (two-way ANOVAs, 

P<0.05, Table 7.2; Fig. 7.4E and F). After 3 and 10 days of exposure to nanoCuO, 

maximum increase in the activity of GPx was found in fungi collected from clean 

streams, namely P5 (313.3% 3 days; 330.9%, 10 days) and At72 (288.4% 3 days; 

374%, 10 days), comparing to fungi from metal-polluted streams, namely At61 

(163.8% 3 days; 164.3%, 10 days), H4 (269.7% 3 days; 309.1%, 10 days) and Ca1 

(203.6% 3 days; 189.9%, 10 days) (Table 7.2; Fig. 7.4E and F).  

In the absence of nanoCuO, the activity of SOD ranged from 0.119 to 0.566 

nanoKat mg-1 protein in H4 and in P5, respectively. The exposure for 3 days to 

increased concentrations of nanoCuO significantly increased SOD activity in all 

fungi (two-way ANOVAs, P<0.05, Table 7.2; Fig 7.4G). Higher increases in SOD 

activity were found in fungi collected from metal-polluted streams (H4, 880.4%; Ca1, 

362.9%; and At61, 237.2%) comparing with fungi from non-polluted streams (At72, 

213.6%; and P5, 225.9%) (Fig. 7.4G). 
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Figure 7.4 Protein increase and enzymatic activities in mycelia of aquatic fungi isolated from non-
polluted streams (At72, Articulospora tetracladia UMB-072.01; and P5, Phoma sp. UHH 5-1-03) and 
from metal-polluted streams (At61, A. tetracladia UMB-061.01; H4, Heliscus lugdunensis H-4-2-4; and 
Clavariopsis aquatica WD(A)-00-1, Ca1) exposed to increasing concentrations of nanoCuO (0, 5, 25, 
100 and 200 mg L

-1
). Protein increase after exposure for 3 days (A) and 10 days (B); glutathione 

reductase (GR) activity after exposure for 3 days (C) and 10 days (D); glutathione peroxidase (GPx) 
activity after exposure for 3 days (E) and 10 days (F); and superoxide dismutase (SOD) activity after 
exposure for 3 days (G). Mean ± SEM, n=3. 
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Table 7.2 Activity of glutathione reductase (GR), glutathione peroxidase (GPx) and superoxide 

dismutase (SOD) in aquatic fungi isolated from non-polluted streams (At72, Articulospora tetracladia 

UMB-072.01; and P5, Phoma sp. UHH 5-1-03) and from metal-polluted streams (At61, A. tetracladia 

UMB-061.01; H4, Heliscus lugdunensis H-4-2-4; and Clavariopsis aquatica WD(A)-00-1, Ca1) exposed 

or not to increasing concentrations of nanoCuO for 3 days and 10 days. 

Enzyme 
NanoCuO  

(mg L
-1

) 

Enzyme activity (nanoKat mg
-1

 protein) 

At72 At61 H4 P5 Ca1 

3d 10d 3d 10d 3d 10d 3d 10d 3d 10d 

GR 0 0.973 1.109 1.008 1.027 0.903 0.973 1.029 1.041 1.048 0.921 

5 1.008 1.170 1.195 1.524* 1.192 1.196 1.040 1.132 1.221 1.185 

25 1.083 1.164 1.571* 1.635* 1.253* 1.680* 1.248 1.259 1.459* 1.254* 

100 1.28* 1.281 1.675* 1.692* 1.312* 1.851* 1.503* 1.638* 1.734* 1.84* 

200 1.42* 1.523* 1.868* 2.330* 1.581* 2.002* 1.621* 1.761* 1.807* 2.305* 

GPx 0 0.756 0.823 1.653 1.706 0.792 0.770 0.804 0.868 1.095 1.230 

5 1.446* 1.829* 1.883 1.754 0.999 0.902 1.519* 1.609* 1.161 1.499 

25 1.514* 1.900* 2.054 1.857 1.267* 1.29* 1.845* 2.482* 1.152 1.419 

100 2.055* 2.853* 2.402* 2.443* 1.970* 1.576* 1.998* 2.808* 1.809* 1.948* 

200 2.182* 3.079* 2.708* 2.802* 2.137* 2.380* 2.518* 2.871* 2.229* 2.335* 

SOD 0 0.513 - 0.497 - 0.119 - 0.566 - 0.246 - 

5 0.891 - 0.709 - 0.430* - 0.735 - 0.270 - 

25 1.038* - 0.983* - 0.539* - 0.746 - 0.358 - 

100 1.081* - 1.046* - 0.998* - 1.268* - 0.710* - 

200 1.096* - 1.479* - 1.05* - 1.278* - 0.894* - 

-, not measured; *, treatments that differ significantly from the respective control (Bonferroni tests, P<0.05).  

 

 

7.4. Discussion 

Our study showed that exposure to nanoCuO induced oxidative stress in 

aquatic fungi by increasing accumulation of intracellular ROS, and led to plasma 

membrane disruption and DNA-strand breaks in a dose-dependent manner. In other 

biological systems like human cell lines (Karlsson et al., 2009), protozoa (Mortimer 

et al., 2010), human lung cells (Lin et al., 2006; Petersen and Nelson, 2010) and 

marine invertebrates (Buffet et al., 2011), nanoparticles of metal oxides, including 

nanoCuO, are reported to induce intracellular accumulation of ROS by mitochondrial 

membrane depolarization, plasma membrane damage by lipid peroxidation and 

DNA-strand breaks leading to apoptotic or necrotic death.  

In our previous studies, the structure of aquatic fungal communities in stream 

microcosms changed after exposure to nanoCuO (Pradhan et al., 2011) or Cu2+ 

(Duarte et al., 2008, 2009) suggesting that fungi may adapt to the stress induced by 

nanoCuO as found for metal ions (Azevedo et al., 2007, 2009; Guimarães-Soares et 

al., 2007). Our study also revealed different response patterns to the stress induced 

by nanoCuO between fungi collected from metal-polluted streams and from non-
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polluted streams. Indeed, the levels of ROS accumulation, membrane damage, and 

DNA-strand breaks were higher in fungi from non-polluted streams (At72 and P5) 

compared to fungi from metal-polluted streams (At61, H4, Ca1). Differences were 

more prominent after longer time (10 days) of exposure to higher nanoCuO 

concentrations. However, effects of exposure to the lowest nanoCuO concentration 

(5 mg L-1) were more pronounced at short than at long time suggesting that fungi 

have the ability to repair membrane damages under low nanoCuO stress. This 

agrees with the reported recovery of plasma membrane integrity in the aquatic 

fungus H. submersus after long time of exposure to Cu2+ (Azevedo et al., 2007).  

In our study, the activity of the enzymes GR, GPx and SOD increased after 

exposure to nanoCuO in a dose-dependent manner, supporting their role in coping 

with oxidative stress and contributing to cellular detoxification (Israr et al., 2006; Lin 

et al., 2006; Fahmy and Cormier, 2009; Buffet et al., 2011). In our study, the activity 

of SOD increased more than the activity of other antioxidant enzymes after 3 days of 

exposure to nanoCuO, suggesting that SOD may be involved in early defence 

against ROS, particularly in fungi from metal-polluted streams. The maintenance of 

high GSH:GSSG ratio in cells is needed to protect them against oxidative stress 

(Townsend et al., 2003); GR is a key enzyme to keep the pool of glutathione in its 

reduced form (GSH), whereas GPx interacts with free peroxides/hydroperoxides and 

converts GSH to GSSG (Townsend et al., 2003; Israr et al. 2006). Under metal-

induced oxidative stress, the increase in glutathione pool is often observed in metal-

tolerant fungi, including aquatic fungi from metal-polluted streams (Jaeckel et al., 

2005; Braha et al., 2007). Although the activities of all tested enzymes had 

increased with nanoCuO concentration and exposure time, the response differed 

among fungal isolates as summarized in Fig 7.5. Fungi from non-polluted streams 

(At72 and P5) showed lower GR activity and higher GPx activity (Fig. 7.5A) 

compared to fungi from metal-polluted streams (At61, H4 and Ca1) (Fig. 7.5B), and 

differences became more pronounced at the longer exposure time. This suggests 

that GSH pool in fungi from polluted streams was higher compared to that in fungi 

from non-polluted streams, probably because free peroxide/hydroperoxide radicals 

were not so efficiently scavenged by antioxidant enzymes in the latter fungi (Fig 

7.5). The high oxidative stress and cytotoxicity induced by nanoCuO to airway 

epithelial cells was explained by the increase in GPx activity and a decrease in the 

GR activity, leading to an increase in the ratio of oxidized to total glutathione (Fahmy 

and Cormier, 2009). Thus, the antioxidant enzymatic responses clearly provide a 
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key explanation to the lower level of intracellular ROS accumulation, plasma 

membrane damage and DNA-strand breaks in fungi from metal-polluted streams by 

conferring them a more effective cellular protection against nanoCuO in comparison 

to fungi from non-polluted streams. Moreover, fungi from non-polluted streams had 

higher increases in the levels of total intracellular proteins, suggesting that 

proteins/enzymes, other than those investigated in this study, can play a role in 

copping with the stress induced by nanoCuO. Under metal exposure, aquatic fungi 

have shown increased levels of Cu-binding small peptides, most likely glutathione 

and phytochelatins, and metallothionein-like proteins with a minor role in metal-

binding but probably acting as ROS scavengers (Guimarães-Soares et al., 2006). 

