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Abstract 

In this Thesis, we address column generation based methods for linear and integer 

programming and apply them to three multicommodity flow problems. 

For (mixed) integer programming problems, the approach taken consists in reformulating 

an original model, using the Dantzig-Wolfe decomposition principle, and then combining 

column generation with branch-and-bound (branch-and-price) in order to obtain optimal 

solutions. The main issue when developing a branch-and-price algorithm is the branching 

scheme. The approach explored in this work is to branch on the variables of the original model, 

keeping the structure of the subproblems of the column generation method unchanged. The 

incorporation of cuts (branch-and-price-and-cut), again without changing the structure of the 

subproblem, is also explored. 

Based on that general methodology, we developed a set of C++ classes (ADDing − 

Automatic Dantzig-Wolfe Decomposition for INteger column Generation), which implements a 

branch-and-price algorithm. Its main distinctive feature is that it can be used as a “black-box”: 

all the user is required to do is to provide the original model. ADDing can also be customised to 

meet a specific problem, if the user is willing to provide a subproblem solver and/or specific 

branching schemes. 

We developed column generation based algorithms for three multicommodity flow 

problems. In this type of problems, it is desired to route a set of commodities through a 

capacitated network at a minimum cost. 

In the linear problem, each unit of each commodity is divisible. By using a model with 

variables associated with paths and circuits, we obtained significant improvements on the 

solution times over the standard column generation approach, for instances defined in planar 

networks (in several instances the relative improvement was greater than 60%). 

In the integer problem, each unit of each commodity is indivisible; the flow of a 

commodity can be split between different paths, but the flow on each of those paths must be 

integer. In general, the proposed branch-and-price algorithm was more efficient than Cplex 6.6 

in the sets of instances where each commodity is defined by an origin-destination pair; for some 

of the other sets of instances, Cplex 6.6 gave better time results. 

In the binary problem, all the flow of each commodity must be routed along a single path. 

We developed a branch-and-price algorithm based on a knapsack decomposition and modified 

(by using a different branching scheme) a previously described branch-and-price-and-cut 

algorithm based on a path decomposition. The outcome of the computational tests was 

surprising, given that it is usually assumed that specific methods are more efficient than general 

ones. For the instances tested, a state-of-the-art general-purpose (Cplex 8.1) gave, in general, 

much better results than both decomposition approaches. 
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Resumo 

Nesta Tese, abordam-se métodos de geração de colunas para programação linear e inteira. 

A sua aplicação é feita em três problemas de fluxo multicomodidade. 

Para problemas de programação inteira (mista), a abordagem seguida é a de reformular 

um modelo original, utilizando o princípio de decomposição de Dantzig-Wolfe, e combinar 

geração de colunas com o método de partição e avaliação (partição e geração de colunas) para a 

obtenção de soluções óptimas. A questão essencial no desenvolvimento de um algoritmo deste 

tipo é a estratégia de partição. A abordagem seguida neste trabalho é a de realizar a partição nas 

variáveis do modelo original, mantendo a estrutura do subproblema do método de geração de 

colunas. A incorporação de cortes, ainda sem alteração da estrutura do subproblema, é também 

explorada. 

Com base nesta metodologia geral, foi desenvolvido um conjunto de classes em C++ 

(ADDing − Automatic Dantzig-Wolfe Decomposition for INteger column Generation), que  

implementa um algorithmo de partição e geração de colunas. A sua característica fundamental é 

apenas ser requerido ao utilizador a definição de um modelo original. Num modo mais 

avançado, o utilizador pode implementar algoritmos para resolver o subproblema e/ou esquemas 

de partição. 

Foram desenvolvidos algoritmos baseados em geração de colunas para três problemas de 

fluxo multicomodidade. Neste tipo de problemas, pretende-se encaminhar um conjunto de 

comodidades através de uma rede capacitada, minimizando o custo. 

No problema linear, cada unidade de cada comodidade é divisível. Utilizando um modelo 

com variáveis associadas a caminhos e a circuitos, obtiveram-se melhorias significativas nos 

tempos de resolução em relação ao método de geração de colunas usual, para instâncias 

definidas em redes planares (em várias instâncias a melhoria relativa foi superior a 60%). 

No problema inteiro, cada unidade de cada comodidade é indivisível; o fluxo de uma 

comodidade pode ser dividido por diferentes caminhos, mas o fluxo em cada um deles tem de 

ser inteiro. Em geral, o algoritmo de partição e geração de colunas foi mais eficiente do que o 

software Cplex 6.6 nos conjuntos de instâncias em que cada comodidade é definida por um par 

origem-destino; para alguns dos outros conjuntos de instâncias, o software Cplex 6.6 obteve 

melhores resultados. 

No problema binário, todo o fluxo de cada comodidade apenas pode utilizar um caminho. 

Foi desenvolvido um algoritmo de partição e geração de colunas baseado numa decomposição 

de mochila e modificado (através de um esquema de partição diferente) um algoritmo de 

partição e geração de colunas com cortes, previamente descrito, baseado numa decomposição 

por caminhos. Os resultados dos testes computacionais foram surpreendentes, dado que é 

usualmente assumido que métodos específicos são mais eficientes do que métodos gerais. Para 

as instâncias testadas, o software Cplex 8.1 obteve, em geral, resultados muito melhores do que 

as duas decomposições. 
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1 General Introduction 

In this Chapter, we provide a brief introduction to the main topics of the present Thesis. 

In Section 1.1, a non-technical and historical perspective on Linear and Integer Programming, 

the broader field that encompasses the subjects of this Thesis, is presented. In Section 1.2, a 

historical perspective on the branch-and-price method is given and its present relevance is 

pointed out. Multicommodity flow models are briefly introduced in Section 1.3, in the broader 

context of network modelling. In Section 1.4, we specify the main contributions of this work. 

Finally, in Section 1.5, the structure of the present Thesis is described. 
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1.1 Linear and Integer Programming 

For almost six decades now, Linear and Integer Programming have been major research 

topics in Operational Research, playing a decisive role in its definition as an applied scientific 

area. 

Linear Programming, whose first milestone was the Simplex algorithm of G. B. Dantzig, 

developed in the late 1940s, deals with the optimisation of systems where different activities 

compete for a set of scarce resources, their relations being expressed mathematically by linear 

functions. Integer Programming can be considered as an extension of Linear Programming 

(usually credited to R. E. Gomory in the late 1950s), allowing the mathematical modelling and 

algorithmic treatment of a broader type of decision problems. 

Nowadays, Linear and Integer Programming are established disciplines. Their methods 

have been successfully applied in a large number of practical problems and there are robust and 

efficient software implementations, enabling their use in yet more problems (whose number is 

virtually infinite). The “age of optimisation” (announced by G. L. Nemhauser (Nemhauser, 

1994)) is already over one decade old. 

However, Integer Programming is still a challenging field of research. There are no 

known polynomial algorithms to solve (that is, to obtain an optimal solution to) the general 

Integer Programming problem (as opposed to the general Linear Programming problem). 

Although several important specific problems have been studied for several decades, and very 

significant progresses have been made in their resolution, they remain difficult to solve. Some 

of them have a combinatorial structure, that is, the set of feasible solutions is a set of objects 

that can be explicitly enumerated, but their number is too large for the enumeration to be 

efficient in a solution procedure. 

In order to tackle this inherent complexity of Integer Programming, several approaches 

have been developed in the last decades. R. E. Gomory was the pioneer of cutting plane 

methods in the late 1950s. Roughly at the same time, A. H. Land and A. G. Doig developed 

branch-and-bound, an implicit enumeration procedure. Those two classical methods can be 

taken as the basis for all the subsequent major developments in Integer Programming methods.  

Although branch-and-cut has its roots in the work of H. P. Crowder, E. L. Johnson, and 

M. W. Padberg in the early 1980s, its potential for solving a large number of problems only 

began to be largely explored in the 1990s. In a very general framework, branch-and-cut can be 

seen as the combination of cutting planes (generally, stronger than the ones used in the original 

work of R. E. Gomory) and branch-and-bound.  

Branch-and-price was first developed by J. Desrosiers, F. Soumis, and M. Desrochers in 
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the middle 1980s. It can also be seen as a combination of two existing methods: branch-and-

bound and column generation. Being the subject of this work, we will refer to branch-and-price, 

and related concepts and methods, such as Dantzig-Wolfe decomposition and Lagrangean 

relaxation, in more detail later in this Introduction. For the time being, we only would like to 

point out that the combination of branch-and-price and branch-and-cut (branch-and-cut-and-

price) has also been a major topic of research in the last decade. 

It should be noted that all these methods have Linear Programming as a fundamental 

component, and thus every breakthrough in Linear Programming may have a significant 

improvement in their efficiency. A comprehensive review of the fundamental concepts of the 

above methods is given in (Johnson et al., 2000). Less common exact methods, not based in 

Linear Programming, are explored in (Aardal et al., 2002). 

 

All the methods mentioned above were devised to obtain optimal solutions. A different 

approach in Integer Programming / Combinatorial Optimisation is to seek good solutions. 

Heuristics have been an important field of research since Operational Research techniques 

started to be applied in the solution of practical problems. A substantial progress in those 

approaches began in the late 1970s with the development of the first meta-heuristics, which are 

still the object of intense research by the Operational Research and neighbouring scientific 

communities. Approximation methods, which are devised for finding sub-optimal solutions with 

a guarantee of their quality, have also been the subject of research among those scientific 

communities. 

1.2 Branch-and-Price 

Branch-and-price amounts to the combination of column generation and branch-and-

bound. Column generation is used to solve the Linear Programming problems that are used as 

relaxations within the branch-and-bound method. 

The roots of column generation date back to the late 1950s and the early 1960s. L. R. 

Ford and D. R. Fulkerson for the first time solved a specific Linear Programming model 

(maximal multicommodity flow) not defining explicitly all its variables. That approach served 

as inspiration for the decomposition principle of G. B. Dantzig and P. Wolfe, which allows 

reformulating a general Linear Programming model in such a way that its structure (that is, its 

parts and the relation between them) is made clear and ready to be explored algorithmically 

(namely, by column generation). P. C. Gilmore and R. E. Gomory for the first time used column 

generation as the fundamental piece for obtaining heuristic solutions in a specific Integer 

Programming problem (the cutting stock problem), although not combined with branch-and-
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bound. Their combination, which provides optimal solutions, was made about 20 years later by 

J. Desrosiers, F. Soumis, and M. Desrochers in a vehicle routing problem.  

Meanwhile, a closely related approach, Lagrangean relaxation, whose first use in Integer 

Programming is due to M. Held and R. M. Karp, emerged in the early 1970s. The simplicity of 

the subgradient method and variants used in Lagrangean relaxation was a main factor to its 

subsequent generalisation. 

The Dantzig-Wolfe decomposition principle and Lagrangean relaxation are (primal-dual) 

equivalent. Correspondingly, column generation and the cutting plane method for non-

differentiable optimisation (from J. E. Kelley in the early 1960s) used for solving the resulting 

reformulated problems, are the same, with different (primal-dual) perspectives. We believe that 

the main reason for why only in the 1990s their potential started to be exploited and developed 

(as opposed to the subgradient method mentioned above) was the lack of efficient and robust 

software implementations of Linear Programming algorithms. 

As pointed out in several surveys (Barnhart et al., 1998; Hoffman, 2000; Johnson et al., 

2000; Wilhelm, 2001; Lübbecke and Desrosiers, 2002) several issues of branch-and-price 

methods deserve further research. In this work, we aim at contributing to the research of some 

of those issues, which we will refer to after a brief introduction to the other main topic of this 

work: multicommodity flow problems. 

1.3 Multicommodity Flow Problems 

Network models played an important role in the development of Operational Research 

since its origins. The classical transportation problem (one of the first problems solved in a 

computer in 1951) is a landmark in the history of Operational Research. The work of L. R. Ford 

and D. R. Fulkerson in the late 1950s and early 1960s established network flows as a major field 

of application and research in Linear Programming. 

Network models are used to deal with a large number of decisions in our society. From 

electrical to water systems, from railway to communications systems, networks are everywhere. 

In a network flow model, the usual modelling approach is to define decision variables as the 

flow on each arc. Flow conservation constraints force the flow entering each node to be equal to 

the flow leaving that same node. Additional variables and constraints allow the consideration of 

a large number of different problems, arising in several application areas such as transportation/ 

distribution and production planning. 

Multicommodity network flow models deal with problems where several different 

commodities share the same network. In the multicommodity flow problems studied in this 

work, it is intended to route all the commodities from their origins to their destinations at 
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minimum cost, in a network with capacitated arcs. 

A Linear Programming model for those problems is composed of two sets of constraints: 

flow conservation of the commodities and capacities of the arcs. Such a model is a large one: it 

has one decision variable for each commodity and arc; one constraint for each commodity and 

node; and one constraint for each capacitated arc. The fact that, by neglecting the capacity 

constraints, a set of independent problems is obtained (one for each commodity), leads to the 

efficiency of decomposition methods for their solution, which has been done since the work of 

J. A. Tomlin in the middle 1960s. 

In this work, we apply the decomposition approach just outlined combined with branch-

and-bound, to the integer multicommodity flow problem where the units of the commodities 

cannot be split; and to the binary multicommodity flow problem where each commodity must 

use a single path. We also consider the linear minimum cost multicommodity flow problem 

defined in a planar network, for which we discuss a procedure to improve the efficiency of the 

column generation algorithm. 

1.4 Contributions 

In our view, the main contributions of this Thesis are the following. 

A general branch-and-price methodology is explored for using Dantzig-Wolfe 

decomposition in (mixed) integer problems for which a compact model is known. Its main 

feature is the compatibility of branching rules and subproblems, allowing the incorporation of 

cuts. The extension of that approach for multiple Dantzig-Wolfe decomposition is proposed. We 

implemented that methodology in ADDing − Automatic Dantzig-Wolfe Decomposition for 

INteger column Generation, a general branch-and-price algorithm coded in C++.  

In its basic use, all the user is required to do is to provide an original (mixed) integer 

model. ADDing automatically decomposes the original model and uses branch-and-price to 

obtain an (integer) optimal solution. In a more advanced use, the user may provide specific 

subproblem solvers and branching rules through a few, hopefully simple, functions. 

Typically, the implementation of a branch-and-price algorithm is a time-consuming task. 

Two options exist: to develop specific code for the problem at hand or to use existing 

frameworks (such as Abacus or COIN/BCP) that require an in-depth knowledge of their internal 

structure but less coding effort. With ADDing, we intend to provide a third alternative.  

 

Based on the branch-and-price methodology mentioned above, we propose three branch-

and-price algorithms for two multicommodity flow problems. 