The effects of Cu2+ on aquatic fungi were stronger than those observed for 

nanoCuO either at the community level (Pradhan et al., 2011) or at the population 

level (this study), probably because copper bioavailability in the ionic form is higher 

than in the nano form. The toxicity or ecotoxicity of nanoCuO has been often 

attributed to the ionic form of copper leached from nanoCuO (Kahru et al., 2008; 

Aruoja et al., 2009; Kasemets et al., 2009). Indeed, Blinova et al. (2010) reported 

about 12% dissolution of Cu2+ from nanoCuO in freshwaters using Cu-sensor 

bacteria. However, when metal dissolution is very low, the contribution of metal ions 

leached from metal oxide nanoparticles to overall toxicity can be questioned (Griffitt 

et al., 2008; Buffet et al., 2011). Toxicity can also result from intracellular dissolution 

of nanoparticles leading to accumulation of metal ions as demonstrated for nanoCu 

(Meng et al., 2007). Lysosomes mediate intracellular degradation of nanoCuO into 

Cu2+, which is subsequently released into the cytoplasm where is reduced by O2•− 

to Cu+ (Petersen and Nelson, 2010). Ionic metals undergoing the redox and/or 

ascorbate-glutathione cycle can directly or indirectly cause an increase in 

intracellular ROS accumulation, cell membrane disruption and DNA damage in 

aquatic fungi (Azevedo et al. 2007, 2009). Therefore, we cannot discard the 

hypothesis that Cu2+ might have played a role in the effects of nanoCuO on aquatic 

fungi. 
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Figure 7.5 Diagrammatic representation of ascorbate-glutathione cycle highlighting the differences in 
the activity of glutathione reductase (GR), glutathione peroxidase (GPx), and superoxide dismutase 
(SOD) after nanoCuO exposure in fungi isolated from non-polluted streams (A) and metal-polluted 
streams (B). 
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Overall, our study showed that nanoCuO induced oxidative stress in aquatic 

fungi by intracellular ROS accumulation, and led to plasma membrane damage and 

DNA-strand breaks in a concentration- and time-dependent manner. Mycelia of fungi 

collected from metal-polluted streams showed less oxidative stress and higher 

responses of antioxidant enzymes related to the maintenance of glutathione (GSH) 

pool under nanoCuO exposure compared to fungi from non-polluted streams. The 

observed differences in the cellular responses to the stress induced by nanoCuO 

between fungi with different background were also confirmed at the intraspecific 

level (At61 from metal-polluted streams versus At72 from non-polluted streams). 

These findings suggest that fungal populations adapted to metals may develop 

mechanisms of tolerance/resistance to cope with the stress induce by metal 

nanoparticles. This means that the genetic background of populations should be 

taken into account in further studies when examining the toxicity of metal or metal 

oxide nanoparticles. 
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Polyhydroxy fullerene can stimulate 

yeast growth and mitigate oxidative 

stress induced by cadmium 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Abstract 

The water-soluble polyhydroxy fullerene (PHF) is a functionalized carbon 

nanomaterial with several industrial and commercial applications. There have been 

controversial reports on the potential toxicity and/or antioxidative activity of 

fullerenes and their derivatives. Conversely, metals have been recognized as toxic 

mainly due to their ability to induce oxidative stress in living organisms. We 

investigated the interactive effects of PHF nanoparticles and Cd ions on the model 

yeast Saccharomyces cerevisiae by exposing cells to Cd (≤5 mg L-1) in the absence 

or presence of PHF (≤500 mg L-1) at different pH (5.8-6.8) for 14h and 26h. In the 

absence of Cd, PHF stimulated yeast growth up to 10.3%. Cadmium inhibited 

growth up to 79.7% in a dose-, time- and pH-dependent manner. Cadmium also 

induced intracellular accumulation of reactive oxygen species (ROS) and plasma 

membrane disruption. The negative effects of Cd on yeast growth were attenuated 

by the presence of PHF, and maximum growth recovery (53.8%) was obtained at 

the highest PHF concentration, at pH 6.8, after 26 h. The co-exposure to Cd and 

PHF decreased ROS accumulation up to 36.7% and membrane disruption up to 

30.7% in a dose-, time- and pH-dependent manner. Results suggested that PHF 

stimulates yeast growth and mitigates the oxidative stress induced by Cd.  

 

Keywords: Polyhydroxy fullerene, cadmium, yeasts, antioxidant agent, ROS 

accumulation. 
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8.1. Introduction  

Fullerene and functionalised fullerenes are carbon-based nanoparticles with 

enormous developments in nanotechnology due to their applications in several 

fields, such as biomedical diagnostics and therapeutics (Da Ros et al., 2001; Bosi et 

al., 2003; Partha and Conyers, 2009) and remediation in wastewater treatment 

plants (Anderson and Barron, 2005). However, some studies have reported potential 

toxicity and ecotoxicity of fullerene (Sayes et al., 2004; Oberdörster et al., 2006) 

and, consequently, fullerene was placed on the top of OECD list (OECD, 2010) 

seeking toxicity tests and risk assessment. On the other hand, polyhydroxy fullerene 

(PHF), a functionalised derivative of fullerene, is in the lime light of current research 

due to its reported non-toxic nature and reactive oxygen species (ROS) quenching 

properties (Lai et al., 2000; Injac et al., 2008b; Vávrová et al., 2012). PHF has an 

edge over fullerene in commercial or research applications because it is stable and 

soluble in aqueous solution due to the presence of hydroxyl groups. As an 

antioxidant agent and free radical scavenger, PHF has been reported to decrease 

excitotoxic and apoptotic death of neurons (Dugan et al., 1996), protect against 

ischemia-reperfused lungs (Chen et al., 2004), protect rat brain from alcoholic injury 

(Tykhomyrov et al., 2008), prevent hepatotoxicity in rats and human cell lines (Injac 

et al., 2008a), and decrease tumour size in rats (Krishna et al., 2010). In contrast, 

cytotoxicity of PHF has also been observed (Sayes et al., 2004; Xu et al., 2009; 

Johnson-Lyles et al., 2010; Wielgus et al., 2010). Under photoexcitation, PHF can 

generate free radical species (Pickering and Wiesner, 2005) and induce early 

apoptosis and lipid peroxidation (Wielgus et al., 2010). These discrepant findings 

make it relevant to further assess the effects of PHF on biological systems. 

Cadmium (Cd), a nonessential element for living organisms, has been used 

in various industrial and regular-life products, such as batteries, pigments and 

paints, alloys, welding and electroplating, leading to its increased release in the 

environment (Ayres, 1992). For instance, a quantitative estimation of Cd for Chinese 

rivers pointed to 4.45 t of Cd deposited per year along the Anhui section of the 

Yangtze River, and to a high Cd content in the suspended matter in the Shun‟an 

River (104.8 µg g-1) (Zhao et al., 2008). As a non-biodegradable element, Cd has a 

very long biological half-life (Sugita and Tsuchiya, 1995) and it has been reported to 

be toxic to macro and microorganisms, including yeasts (Chen et al., 1995; Choi, 

2009; Nweke, 2010; Vestena et al., 2011). Cadmium toxicity has been shown to be 
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caused by oxidative stress (Brennan and Schiestl, 1996; Valko et al., 2006); Cd can 

indirectly generate free radicals by replacing iron or copper ions in cytoplasmic and 

membrane proteins leading to an increase of free or chelated metals (Valko et al., 

2006), which in turn can lead to oxidative stress via Fenton reactions (Price and 

Joshi, 1983; Casalino et al., 1997). ROS production was involved in Cd-induced cell 

death in rainbow trout (Risso-de Faverney et al., 2004), murine splenocytes (Pathak 

and Khandelwal, 2006) and human hepatoma cells (Oh and Lim, 2006). ROS 

triggered by Cd can react with several biomolecules within cells and may lead to 

DNA mutation, alteration in protein structure and function, lipid peroxidation, 

variation in gene expression, and apoptosis (Valko et al., 2006; Wang et al., 2011).  

We investigated the potential role of PHF in alleviating  Cd toxicity in yeasts 

under the hypothesis that oxidative stress induced by Cd may be mitigated by PHF 

due to its antioxidant and free-radical scavenging properties. We selected the yeast 

Saccharomyces cerevisiae because i) it has been used as a eukaryotic model 

system to study oxidative stress responses (Priault et al., 2003; Landolfo et al., 

2008; Chevtzoff et al., 2010; Mendes-Ferreira et al., 2010; Allen et al., 2011), and ii) 

mounting evidence suggests that Cd can induce oxidative stress by accumulating 

ROS or free radicals (Lee and Ueom, 2001; Liu et al., 2005; Muthukumar and 

Nachiappan, 2010). Because the uptake and toxicity of Cd to yeasts can change 

with pH (Mapolelo and Torto, 2004), exposure time (Blackwell and Tobin, 1999; 

Oliveira et al., 2012) and growth phase (Adamis et al., 2003; Anagnostopoulos et al., 

2010), we assessed the effects of Cd and PHF alone or in mixture on yeast growth, 

intracellular ROS accumulation and plasma membrane integrity at different 

exposure conditions. Moreover, we used scanning electron microscopy coupled to 

an energy dispersive X-ray analyser (SEM-EDX) to examine putative 

physicochemical interactions between PHF nanoparticles and Cd ions in an attempt 

to better understand the mode of action of these nanoparticles. 

  

8.2. Material and Methods 

8.2.1. Yeast growth and exposure conditions 

The yeast Saccharomyces cerevisiae PYCC 4072 was obtained from the 

Portuguese Yeast Culture Collection (Faculty of Sciences and Technology, New 

University of Lisbon, Portugal). The yeast was maintained on YPD solid medium 
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with the following composition: dextrose (2%, w/v), peptone (1%, w/v), yeast extract 

(0.5%, w/v) and agar (2%, w/v). For the assays, cells grown on YPD agar (48 h at 

26°C) were inoculated in YPD liquid medium.   

Erlenmeyer flasks (100-mL) with 20 ml of YPD medium were supplemented 

with Cd (0, 1.5 or 5 mg L-1; chloride salt, 98%, Sigma) and/or PHF (0, 50, 250 or 500 

mg L-1; C60(OH)18-22; BuckyUSA, Houston, TX), and pH of the medium was adjusted 

to 5.8, 6.3 and 6.8. Exponentially growing yeast cells (5 × 105 cfu mL-1) in YPD were 

inoculated in each replicate flask, and incubated under shaking (150 rpm) for 14 h 

and 26 h at 26ºC (12 chemical treatments × 3 pH × 2 exposure times × 3 replicates, 

in a total of 216 flasks). The yeast growth was monitored by optical density (OD; 

λ=600 nm) using UV-visible spectrophotometer (UV–1700 PharmaSpec, Shimadzu, 

Kyoto, Japan).  

 

8.2.2. Preparation of Cd and PHF stocks  

The stock solution of Cd was prepared in ultrapure (Milli Q) water and filtered 

through 0.2 µm pore size membrane (GTTP, Millipore, Billerica, MA) and stored at 

4°C in dark. The stock of PHF was prepared by suspending the powder in sterile 

(121°C, 20 min) ultrapure (Milli Q) water and suspension was sonicated (42 kHz, 

100 W, Branson 2510, Danbury, CT) for 10 min in the dark. A uniform aqueous 

suspension of PHF was obtained with no detectable precipitation after three weeks 

of storage at 4°C in the dark.   

 

8.2.3. Characterization of Cd, PHF alone and in mixtures  

Stock aqueous suspension with PHF nanoparticles and YPD medium 

containing Cd and/or PHF were examined by scanning electron microscopy (SEM, 

Leica Cambridge S 360, Cambridge, UK) coupled to an energy dispersive X-ray 

(EDX) microanalysis setup (15 keV), as described in Pradhan et al. (2011). Briefly, 

20 μl of each solution/suspension was loaded on a clean grease-free slide in dark, 

air-dried and coated with gold in vacuum. Slides were scanned by SEM-EDX to 

confirm the presence of Cd or C from PHF nanoparticles. 

Size distribution of PHF nanoparticles was monitored by dynamic light 

scattering (DLS) using a zetasizer (Malvern Zetasizer Nano ZS, Malvern 

Instruments Limited, UK) to check agglomeration of PHF in the stock suspension 

and in the YPD medium at three different pH. Unlike SEM, agglomerated particles in 
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the aqueous environment could be measured by DLS with minimum perturbation 

(Hassellöv et al., 2008). 

 

8.2.4. Visualization of cell morphology 

Yeast cells grown in YPD medium in the absence or presence of Cd and/or PHF 

were harvested by centrifugation (8,000 rpm, 10 min; Sigma 113 Centrifuge; 

Germany), washed twice and re-suspended in 2 mL phosphate-buffered saline (1× 

PBS, GIBCO, pH 7.4). Cells were fixed in 2.5% (v/v) glutaraldehyde for 24 h, and 

dehydrated in ethanol (v/v) as follows: 20%, 8 h; 40%, 6 h; 60%, 4 h; 80%, 2 h; and 

100%, 1 h. Cell suspensions (20 μl) were, then, loaded on slides, coated and 

scanned by SEM-EDX as in section 8.2.3. 

 

8.2.5. Flow cytometry and epifluorescence microscopy for assessing 

plasma membrane integrity and intracellular ROS accumulation  

Plasma membrane integrity was assessed by a membrane impermeable 

dye, propidium iodide (PI; Molecular Probes, Eugene, OR), which enters the cells 

and binds to nucleic acids when plasma membrane disruption occurs. Cells with 

intense red fluorescence were considered as having plasma membrane disruption. 

Yeast cells, unexposed or exposed to Cd and/or PHF at different pH, were 

harvested and washed as in section 8.2.4, and re-suspended in 2 ml PBS containing 

20 µg ml-1 of PI and 0.1 mg ml–1 of 4',6-diamidino-2-phenylindole (DAPI, Sigma). 

The mixture was incubated for 15 min at 26 °C in the dark. DAPI is known to localize 

nuclei by blue fluorescence.     

The accumulation of intracellular ROS was assessed with MitoTracker Red 

CM-H2XRos (Molecular Probes, Eugene, OR). This dye does not fluoresce in the 

reduced form, but entering an actively respiring cell it is oxidized by ROS in the 

mitochondria to form a red-fluorescent compound. Yeast cells, obtained as above, 

were re-suspended in 2 ml PBS containing 40 µg ml-1 of the dye prepared in 

dimethyl sulfoxide (≥99.9%, Sigma), and incubated for 15 min at 26°C in the dark.  

For visualization of intracellular ROS accumulation and plasma membrane 

disruption, samples of yeast cells, stained as above, were placed on a grease-free 

slide and mixed with an equal volume of an anti-fading and anti-photobleaching 

reagent (Vectashield Mounting Medium; Vector Laboratories, CA). Slides were 

scanned under an epifluorescence microscope (1000×, Leica DM5000B, Germany) 
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and images were acquired with a digital camera (Leica DFC 350 FX R2) using the 

software LAS AF V1.4.1.  

Quantitative fluorescence of yeast cells was measured using a flow 

cytometer (EPICS® XL-MCLTM, Beckman Coulter, Germany) equipped with an 

argon-ion laser emitting a 488 nm beam at 15 mW. The red fluorescence of PI or 

MitoTracker Red was detected on FL3 log filter through a 590 nm long-pass, a 620 

nm band-pass and another 670 nm long-pass. An acquisition protocol was defined 

to measure forward scatter (FS log), side scatter (SS log) and red fluorescence (FL3 

log) on a four-decade logarithmic scale. Twenty five thousand cells per sample were 

scanned and data were analyzed with the software WinMDI 2.8.  

 

8.2.6. Data analyses  

Two-way ANOVAs (Zar, 2009) were used to assess i) effects of PHF and pH 

on yeast endpoints in the absence or presence of each Cd concentration and ii) 

effects of Cd and pH on yeasts at each PHF concentration. Data were analysed for 

14 h and 26 h, separately. Significant differences between treatments and 

respective controls or between pH levels were analysed by Bonferroni post-tests 

(Zar, 2009). To achieve normal distribution and homoscedasticity, data in 

percentage were arcsine square root transformed (Zar, 2009). Analyses were done 

with Statistica 6.0 (Statsoft, Inc., Tulsa, OK).  