For the integer multicommodity flow problem (MFP), the formulation based on flows in 
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paths is used. To our knowledge, the development of an exact decomposition algorithm for that 

problem is made for the first time. The branching scheme proposed is the application of the 

general methodology mentioned above. In the case of the integer MFP, an interesting issue 

arises: the subproblems in the nodes of the search tree may suggest rays, although, in an optimal 

solution, their weight is null. The approach proposed here to deal with that issue might be used 

in other network flow problems. 

For the binary MFP, we explore two decompositions. The first is the decomposition 

based on paths previously applied to that problem by (Barnhart et al., 2000), which also uses 

cuts. We use a different branching scheme and present comparative computational results. 

The second decomposition is based on defining the subproblem as a binary knapsack 

problem for each arc. Although this type of knapsack decomposition has been used in other 

problems, to our knowledge, this is the first time it is used for the binary MFP. Its potential 

advantage is that the lower bound it provides is, in general, of better quality than the one 

provided by the linear relaxation of the original formulation or by the path decomposition.  

We present computational tests of the two branch-and-price algorithms and compare them 

with a general-purpose solver. Although other specific algorithms have been proposed in the 

literature, such a comparison is made for the first time.  

 

In this work, the relation between Dantzig-Wolfe decomposition and Lagrangean 

relaxation is explicitly discussed, as is the relation between column generation and methods for 

solving the Lagrangean dual. The insight given by those relations is a fundamental issue when 

developing stabilising procedures for column generation. An application of the use of extra dual 

cuts (Carvalho, 2000) to a planar multicommodity flow problem is made. The approach is based 

on the use of a model that includes extra circuit variables, besides the usual path variables, 

allowing the implicit consideration of paths that are not generated by the subproblem. We 

present comparative computational results on the proposed approach, standard column 

generation, and a bundle method implementation. 

1.5 Outline 

Each Chapter of the present Thesis is essentially self-contained. Although some issues 

could be presented in a dependent manner, we choose to present Dantzig-Wolfe decomposition 

and column generation based algorithms in a general way (Chapter 2) and dedicate one Chapter 

to the general implementation that was carried out (Chapter 6), devoting each of the remaining 

Chapters to one different multicommodity flow problem (Chapters 3, 4 and 5). 

In more detail the organisation of the present Thesis is as follows. 
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In Chapter 2, the fundamental theory of the Dantzig-Wolfe decomposition principle and 

column generation based methods is reviewed. We aim at providing a comprehensive overview 

and contextualisation of those approaches for solving Linear and Integer Programming 

problems, by reviewing their fundamental conceptual and algorithmic aspects and by providing 

references to applications, related methods and recent developments. The general approach 

taken encompasses the exposition of a general branching scheme for branch-and-price, 

incorporation of cuts (branch-and-price-and-cut), and the development of multiple Dantzig-

Wolfe decomposition. 

Chapters 3, 4 and 5 are devoted to the development and testing of column generation 

based algorithms for three different multicommodity flow problems: the (general) integer, the 

binary, and the linear defined in a planar network, respectively.  

In Chapter 3, a branch-and-price algorithm is developed for the integer multicommodity 

flow problem following the general approach presented in Chapter 2. We review solution 

methods that have been devised for the linear relaxation of the problem. In the nodes of the 

search tree, we propose a formulation that includes cycle variables, in addition to the usual path 

variables. Computational tests of the proposed algorithm and of a general-purpose solver are 

presented and discussed.  

In Chapter 4, we present two branch-and-price algorithms for the binary multicommodity 

flow problem. Based on the Dantzig-Wolfe principle, we derive two different decompositions 

depending on the subproblem definition. One decomposition captures the network structure of 

the problem and the other provides better quality lower bounds. For the decomposition based on 

paths, we compare the developed branching rule with one previously presented by (Barnhart et 

al., 2000). We present computational results for the two decompositions and compare them with 

the ones given by a general-purpose integer programming solver. 

In Chapter 5, we propose a way of accelerating a column generation algorithm for the 

linear minimum cost multicommodity flow problem. We use a new model that, besides the 

usual variables associated with paths, has a polynomial number of extra variables (when the 

problem is defined in a planar network), associated with circuits. We present computational 

results for the comparison of this new approach with standard column generation, a bundle 

method, and a general-purpose solver. 

In Chapter 6, we describe ADDing − Automatic Dantzig-Wolfe Decomposition for 

INteger column Generation − a general branch-and-price algorithm implementation in C++. We 

describe its use and internal structure, presenting further details in the Appendix. Future 

development directions are also discussed. 

Finally, in Chapter 7 we draw the overall conclusions taken from this work and point out 

some directions for further research. 
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2 Dantzig-Wolfe Decomposition and Column 
Generation Based Algorithms 

In this Chapter, we address Dantzig-Wolfe decomposition and column generation based 

algorithms for linear and integer programming.  

We review the main theoretical aspects of Dantzig-Wolfe decomposition and column 

generation, as approaches for solving structured models, both in a linear programming 

perspective and in a Lagrangean relaxation perspective. Different alternatives for implementing 

a column generation algorithm are surveyed. 

The use of Dantzig-Wolfe decomposition in integer programming is discussed. We detail 

a general branching scheme for combining column generation and branch-and-bound (branch-

and-price). The extension of that combination to allow the incorporation of cuts is also detailed. 

We explore multiple Dantzig-Wolfe decomposition / multiple column generation in the 

context of the general branching scheme exposed, which, to our best knowledge, is made here 

for the first time. 
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2.1 Introduction 

Branch-and-price combines two well-established methods, column generation and 

branch-and-bound, to obtain the optimal solution of (mixed) integer problems. Although those 

two methods are known since the late 1950s, only in the middle 1980s was developed their first 

combination to obtain optimal integer solutions for a routing problem (Desrosiers et al., 1984) 

and only in the late 1990s the first revision paper about branch-and-price was published 

(Barnhart et al., 1998). 

Over the last years, a renewed interest on column generation based algorithms has 

appeared, judging from the large number of publications on the subject (see Table 2.1, at the 

end of this Section, pages 12 and 13). 

We believe there are two main reasons for that. Firstly, the availability of appropriate 

computational tools made their implementations easier and more robust, exposing their 

advantages over other methods of the same “family” (such as the subgradient method). 

Secondly, their successful application on problems with great economical and social impact, 

such as the ones faced by the airline and transportation industries. 

 

Several motivations can (co)exist for developing a column generation based algorithm. 

First of all, it is a decomposition algorithm. We may have a compact formulation (a 

model where is possible to consider all the decision variables and constraints explicitly) but so 

large that the possibility of solving it directly, in an efficient way, must be ruled out. Being so, a 

decomposition approach, where solutions to parts of the model are obtained by solving smaller 

(sub)problems and then combined to form a solution to the overall problem, is attractive. It is 

worth noting, as done, for example, in (Williams, 1999) and (Martin, 1999), that the vast 

majority of practical problems, for which a compact model can be devised, has some kind of 

structure: we can identify submodels within the model. Thus, even if it is feasible to solve the 

compact model, for computational memory reasons or for taking advantage of the efficient 

algorithms that may exist for those submodels, column generation based algorithms are an 

appealing approach. 

The decomposition framework described in the previous paragraph can be extended to 

problems where the compact formulation is nonlinear. Although column generation is 

essentially a linear programming technique, there will be no conceptual changes if the non-

linearity of the model is confined to the subproblems (this is a usual motivation for routing and 

scheduling applications, where the nonlinear subproblems are solved by dynamic 

programming). 



Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms 

 

 

10 

Another motivation for the use of column generation based algorithms is that a compact 

formulation for the problem at hand is not known. 

A last motivation is a fundamental one when dealing with integer programming models. 

In those models, a major issue when they are attacked by methods based on bounds given by 

relaxations (such as branch-and-bound) is their quality. Alternative models with a huge number 

of columns, under certain circumstances, give better lower bounds (considering a minimisation 

problem). A classical illustration is the pioneer work of Gilmore and Gomory in the cutting 

stock problem (Gilmore and Gomory, 1961; Gilmore and Gomory, 1963) where a column 

generation algorithm is devised to obtain “good” linear solutions that are then rounded by a 

heuristic. 

In this work, we focus on the application of branch-and-price algorithms in problems 

where a compact formulation is known. The Dantzig-Wolfe Decomposition (DWD) principle 

(Dantzig and Wolfe, 1960) is used to reformulate the compact model (called original). Column 

generation is then used to deal with the huge number of variables of the reformulated model. In 

order to obtain integer solutions, branch-and-bound is used in such a way that the relaxed 

problems of the nodes of its search tree are solved by column generation. Using this approach, 

there is a guarantee that an optimal solution (with the desired accuracy) will be found. However, 

it can also serve as a framework for the development of heuristics. Three examples of such type 

of approaches are: (i) to include, in the problems solved in the nodes of the search tree, only the 

columns that, in its root, had a reduced cost less than a preset threshold value; (ii) to stop the 

search of the tree as soon as a feasible integer solution is found; (iii) to round the fractional 

solution obtained in the root node. 

It is worth to emphasise that Dantzig-Wolfe reformulation is not the only source of 

models where the use of column generation based algorithms is appropriate.  

In (Wilhelm, 2001) column generation based algorithms are classified in three types. 

Type I algorithms are based on the selection of a subset of promising variables (that is, variables 

that hopefully will have positive values in an optimal solution) from the huge set of existing 

variables. Then a master problem where only those variables are considered (thus, a restricted 

master problem) is solved in order to identify their best combination. Clearly, this column 

generation a priori approach does not guarantee optimality. 

Type II algorithms are based on the iterative exchange of information between the 

(restricted) master problem and the subproblem. In every iteration, the master problem (where 

the variables generated by the subproblem in previous iterations are considered) is optimised, 

providing guidance for the subproblem to generate promising variables for the next iteration. 

Type III algorithms are similar to the ones of type II, but the master problem results from 

a DWD. According to this classification, some approaches can be included in both type II and 

III, since some of the Dantzig-Wolfe reformulated models have a natural interpretation when 
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directly formulated. Furthermore, it has been proved that for each Dantzig-Wolfe reformulated 

model there is a compact original formulation (Villeneuve et al., 2003).  

In this work we focus on type III column generation and its use on integer programming. 

This approach, where a compact model is reformulated using DWD, can be applied in every 

problem for which a compact formulation is known. However, decomposable models are 

natural candidates for this type of algorithms. Clearly, this does not mean that the application of 

column generation based algorithms is limited to a few problems. Besides the fact already 

mentioned that most practical models are decomposable, this is confirmed by the large number 

of problems where Lagrangean relaxation (in particular the subgradient method for solving the 

Lagrangean dual) was successfully applied in the last four decades. For all those problems, 

DWD can also be applied. In fact, despite their different origins (nonlinear programming in the 

case of Lagrangean relaxation, linear programming in the case of DWD), there is a dual 

equivalence between the two approaches. As for solution methods, the cutting plane method of 

Kelley (Kelley, 1960) when applied to solve the dual Lagrangean problem is dual equivalent to 

column generation applied to solve the DWD reformulated model.  

In this primal-dual perspective, we can think of Lagrangean relaxation and DWD as the 

same decomposition for which different solution methods exist, being the most well-known: 

subgradient (which is frequently (mis)taken as a synonym of Lagrangean relaxation), bundle, 

volume and Kelley’s cutting plane / column generation. Two distinctive features characterise 

column generation: its understanding can be confined to linear programming (as an extension of 

the simplex algorithm) and it has a natural primal interpretation. Although being technically 

equivalent to Kelley’s cutting plane method, the column generation primal perspective has some 

advantages, in particular when it is the base for the solution of integer problems. Firstly, it 

makes the identification and the use of cuts (branch-and-price-and-cut) easier. Secondly, it also 

makes the incorporation of (primal) heuristics that may capture specific aspects of the problem 

at hand easier. Thirdly, and last, the promising hybridisation of linear/integer programming with 

constraint logic programming techniques certainly requires a primal perspective of the problem 

(as an example, see (Fahle et al., 2002)). We note that these advantages are only related with the 

conceptual framework for the development of decomposition algorithms. Certainly, the insight 

given by the dual methods/perspective plays a crucial role on column generation based 

algorithms. Two recent publications (Lemaréchal, 2003; Frangioni, 2004) discuss in detail the 

relation between DWD and Lagrangean relaxation. 

 

A list of applications, and their references, to column generation based algorithms is 

given in Table 2.1. Additional references can be found in (Desrosiers et al., 1995) (a survey on 

time constrained routing and scheduling where branch-and-price algorithms for several of those 

problems are described), and (Wilhelm, 2001; Lübbecke and Desrosiers, 2002) (surveys of the 
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use of column generation based algorithms in integer programming).  

 

This Chapter is organised as follows. In the next Section, the use of DWD principle and 

the column generation technique are described. In Section 2.3, the close relation of DWD with 

Lagrangean relaxation is made explicit and column generation is discussed in the broader 

context of methods to solve the Lagrangean dual. In Section 2.4, column generation variants and 

stabilisation procedures are discussed. In Section 2.5, the use of the DWD principle is extended 

to integer programming problems and the combination of column generation and branch-and-

bound (branch-and-price) is described. In the same Section, we also develop multiple Dantzig-

Wolfe decomposition / multiple column generation. Finally, in Section 2.6, we conclude this 

Chapter, by reviewing the main aspects discussed in it. 

 

Application Reference(s) Application Reference(s) 

Vehicle routing 
with time windows 

(Desrosiers et al., 1984; 
Desrochers et al., 1992; Kohl et 
al., 1999) 

Traffic assignment  (Ribeiro et al., 1989) 

Vehicle scheduling  
(Ribeiro and Soumis, 1994; 
Desaulniers et al., 1998) 

Traffic 
equilibrium  

(Larsson et al., 2004) 

Simultaneous 
vehicle and crew 
scheduling  

(Desaulniers et al., 2001; 
Haase et al., 2001; Freling et 
al., 2003) 

Time slot 
assignment in a 
satellite system 

(Lee and Park, 2001) 

Pickup and 
delivery  

(Savelsbergh and Sol, 1998; 
Christiansen and Fagerholt, 
2002; Lübbecke and 
Zimmermann, 2003) 

Spectrum auctions (Günlük et al., 2002) 

Multiple tour 
maximum 
collection  

(Butt and Ryan, 1999) Probabilistic logic (Jaumard et al., 1991) 

Air network 
design  

(Barnhart and Schneur, 1996) 
Coalition 
formation in multi-
agent systems  

(Tombus and Bilgiç, 2004) 

Fleet assignment  (Hane et al., 1995) 
Management of 
spare parts 

(Mehrotra et al., 2001) 

Crew scheduling  
(Desrochers and Soumis, 1989; 
Vance et al., 1997; Yan and 
Chang, 2002; Yan et al., 2002) 

Delivery planning (Boland and Surendonk, 2001) 

Aircrew rostering  (Gamache et al., 1999) 
Assembly system 
design 

(Wilhelm, 1999) 

Staff scheduling  

(Jaumard et al., 1998; Mehrotra 
et al., 2000; Sarin and 
Aggarwal, 2001; Bard and 
Purnomo, 2004; Eveborn and 
Rönnqvist, 2004) 

Forest 
management  

(Martins et al., 2003) 

Job scheduling  
(Akker et al., 1999; Chen and 
Powell, 1999; Akker et al., 
2000; Akker et al., 2002) 

Course registration (Sankaran, 1995) 
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Cutting stock and 
bin packing  

(Vance et al., 1994; Carvalho, 
1999; Vanderbeck, 1999; 
Alves and Carvalho, 2003) 

Ship routing and 
inventory 
management 

(Christiansen and Nygreen, 
1998) 

Facility location  
(Shaw, 1999; Klose and Drexl, 
2002) 

Supply chain 
management 

(Bredström et al., 2004) 

P-median  
(Ceselli and Righini, 2002; 
Lorena and Senne, 2004; Senne 
et al., 2005) 

Ring network 
design 

(Henningsson et al., 2002) 

Lot sizing  
(Vanderbeck, 1998; Kang et 
al., 1999; Degraeve and Jans, 
2003) 

Shipment planning 
at oil refineries  

(Persson and Göthe-Lundgren, 
2005) 

Switch-box 
routing  

(Jørgensen and Meyling, 2002) 
Sorting 
permutations by 
reversals  

(Caprara et al., 2001) 

Circuit partitioning (Ebem-Chaime et al., 1996) 
Beam-on time in 
cancer radiation 

(Boland et al., 2004) 

Placement of 
multiplexers 

(Sutter et al., 1998) 
Steiner tree 
packing  

(Jeong et al., 2002) 

Generalised 
assignment 

(Savelsbergh, 1997) Graph coloring (Mehrotra and Trick, 1996) 

Car assignment to 
trains 

(Lingaya et al., 2002) 
Maximum stable 
set  

(Bourjolly et al., 1997) 

Channel 
assignment  

(Jaumard et al., 2002) Clustering (Mehrotra and Trick, 1998) 

Table 2.1 Applications of column generation based algorithms. 

2.2 Dantzig-Wolfe Decomposition and Column Generation 

2.2.1 Structured models 

Large-scale optimisation problems typically have some kind of structure: it is possible to 

identify parts of the problem that are defined in a similar way. We give four brief examples. In a 

production planning problem over a temporal horizon, the decision about the quantities to 

produce of each product, given a set of common resources, defines a similar problem for each 

product. In vehicle routing, the problem of defining the route for each vehicle is similar (in the 

case vehicles have the same characteristics, that problem is equal for all vehicles − “which route 

should I take?”). In the generalised assignment problem, where the maximum profit assignment 

of a set of jobs to a set of agents with limited capacity is desired, the problem that each agent 

faces is similar (“which jobs should I make?”). In machine scheduling, where a set of tasks must 

be scheduled in a set of machines, the problem of each machine is similar (“which tasks should 

I perform?”). 

When formulated with linear/integer programming this kind of problems give rise to 

structured models. The nonzero coefficient values in the constraints do not appear in random 

places, but in blocks, as exemplified in Figure 2.1, where the senses and right-hand-sides of the 
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constraints are omitted. Assuming that blocks F and E are empty, we obtain the so-called block 

angular structure with linking constraints, where these are defined by the D block. Neglecting 

those linking constraints, a solution could be obtained by solving the (independent) problems 

defined by each A matrix (with a slight abuse of terminology, since the problems are also 

defined by the senses and right-hand-sides of the constraints and by an objective function not 

represented). Assuming that the F and the D matrices are empty, we obtain the so-called block 

angular structure with linking variables. If none of the E, F, and D matrices are empty matrices 

a block angular structure with linking constraints and variables is obtained. 

Block angular structures with linking variables and with linking variables and constraints 

are outside the scope of this work. Here we only point out that methods, such as Benders 

decomposition (Benders, 1962) and cross decomposition (as an example, see (Roy, 1986)) were 

developed to deal with that kind of structures. 

For problems with block angular structure with linking constraints, which are represented 

in Figure 2.2 for clarity, we will focus on price decomposition (Dantzig-Wolfe / Lagrangean 

relaxation); other decomposition approaches and methods for those models, such as basis 

partitioning (Rosen, 1964) and resource directive decompositions (see (Minoux, 1986)) will be 

briefly presented in Chapter 3 in the context of multicommodity flow problems. 

A possible match of this model representation with the examples given above is given in 

Table 2.2. 

It is important to note that different perspectives of a given problem, or different 

orderings of the variables and constrains of a model, give rise to different structures. This will 

be discussed in more detail in Section 2.5.2. 

A2

A1

...

Ah

D

E

F

 

Figure 2.1 Schematic representation of a structured linear/integer programming model. 
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Figure 2.2 Schematic representation of a block angular with linking constraints model. 

Problem  D block A blocks 

Production 
planning 

Availability of common resources 
required for production (for 
example, capacities of the 
machines). 

One block for each product. 
Production requirements of each product 
(for example, forced by existant demand). 

Vehicle 
routing 

Constraints imposed on the fleet of 
vehicles (for example, it must visit 
all the clients). 

One for each vehicle. 
Requirements of the routes and of each 
vehicle (for example, a route must end at a 
depot and its capacity cannot be exceeded). 

Generalised 
assignment 

Constraints imposed on the group 
of agents (all the tasks must be 
performed). 

One for each agent, related with its 
capacity. 

Machine 
scheduling 

Constraints imposed on the jobs 
(for example, all the jobs must be 
performed). 

One for each machine. 
Constraints imposed on each machine (for 
example, two tasks cannot be made at the 
same time). 

Table 2.2 Examples of models resulting from structured problems. 

2.2.2 Dantzig-Wolfe decomposition principle 

The DWD principle can be applied to any linear programming model. However, its 

potential is revealed when considering models with the block angular structure with linking 

constraints described in the previous subsection. We will refer to that case whenever we think it 

is worth, but, for clearness of notation and exposition, in this Chapter, we will concentrate on 

the general linear programming model: 

ZLnP = Min c x (LnP) 

 subject to: 

 D x ≥ d (2.1) 

 A x = b (2.2)  

 x ≥ 0, 
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where x is a column vector of dimension n in which each element, indexed by j, is associated 

with a decision variable, xj, j=1,...,n; c is a row vector with the same dimension: c = [c1 ... cn]; d 

is a column vector with dimension g; D is a g×n matrix; b is a column vector with dimension m 

and A is a m×n matrix.  

We refer to (LnP) as the original formulation and to the decision variables of this model 

as the original variables. In Section 2.5, we will consider that the decision variables must be 

integers. 

We define the set SSP = { x : Ax = b, x ≥ 0 } and the problem 

ZSP =  Min c  x (SP) 

 subject to: 

 x∈ SSP , 

where the dimensions of c  are the same as the ones of c. 

Every feasible solution of (SP) can be represented as a convex combination of the 

extreme points plus a nonnegative combination of the extreme rays of SSP, according to the 

Minkowski theorem (see, for example, (Nemhauser and Wolsey, 1999)). We define P and R as 

the sets of indices of all extreme points and extreme rays of SSP, respectively; y
p as the p-th 

extreme point and ur as the r-th extreme ray of SSP. 

Thus, x∈ SSP is equivalent to the existence of nonnegative scalars λp, p∈P, and µr, r∈R, 

associated with the extreme points and extreme rays of SSP such that  

 x = ∑
∈Pp

y
pλp + ∑

∈Rr

u
rµr (2.3) 

 ∑
∈Pp

λp = 1 

 λp ≥ 0, ∀p∈P 

 µr ≥ 0, ∀r∈R. 

Performing an exchange of variables, model (LnP) is equivalent to 

ZLDW =  Min ∑
∈Pp

(c y
p
) λp + ∑

∈Rr

(c u
r
)µr (LDW) 

 subject to: 

 ∑
∈Pp

(D y
p
)λp + ∑

∈Rr

(D u
r
)µr ≥ d (2.4) 

 ∑
∈Pp

λp = 1 (2.5) 

 λp ≥ 0, ∀p∈P (2.6) 

 µr ≥ 0, ∀r∈R. (2.7) 
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We denote model (LDW) as master model and its decision variables, λp and µr, as weight 

variables. 

Constraints (2.4) force a feasible solution with respect to the constraints that were not 

included in the definition of SSP. Constraints (2.5), (2.6), and (2.7) force a feasible solution of 

(LDW) to belong to SSP. Constraints (2.5) are referred to as convexity constraints.  

A solution expressed in terms of the original variables can always be obtained from a 

feasible solution of (LDW), both with the same value, by using (2.3).  

A feasible solution of (LnP) can be mapped into a solution of (LDW), not necessarily in a 

unique way, since the representation of a point of a set as a convex combination of the extreme 

points plus a nonnegative combination of the extreme rays of the same set is not unique. 

If the original problem is unfeasible or unbounded, the reformulated problem will also be 

unfeasible or unbounded, respectively. 

In general, the master model has a huge number of decision variables: the sum of all 

extreme points and extreme rays of SSP. The enumeration of all those variables is out of 

question. In fact, only a small number will have a positive value in an optimal solution. On the 

other side, constraints (2.2) were replaced by only one constraint. Column generation is a 

method to deal with this huge number of variables. 

Example 2.1 

The data of this example is taken from (Bazaraa and Jarvis, 1977). 

We consider the linear programming problem: 

 Min − x1−2x2 

 subject to: 

 − x1− x2 ≥ −12 

 x∈SSP, 

where  

SSP = { x: − x1 + x2 ≤ 2, − x1 + 2x2 ≤ 8, x1 ≥ 0, x2 ≥ 0 }. 

In Figure 2.3 a graphical representation of this problem is given; the dotted line 

represents the constraint that is kept in the master problem. Note that the set SSP is unbounded. 

Its extreme points are [0 0]T, [0 2]T, and [4 6]T. Its extreme rays are [1 0]T and [2 1]T. 
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Figure 2.3 Graphical representation of the Example 2.1 problem. 

The master problem is: 

Min [−1− 2] [ 0 0 ]Tλ1 + [−1− 2] [ 0 2 ]Tλ2 + [−1− 2] [ 4 6 ]Tλ3 + [−1− 2] [ 

1 0 ]
Tµ1 + [−1− 2] [ 2 1 ]Tµ2 

subject to: 

 [−1− 1] [ 0 0 ]Tλ1 + [−1−1] [ 0 2 ]Tλ2 + [−1− 1] [ 4 6 ]Tλ3 + [−1− 1] [ 1 0 

]
Tµ1 + [−1− 1] [ 2 1 ]Tµ2 ≥ −12 

λ1 + λ2 + λ3 = 1 

λ1, λ2, λ3, µ1, µ2 ≥ 0, 

or, equivalently, 

Min −4λ2 −16λ3 −µ1 −4µ2 

subject to: 

−2λ2 −10λ3 −µ1 −3µ2 ≥ −12 

λ1 + λ2 + λ3 = 1 

λ1, λ2, λ3, µ1, µ2 ≥ 0. 

The optimal solution of the master problem is λ3=1, µ2=2/3, λ1=λ2=µ1=0, thus the 

optimal solution of the original problem is x1=16/3, x2=20/3 with value −56/3.  

♦ 

 

Now we consider models with block angular with linking constraints structure. In this 

case the A matrix is block diagonal and the constraints can be represented as shown in Figure 

2.4. 
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x
1
 ... x

h 
 

D
1 

... D
h ≥ d 

A
1 

  = b
1 

 ...  ... 

  A
h 

= b
h
 

Figure 2.4 Block angular with linking constraints structure. 

The original formulation can be rewritten in the following way: 

 Min ∑
∈Kk

c
k
 x

k
 

 subject to: 

 ∑
∈Kk

D
k
 x

k
 ≥ d 

 A
k
 x

k
 = b

k
,∀k∈K 

 x
k
 ≥ 0, ∀k∈K, 

where K is the set of indices of the blocks, K = {1,...,h}.  

Defining a set SSP
k for each block, k∈K, and representing its feasible solutions through its 

extreme points and rays, the master problem is: 

 Min ( ) ( )∑ ∑ ∑
∈ ∈ ∈














+

Kk Pp Rr

rk
rkk

pk
pkk

k k

ucyc µλ  

 subject to: 

 ( ) ( )∑ ∑ ∑
∈ ∈ ∈














+

Kk Pp Rr

rk
rkk

pk
pkk

k k

uDyD µλ  ≥ d 

 ∑
∈ kPp

λpk = 1, ∀k∈K 

 λpk ≥ 0, ∀k∈K, ∀p∈P
k
 

 µrk ≥ 0, ∀k∈K,∀r∈R
k
, 

where Pk and Rk
 are the sets of indices of all extreme points and extreme rays of the k-th block, 

respectively; ypk is the p-th extreme point and urk is the r-th extreme ray of the k-th block. 
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Example 2.2 

As an example of the application of the DWD principle, we consider a simple production 

planning problem. We intend to determine the quantities to produce of a set of products in a set 

of time periods where the demands are known, in order to minimise the total cost composed by 

holding and production costs. In addition, there is a limit to the quantity of all products that can 

be produced in each period. 

Defining the original variables as the quantity to produce of each product in each time 

period, denoted by xjk, where j is the period index and k is the product index, we obtain the 

following original model: 

 Min ∑ ∑
= =

h

1k

n

1j

(cjk xjk+hjk sjk) 

 subject to: 

 ∑
=

h

1k

xjk ≤ dj , j=1,...,n 

 x1k − s1k = b1k , k=1,...,h 

 s(j−1)k + xjk − sjk = bjk , j=2,...,n, k=1,...,h (2.8) 

 xjk, sjk ≥ 0, j=1,...,n, k=1,...,h, 

where sjk are auxiliary decision variables representing the available stock of product k at the end 

of period j, n is the number of periods, h is the number of products, cjk is the unit production cost 

of product k in period j, hjk is the unit holding cost of product k in period j, dj is the production 

capacity in period j and bjk is the demand of product k in period j. 

The original formulation for a three period, two product example is given in Figure 2.5. 

If constraints (2.8) are used to define the sets SSP
k in a DWD, they are associated with 

production plans (quantities to produce in each period) of product k − defined by the block k 

constraints. Those sets are bounded, and so do not have extreme rays, and the reformulated 

model is  

 Min ( )∑ ∑
∈ ∈Kk Pp

pk
pkk

k

yc λ  

 subject to: 

 ( )∑ ∑
∈ ∈Kk Pp

pk
pkk

k

yD λ  ≤ d 

 ∑
∈ kPp

λpk = 1, ∀k∈K 

 λpk ≥ 0, ∀k∈K, ∀p∈P
k
, 

where ypk denotes the p-th production plan of k-th product. For the two product, three period 
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example, we illustrate in Figure 2.6 the reformulated model with two columns associated with 

two production plans of product 1, namely y11=[0 b11 0 b21 0 b3
1
]
T (producing the required 

demand in the same period) and y21=[b21
    
b11+

 
b21 0 0 0 b31]

T (producing in period 1 satisfying 

the demands of periods 1 and 2, and producing in period 3 satisfying its demand). 