 

 

8.3. Results 

8.3.1. Characterization of PHF by SEM and DLS 

Scanning electronic microscopy (SEM) analysis of PHF in the aqueous stock 

suspension showed two nanoparticle size ranges: larger particles varied between 

100 and 250 nm, and smaller particles varied between 30 and 60 nm (not shown). 

These results were confirmed by DLS: two peaks with PHF mean sizes of 185.4 nm 

and 38.4 nm corresponded to 93.1% and 6.9% of area intensity, respectively (Table 

8.1). In YPD medium, an additional peak ranging from 1.6 nm to 2.9 nm was found 

(peak 3; Table 8.1). This was probably due to nanocrystal composites of the YPD 

medium, because a peak with particles of similar size was observed in the absence 

of PHF (not shown). In YPD medium, the mean size of PHF and polydispersity index 
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(PdI) increased with the decrease of pH (peak 1: 198.3 vs 210.5 nm, peak 2: 43.6 vs 

51.5 nm, PdI: 0.495 vs 0.597, at pH 6.8 and 5.8, respectively; Table 8.1). Also, the 

relative abundance of smaller size PHF nanoparticles was reduced by the decrease 

in pH of YPD medium (2.2% and 0.1% at pH 6.8 and pH 5.8, respectively; Table 

8.1). This suggests that nanoparticle agglomeration increased with decreasing pH 

probably due to interactions between components of the medium and nanoparticles 

and/or self-agglomeration. 

 

Table 8.1 Characterization of PHF nanoparticles in stock suspension and culture media by dynamic 
light scattering (size distribution by intensity)   

Sample pH PdI 

Peak 1 Peak 2 Peak 3 

Mean size 

(d.nm) 

Area intensity 

(%) 

Mean size 
(d.nm) 

Area intensity 
(%) 

Mean size 
(d.nm) 

Area intensity 
(%) 

PHF in YPD 5.8 0.597 210.5 92.5 51.5 0.1 2.9 7.4 
PHF in YPD 6.3 0.562 202.0 92.8 48.1 1 1.6 6.2 
PHF in YPD 6.8 0.495 198.3 93.1 43.6 2.2 1.6 4.7 

d.nm: diameter in nanometer unit. PdI: polydispersity index. YPD: yeast peptone dextrose liquid medium. 

 

8.3.2. Interactions between Cd and PHF nanoparticles in YPD medium  

The presence of PHF nanoparticles and Cd ions in YPD medium was 

confirmed by SEM-EDX (Fig. 8.1A-C). A peak of C and an increased peak of O, 

compared to YPD medium without PHF, confirmed the presence of PHF 

nanoparticles in the medium (Fig. 8.1A and Fig. 8.1C vs Fig. 8.1B). Analysis of the 

YPD medium supplemented with CdCl2 showed peaks of Cd and Cl (Fig. 8.1B). 

When the YPD medium was supplemented with Cd and PHF, peaks of C, O, Cd and 

Cl were detected (Fig. 8.1C). Under these conditions, instead of self-agglomeration, 

nanoparticles of PHF interacted with Cd and Cl by keeping these elements arrested 

and surrounded by PHF nanoparticles, which formed crossed-links with other Cd or 

Cl crystals (Fig. 8.1C). Additional elements were detected by EDX in all samples 

(Fig. 8.1), and they were probably originated from the glass slides and culture 

medium (Na, Mg, Si, Ca, O) or coating (Au) during sample preparation because 

these elements were also found in the absence of PHF or Cd (not shown). 
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                           A 

 
                           B 

 

                           C 

 

Figure 8.1 SEM and EDX microanalysis (insight) of YPD medium (pH 6.3) containing 500 mg L
-1 

of 
PHF (A), 5 mg L

-1 
of Cd (B) or mixture of 5 mg L

-1 
of Cd and 500 mg L

-1 
of PHF (C) after 26 h of 

incubation, at 26 ºC, under shaking in the absence of yeast cells. 
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8.3.3. Effects of PHF and Cd on yeast growth 

In the absence of Cd and PHF, yeast growth was not affected by pH 

between 5.8 and 6.8 for 14 h (P>0.05, Fig. 8.2A) and 26 h (P>0.05, Fig. 8.2B). In the 

absence of Cd, PHF had a stimulatory effect on the yeast growth (two-way ANOVAs, 

P<0.05; Fig. 8.2A and B). The exposure to the highest PHF concentration (500 mg 

L-1) for 14 h stimulated yeast growth by 6.1% and 7.0% at pH 6.3 and 6.8, 

respectively (P<0.05, Fig. 8.2A). After 26 h, growth was stimulated (6.9-10.3%) by 

exposure to 250 mg L-1 of PHF at higher pH and to the highest PHF concentration at 

all pH values (P<0.05, Fig. 8.2B).  

The exposure to Cd alone inhibited the yeast growth, and the effects were 

stronger at higher pH and Cd concentration (two-way ANOVAs, P<0.05). At pH 5.8 

and shorter exposure time, 1.5 mg L-1 of Cd reduced growth to 76.0% (Fig. 8.2C) 

while 5 mg L-1 of Cd restricted growth to 34.2% (Fig. 8.2E). Stronger inhibition of 

yeast growth was found at pH 6.8 after 26 h, where growth was reduced to 64.5% at 

lower Cd concentration (Fig. 8.2D) and to 20.3% at higher Cd concentration (Fig. 

8.2F).  

The presence of PHF attenuated Cd inhibitory effects on yeast growth: Cd 

effects were less pronounced at higher PHF concentrations and pH (two-way 

ANOVAs, P<0.05; Fig. 8.2C-F). Growth recovery from exposure to the lower Cd 

concentration and 500 mg L-1 of PHF was 28.4% after 26 h at pH 6.8 (Fig. 8.2D). At 

this PHF concentration and pH, growth recovery from exposure to 5 mg L -1 of Cd 

was 49.8% and 53.8% after 14 h (Fig. 8.2E) and 26 h (Fig. 8.2F), respectively.  
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Figure 8.2 Effects of increasing concentrations of PHF on the growth of S. cerevisiae PYCC 4072 in 
the absence (A, B) and presence of 1.5 mg L

-1 
of Cd (C, D) or 5 mg L

-1 
of Cd (E, F) after 14 h (A, C, E) 

and 26 h (B, D, F) at pH 5.8 (black bar), pH 6.3 (grey bar) and pH 6.8 (white bar). Data are expressed 
are percentage of growth in the absence of PHF and Cd. Mean ± SEM, n=3. *, treatments that differ 
significantly from the respective control (Bonferroni tests, P<0.05). Horizontal line indicates no 
significant differences between pH treatments. 

   

 

8.3.4. Effects of PHF and Cd on cell morphology 

Comparing to the control, the exposure of yeasts to PHF did not lead to any 

morphological alteration of cells as shown by SEM (Fig. 8.3A vs Fig. 8.3B). By 

contrast, the exposure to Cd induced remarkable cell morphological alterations, 

such as cell shrinkage and degeneration (Fig. 8.3C). The co-exposure to Cd and 
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PHF led to minor morphological alterations in just a few number of yeast cells (Fig. 

8.3D). 

 

     

Figure 8.3 SEM visualization of cells of S. cerevisiae PYCC 4072 grown for 26 h in YPD medium at pH 
6.3 in the absence of PHF and Cd (A), in the presence of 500 mg L

-1 
of PHF (B), in the presence of 5 

mg L
-1 

of Cd (C) or in presence of both PHF and Cd (D). 

 

 

8.3.5. Effects of PHF and Cd on plasma membrane integrity  

In the absence of PHF and Cd, yeast cells did not show plasma membrane 

disruption as indicated by the absence of red fluorescence after PI staining under 

epifluorescence microscopy (Fig. 8.4A and B panel I); under these conditions, cell 

nuclei were localized by the blue fluorescence after DAPI staining. Results from flow 

cytometry showed that maximum number of yeast cells with plasma membrane 

disruption was low (≤ 1.4%) after 14 h and 26 h, at all tested pH (Fig. 8.5A and B). 

The number of PI-positive cells decreased with increasing PHF concentration (two-

way ANOVAs, P<0.05; Fig. 8.5A and B).   
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Cadmium led to plasma membrane disruption as revealed by the presence 

of red fluorescence in cells (Fig. 8.4A and B panels II and III), and the effects 

increased with increasing Cd concentrations and pH (two-way ANOVAs, P<0.05; 

Fig. 8.5C-F). At pH 5.8, the exposure to 1.5 mg L-1 of Cd led to 8.5% and 11.6% of 

PI positive cells after 14 h and 26 h, respectively (Fig. 8.5C and D). At pH 6.8, the 

exposure to the lower Cd concentration led to 10.9% (14 h) and 13.8% (26 h) of PI 

positive cells, while exposure to the higher concentration of Cd increased the 

percentage of PI positive cells to 24.9% and 38.1%, after 14 h and 26 h, 

respectively.  

Plasma membrane disruption induced by Cd was reduced when yeast cells 

were co-exposed to PHF as shown by a decrease in cell red fluorescence (Fig. 8.4A 

and B panels V and VI). The level of plasma membrane disruption induced by Cd 

depended on PHF concentration and pH (two-way ANOVAs, P<0.05; Fig. 8.5C-F). 

The maximum reduction in the number of PI-positive cells was found after co-

exposure for 26 h to the highest concentrations of PHF and Cd, at the highest pH, 

and corresponded to a decrease of 30.7% in PI-positive cells compared to cells 

exposed only to Cd (Fig. 8.5F, P<0.05).   
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                         A 

 
                         B 

 
                         C 

 
                         D 

 

Figure 8.4 Epifluorescence microscopic visualization of plasma membrane integrity after PI and DAPI 
staining (A, B) and ROS accumulation after Mito-Tracker Red CM-H2XRos staining (C, D) in cells of S. 
cerevisiae PYCC 4072 exposed for 14 h (A, C) and 26 h (B, D) to Cd at 0 (I), 1.5 (II) and 5 (III) mg L

-1 
in 

the absence of PHF, or to Cd at 0 (IV), 1.5 (V) and 5 (VI) mg L
-1 

in the presence of 500 mg L
-1

 PHF at 
pH 5.8. 
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Figure 8.5 Effects of PHF on plasma membrane disruption of cells of S. cerevisiae PYCC 4072 
assessed by PI staining in the absence (A, B) and presence of 1.5 mg L

-1 
of Cd (C, D) or 5 mg L

-1 
of Cd 

(E, F) after 14 h (A, C, E) and 26 h (B, D, F) at pH 5.8 (black bars), pH 6.3 (grey bars) and pH 6.8 
(white bars). Mean ± SEM, n=3. *, treatments that differ significantly from control (Bonferroni tests, 
P<0.05). Horizontal line indicates no significant differences between pH treatments.                          

 

8.3.6. Effects of PHF and Cd on ROS accumulation  

Epifluorescence microscopic analysis of yeast cells did not show ROS 

accumulation in the absence of Cd as indicated by the absence of red fluorescence 

after MitoTracker Red CM-H2XRos staining (pH 5.8; Fig. 8.4C and D panel I). 

Consistently, results from flow cytometry showed that less than 2.9% of yeast cells 

unexposed to Cd had intracellular ROS accumulation at pH ranging from 5.8 to 6.8 

(Fig 8.6A and B). In addition, the exposure to increasing PHF concentrations 

reduced ROS accumulation (two-way ANOVAs, P<0.05).  
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The exposure to Cd increased ROS accumulation in yeast cells (Fig. 8.4C 

and D panels II and III) in a dose- and pH-dependent manner (two-way ANOVAs, 

P<0.05; Fig. 8.6C-F). The highest number of cells showing ROS accumulation 

(44.1%) was detected after 26 h of exposure to 5 mg L-1 of Cd at pH 6.8 (Fig. 8.6F). 

The presence of PHF diminished the intracellular accumulation of ROS induced by 

Cd (Fig. 8.4C and D panels V and VI) and this mitigating effect increased with 

increasing PHF concentration and pH (two-way ANOVAs, P<0.05; Fig. 8.6C-F). The 

co-exposure to the highest concentrations of PHF and Cd, at pH 6.8, led to 6.3% 

and 7.4% of ROS-positive cells after 14 h and 26 h, respectively (Fig. 8.6E and F). 

This indicates that the presence of PHF decreased up to 36.7% the number of cells 

with ROS accumulation induced by Cd exposure.   

 
Figure 8.6 Effects of PHF on reactive oxygen species accumulation in cells of S. cerevisiae PYCC 
4072 detected by MitoTracker Red CM-H2XRos staining in the absence (A, B) and presence of 1.5 mg 
L

-1 
of Cd (C, D) or 5 mg L

-1 
of Cd (E, F) after 14 h (A, C, E) and 26 h (B, D, F) at pH 5.8 (black bars), pH 

6.3 (grey bars) and pH 6.8 (white bars). Mean ± SEM, n=3. *, treatments that differ significantly from 
control (Bonferroni tests, P<0.05). Horizontal line indicates no significant differences between pH 
treatments. 



Chapter 8 

194 
 

8.4. Discussion 

Although cytotoxicity of the functionalized carbon nanomaterial PHF has 

been reported (Xu et al., 2009; Johnson-Lyles et al., 2010; Wielgus et al., 2010), 

several studies have highlighted its non-toxic nature and ROS quenching properties 

in biological systems (Lai et al., 2000; Injac et al., 2008b; Vávrová et al., 2012). 

Here, we used the yeast S. cerevisiae as an eukaryotic model system to confirm 

that Cd induce oxidative stress, as shown by others (Brennan and Schiestl, 1996; 

Valko et al., 2006), and to provide the first evidence that PHF is able to mitigate the 

stress induced by metals. Similarly to that shown by other authors (Pasternakiewicz, 

2006; Oliveira et al., 2012), we found that Cd inhibited the growth of S. cerevisiae in 

a dose-dependent manner. Cd effects on yeast growth became stronger at the 

longer exposure time (26 h), probably due to an increase in Cd uptake (Blackwell 

and Tobin, 1999). In our study, the negative effects of Cd on yeast growth also 

increased with pH from 5.8 to 6.8. In the absence of other interfering factors, the 

uptake of Cd by this yeast is reported to be ca. 2 times higher at pH 6.0 than at pH 

5.0, probably because at lower pH the affinity of protons for binding sites on the 

yeast is much higher than that of metal ions (Mapolelo and Torto, 2004). Therefore, 

the increase in Cd toxicity with pH in our study may be related to pH dependent Cd 

uptake by the yeast.  

Cadmium leads to oxidative injury in cells of living organisms due to 

intracellular accumulation of ROS (microbes: Chen et al., 1995; Choi, 2009, plants: 

Vestena et al., 2011, animals: Brennan and Schiestl, 1996; Valko et al., 2006, and 

humans: Oh and Lim, 2006). Consistently, we found that Cd induced ROS 

accumulation and plasma membrane disruption in cells of S. cerevisiae in a dose- 

and time-dependent manner. The more pronounced effects of Cd on plasma 

membrane integrity and ROS accumulation at higher pH may be related to the 

effects of pH on the magnitude of metal uptake by the yeast cells (see above). 

Moreover, results suggested that not all cells with ROS accumulation had lost their 

membrane integrity because the number of cells with plasma membrane disrupted 

(PI-positive cells) was slightly lower than that of ROS-positive cells, with differences 

up to 6.1% (26 h) at pH 6.8.  

The exact mechanism of Cd toxicity is not fully understood yet, but most 

probably Cd cytotoxicity is the combination of i) apoptotic death by increased ROS 

accumulation saturating the antioxidant systems with mitochondrial membrane 
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dysfunction, and ii) membrane lipid peroxidation promoted by ROS accumulation 

that leads to plasma membrane permeabilization and necrotic death (Howlett and 

Avery, 1997; Sokolova et al., 2004; López et al., 2006; Kroemer et al., 2007). Our 

findings support that Cd toxicity to the yeast S. cerevisiae was related to oxidative 

stress via intracellular ROS accumulation and/or via plasma membrane disruption, 

which might be due to lipid peroxidation. In addition, SEM analysis showed that Cd 

induced alterations of cell morphology with evidence of cell shrinkage and 

degeneration. Thus, overall Cd-mediated toxicity might have involved apoptotic 

and/or necrotic cell death of S. cerevisiae. However, further studies are still needed 

to clarify this aspect. 

In the absence of Cd, PHF had a stimulatory effect on the growth of  S. 

cerevisiae; this agrees with studies reporting that these nanoparticles can be 

beneficial for the growth of many organisms including fungi (Gao et al., 2011). White 

rot fungi are capable of mineralising PHF and to incorporate minor amounts of 

carbon from PHF into biomass (Schreiner et al., 2009). We also found that PHF 

nanoparticles can be used as sole carbon source by the S. cerevisiae; however, 

yeast growth in mineral medium with vitamins and oligoelements supplemented with 

PHF (200 mg L-1) was almost 7-fold lower than in YPD (20 mg L-1 of dextrose) 

(unpublished data). These findings contrast to the reported harmful impacts of other 

nanoparticles, including fullerene, to biota (Sayes et al., 2004; Handy et al., 2008; 

Pradhan et al., 2011; Pradhan et al., 2012). Comparing to the pristine fullerene 

(C60), the functionalized surface of PHF leads to a lower ability to penetrate lipid 

bilayers of cell membranes, probably explaining the non-toxic nature of PHF (Qiao 

et al., 2007). 