 

s11
 

x11
 

s21
 

x21
 

s31 x31
 

s12
 

x12
 

s22
 

x22
 

s32 x32
 

  

 1      1     ≤ d1 

   1      1   ≤ d2 

     1      1 ≤ d3 

−1 1           = b11
 

1  −1 1         = b21
 

  1  −1 1       = b31
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Figure 2.5 Simple lot sizing original model for a two product, three period example. 

Variables  λ11
 λ21

 ...   

Period 1 1 1 ... ≤ d1 

Period 2 1  ... ≤ d2 
Linking 
constraints 

Period 3 1 1 ... ≤ d3 

Product 1 1 1 ... = 1
 

Convexity 
constraints Product 2   ... = 1 

Objective function c11b11+ c21b21 +c31b31 c11(b11+b21) + h11b21 +c31b31
 
...

 
 

 

Figure 2.6 Part of the simple lot sizing master model for a two product, three period example, 
resulting from a decomposition by product. 

♦ 

2.2.3 Column generation 

Column generation is a method used to solve the master problem of the DWD principle. 

The main idea of this method is that only the extreme points and rays of SSP that are needed to 

define the optimal basis must be considered in the master problem (LDW). Since, of course, 

prior to the optimisation the optimal basis is not known, the inclusion of variables is made 

iteratively, starting from a restricted solution space. 

We define two subsets of P and R, PP ⊆  and RR ⊆ . A restricted master problem 

(RMP) is then: 
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ZRMP =  Min ∑
∈Pp

(c y
p
)λp + ∑

∈Rr

(c u
r
)µr (RMP) 

 subject to: 

 ∑
∈Pp

(Dy
p
)λp + ∑

∈Rr

(Du
r
)µr ≥ d (2.9) 

 ∑
∈Pp

λp = 1 (2.10) 

 λp ≥ 0, ∀p∈ P  

 µr ≥ 0, ∀r∈ R . 

We assume that (RMP) has at least one feasible solution. In Section 2.4.2 we will discuss 

the case where finding sets P  and R  such that this assumption holds is non-trivial. 

According to the linear programming theory, the optimal solution of (RMP) is an optimal 

solution for (LDW) if there are no variables outside (RMP) with negative reduced cost.  

We define the vector w≥0 and the scalar π as the duals associated with constraints (2.9) 

and (2.10), respectively. The reduced cost of one variable λp is given by cy
p
 − wDy

p
 − π. The 

reduced cost of one variable µr is given by cu
r
 − wDu

r
. At a given dual point, ),w( π , the 

variable with the most negative reduced cost is the one associated with the optimal solution of 

the subproblem: 

wSPZ  = Min (c − w D) x (SP w ) 

 subject to: 

 x∈ SSP , 

noting that π  is a constant. 

If (SP w ) is unbounded that means an extreme ray can be detected and the associated µ 

variable should be inserted in (RMP). Otherwise, an extreme point is found. If wSPZ  < π  then 

the variable associated with the extreme point has a negative reduced cost and should be 

inserted in (RMP). If there are no variables with negative reduced cost, which means that the 

optimal solution to (RMP) is also an optimal solution to (LDW). 

In every iteration of a column generation algorithm, a RMP is solved, providing optimal 

dual variables; based on the duals, the subproblem is solved and variables are inserted in the 

RMP, accordingly. 

Example 2.1 (continued from page 17) 

We initialise the RMP with the first extreme point (origin) and the first extreme ray. In 

the original space that corresponds to restricting the feasible set associated with the subproblem 

constraints to the x1 axis. 
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The optimal solution of this RMP is λ1=1 and µ1=12. A dual optimal solution is w =1 

and π =0. The subproblem is 

 Min (− 1+w) x1 + (− 2+w) x2 

 subject to: 

 − x1 + x2 ≤ 2 

 − x1 + 2x2 ≤ 8 

 x1, x2 ≥ 0. 

For w =1, the subproblem is unbounded along the extreme ray [2 1]T. Variable µ2 is 

inserted in the RMP, which is (re)optimised. Its optimal dual solution is w =4/3 and π =0.  

For w =4/3, the optimal solution of the subproblem is the extreme point [4 6]T with value 

−8/3. Since −8/3<π , λ3 is inserted in the RMP. Its optimal dual solution is w =4/3 and 

π =−8/3.  

The optimal solution of the subproblem is the same of the previous iteration. Since 

π =−8/3 there are no attractive columns and the optimal solution to the RMP is optimal to the 

overall problem. 

♦ 

2.2.4 Linear programming dual and duality gap  

In every iteration of the column generation algorithm an upper bound to the value of the 

optimal solution is obtained by solving the RMP, ZRMP. 

The linear programming dual of (LDW) is: 

WLDWD = Max wd + π (LDWD) 

 subject to: 

 π ≤ cyp− wDy
p 
, ∀p∈P (2.11) 

 0 ≤ cur
 − wDu

r
, ∀r∈R 

 w ≥ 0, 

where the (nonnegative) w dual variables are associated with constraints (2.4) and (unrestricted 

in sign) π variable is associated with constraint (2.5). 

Any feasible solution to (LDWD) provides a lower bound to the value of its optimal 

solution. However, the optimal dual solution that we have, after solving (RMP), is not 

necessarily feasible for (LDWD) since having a primal RMP implies having a relaxed dual 

master (RDM) problem: 

WRDM = Max wd + π (RDM) 

 subject to: 
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 π ≤ cyp− wDy
p
 , ∀p∈ P  

 0 ≤ cur
 − wDu

r
, ∀r∈ R  

 w ≥ 0. 

Still, obtaining the value of the dual solution in (LDWD) is possible when solving the 

subproblem if there are no attractive extreme rays (in this case, we consider that the lower 

bound is −∞). When solving the subproblem at a given point w , if there are no attractive 

extreme rays, we are selecting, from all the extreme points, the one that implies the lowest right-

hand side in (2.11), as can be seen by the objective function of (SP w ). Since w d is constant, 

the minimum value of the right-hand sides will imply the maximum possible value of the 

objective function. Thus, the value of the objective function in (LDWD) is given precisely by 

w d + wSPZ . By weak duality, that value is a lower bound to WLDWD = ZLDW. 

Being so, a duality gap can be easily calculated through  

ZRMP − ( w d + wSPZ ) = w d + π  − ( w d + wSPZ ) = π  − wSPZ .  

This result allows obtaining optimal solutions with the desired accuracy. 

 

The optimality conditions for linear programming state that a primal-dual pair is optimal 

if it is primal feasible, dual feasible and respects the complementary slackness conditions. When 

using column generation we seek a primal-dual pair of solutions that verifies those conditions 

for the overall problem.  

Column generation guarantees the complementary slackness conditions in all iterations 

when obtaining an optimal solution to the RMP (assuming an optimal extreme point is found as 

in simplex algorithms). Primal feasibility is assured in the RMP.  

Now we turn to dual feasibility, which is checked in the subproblem. The dual solution 

( w ,π ) may be not feasible because of the constraints that are not present in (RDM). Dual 

feasibility is achieved by setting 'π = wSPZ , which amounts to obtaining the extreme point p∈P 

with the minimum right-hand side in (2.11). If p∈ P  then π = 'π  and the solution is dual 

feasible already, and thus optimal for the overall problem. If p∉ P , a dual feasible solution may 

be obtained by setting 'π = wSPZ  (which enables the computation of the lower bound 

previously presented). In that case, by changing the dual solution (π  to 'π ), complementary 

slackness conditions are no longer verified, that is, the primal-dual solutions are no longer 

complementary.  

Consider that the dual constraint associated with the first extreme point of the subproblem 

has no slack: π  = cy
1− wDy

1. By complementary slackness, λ1 > 0 (in the absence of primal 

degeneracy). Since we changed the value of π  to 'π  to gain dual feasibility, this constraint has 
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now a positive slack, thus violating ( 'π  − cy1+ wDy
1
)λ1 = 0. A new iteration begins with the 

computation of complementary primal-dual solutions that minimise-maximise RMP-RDM, with 

the inclusion of a new variable-constraint.  

Summarising, in every iteration of the column generation algorithm primal feasibility and 

complementary slackness are ensured when solving the RMP. Dual feasibility is checked in the 

subproblem. When checking dual feasibility it is possible to find a dual feasible solution that 

allows computing a lower bound to ZLDW. 

2.2.5 Columns removal and convergence 

Column generation can be viewed as an extension of the primal simplex algorithm. In all 

iterations, a basic solution is determined by solving the current RMP and the most promising 

nonbasic variable is determined by solving the subproblem. However, since the number of 

columns of the RMPs can become quite large (given their exponential size), strategies for 

columns removal may have a particular importance when implementing a column generation 

based algorithm. 

Two extreme situations can be considered when defining a strategy for columns removal: 

never deleting variables of the RMPs or deleting all nonbasic columns of the current RMP in 

every iteration. 

In the first situation, finite convergence is guaranteed, as long the simplex 

implementation employed to solve the RMPs uses techniques for dealing with cycling (which is 

usually the case). Cycling can occur if a (primal) basis is degenerate, meaning that there are 

basic variables with zero value (see, for example, (Murty, 1983)). In the presence of a 

degenerate basis, if the choice of the leaving (degenerate basic) variable and entering variable 

(one with non-positive reduced cost) is arbitrary, a cycle of basis, which does not include the 

one that allows the strict improvement of the solution value (or which allows the detection that 

the optimal solution was found), can be formed. Note that for a variable to play a part in that 

cycle of basis, it must have a negative reduced cost at some iteration, thus, it will be generated 

by the subproblem. As long as variables are not deleted, cycle prevention is then a task for the 

RMP solver and does not pose any difficulties for the implementation of a column generation 

algorithm. 

In the second situation, finite convergence is not theoretically guaranteed. When all 

nonbasic variables are removed from the RMP, the subproblem may suggest a variable to enter 

the basis that will lead to a basis already considered in a previous iteration. Note that, since the 

variables outside the RMP are being implicitly considered, it is not simple to apply any 

lexicographical rules to select the entering variable, which would be a possibility to deal with 

cycling. 
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Although columns removal may compromise the convergence of column generation, in 

practise, implementations where columns removal is performed are frequent. We will discuss 

some of those strategies in subsection 2.4.2. 

2.3 Dantzig-Wolfe Decomposition and Lagrangean 
Relaxation 

2.3.1 Lagrangean relaxation 

In the previous Section, we took a linear programming perspective over the DWD 

principle and column generation. A different perspective can be taken if we consider its relation 

with Lagrangean relaxation. Although linear programming duality and Lagrangean relaxation 

applied in linear programming can be seen as the same thing, we think this different perspective 

is worth, given the own importance of Lagrangean relaxation. Furthermore, this perspective 

allows contextualising column generation within the methods for non-differentiable 

optimisation. 

The use of Lagrange multipliers for obtaining solutions of optimisation problems dates 

back to the XVIII century, when Joseph Louis Lagrange (1736-1813) lived. Their use in 

nonlinear programming has accompanied that discipline from its origins, in the middle XX 

century, to the present. 

The term “Lagrangean relaxation” was coined in the middle 1970s by A. M. Geoffrion 

(Geoffrion, 1974) in the context of obtaining lower bounds in integer programming. This 

application of Lagrangean relaxation became relevant with the work of M. Held and R. M. Karp 

on the travelling salesman problem (Held and Karp, 1970; Held and Karp, 1971) in the 

beginning of the same decade, where the subgradient method was first used in that context. 

Surveys about Lagrangean relaxation can be found in (Shapiro, 1979; Fisher, 1981; Bazaraa et 

al., 1993; Beasley, 1995; Bertsekas, 1999). 

In Lagrangean relaxation, the minimisation original problem (LnP) (defined in page 15) 

is replaced by a closely related maximisation problem: 

ZLgP =  Max ϕ(w), (LgP) 

 subject to: 

 w ≥ 0, 

where  

ϕ(w) = Min c x + w (d − Dx) (LgSP) 

 subject to: 

 A x = b 
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 x ≥ 0. 

Problem (LgP) is the Lagrangean dual problem, ϕ(w) the Lagrangean dual function and 

(LgSP) the Lagrangean subproblem. The Lagrangean subproblem is obtained by associating a 

vector of dimension g of nonnegative dual variables (Lagrange multipliers), w≥0, with 

constraints (2.1), which, in this way, are penalised in the objective function if they are not 

satisfied. 

Reminding that we are assuming that the original problem is a linear programming one, 

two fundamental results are: 

ZLgP = ZLnP; 

ϕ(w) ≤ ZLnP ,∀w≥0. 

The evaluation of the Lagrangean dual function at a point w  is made by solving (LgSP) 

at that point. If the (LgSP) is unbounded that means there exists an extreme ray, ur, such that 

cu
r− wDu

r
 < 0 (noting that w d is a constant). In that case, ϕ( w ) = −∞, since it was proved that 

it is not that point that maximises ϕ(w). Points that may be optimal of (LgP) must satisfy the 

constraints cur− wDu
r
 ≥ 0, ∀r∈R. 

If, at w , there exists a finite optimal solution, there is at least one extreme point of SSP 

that is an optimal solution of (LgSP), thus ϕ( w ) = 
Pp

Min
∈

 { cy
p
 + w  (d − Dy

p
) }, where P denotes 

the index set of the extreme points of SSP. Noting that cy
p
 + w (d − Dy

p
), ∀p∈P, are linear 

functions, ϕ(w) is a concave piecewise linear function with breakpoints where (LgSP) has 

alternative optimal solutions.  

Example 2.1 (continued from page 17) 

Associating a Lagrange multiplier with the constraint − x1− x2 ≥ −12, we obtain the 

Lagrangean dual function showed in Figure 2.7. The two vertical dotted lines are associated 

with the extreme rays of (LgSP), points to their left have ϕ(w) = −∞. The other three dotted 

lines represent the linear functions associated with the extreme points of (LgSP). 
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)w(ϕ

 

Figure 2.7 Lagrangean dual function of the Example 2.1. 

♦ 

2.3.2 Equivalence between Lagrangean relaxation and Dantzig-Wolfe 
decomposition 

 

The equivalence between DWD and Lagrangean relaxation is formally proven in, for 

example, (Nemhauser and Wolsey, 1999) and is a consequence of the equivalence of dualisation 

and convexification (Magnanti et al., 1976). 