In our study, the co-exposure of S. cerevisiae to PHF nanoparticles and Cd 

decreased the number of cells with i) intracellular ROS accumulation, ii) plasma 

membrane disruption and iii) altered morphology, comparing to cells exposed to Cd 

alone. Moreover, the ability of PHF to mitigate Cd toxicity increased with 

nanoparticle concentration. These effects were consistent with the attenuated 

negative effects of Cd on yeast growth in the presence of PHF and indicate that 

PHF can protect yeast cells against metal-induced oxidative stress. PHF by 

reducing the levels of intracellular ROS may stabilize mitochondrial membrane 

potential and prevent mitochondrial dysfunction (Cai et al., 2008; Partha and 

Conyers, 2009), a common manifestation of Cd-induced oxidative stress that leads 

to apoptosis. Also, PHF can prevent oxidation of polyunsaturated fatty acid in 
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liposomes and lipid peroxidation (Mirkov et al., 2004). However, the mechanisms 

underlying the antioxidative properties of PHF nanoparticles are still unclear. 

Đorđević and Bogdanović (2008) explained the PHF antioxidant properties by two 

possible mechanisms i) an addition reaction of hydroxyl radicals (·OH, 2n) to the 

olefinic double bonds of PHF core and/or ii) a removal of a hydrogen from PHF by 

hydroxyl radical. In our study, complementarily to the antioxidative function of PHF, 

extracellular physicochemical interactions between PHF nanoparticles and Cd might 

have reduced the bioavailability of Cd to yeast cells. Indeed, SEM-EDX analysis 

showed that, in the extracellular medium, Cd ions were surrounded by PHF 

nanoparticles. This suggests that PHF nanoparticles, via interactions with their 

surface functionalized hydroxyl groups, could trap Cd while still having an opening 

face for interacting with yeast cells. In addition, the more pronounced decrease in 

Cd toxicity promoted by PHF at higher pH was probably due to greater availability of 

unbound and/or non-aggregated PHF nanoparticles with unmasked hydroxyl groups 

to encounter with Cd ions, as disclosed by the shift in nanoparticle size distribution 

towards lower size-range and PdI at higher pH (Table 8.1). Thus, pH can be a 

crucial factor for the stability and availability of PHF nanoparticles to the yeast cells.  

 Overall, this study provided the first evidence that PHF nanoparticles can 

play a role against metal toxicity in biological systems. Results show that PHF 

nanoparticles mitigated Cd effects by protecting cells against oxidative stress, as 

revealed by a decrease in intracellular ROS accumulation and in the number of cells 

with altered morphology and plasma membrane disruption (Fig. 8.7). The protective 

role of PHF against Cd-induced oxidative stress was pH-, dose- and time-

dependent: effects were more pronounced at elevated pH and longest exposure 

time. In the absence of Cd, the stimulatory effect of PHF on yeast growth supported 

that PHF nanoparticles can be use as carbon and/or energy source. Results also 

suggest that extracellular physicochemical interactions between PHF nanoparticles 

and Cd might have occurred reducing Cd bioavailability to yeast cells. The ability of 

PHF nanoparticles to interact with metals opens new perspectives for the 

development of remediation strategies. 
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Figure 8.7 Diagrammatic representations of the overall major impacts of PHF nanoparticles on S. 
cerevisiae.  
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General discussion and future perspectives 

Since the term “nanotechnology” has been coined (Taniguchi, 1974) and 

brought into the public domain (Drexler, 1986), an enormous nanomaterial-based 

research has been carried out with incredible advancements and huge commercial 

success (Salata 2004; Aitken et al., 2006). This brought the “nanoworld” to our daily 

life. The enhanced commercialization and usage of nanomaterial-based products 

(Perugini et al., 2002; Nel et al., 2006; Jin and Ye, 2007; Becheri et al., 2008; 

Luechinger et al., 2008; Kathirvelu et al., 2009) branched off to “nanotoxicology” due 

to the adverse toxic impacts of nanomaterials to a wide range of living organisms 

including humans (Buzea et al., 2007; Petica et al., 2008; Heinlaan et al., 2008). 

Due to extensive applications, nanomaterials are likely to be released into the 

environment, particularly in aquatic ecosystems, as they are the largest terminal 

repositories. Researchers are currently concerned about the fate and potential 

impacts of nanomaterials in the environment as these materials are known to cause 

adverse effects to living organisms due to their unusual physicochemical properties 

(Schrand et al., 2010). Thus, potential ecotoxicity of engineered nanomaterials is 

under the limelight of current research.  

Some studies have reported the release of engineered nanoparticles into 

streams (e.g. Wigginton et al., 2007; Kaegi et al., 2008; Kim et al., 2010; Rezić, 

2011) and this raised the question about the potential risk of nanoparticles against 

aquatic biota and the processes they drive (Moore, 2006; Christian et al., 2008; 

MacCormack and Goss, 2008; Sharma, 2009). A number of studies showed the 

adverse effects of nanoparticles, mostly metal-based nanoparticles, against living 

organisms (Reijnders, 2006; Gajjar et al., 2009), but there are only few studies 

assessing the impacts of these nanoparticles on aquatic biota (Blaise et al., 2008; 

Lee et al., 2009; Miller et al., 2010). Most studies on aquatic systems were 

performed with nanometals/nanometal oxides enlisted in the OECD (OECD, 2010) 

guideline manual representing the commercial engineered nanoparticles that 

currently require risk assessment and toxicity studies (Lovern et al., 2007; Van 

Hoecke et al., 2009; Zhu et al., 2008). However, most of the existing results are 

mainly individual-based responses of biota that are insufficient to predict the impacts 

on aquatic communities and the associated ecosystem processes.  

In low order forested streams, where insufficient sunlight can penetrate the 

water, plant-litter decomposition is a key ecosystem process linking riparian 
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vegetation with the activities of aquatic microbial decomposers and invertebrate 

detritivores (Pascoal et al., 2003, 2005a). Aquatic fungi are the dominant microbial 

decomposers that play a major role in organic matter turnover and constitute a 

significant link in detritus food webs between plant-litter and stream invertebrates 

(Graça, 2001; Pascoal et al., 2003, 2005a), which in turn supply the basic diet to 

higher trophic levels (Suberkropp et al., 1983; Graça and Canhoto, 2006) such as 

fishes. Aquatic bacterial communities play an important role in the process after 

partial breakdown of plant-litter (Graça, 2001; Pascoal and Cássio, 2004). The 

process of litter decomposition is sensitive to water quality, and this integrative 

process was proposed as a functional measure for determining the health of 

freshwater ecosystems (Pascoal et al., 2001; Gessner and Chauvet, 2002; Pascoal 

et al., 2005a).  

We investigated the effects of copper oxide (<50 nm) and silver (<100 nm) 

nanoparticles, two commercially used metal-based nanoparticles (Nair and 

Laurencin, 2007; Ren et al., 2009; Zhang et al., 2009), and their ionic precursors 

(Ag+ and Cu2+) on leaf-litter decomposition by freshwater microbial communities 

(Chapter 2). The nano and ionic metals decreased leaf decomposition rate 

significantly and inhibited fungal biomass (up to 82.9% of control) and bacterial 

biomass (up to 96.5% of control) in a concentration- and time-dependent manner. 

We found that bacteria were more sensitive to nano metals than fungi as noted in 

earlier studies for metal ions (Duarte et al., 2008, 2009; Niyogi et al., 2002). Fungal 

sporulation rates seemed to be the most sensitive indicator of the stress induced by 

nanoparticles showing inhibitions from 91.0 to 99.4%. The adverse effects of the 

chemicals were also shown by a reduction in microbial diversity, and shifts in the 

structure of fungal and bacterial communities based on DNA fingerprints and fungal 

spore morphology. Articulospora tetracladia was the dominant species in control and 

under nano or ionic metal-exposure, while the co-dominant species in control, 

Flagellospora sp., was replaced by Heliscus lugdunensis under exposure conditions. 