The value of the Lagrangean function at a point w , where ϕ( w ) is finite, is given by 

Pp
Min

∈
 { cy

p
 + w  (d − Dy

p
 }. Being so, the Lagrangean dual problem can be solved by linear 

programming: 

 Max φ (LgLnP) 

 subject to: 

 φ ≤ cyp+w(d− Dy
p
)
 
, ∀p∈P (2.12) 

 0 ≤ cur− wDu
r 
, ∀r∈R (2.13) 

 w ≥ 0, 

where constraints (2.13) exclude points where ϕ( w ) = −∞ and constraints (2.12) force the value 

of the Lagrangean dual function to be defined by the optimal value of (LgSP). 
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Example 2.1 (continued from page 27) 

The Lagrangean dual problem can be solved by the following linear programming 

problem. 

 Max φ 

 subject to: 

 φ ≤ [−1 −2] [0 0]T + w (−12−[−1 −1][0 0]T) 

 φ ≤ [−1 −2] [0 2]T + w (−12−[−1 −1][0 2]T) 

 φ ≤ [−1 −2] [4 6]T + w (−12−[−1 −1][4 6]T) 

 0 ≤ [−1 −2] [1 0]T + w [−1 −1][1 0]T 

 0 ≤ [−1 −2] [2 1]T + w [−1 −1][2 1]T 

 w ≥ 0. 

The optimal solution is given by w=4/3 and φ=−56/3. 

♦ 

At a point w , given that w d is a constant, ϕ( w ) = w d +
Pp

Min
∈

 { cy
p
 − w Dy

p
 }, thus 

problem (LgLnP) is equivalent to (LDWD) (defined in page 23), making φ = π + wd.  

Primal-dual equivalence between DWD and Lagrangean relaxation translates into the 

primal-dual equivalence between column generation and the Kelley’s cutting plane method 

(KCPM). In that cutting plane method, a relaxed master dual is considered and, in each 

iteration, the violation of the constraints that are not present in (RDM) is checked by solving the 

subproblem at the current point given by the optimal solution of (RDM). 

2.3.3 Optimality conditions and primal solutions 

A dual feasible point, w*, is an optimal solution to the Lagrangean dual problem if and 

only if there is an optimal solution of (LgSP), y*, at w* such that: 

 (i) Dy
*≥ d (primal feasibility); 

(ii) w
*
(d − Dy

*
) = 0 (complementary slackness). 

Furthermore, under these conditions, y* is an optimal solution to the original problem. 

It is important to note that it may not be trivial, at an optimal dual point w*, to find a y* 

that satisfies (i) and (ii). This difficulty lies in the fact that, if (LgSP) has alternative optimal 

solutions at w*, there is no imediate way for the subproblem to select one solution such that 

conditions (i) and (ii) are satisfied. An illustration of this is given in Figure 2.8. Points y1, y2, y3, 

and y4 are the extreme points of the subproblem. The dotted line represents the dualised 

constraint D1x≥d1. Consider that the unique optimal solution of the original problem is y
* and 

that w* maximises ϕ(w). By solving the subproblem at w*, all points that form the convex 
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combination of y1 and y2 are optimal. Note that y1 does not satisfy the complementary slackness 

condition (w* 
> 0 is implied by the uniqueness of the optimal solution and D1y

1 
> d1) and y

2 is 

not primal feasible. The subproblem cannot identify the optimal solution that satisfies (i) and 

(ii).  

 

Figure 2.8 Illustration of the difficulty of getting a primal optimal solution based on an optimal 
solution of the Lagrangean dual function. 

Furthermore, the existence of alternative optimal solutions of the subproblem at an 

optimal dual Lagrangean point, w*, can be seen as natural, since that happens in the breakpoints 

of the Lagrangean dual function, as illustrated in Figure 2.9, ϕ(w*
) = cy

1
+w

*
(b−Ay1) = 

cy
2
+w

*
(b−Ay2). 

This discussion leads to the fact that, even assuming that an optimal dual solution is 

known, obtaining a primal optimal solution amounts to determining the best primal feasible 

convex combination of the extreme points of the subproblem (in order to satisfy optimality 

conditions (i) and (ii)). This is precisely what is done when solving the (restricted) master 

(primal) problem of column generation method (or, equivalently, the relaxed − since not all 

constraints are being considered − master dual problem of the cutting plane method). 

2

2

)w(ϕ

)w( *ϕ

 

Figure 2.9 Illustration of an optimal breakpoint of the dual Lagrangean function. 
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2.3.4 Methods for solving the Lagrangean dual 

General considerations 

In this subsection, we refer to methods for solving the Lagrangean dual problem (LgP). 

We briefly review and give references on the subgradient, volume, bundle and analytic center 

cutting plane methods. These methods deserve particular emphasis for their 

generalised/promising practical use and/or relation with KCPM / column generation. A 

description of other methods can be found in (Bertsekas, 1999) and (Goffin and Vial, 1999). 

Our goal with this subsection is to contextualise the KCPM / column generation method, and 

thus we do not provide a formal description of the methods, neither discuss their several 

variants. 

Although we focus on solving the Lagrangean dual problem, it is relevant noting that all 

the methods mentioned here may be applied in any convex/concave programming problem (see 

(Hiriart-Urruty and Lemaréchal, 1993a; Hiriart-Urruty and Lemaréchal, 1993b) for a much 

deeper presentation in that broader context). 

The Lagrangean dual problem, (LgP), amounts to maximising a concave piecewise linear 

function, ϕ(w), such as the one represented in Figure 2.10.  

As noted earlier, each linear function defining the Lagrangean function is associated with 

an extreme point of (LgSP), thus their number is exponential, which precludes the possibility of 

explicitly considering all of them. However, by solving (LgSP) at a given point, w , there are 

two kinds of useful information that can be obtained: the value of the Lagrangean dual function 

at w , ϕ( w ), and a subgradient of ϕ(w) at w , that is, a vector s = [s1 ... sm]
T such that ϕ(w) ≤ 

ϕ( w ) + s (w − w ), ∀w, given by d − Dy’, where y’ is an optimal solution of (LgSP) at w . That 

information is sufficient to describe the linear function associated with the extreme point of 

(LgSP) found. (If, at w , (LgSP) does not have a finite solution, then a constraint excluding that 

point is obtained). 

In the methods discussed here there is no control over the subgradient returned by the 

subproblem: in the presence of alternative optimal solutions, the subproblem returns an arbitrary 

one. The possibility of obtaining different optimal solutions of the subproblem (in the limit, all 

of them, that is, obtaining all the subgradients at the point − the subdifferential) is excluded. 



Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms 

 

 

32 

 

Figure 2.10 Illustration of a Lagrangean dual function. 

 A generic iteration of a method for solving the Lagrangean dual is as follows. 

1. Obtain a trial point w , based on the information gathered so far. 

2. Solve the subproblem (LgSP) at w , obtaining ϕ( w ) and a subgradient of the 

Lagrangean function at w  given by ws  = d−Dy
p
 where yp is an optimal solution of (LgSP) at 

w . 

3. Update the available information. 

4. If the trial point is accepted move to w . 

5. If the stopping criterion is satisfied, stop. Else go to 1. 

Kelley’s cutting plane 

In KCPM, the information used to obtain a trial point is a function that approximates the 

Lagrangean function, obtained through the points, values, and subgradients of previous 

iterations. The trial point is a maximiser of that function, obtained by solving a linear 

programming problem − the RDM. The trial point is always accepted. Since the optimal value 

of the current RDM gives an upper bound and ϕ( w ) gives a lower bound to the optimal value 

of the Lagrangean function, the stopping criterion is based on an optimality gap, allowing to 

obtain primal solutions with the desired accuracy. 

The initialisation of this method may require one artificial upper bound, since the first 

RDMs problems can be unbounded.  

Subgradient 

The KCPM gathers all the information from previous iterations in order to decide the next 

point to evaluate. An opposite approach, in the sense that very few past detailed information is 

used in the current iteration, is given by the subgradient method (with roots in the works of Shor 
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and Poljak in the 1960s, see references in (Held et al., 1974)). The trial point obtained in step 4 

is also always accepted, but, in the simpler version of the method, it is only based on the 

subgradient of the current iteration and on a step size. Convergence is assured taking into 

account that a sufficiently small step given in the direction of a subgradient (that is not 

necessarily an ascent direction) results in a point closer to the optimum. In practise, the rules 

used for determining the step sizes do not, theoretically, assure convergence (see, for example, 

(Minoux, 1986; Bertsekas, 1999; Nemhauser and Wolsey, 1999)). The main advantage of this 

method is its simplicity: no special procedure for its initialisation is needed, memory 

computational requirements are negligible and its implementation is easy. The drawbacks are 

the lack of a primal perspective and the stopping criterion. Theoretically, a necessary and 

sufficient condition for the optimality of a point is the existence of a null subgradient at that 

point. In practise, since the subgradients of previous iterations are discarded (or, in a more 

elaborated version, aggregated with different weights) the verification of that condition relies 

exclusively in the subproblem for which, as discussed before, there is no control over the 

subgradient it returns (as opposed to the KCPM where the master problem is able to generate a 

point where there is a null subgradient). Thus, in practise, the stopping criterion is usually 

related with the number of iterations performed or the number of iterations without 

improvement in the value of the Lagrangean function. 

Volume 

The most diffused method to solve the Lagrangean dual is, undoubtedly, the subgradient 

method. Besides the fact that it was the first one used in this context, it has, at least, two main 

advantages: it is easy to code and has minimal memory requirements. However, since it does 

not keep in memory the solutions of the subproblems solved, it does not guarantee anything (not 

even feasibility) about the solution of the original problem (the solution of the last subproblem 

solved).  

The volume method (Barahona and Anbil, 2000) can be seen as an extension of the 

subgradient method designed to provide a primal solution, but still keeping its simplicity. A 

primal solution, x , obtained by a convex combination of the primal solutions obtained in 

previous iterations, is considered in each iteration (the weights are adjusted through the 

execution of the algorithm). In each iteration a trial point is obtained, based on a step size and 

on the direction defined by d − D x . That trial point can be accepted or not as the current point 

for the next iteration. Three types of iterations can occur. In a red iteration the trial point is not 

accepted because there has been no improvement. In a green or yellow iteration there is an 

improvement of the Lagrangean function value and the trial point is accepted. The difference 

between those types of iterations lies in the way a constant in the step size update expression is 

modified for the following iteration. In a green iteration the angle between the direction and the 
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subgradient of the current point is acute, and thus that constant is set to a value larger than the 

current one. If the angle is not acute, then a yellow iteration is performed, where the constant of 

the step size expression is reduced. Taking into account that primal feasibility can be slightly 

violated, but given the existence of a primal solution, the stopping criterion can be based on the 

gap. 

Convergence properties and their relation with bundle methods are discussed in 

(Bahiense et al., 2002). 

The advantages of using subgradient and volume methods instead of the KCPM are 

clearly application dependent. They are coded more easily and tend to execute faster, but are not 

intended to give primal solutions with the same quality as the ones given by KCPM. 

Bundle 

Bundle methods have their roots in the work of Lemaréchal in the 1970s (for references, 

see (Lemaréchal, 1989)). They can be seen as an extension of the KCPM, since, in each 

iteration, the same function that approximates the Lagrangean function, based on the points and 

subgradients of previous iterations, is considered. However, the trial point is obtained by 

solving a quadratic master problem, where points distant from the current one are penalised. In 

addition, contrary to the KCPM, the trial point is only accepted (serious step as opposed to a 

null step) as the current one for the next iteration if the predicted improvement given by the 

approximation is sufficiently close to the real improvement measured when the Lagrangean 

function is evaluated at the trial point. In a null step, although the current point remains the 

same, the approximation function is enriched. 

When related to the subgradient method, in each iteration of a bundle method, a step size 

is also adjusted and a direction is also determined. That direction is a convex combination of the 

subgradients found in previous iterations, and is obtained through the solution of the quadratic 

master problem, where a measure (linearisation error) of the validity of each subgradient in the 

current point is taken into account. This allows obtaining a direction where subgradients in 

points near the current one tend to have a larger weight than subgradients in points far from the 

current one. 

As opposed to the KCPM, bundle methods do not need to use an artificial upper bound in 

the first iterations since the master problem of the bundle method always has a finite solution. In 

addition, convergence properties are better because local information is taken into account when 

deciding the trial point at each iteration. The price to pay is having a much more difficult master 

problem to solve in each iteration (that is, a nonlinear one), a weaker stopping criterion and 

primal solutions that can (slightly) violate the original constraints.  

In (Briant et al., 2004) computational tests for comparing the bundle and KCPM 

approaches are given for several instances of different problems. For two versions of a cutting 
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stock problem (minimising the number of rolls and minimising the total waste) KCPM took less 

iterations and less time. For a vertex coloring problem, bundle took considerable less iterations 

but the solution times were similar. For a capacitated vehicle routing, bundle again took 

considerable less iterations, but much larger solution times. For the travelling salesman 

problem, the number of iterations of bundle was again much smaller, but time results were not 

presented. Finally, for a multi-item lot sizing problem, KCPM took much less iterations and 

solution time. 

Bundle requires the use of several parameters that need to be calibrated for the 

instance/problem at hand. Although there is some evidence that the method is robust (with 

respect to those parameters), in particular compared with the subgradient method (Crainic et al., 

2001), the absence of parameters that need to be calibrated of KCPM may be considered as 

another advantage of this latter method. 

For an in depth treatment of bundle methods and variants see (Medhi, 1994; Lemaréchal 

et al., 1995; Frangioni, 1997; Frangioni, 2002). 

Analytic center cutting plane  

The analytic center cutting plane method (ACCPM) (Goffin et al., 1992; Goffin et al., 

1993) is closely related to the KCPM. The main conceptual difference is that the current point 

of the next iteration is given by the analytic center of the localization set defined by 

π ≥ zLB 

π ≤ cyp− w(d−Dy
p
) , ∀p∈ P  

0 ≤ cur
 − wDu

r
, ∀r∈ R , 

where zLB is the best value of the Lagrangean function found so far, being the remaining 

notation as introduced before. Using concepts from interior point methods, the analytic center 

(or an approximation of it) can be efficiently computed in every iteration.  

The potential advantage of this approach lies in the fact that a central point contains more 

information about the Lagrangean function than a maximiser, since it is defined by all the 

cutting planes generated so far.  

Its similarities with KCPM include the possible requirement of one artificial upper bound, 

the stopping criterion, and the possibility of obtaining optimal primal solutions with the desired 

accuracy. Still comparing with the KCPM, besides its clear conceptual difference, we must note 

that an implementation of ACCPM involves a much harder coding effort, although some tools 

have been developed to make it easier (Péton and Vial, 2001). For references and detailed 

treatment of the ACCPM see (Goffin and Vial, 1999). 
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2.4 Column Generation Variants 

2.4.1 Head-in, tail-off, and instability 

Theoretically, column generation algorithms have poor convergence properties (Wolfe, 

1970; Lemaréchal, 2003). In practise, three phenomena are observed (in some applications), 

usually denoted by head-in, tail-off, and instability. 

A graphical representation of those behaviours of a column generation algorithm is given 

in Figure 2.11. 
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V
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u
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Figure 2.11 Illustration of the head-in and tail-off effects in column generation / KCMP. 

The head-in effect is a consequence of the poor quality of the primal and dual information 

obtained in the first iterations. Particularly when it is not easy to obtain a first RMP that has a 

feasible solution to the original problem, we may expect that, in each of those iterations, a large 

number of columns are attractive and the selection of the ones to be inserted in the RMP is more 

or less arbitrarily, since the dual information that an “artificial” RMP gives is necessarily poor. 

 

In the last iterations, the duality gap may be small, but closing it may be take several 

iterations, a phenomenon that is known as the tail-off effect. We may consider two reasons for 

this. Firstly, when the RMP is degenerate, there are alternative dual optimal solutions and the 

subproblem may have to generate several columns (several iterations) to strictly improve the 

RMP primal solution. Secondly, as discussed in subsection 2.3.3, page 29, it is natural that the 

subproblem has alternative optimal solutions, and so the one chosen arbitrarily may not be the 

one that reduces the gap as intended. 

 

Instability of the column generation refers to the fact that dual variables can take very 

head-in tail-off 

Upper bound  

Lower bound  
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different values from one iteration to the next. In Figure 2.12 an illustration is given: the value 

of the dual variable in the first iteration is closer to its value in the third iteration than to its 

value in the second iteration. This may lead to wasting iterations approximating the Lagrangean 

dual function in points far from the optimal, gathering useless cutting planes and lower bounds. 

A B

 

A B

C

 

A B

C

D

 

Figure 2.12 Illustration of the instable behaviour of the dual solution in the KCPM. 

This oscillatory behaviour of the values of the dual variables in the course of the 

algorithm leads to significant differences among the lower bounds obtained in consecutive 

iterations, as illustrated before in Figure 2.11. 

 

Bundle and ACCPM methods may be seen as stabilised versions of column generation / 

KCPM, dealing with the pernicious behaviours described in the previous paragraphs at the price 

of not using directly (in the case of the ACCPM, or at all, in the case of bundle methods) 

standard linear programming techniques.  

Clearly, much more comparative results (besides the ones pointed out in the previous 

subsection) between the several methods must be obtained (and in a larger number of 

problems), before having a clear picture of how these issues affect their comparative overall 

efficiency. 

 

In the next two subsections, we detail some approaches developed to alleviate the 

pernicious behaviours identified above. In the next subsection, we discuss implementation 

alternatives for column generation. In the last subsection, we focus on stabilisation procedures 

that keep the main distinctive feature of column generation / KCPM, that is, in each iteration a 

primal-dual solution that maximises-minimises the current linear programming RMP-RDM is 

obtained. 

2.4.2 Column generation implementation variants 

First RMP 

The construction of the first RMP may have an important impact in the head-in effect 

mentioned above. A column generation algorithm requires the construction of a first RMP, 

w
3
 w

1
 w

2
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which must be feasible so that the algorithm may proceed. Clearly, in general, obtaining a set of 

columns that assure feasibility is not an easy task. The use of artificial variables may be 

required, implying a phase I, where the objective is to find a feasible solution to the RMP. The 

classical artificial variables methods, two phase and big M, can be used for that purpose. 

The big M method is based on having the artificial variables with a sufficiently large 

coefficient in the objective function, implying a null value for those variables in a feasible 

solution for the master problem. A very large value can lead to scaling difficulties of the master 

solver. Thus, the value of M should be as small as possible. Setting a small value of M has 

another advantage. Columns that will be generated in this phase I will tend to have a better 

quality in the sense that their selection has a closer relation with their original cost. If the value 

of M is very large, all columns suggested by the subproblem are attractive. 

The two-phase method avoids scaling difficulties, since the coefficients of the artificial 

variables are small. Its disadvantage is that the selection of columns does not take into account 

the original costs. 

Artificial variables can be inserted in the linking constraints or in the convexity 

constraints (or in both). Their judicious use, along with a judicious choice of how the first 

columns are generated may have an important impact on the efficiency of the column 

generation algorithm. 

Usual approaches for generating that first set of colums are solving exactly the 

subproblems with the original costs, or solving them heuristically, taking into account the 

linking constraints (examples of different strategies for two multicommodity flow problems are 

given in Chapter 3 and Chapter 4). 

RMP 

In each iteration of the column generation algorithm, a RMP is solved. Taking the dual 

perspective, solving the RMP consists in finding a dual solution that is tested for feasibility (in 

the overall problem) when solving the subproblem. Column generation algorithms select a dual 

solution that maximises the Lagrangean function (in opposition to the methods discussed in 

2.3.4).  

We propose a different alternative that consists in selecting a feasible dual solution not 

necessarily optimal. In practical terms, this alternative amounts to stopping the RMP 

optimisation as soon as a dual feasible solution is obtained or a predetermined number of 

iterations was made (given that the current dual solution is feasible). In some iterations, the 

RMP is solved exactly to assure convergence. 

The rationale behind this alternative is that obtaining the dual optimal solution of the 

RMP can be too costly and, anyway, that solution can be very far from an optimal solution of 

the overall problem. In addition, we may expect to get a feasible dual solution closer to the 
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previous one, something that may attenuate the instability of the dual solutions mentioned 

above.  

Furthermore, this approach may be useful when it is not trivial to find a subset of 

columns to build a (primal) feasible RMP. In that case, in the first iterations where artificial 

variables are being used the time consumed solving the RMP optimally may be used with 

advantage in generating a larger set of columns that, probably, will lead to a feasible primal 

solution more quickly, alleviating the head-in effect. 

Subproblem 

In a given iteration, all that is needed to improve the current (RMP) solution is one 

column with a negative reduced cost (neglecting degeneracy), and not necessarily the one with 

lower reduced cost. This way, the subproblem can generate columns that are not associated with 

optimal solutions of the subproblem. In addition, several (attractive) columns of the same 

subproblem can be inserted in the same iteration. Those can be generated with heuristics. Of 

course, in this case, if no attractive columns are detected heuristically, the subproblem must be 

solved exactly to prove (or not) the optimality of the current solution. 

Another alternative is to obtain the second best solution of the subproblem, besides the 

optimal solution, and so on (in the limit all the attractive extreme points). Clearly, this depends 

on the specific subproblem: if the second best solution can be obtained with little computational 

effort, this approach may be appealing. The rationale behind this is that a larger portion of the 

dual space is cut or a closer approximation of the Lagrangean dual function is obtained. 

RMP rows and columns management 

In every iteration of the column generation algorithm the number of columns of the RMP 

increases, which may successively reduce the ability of the linear programming solver to obtain 

an optimal solution efficiently. 

Although, theoretically, as noted in subsection 2.2.5, removing columns from the RMP 

may affect the finite convergence of the algorithm, in practise, it is quite common to implement 

strategies for columns removal (in our experience, even with aggressive strategies, such as 

removing all nonbasic columns in every iteration, convergence was always achieved). 

A first alternative is to remove colums with reduced cost greater than a given threshold. A 

second one is to remove columns with zero value for a predefined number of iterations. There 

are two other alternatives: to remove columns with reduced cost greater than the current duality 

gap and to remove columns in such a way that the number of columns of the RMP is limited to 

a given number. In this last case, the maximum size of a RMP to be optimised by the linear 

programming solver can be previously defined. The maximum number of columns must be 

greater than the number of rows of the RMP (which ensures that the number of columns of each 
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RMP is sufficiently large to form a basis). The selection of the columns to remove may take into 

account the ones with a smaller probability to be generated again, by sorting them by decreasing 

reduced costs.  

We now turn to the dynamic management of rows, meaning that, in order to solve the 

RMPs easily, addition and removal of rows may also be performed. 

Not taking into account all the rows of the master model means that a relaxed problem is 

being considered. Of course, if an optimal solution to a relaxed RMP is obtained, it is necessary 

to check if the constraints that are not present in the RMP are being violated, and, if there are 

any, to insert them in the RMP. 

In the most basic version of dynamic insertion of rows, this procedure can be seen as 

composed by two cycles. In the inner cycle, a relaxed problem, in which only some rows are 

considered, is solved by column generation. In the outer cycle, violated rows are detected and 

the relaxation of the problem is tightened by their insertion in the RMP. 

In Figure 2.13, an illustration of the evolution of the upper and lower bounds obtained 

during this type of process is given. When violated rows are inserted in the RMP, the upper 

bound increases. Column generation is then used to close the duality gap and the procedure is 

repeated until there are neither attractive columns nor violated rows. 

As a particular example of how this strategy can improve the efficiency of the column 

generation approach, we note that the instance used to construct Figure 2.13 is the same as the 

one used for Figure 2.11 (instance bs01 of the binary multicommodity flow problem addressed 

in Chapter 4). Without dynamic insertion of rows this instance took 270 seconds and 176 

iterations (RMP optimisations) to be solved. With dynamic insertion of rows, it took only 3 

seconds and 102 iterations. 

Rows removal is another alternative to keep the size of RMP as small as possible. A 

possible strategy is to remove rows that are inactive for more than a predefined number of 

iterations. Of course, that parameter should not be set to a very small value, since removed rows 

may be generated again in a subsequent iteration. As it happens with columns, using aggressive 

removal strategies allows to keep the RMPs smaller and easier to solve, but it is worth to 

emphasise that it also may lead to instability in the column generation procedure. 
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Figure 2.13 Illustration of the effect of dynamic management of rows. 

2.4.3 Stabilisation 

Several procedures have been devised to stabilise the KCPM. One approach is, when 

solving the RMP, to penalise the dual solutions far from the current one as in bundle methods, 

but using a penalisation scheme that maintains the RMP a linear problem.  

The first described approach of this type is the box step method (Marsten et al., 1975), 

where lower and upper bounds are associated with each dual variable. Here we denote the RMP 

of a given iteration by (P), its dual by (D), and represent them as following: 

 

Min c x  (P) 

subject to: 

A x = b  

x ≥ 0, 

 

  

Max b w (D) 

subject to: 

w A ≤ c. 

Forcing the dual variables to lie inside a box amounts to adding lower and upper bounds 

constraints in (D) and variables, represented by the vectors y, in (P): 

 

Min c x − δ−
y

−
 + δ+

y
+
 (P’) 

subject to: 

A x − y−
 + y

+
 = b 

x, y
−
, y

+ ≥ 0, 

  

Max b w (D’) 

subject to: 

w A ≤ c 

δ−≤ w ≤ δ+
, 

 

where δ−
 and δ+are vectors of parameters with appropriate dimensions. 

In each iteration the box is “placed” around the current dual solution. If the optimal dual 
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solution is strictly inside the box, then it is an optimal solution to the original problem (D). 

(Note that, by complementary slackness, the primal variables y are zero). If any dual variable 

lies in the boundary of the box (its value equals the lower or the upper bound) the box is 

recentred for the next iteration. 

Extensions of this basic approach take into account dynamic updating of the size of the 

box, possibly depending on the improvement of the lower bound (as in (Kallehauge et al., 

2001)). In (Merle et al., 1999) the penalisation scheme is smoothed by allowing dual solutions 

outside the box, with a linear penalisation. In addition, in the same reference, different dynamic 

strategies for updating all the parameters involved and different stopping criteria are developed 

and empirically tested. 

A different stabilisation approach is presented in (Wentges, 1997). The fundamental idea 

is to obtain the dual solution by a convex combination of the one given by the RMP-RDM and 

the best one found so far (the one that gave the best lower bound), where the weights used are 

iteration dependent (the weight of the best solution increases in order to assure convergence, as 

proved in the mentioned reference). Computational results for the capacitated facility location 

problem confirm the potential of that approach. 

Another stabilisation approach is proposed in (Carvalho, 2000). The fundamental idea is 

to include a set of extra variables (extra constraints) in the first RMP (RDM) that, combined 

with the ordinary variables, lead the RMP to implicitly consider variables (associated with 

extreme points of the subproblem) that are not explicitly present in the RMP. In the same 

reference that approach is applied in a cutting stock problem, where the extra variables are 

associated with replacing a larger item with two smaller ones. As an example, taking a set of 

patterns/columns in which a specific large item belongs, those extra columns allow the 

representation of all the patterns/columns derived from the above mentioned replacement of 

items, avoiding their generation by the subproblem. 

Those extra variables are kept in all iterations and, when there are no more attractive 

columns, a solution where they all have zero value is recovered by a problem specific 

procedure. Another option, in order to obtain an optimal solution expressed exclusively on the 

ordinary variables, is to slightly penalise the extra variables (Amor et al., 2003). 

2.5 Dantzig-Wolfe Decomposition in Integer Programming 

2.5.1 Branch-and-price overview 

A fundamental difference when dealing with integer problems (as opposed to linear ones) 

is that no general necessary or sufficient optimality conditions are known. Two families of 

methods have been employed to exactly solve integer programming problems: branch-and-
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bound methods and cutting plane methods. Both methods use relaxations in order to derive 

lower bounds (in a minimisation problem) to the value of an optimal solution. A fundamental 

issue is the quality of the lower bounds of the relaxations.  

Under certain circumstances, the lower bounds provided by the relaxation of the DWD 

(re)formulation are better than the provided by the linear relaxation. This is a main motivation 

for the use of column generation based algorithms / DWD in integer programming problems 

(but not neglecting the ones mentioned in Section 2.1). This subject is detailed in subsection 

2.5.2.  

Branch-and-price algorithms combine column generation and branch-and-bound in order 

to obtain (optimal) solutions to integer programming problems. Columns that were not 

generated in the root node of the branch-and-bound tree may be required in an optimal integer 

solution, and thus in every node of the branch-and-bound (branch-and-price) tree it may be 

necessary to generate columns, if an optimal solution is desired. This requires compatibility 

between the branching rules and the subproblem, which is the subject of subsection 2.5.3. 

The perspective taken here is that, in each node of the branch-and-price tree, the original 

formulation is implicitly considered, meaning that it is always possible to represent in the 

(restricted) master problem a constraint expressed in terms of the original variables. Being so, 

cuts expressed in the original variables can be added to the RMP. As long as they are kept in the 

RMP, the feasible region of the subproblem is not changed, allowing the easy incorporation of 

cuts in the branch-and-price algorithm, thus obtaining a branch-and-price-and-cut algorithm. 

This subject is detailed in subsection 2.5.4. 

In subsection 2.5.5, the simultaneous definition of different subproblems for the same 

original formulation and its implications are considered. 

Subsection 2.5.6 is devoted to other relevant issues of branch-and-price and to a brief 

discussion of a different perspective that leads to other type of branch-and-price algorithms. 