In earlier studies, A. tetracladia and H. lugdunensis were reported to be present in 

metal-polluted streams and some strains were found to be resistant to high 

concentrations of metals (Braha et al., 2007; Jaeckel et al., 2005; Pascoal et al., 

2005b). The shifts in the structure of microbial communities suggest a change 

towards a better-adapted community to maintain ecological functions under nano or 

ionic metal-induced stress. In addition, the impacts of metal nanoparticles on leaf 

decomposition by aquatic microbes were less pronounced when compared to their 
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ionic forms, although the applied concentrations of metal ions were about one order 

of magnitude lower than those of nanometals. This corroborates that ionic metals 

can be more toxic to aquatic organisms than nanometal counterparts (Heinlaan et 

al., 2008; Aruoja et al., 2009; Blinova et al., 2010).  

The toxicity of nanometals in detritus freshwater ecosystems may depend on 

the intrinsic physicochemical properties of nanoparticles and on factors that alter 

those properties in aqueous environment. A key intrinsic property is the nanoparticle 

size whereas natural organic matter (NOM) is one of those key driving factors in the 

environment. NOM is present in freshwaters up to concentration of 100 mg L-1 (Wall 

and Choppin, 2003; Paul et al., 2006; Steinberg et al., 2006). Our follow up study 

was carried out to assess the individual or combined effects of size of copper oxide 

nanoparticles (12, 50 and 80 nm) and humic acid on microbial decomposers of 

plant-litter (Chapter 3). We used humic acid (HA) as a model of NOM due to its 

significant contribution to the constitution of NOM in freshwaters (Ma et al., 2001). 

The inhibitory effects of nanoCuO on leaf decomposition, bacterial and fungal 

biomass and fungal reproduction rate increased with the decrease in nanoparticle 

size and increase in nanoparticle concentration. This was supported by EC50 and 

LOEC values. Results also confirmed that bacterial communities were more 

sensitive to nanoCuO than fungal communities. Our findings were similar to those 

showing an increase in toxicity with a decrease in nanoparticle size (Van Hoecke et 

al., 2009; Hartmann et al., 2010). Indeed, SEM and DLS analyses revealed 

increased self-aggregation with ascending nanoparticle size confirming that 

differences in toxicity could be due to differences in nanoparticle surface areas. 

Some studies reported that NOM or HA can hinder the toxicity of ionic metals and 

nanometals/nanometal oxides in living cells and organisms (Erickson et al., 1996; 

De Schamphelaere et al., 2002; Fabrega et al., 2009; Chen et al., 2011; Li et al., 

2011). A similar trend was observed in our study for lower size nanoparticles 

because HA alleviated the toxicity of nanoCuO with 12 and 50 nm, but not of larger 

nanoparticles. This suggests that the effect of NOM on nanoparticle toxicity depends 

on the reactive surface area of nanoparticles. We proposed that the role of HA in 

alleviating the toxicity of lower size nanoCuO was probably the consequence of a 

decrease in reactive surfaces by greater surface-masking of less self-aggregated 

and highly dispersed smaller nanoparticles in the presence of HA. Thus, HA formed 

a physical barrier between nanoparticle surface and biological tissues. In contrast, 

HA might not interact with larger size nanoCuO due to lesser dispersion and higher 
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self-aggregation of nanoparticles. Moreover, the possibility of a copper-dependent 

fungal extracellular enzyme-mediated degradation of unbound HA cannot be 

ignored. Conversely, HA has been reported to exhibit toxicity against many 

organisms including freshwater invertebrates (Hseu et al., 2002; Meems et al., 2004; 

Yang et al., 2004; Timofeyev et al., 2006) as also observed in our study in the 

absence of nanoCuO. The community shift under nanoCuO and/or HA stress 

showed the same trend observed in our previous experiment: the co-dominance of 

A. tetracladia and H. lugdunensis under stress, indicating the resistance/tolerance of 

these species towards nanoCuO and/or HA-induced stress. 

To better understand the impacts of nanoparticles in detritus foodwebs, we 

selected invertebrate shredders as representative of the next trophic level. 

Shredders prefer to feed on plant-litter colonized by aquatic microbes, 

predominantly fungi, whose activity increases the food quality and palatability 

(Suberkropp et al., 1983). Shredders play an important role in detritus foodwebs in 

streams by further transferring the carbon and energy from decomposed plant-litter 

to higher trophic levels (Graça and Canhoto, 2006). Also, the invertebrates are 

important in ecotoxicological studies as they are abundant, globally distributed, have 

short life span with high reproduction rates, and are sensitive to contaminants and 

toxicants including heavy metals (e.g., De Schamphelaere et al., 2004; Gerhardt et 

al., 2004). Here we investigated the potential lethal and sublethal effects of 

nanoCuO (50 nm) on Allogamus ligonifer (Chapter 4), a common invertebrate 

shredder in Southwest European streams that prefers high quality water (Bonada et 

al., 2008). The acute lethal tests showed that the 96 h LC50 of nanoCuO was very 

high (569 mg L–1), whereas the sublethal concentrations inhibited leaf consumption 

up to 47% and the invertebrate growth up to 46% after 10 days of exposure. In 

addition, the exposure to increased sublethal concentration of nanoCuO via water or 

pre-contaminated food led to higher accumulation of copper in the larval body. 

Leached water-soluble ionic copper from nano CuO adsorbed or accumulated in the 

shredder (up to 10.2% of total Cu) indicated its influence in the shredder feeding 

behaviour and growth. This agrees to some extent with previous studies suggesting 

the role of leached ions in the toxicity of nanometal oxides (Heinlaan et al., 2008; 

Aruoja et al., 2009; Kasemets et al., 2009; Mortimer et al., 2010).  

In a follow up study, we assessed the sublethal impacts of nanoparticle size 

(12, 50 and 80 nm nanoCuO) and/or humic acid on the shredder A. ligonifer 

(Chapter 5). An increased reduction of invertebrate feeding behaviour was observed 
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after 5 days exposure to increasing concentrations of nanoCuO with decreasing 

size; leaf consumption rates were inhibited up to 83.4% under exposure to smaller 

size nanoparticles. HA alone inhibited the feeding rate up to 52.6%. Similar to the 

trend observed previously with microbial communities (Chapter 3), HA mitigated the 

inhibitory effects of lower size nanoCuO by recovering the feeding rate up to 29.6%, 

but HA did not attenuate the toxicity promoted by larger nanoparticles. This was 

probably a consequence of HA adsorption to the reactive surfaces of highly 

dispersed small nanoparticles, while the highly self-aggregated larger particles had 

comparatively less opening faces for HA adsorption. Thus, it is conceivable that in 

the presence of HA, the smaller size nanoparticles have lower chance to interact 

with leaves and invertebrates than larger nanoparticles. The post-exposure feeding 

experiment, where the animals were rescued from the stressors and further exposed 

to uncontaminated stream water and food, pointed to a very low recovery of 

invertebrate feeding rates. The post-exposure experiment tried to mimic accidental 

flash-exposure to nanoparticles in streams and was an important tool to assess the 

potential ability of shredders to recover from the stress. Shredders exposed 

previously to only HA or lower concentration of 80 nm nanoCuO recovered faster 

indicating conditions of lower stress. The effects were also supported by alterations 

in the amount and morphology of fine particulate organic matter (FPOM) produced. 

The presence of nanoCuO and/or HA were observed by SEM in the surface of 

FPOM even after the post-exposure experiment. Overall, nanoparticle size and HA 

could influence the sublethal toxicity of nanoCuO to freshwater invertebrate 

shredders as observed earlier for microbial decomposer communities. 

Based on the differential responses to nanoCuO of aquatic fungal species 

within communities, we investigated the physiological response to nanoCuO-

induced stress in four fungal populations collected from metal-polluted or non-

polluted streams (Chapter 6). We found a stronger inhibition of fungal biomass 

(lower EC50 values), a clearer evidence of increased mycelium morphological 

alterations (e.g. shrinkage and degradation), and an increased adsorption of CuO 

nanoparticles in populations from non-polluted streams than in those from metal-

polluted streams. The increased resistance of aquatic fungi from metal-polluted 

streams than fungi from non-polluted streams had also been reported for metal ions 

(Cu2+, Azevedo et al., 2007; Cd, Miersch and Grancharov, 2008). In our study, the 

differences were more prominent after longer exposure time. The significant 

correlations between the inhibition of fungal biomass production and nanoparticulate 
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copper adsorbed to fungi or leached Cu2+ in the culture media suggested that both 

forms of copper contributed to the observed physiological effects.  

Additionally, we assessed the activity of laccase, which is an extracellular 

multicopper-containing oxidoreductase enzyme that is involved in the degradation of 

lignin and various xenobiotic compounds (Durán et al., 2002; Brondani et al., 2009). 