2.5.2 Lower bounds given by the Dantzig-Wolfe decomposition 

For clarity of exposition and simplicity of notation, in this Section, except where clearly 

stated otherwise, we consider the general pure integer programming model: 

 Min c x (PIP) 

 subject to: 

 D x ≥ d  

 A x = b (2.14) 

 x ≥ 0 (2.15) 

 x integer. (2.16) 

The dimensions of the matrices are the same as the ones in (LnP) (introduced in Section 
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2.2.2, page 15). 

By defining the subproblem through constraints (2.14), (2.15), and (2.16), its feasible 

region is defined by SSPI = { x : Ax = b, x ≥ 0, x integer }, the master of a DWD will be: 

ZLDWI =  Min ∑
∈Pp

(c y
p
) λp + ∑

∈Rr

(c u
r
)µr (LDWI) 

 subject to: 

 ∑
∈Pp

(D y
p
)λp +∑

∈Rr

 (D u
r
)µr ≥ d 

 ∑
∈Pp

λp = 1 

 λp ≥ 0, ∀p∈P
I 

 µr ≥ 0, ∀r∈R
I
, 

where the sets PI and RI are associated with the extreme points and extreme rays of SSPI, where, 

by definition, all the original x points have integer values. 

As illustrated in Figure 2.14, by considering the integrality constraints in the subproblem, 

its feasible region is reduced, which leads to the reduction of the feasible region of the master 

problem (since it consists in all possible convex combinations of the extreme points of the 

subproblem). The previous statement is valid if the subproblem has non-integer extreme points; 

otherwise the subproblem has the integrality property, that is SSP = SSPI. If the subproblem does 

not have the integrality property, the application of the DWD leads to a tighter relaxation of the 

integer problem and, for some objective functions, the relation ZLDWI > ZLDW = ZLnP may hold. In 

general, ZLDWI ≥ ZLDW = ZLnP. 

 

 

Figure 2.14 Illustration of the (possibly) different lower bounds given by the linear relaxation 
and by the DWD (re)formulation. a) Original integer problem. b) Linear relaxation. c) DWD 
(re)formulation defining the subproblem through the upper bound and integrality constraints 

(represented in the original solution space).  

As noted when discussing the use of DWD in linear programming, different subproblems 

for the same model can be defined. As an example, in Figure 2.15 the same problem of Figure 

a) b) c) 
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2.14a) is considered, but with the definition of the subproblem with all the constraints other than 

the upper bound constraints. 

 

Figure 2.15 Illustration of a different (from Figure 2.14) choice of the constraints defining the 
subproblem. 

This is a main issue when defining the decomposition approach to solve a(n) (integer) 

problem: which constraints should define the subproblem? 

On one hand, since the subproblem is (re)optimised a large number of times, it is 

important to have subproblems with some kind of structure for which efficient algorithms are 

known. On the other hand, the definition of the subproblem should lead to good quality lower 

bounds, thus being “as far as possible” from the integrality property, what, in general, increases 

its difficulty. In addition, the difficulty of solving the resulting RMPs can have an important 

impact in the practical efficiency of a given decomposition. 

Getting the right balance between the aforementioned issues clearly requires a problem 

dependent approach. The binary multicommodity flow problem studied in Chapter 4 is an 

example of how two different decompositions of the same original model may have totally 

different characteristics. 

We end this subsection by noting that all the methods developed in the last decades, 

particularly those briefly described in subsection 2.3.4, to solve the Lagrangean dual give the 

same bound as the DWD principle when used in integer programming. However, with the 

exception of subgradient methods (with its inherent disadvantages, already pointed out), their 

use in integer programming is confined to a few experiments (see, for example, (Cappanera and 

Frangioni, 2000; Elhedhli and Goffin, 2001)). 

2.5.3 Branching rules 

Solving the problem (LDWI) by column generation gives a lower bound that is not worse 

than the one given by the linear relaxation of the original formulation (PIP). 

We recall the relation between the original variables, x, and the weight variables of the 

master model, λ and µ,  
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x = ∑
∈ IPp

y
pλp + ∑

∈ IRr

u
rµr 

∑
∈ IPp

λp = 1  

λp ≥ 0, ∀p∈P
I 

µr ≥ 0, ∀r∈R
I
. 

From this relation, it is clear that if all the weight variables have integer values in the 

optimal solution of the root of the branch-and-price tree, (LDWI), an optimal solution to the 

integer problem has been found, since they are associated with integer extreme points and rays. 

A formulation to the integer problem is obtained by adding integrality constraints on the 

variables of (LDWI). In order to solve that problem exactly, branching on the weight variables 

may be required. In a simple branching scheme, two new problems are constructed by adding a 

constraint on a fractional variable (indexed by p ) to each one,  

 pp λλ ≤  and   1pp +≥ λλ , 

where pλ  denotes the current value of the fractional variable. 

In general, this branching scheme has a major disadvantage: its implementation without 

changing the structure of the subproblem may not be easy. For example, if the (binary) master 

amounts to combining paths given by a subproblem that is solved using a shortest path problem, 

in one descendant node a given path is excluded and, in the other, the same path is forced to be 

included in the solution. Excluding a given path from being the optimal solution of a shortest 

path problem is not a trivial problem, and for sure requires substantial modifications on the 

algorithm to solve the subproblem, since the extreme point that should be kept out of the 

(restricted) master problem may be generated by the subproblem. This issue is usually called 

“regeneration”.  

A possibility to overcome this problem is to solve the shortest path problem and, if the 

path that should be excluded is the optimal one, then to find the second best path. However, in a 

node of the search tree where k paths must be excluded, this approach may lead to solve the k-

shortest paths problem, making the subproblem much more difficult to solve than the one of the 

root node.  

Another disadvantage of this branching scheme is that it may lead to unbalanced search 

trees. Taking again a binary problem as an example, branching is performed in a single variable 

and the problem (in general) has a very large number of variables, thus it is more likely that the 

optimal solution is in the branch 0p =λ  then in the other one, 1p =λ . Examples of these type 

of branching schemes are the ones of (Ribeiro et al., 1989) and (Park et al., 1996).  

Branching schemes, based on the original variables, usually overcome these difficulties. 
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After obtaining the optimal solution of a node, it is always possible to express it in the 

original variables through 

∑∑
∈∈

+=
II Rr

r
r

Pp

p
p uyx µλ , 

where IP  and IR  denote the set of indices of the extreme points and rays, respectively, 

associated with the columns of the current RMP. 

Branching on a fractional original variable, the element jx  of the vector x , can be done 

creating two descendant problems constructed by adding, respectively, the following constraints  

 j
Rr

r
jr

Pp

p
jp xuy

II

≤+ ∑∑
∈∈

µλ  and   1xuy j
Rr

r
jr

Pp

p
jp

II

+≥+ ∑∑
∈∈

µλ , 

where the index j refers to the position j of the vectors defining the extreme points and rays.  

If the branching constraints are kept in the master problem, the modifications implied in 

the subproblem are confined to its objective function, as it is clear by noting that in a node of a 

branch-and-bound tree, we have the following problem in the original variables: 

 Min c x 

 subject to: 

 D x ≥ d 

 G x ≥ g (2.17) 

 A x = b (2.18) 

 x ≥ 0 (2.19) 

 x integer, (2.20) 

where the matrix G and the vector g represent the coefficients of the branching constraints 

(2.17). 

Thus, defining the subproblem as previously (by constraints (2.18), (2.19), and (2.20)): 

 Min (c − w D− w G) x 

 subject to: 

 x∈ SSPI . 

This branching scheme is general. We considered a pure integer problem for easiness of 

notation and exposition, but the extension to mixed integer problems (that may have 

simultaneously linear, binary and integer variables) is done easily. 

For binary problems, it is possible to use a different branching scheme, also based on the 

original variables, that consists in forcing the branching decisions in the subproblems, 

performing minor amendments in the RMP. 

In this case the subproblem in a node of a branch-and-price tree is 
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 Min (c − w D) x 

 x∈ SSPI  

 xj = 0, ∀j∈L 

 xj = 1, ∀j∈U, 

where L and U are the sets of indices of variables for which a branching constraint (forcing the 

variable to 0 or 1, respectively) exists. 

In the RMP, forcing an original variable to take value 0 implies removing all columns 

associated with the extreme points and rays in which that original variable has value 1. In the 

same manner, forcing an original variable to take value 1 implies removing all columns 

associated with the extreme points and rays in which that original variable has value 0. In both 

cases, the subproblem assures that none of those columns, nor the columns with the same 

characteristics, will be generated. 

As an example, consider a master problem that amounts to combining binary knapsack 

solutions. Each column is associated with a solution to the binary knapsack (sub)problem. 

Forcing an item out of the knapsack is done by removing all columns where it is included in the 

knapsack and by solving the subproblem without the item. Forcing an item in the knapsack is 

done by removing all columns where it is not included in the knapsack and by solving the 

subproblem considering that the item is in the knapsack. In both cases the subproblem structure 

does not change due to the branching. With this branching scheme, that is not always the case. 

Taking again the example of a (binary) master problem that amounts to combining paths, 

excluding an arc from the (shortest path) subproblem does not involve major changes in its 

structure. However, forcing an arc to be included in a path changes the structure of the 

subproblem, which becomes a set of shortest path problems. This issue can be overcome by 

using branching rules specific to the problem in question, thus without the generality of the 

previous approach, where branching constraints are kept in the master. 

We end this subsection by noting that the master model of an important set of problems 

where branch-and-price algorithms have been successful applied corresponds to set partition 

problems (Desrochers and Soumis, 1989; Desrochers et al., 1992; Vance et al., 1997; 

Savelsbergh and Sol, 1998) for which specific branching rules were devised, such as the Ryan 

and Foster (described, for example, in (Wolsey, 1998)). 

2.5.4 Branch-and-price-and-cut 

The fundamental idea of cutting plane methods is to tighten the linear relaxation of an 

integer problem through the introduction of valid inequalities (cuts). Those valid inequalities 

may be (i) constraints that are intentionally left out of the original formulation because their 

number is exponential (for example, the subtour elimination constraints for the travelling 
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salesman problem), (ii) general valid inequalities (for example, Gomory cuts) and (iii) specific 

valid inequalities (for example, the ones pointed out in (Wolsey, 2002) for several lot sizing 

problems). 

Since, in general, a class(es) of cuts that define the integer convex hull is not known (or 

solving the separation problem repeatedly for identifying cuts that exclude the current fractional 

solution may be too costly), branch-and-cut algorithms are based on performing branching as 

soon as no violated cuts can be (at all, or efficiently) identified, thus combining cutting planes 

with branch-and-bound. Branch-and-cut algorithms have their roots in (Crowder et al., 1983) 

and (Padberg and Rinaldi, 1991). A recent survey is (Marchand et al., 2002). 

Cutting plane methods can also be combined with branch-and-price, giving rise to 

branch-and-price-and-cut algorithms. 

As detailed in the previous subsection, additional constraints (there branching constraints, 

here cuts) expressed in the original variables can be easily expressed in weight variables and 

added to the RMP, only changing the coefficients in the objective function of the subproblem. 

The problem of a node of a branch-and-price-and-cut tree expressed in the original 

variables is 

 Min c x 

 subject to: 

 D x ≥ d (2.21) 

 G x ≥ g 

 H x ≥ h (2.22) 

 A x = b (2.23) 

 x ≥ 0 (2.24) 

 x integer, (2.25) 

where the matrix H and the vector h represent the coefficients of the cuts (2.22).  

Thus, defining the subproblem as previously (by constraints (2.23), (2.24), and (2.25)): 

 Min (c − w D− w G− w H) x 

 subject to: 

 x∈ SSPI . 

Solving a node of the branch-and-price-and-cut tree consists in the following sequence of 

steps. 

1. Apply column generation to obtain a solution in the weight variables. 

2. Express the obtained solution in the original variables. 

3. Solve a separation problem for the solution expressed in the original variables. 

4. If a cut is found, add it to the RMP and go to 1. Else, stop. 
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We end this subsection by pointing out that the convex hull of the integer polyhedron 

defined by the subproblem constraints is already described, and thus only classes of cuts for 

defining the convex hull of the polyhedron defined by the integer intersection of the linking 

constraints (2.21) with the subproblem constraints, (2.23), (2.24), and (2.25), are of interest for a 

branch-and-price-and-cut method. 

2.5.5 Multiple Dantzig-Wolfe decomposition 

To our best knowledge, the idea of using several Dantzig-Wolfe decompositions 

simultaneously has appeared recently (Aragão and Uchoa, 2003; Park et al., 2003).  

In the first reference, the authors develop a formulation for the binary multicommodity 

flow problem that leads to two types of variables in the master problem according to two 

different subproblems. That formulation is directly derived for the specific problem (not turning 

explicit the original model and the decompositions being used) and the paper is not concerned 

on how to extend that kind of approach to a general problem. For the specific problem treated in 

that reference, the possible advantages of this approach are clear: one subproblem has the 

integrality property, being easier to solve, and captures the network structure of the original 

problem, while the other does not have the integrality property, but leads to better quality lower 

bounds. 

In the second reference, the authors develop what they call a robust branch-and-price 

methodology. The main difference between this approach and the one described before in this 

Chapter is that the relation between the original variables and the weight variables is explicitly 

defined in the master problem by a set of equality constraints. Being so, the (extended) master 

problem is 

 Min c x 

 subject to: 

 x = ∑
∈Pp

λp x
p
 + ∑

∈Rr

µr u
r
  (2.26) 

 

∑
∈Pp

λp = 1 (2.27) 

 A x ≥ b 

 x ≥ 0 

 λp ≥ 0, ∀p∈P 

 µr ≥ 0, ∀r∈R. 

As discussed in the two previous subsections, the absence of the original variables in the 

master problem does not affect the ability to perform branch and/or cut in their space, as long as 

the constraints are represented in the space of the weight variables. The approach taken here has 
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the clear advantage of dealing with smaller (restricted master) problems and is also general 

(robust in the terminology used by the authors), given the relation between original and weight 

variables.  

In the same reference, based on the extended formulation given above, the authors outline 

multiple column generation. It amounts to defining more than one subproblem, having more 

than one type of columns in the master formulation. Since the original variables, at the expense 

of having a larger problem, are present in that formulation, it is easy to state that the convex 

combination of the extreme points (in the bounded case) of each subproblem must be equal to 

the original variables, by reproducing constraints (2.26) and (2.27) for each subproblem. 

Our contribution is to develop multiple column generation without explicitly having the 

original variables in the master. 

We consider the problem 

ZMPIP = Min c x (MPIP) 

 subject to: 

 D x = d (2.28) 

 A x = b (2.29) 

 x ≥ 0 

 x integer. 

For simplicity of notation, we consider only two subproblems with feasible regions 

defined by:  

SMSP1 = { x : Dx = d, x ≥ 0, x integer} and  

SMSP2 = { x : Ax = b, x ≥ 0, x integer}. 