This enzyme is produced by fungi, including those involved in litter decomposition in 

terrestrial (Steffen et al., 2002) and aquatic environments, and requires copper for 

their activity (Junghann et al., 2005, 2008). Interestingly, in our study, an increase in 

the laccase activity with increased nanoCuO concentration was observed in two out 

of the four tested fungi (Phoma sp. UHH 5-1-03 and Clavariopsis aquatica WD(A)-

00-1). These fungi were previously reported to exhibit laccase activity under Cu2+ 

exposure (Junghann et al., 2005, 2008). The low activity of laccase in the other two 

fungal strains could be attributed to the absence of laccase-like gene fragments in 

the copper binding domain indicating low capability of integrating copper as cofactor 

for their activity.  

For further understanding the resistance/tolerance of aquatic fungi to 

nanoCuO-induced stress, we investigated the ability of nanoCuO to promote 

oxidative stress, cellular damages, and changes in the antioxidant enzymatic 

responses in five aquatic fungi collected from metal-polluted or non-polluted streams 

(Chapter 7). We observed clear differences among fungi in the response to 

nanoCuO exposure. The exposure to nanoCuO led to higher intracellular reactive 

oxygen species (ROS) accumulation, plasma membrane disruption and DNA-strand 

breaks in fungi from non-polluted streams than in those from metal-polluted streams. 

Superoxide dismutase (SOD) is an antioxidant enzyme involved in early defence 

against ROS. The maintenance of high GSH (reduced glutathione) to GSSG 

(oxidised glutathione) ratio in cells is required to protect them against oxidative 

stress (Townsend et al., 2003); glutathione reductase (GR) is the key enzyme in 

ascorbate-glutathione cycle to keep the pool of glutathione in its reduced form 

(GSH), whereas glutathione peroxidise (GPx) interacts with free 

peroxides/hydroperoxides and converts GSH to GSSG (Townsend et al., 2003; Israr 

et al. 2006). Under metal-induced oxidative stress, the increase in glutathione pool 

is often observed in metal-tolerant fungi, including aquatic fungi from metal-polluted 

streams (Jaeckel et al., 2005; Braha et al., 2007). In our study, the activities of GR 

and SOD were higher in fungi from polluted streams than from non-polluted 

streams, although the opposite was found for GPx activity. Results suggested that 
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fungal populations from metal-polluted streams could have higher capacity to deal 

with the oxidative indicating higher tolerance/resistance to nanoCuO than those from 

non-polluted streams. 

The increased nanoCuO-induced toxicity can result directly from 

nanoparticles or indirectly from intracellular dissolution of nanoparticles leading to 

accumulation of metal ions as demonstrated for nanoCu (Meng et al., 2007). 

Lysosomes mediate intracellular degradation of nanoCuO into Cu2+, which is 

subsequently released into the cytoplasm where is reduced by O2•− to Cu+ 

(Petersen and Nelson, 2010). Ionic metals undergoing the redox and/or ascorbate-

glutathione cycle can directly or indirectly cause an increase in intracellular ROS 

accumulation, cell membrane disruption and DNA damage in aquatic fungi (Azevedo 

et al., 2007, 2009). Therefore, in our study, the involvement of Cu2+ in the effects of 

nanoCuO on aquatic fungi cannot be discarded.  

Similarly to metal-based nanoparticles, carbon-based nanoparticles, such as 

fullerene and functionalised fullerenes, also have applications in several fields in 

nanotechnology such as biomedical diagnostics and therapeutics (Da Ros et al., 

2001; Bosi et al., 2003; Partha and Conyers, 2009). In contrast to the adverse 

effects of metal/metal oxide nanoparticles, the polyhydroxy fullerene (PHF), a 

functionalised derivative of fullerene, has been attracting much interest due to its 

reported non-toxic nature and ROS-quenching properties (Lai et al., 2000; Injac et 

al., 2008; Vávrová et al., 2012). PHF has an edge over fullerene in commercial or 

research applications because of its higher stability and solubility in aqueous 

solution due to the presence of hydroxyl groups. We investigated the interactive 

effects of PHF and cadmium (Cd) on the model yeast Saccharomyces cerevisiae at 

different pH (5.8-6.8) for 14h and 26h (Chapter 8). Yeasts are unicellular fungi found 

in several environments including streams, and S. cerevisiae is a well-known 

eukaryotic model system to study oxidative stress responses (Priault et al., 2003; 

Landolfo et al., 2008; Mendes-Ferreira et al., 2010). In the absence of Cd, PHF 

stimulated yeast growth up to 10.3% which agreed with previous reports showing 

that PHF can be beneficial for the growth of many organisms, including white rot 

fungi which are capable of incorporating minor amounts of C from PHF into biomass 

(Schreiner et al., 2009; Gao et al., 2011). Cadmium inhibited growth in a 

concentration-, time- and pH-dependent manner. However, the negative effects of 

Cd on the growth were attenuated by the presence of PHF with a maximum growth 

recovery (53.8%) at the highest PHF concentration, at pH 6.8, after 26 h. Cadmium 
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induced intracellular accumulation of ROS and plasma membrane disruption, but 

these effects were alleviated by the presence of PHF. Results indicated that PHF 

could stimulate the yeast growth and mitigate the oxidative stress induced by Cd.  

The overall mechanisms of the impacts of nanoparticles (metal/metal oxides 

and carbon-based PHF) to fungal cells based on our studies and earlier reports are 

schematically represented in Fig. 9.1.  

 

Figure 9.1 Schematic diagram of the impacts of metal-based nanoparticles and polyhydroxy fullerene 
on fungal cells based on observations from our study (orange arrow) and previous studies (blue arrow).  

 

Overall, our study suggested that metal and metal oxide nanoparticles 

(Ag/CuO) could induce toxicity to freshwater microbial decomposers in a 

concentration- and time-dependent manner. Moreover, the toxicity of nanoCuO 

increased with the decrease in nanoparticle size. NOM, namely HA, also had 

negative effects in the absence of nanoparticles, but it could alleviate the toxicity of 

lower size nanoparticles to freshwater microbial decomposers and shredders. 

Bacterial communities were more sensitive than fungal communities against 

nanoCuO-induced stress. Also, the shifts in the community structure under 

nanoparticle exposure suggested that certain species are more tolerant/resistant 

than others to the stress induced by nanoparticles. The physiological and 

biochemical responses of fungal populations to nanoCuO showed that fungi isolated 
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from metal-polluted streams had a better ability to cope with the stress induced by 

nanoparticles compared to populations from non-polluted streams. Acute lethal 

effects of nanoCuO to freshwater invertebrate shredders may be achieved at very 

high and environmentally non-realistic concentrations; however, sublethal 

concentrations had pronounced effects on the feeding behaviour of shredders. Also, 

the toxicity CuO nanoparticles to invertebrate shredders was modulated by the size 

of particles and by the presence of HA as observed for microbial communities. In 

contrast to the adverse effects of nanoAg or nanoCuO on aquatic fungi and 

invertebrates, the polyhydroxy fullerene had a stimulatory effect on yeast growth and 

acted as an antioxidant agent by alleviating cadmium toxicity in yeasts. This may 

open new perspectives for the development of remediation strategies, which would 

allow the application of a clean nanotechnology. In the future, it would be interesting 

to examine if the negative impacts of metal-based nanoparticles can be alleviated by 

PHF.  

Our study showed that nanometals and nanometal oxides had negative 

effects on plant litter decomposition and associated microbes and invertebrates in 

stream microcosms. This outcome suggests that plant litter decomposition might be 

a useful tool to assess ecotoxicity of metal nanoparticles in freshwaters. 

Considerring the increasing commercial applications and usage of nanoparticles and 

based on our results that pointed to potential toxicity of these nanomaterials to biota 

and the processes they drive, our work emphasizes the importance of risk 

assessment studies. In the near future, studies are also needed to provide the 

mechanistic explanations of nanometal-induced toxicity to aquatic organisms and to 

better discriminate the role of leached ionic and the particulate form of nanometals 

under realistic environmental conditions. Strategies should be further developed 

focusing on the risk assessment and taking precautionary steps to avoid the 

devastating effects like those caused by DDT or PCBs or to minimize the impacts of 

accidental or flash exposures such as the oil spillage in the Gulf of Mexico (2010). 

More regulatory frameworks are required for nanomaterials envisaging the control of 

exposure levels, taking into account bioactivity and biocompatiblility, and the 

development of alternative environmental friendly nanoparticles. To provide a safer 

and cleaner nanotechnology-based world, more responsibilities, awareness and 

precautionary care are required.     
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