Clearly, problem (MPIP) is equivalent to  

 Min c x
1
 

 subject to: 

 x
1
 ∈ SMSP1 

 x
2
 ∈ SMSP2 

 x
1
 = x

2
 

 x
1
 integer. 

A solution in the space of the original model (MPIP) can be expressed as a convex 

combination of the extreme points plus a nonnegative combination of the extreme rays of SMSP1, 

as well as a convex combination of the extreme points plus a nonnegative combination of the 

extreme rays of SMSP2: 
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SP1 

x
1
 = ∑

∈ 1P1p

λp1 y
p1
 + ∑

∈ 1R1r

µr1 u
r1
 

∑
∈ 1P1p

λp1 = 1 

λp1 ≥ 0, ∀p∈P
1 

µr1 ≥ 0, ∀r∈R
1
, 

SP2 

x
2
 = ∑

∈ 2P2p

λp2 y
p2
 + ∑

∈ 2R2r

µr2 u
r2
 

∑
∈ 2P2p

λp2 = 1 

λp2 ≥ 0, ∀p∈P
2 

µr2 ≥ 0, ∀r∈R
2
. 

 

The master problem (neglecting integrality constraints imposed by branching on the 

original variables) will be: 

  Min ∑
∈ 1P1p

(c y
p1
) λp1 + ∑

∈ 1R1r

(c u
r1
)µr1  

 subject to: 

 ∑
∈ 1P1p

λp1 = 1 (2.30) 

 ∑
∈ 2P2p

λp2 = 1 (2.31) 

 ∑
∈ 1P1p

λp1 y
p1
 + ∑

∈ 1R1r

µr1 u
r1
 = ∑

∈ 2P2p

λp2 y
p2
 + ∑

∈ 2R2r

µr2 u
r2  

(2.32) 

 λp1 ≥ 0, ∀p1∈P
1
 

 λp2 ≥ 0, ∀p2∈P
2
 

 µr1 ≥ 0, ∀r1∈R
1 

 µr2 ≥ 0, ∀r2∈R
2
. 

Constraints (2.30) and (2.31) assure feasibility of the original constraints (2.28) and 

(2.29), respectively. Constraints (2.32) assure that the same original point is being considered in 

both subproblems. 

The subproblems are: 

SP1 

Min (c − w) x − π1 

subject to:
 

x∈ SMSP1 , 

SP2 

Min w x − π2 

subject to:
 

x∈ SMSP2 , 

 

where w are the duals of constraints (2.32), and π1
 and π2

 are the duals of constraints (2.30) and 

(2.31), respectively. 

Branching and/or cutting can still be performed as previously described by taking the 

original variables. Taking branching as example, branching on a fractional original variable, the 
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element jx  
of the vector x , can be done creating two descendant problems constructed by 

adding, respectively, the following constraints  

 j
R1r

1r
1j1r

P1p

1p
1j1p xuy

11

≤+ ∑∑
∈∈

µλ  and 

  1xuy j
R1r

1r
1j1r

P1p

1p
1j1p

11

+≥+ ∑∑
∈∈

µλ , 

where the indices j1, p1, and r1, denote that the branching is being performed on the 

representation given by the subproblem 1 of the original variables. 

 

This approach is the dual of Lagrangean decomposition, introduced in (Guignard and 

Kim, 1987). In that reference the emphasis is on obtaining good quality lower bounds, which 

may be better than the ones given by standard Lagrangean relaxation if more than one 

subproblem does not have the integrality property.  

We end this subsection giving a small numerical example of multiple DWD / column 

generation. 

Example 2.3 

For illustration of multiple DWD and the column generation procedure to solve it, we 

give a very simple example based on the original problem: 

 Min −2x1 −x2 

 subject to: 

 x1 + x2 ≤ 3 

 x1 ≤ 2 

 x2 ≤ 2 

 x1, x2 ≥ 0. 

In Figure 2.16, the feasible region is depicted. 

We define SP1 through the first constraint and SP2 through the other two. We consider a 

first RMP where the only one extreme point − the origin − of each subproblem is present. All 

the dual variables have zero value in the optimal solution, thus we solve the subproblems: 
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SP1 

Min −2x1 −x2 

subject to: 

x1 + x2 ≤ 3 

x1, x2 ≥ 0,  

SP2 

Min 0 

subject to: 

x1 ≤ 2 

x2 ≤ 2 

x1, x2 ≥ 0. 

 

Optimal solutions are x1=3, x2=0, and x1=2, x2=2, for subproblems 1 and 2, respectively. 

Thus, the RMP becomes 

 Min −6λ21 

 subject to: 

 λ11 + λ21 = 1  

 λ12 + λ22 = 1 

 3λ21 − 2λ22 = 0 

 − 2λ22 = 0 

 λ11, λ12, λ21, λ22 ≥ 0,  

with optimal value 0 and duals π1
=0, π2

=0, w1=−2, and w2=2.  

The only primal solution that is feasible to the RMP remains x1=x2=0, as can be seen in 

Figure 2.17, where the solutions of each subproblem that are being considered in the RMP are 

depicted. The subproblems are now 

SP1 

Min −3x2 

subject to: 

x1 + x2 ≤ 3 

x1, x2 ≥ 0,  

SP2 

Min −2x1 + 2x2 

subject to: 

x1 ≤ 2 

x2 ≤ 2 

x1, x2 ≥ 0. 

 

Their optimal solutions are x1=0, x2=3, and x1=2, x2=0, respectively. The RMP becomes 

 Min −6λ21 −3λ31 

 subject to: 

 λ11 + λ21 + λ31 = 1  

 λ12 + λ22 + λ32= 1 

 3λ21 − 2λ22 − 2λ32 = 0 

 − 2λ22 + 3λ31 = 0 
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 λ11, λ12, λ21, λ22, λ31, λ32 ≥ 0, 

with optimal value 0 and duals π1
=−3, π2

=−2, w1=−1, and w2=0. The subproblems are now 

SP1 

Min −x1 − x2 + 3 

subject to:  

x1 + x2 ≤ 3 

x1, x2 ≥ 0,  

SP2 

Min −x1 + 2 

subject to: 

x1 ≤ 2 

x2 ≤ 2 

x1, x2 ≥ 0. 

 

Both optimal objective values are zero, thus the current optimal solution of the RMP is 

optimal to the overall problem: λ21=2/3, λ22=0.5, λ31=1/3, λ32=0.5 with value −5, or, in the 

original variables x1 = (2/3).3 + (1/3).0 = (0.5).2 + (0.5).2 = 2 and x2 = (2/3).0 + (1/3).3 = 

(0.5).2 + (0.5).1 = 1.  

The feasible region of the last RMP (in the original space) is depicted in Figure 2.18. 

 

 

Figure 2.16 Feasible region of the problem of Example 2.3. 

 

Figure 2.17 Feasible region of the second RMP of Example 2.3. 
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Figure 2.18 Feasible region of the last RMP of Example 2.3. 

♦ 

2.5.6 Relation with standard branch-and-bound and a related approach 

Taking a conceptual perspective, by defining branching rules and cuts on the original 

variables, by expressing them in the weight variables afterwards, and by inserting them in the 

RMP, branch-and-price(-and-cut) is nothing more than branch-and-bound (with cuts) where 

each node is solved by column generation.  

This perspective can be further explored to include preprocessing and variable fixing. For 

example, after optimising a RMP, if the reduced cost of a nonbasic binary variable plus the 

optimal value of the RMP is larger than the incumbent, the variable can be fixed at zero. 

Preprocessing and variable fixing in branch-and-price is discussed in (Vanderbeck, 2005). 

When solving a node of the branch-and-price(-and-cut) tree, the lower bound given in 

subsection 2.2.4 (page 23) is available in each iteration of column generation. If that lower 

bound is larger than the incumbent value, then the node can be pruned, since the best integer 

solution found in it and in its descendants (if any) will have a larger value than the incumbent. 

Primal heuristics can also be incorporated in branch-and-price. Since the original 

formulation is known, it can be used to provide upper bounds, or even feasible primal integer 

solutions as columns in the RMP.  

  

In this Section, we took the convexification approach on branch-and-price. That is, the 



Chapter 2: Dantzig-Wolfe Decomposition and Column Generation Based Algorithms 

 

 

57 

master problem was obtained by representing solutions as combinations of the extreme points 

and rays of the convexified subproblem. This approach allows solving each node of the branch-

and-price tree in the same manner as the root node: there is no change on the subproblem 

structure (except that the calculation of the coefficients of its variables must take into account 

the duals of the branching and cut constraints) by keeping the branching and cut constraints in 

the master. 

We would like to point out a different approach that relies in the discretisation of the 

subproblem (Vanderbeck and Wolsey, 1996; Vanderbeck, 2000). In that case, the master 

solutions are represented as a combination of a finite set of integer points (not necessarily 

extreme) and a finite set of integer rays of the subproblem. For binary problems both 

approaches are equivalent (since the subproblem does not have interior integer solutions) but for 

general integer problems this second approach may give better lower bounds and provide more 

elaborate branching rules, namely for dealing with symmetry (that is, ineffective branching due 

to the fact that the current solution is excluded but a similar one with the same value and 

meaning is not). Those issues are discussed in the references above given. 

2.6 Conclusions 

In this Chapter, Dantzig-Wolfe decomposition and column generation based algorithms 

for linear and integer programming problems were surveyed.  

Motivations for using decomposition approaches, references to applications in several 

areas and the fundamental theory and algorithmic aspects were given.  

The close relation between Dantzig-Wolfe decomposition and Lagrangean relaxation, and 

the relation between column generation (and variants) and methods for solving the Lagrangean 

dual were made explicit.  

The application of column generation based algorithms in integer programming was also 

reviewed, with a focus on general branching schemes and the inclusion of cuts (branch-and-

price-and-cut).  

Multiple Dantzig-Wolfe decomposition and multiple column generation was introduced 

in a general way, compatible with a general branching scheme and with the use of cuts. 

Several recent references were given (some for detailed treatment of topics not covered 

here), proving, after more than forty years of the publication of the Dantzig-Wolfe 

decomposition principle and of development of the first column generation based algorithms, 

their actual relevance (and not fully explored potential) for dealing with optimisation problems. 
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3 Integer Multicommodity Flow Problem 

In this Chapter, we develop a branch-and-price algorithm for the integer minimum cost 

multicommodity flow problem. 

This problem is defined over a directed network in which several commodities share the 

capacity of the arcs, in order to be shipped from the nodes in which they are supplied to the 

nodes in which they are demanded. Commodities may have several origin and destination 

nodes. 

Although several approaches have been described for its linear version, the same does not 

happen for the integer problem considered here. The extension of those approaches is not trivial, 

particularly when using path based formulations, which may be the only feasible approach, due 

to computational memory limits, given the generally much larger size of arc based formulations. 

We develop a branching rule that preserves the structure of the subproblem in the nodes 

of the branch-and-price tree by considering cycle variables, not needed when solving the linear 

relaxation. The same type of approach can be used in related network flow problems. 

We present computational results for the proposed algorithm and for a general purpose 

solver. 

 

 

 



Chapter 3: Integer Multicommodity Flow Problem  

 

 

59 

3.1 Introduction 

The subject of this Chapter is the minimum cost integer multicommodity flow problem 

(MFP), for which a branch-and-price algorithm is presented. This problem is defined over a 

directed network in which several commodities share the capacity of the arcs, in order to be 

shipped from their origin to their destination nodes. Associated with each arc of the network and 

with each commodity there is a unit flow cost. The minimum cost integer MFP amounts to 

finding the minimum cost routing of all the commodities, taking into account that each unit of 

each commodity cannot be split. 

The linear version of this problem (where units can be split) has deserved the interest of 

the Operational Research and close scientific communities for more than forty years, since the 

pioneering work of Ford and Fulkerson on network flows (Ford and Fulkerson, 1962). This 

interest has been continuous: at least one survey has been published in each of the last five 

decades (Hu, 1963; Assad, 1978; Kennington, 1978; Kennington and Helgason, 1980; Ahuja et 

al., 1993; Chardaire and Lisser, 2002a). 

This interest can be justified by the practical and theoretical importance of 

multicommodity flow models. From the practical side, their relevance is based on their many 

applications, such as communications systems (for an excellent annotated bibliography, see 

(Yuan, 2001)), production planning (for example, (Evans, 1977; Zahorik et al., 1984)) and 

distribution/transportation (for example, (Desrosiers et al., 1995)). Other applications of the 

linear minimum cost MFP can be found in the surveys already mentioned.  

From the theoretical side, multicommodity flow models are representative of large linear 

programs with block-angular structure with linking constraints, being a source of inspiration and 

testing for new decomposition methods, from the Dantzig-Wolfe decomposition (DWD) 

principle (Dantzig and Wolfe, 1960) (which was inspired by the work of Ford and Fulkerson on 

the maximal multicommodity flow problem (Ford and Fulkerson, 1958), as mentioned in 

(Dantzig, 1963)) to specialised interior-point methods (Schultz and Meyer, 1991). 

 

As already mentioned, this Chapter is devoted to the minimum cost integer MFP. This 

problem has received considerably less attention than its linear version, although in several 

applications it may be an important issue to consider that the units of the commodities being 

routed are unsplittable. We note that this problem is different from the binary MFP, in which a 

commodity must be routed along a single path (and thus, each commodity has only one origin 

and one destination). In Chapter 4, the same approach presented in this Chapter will be used to 

tackle that particular binary problem. 
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Our approach is based on using column generation on a formulation based on flows in 

paths combined with branch-and-bound (resulting in a branch-and-price method). Column 

generation allows solving the linear relaxation of the integer MFP in a very efficient way, so its 

combination with branch-and-bound is a promising approach to solve the integer MFP. 

 

Although column generation and branch-and-bound are known for about four decades, 

the potential of their combination for obtaining optimal integer solutions became clear only in 

recent years. Branch-and-price methods were reviewed in Chapter 2; other surveys can be found 

in (Barnhart et al., 1998; Wilhelm, 2001; Lübbecke and Desrosiers, 2002). 

A major motivation for the development of a branch-and-price algorithm is the quality of 

the lower bounds given by the underlying Dantzig-Wolfe reformulation. However, that 

motivation is irrelevant in the present work, since the subproblem (a set of independent shortest 

path problems) has the integrality property. Our main motivation is the potential efficiency of a 

branch-and-price algorithm for the integer MFP, justified by the use of a decomposition that 

captures the (network) structure of the problem. 

The literature on branch-and-price algorithms for general integer variables is still scarce, 

as opposed to the one with binary variables. Exceptions are (Vanderbeck and Wolsey, 1996; 

Carvalho, 1998; Vance, 1998; Carvalho, 1999; Vanderbeck, 1999; Vanderbeck, 2000), with 

experiments in the cutting stock problem. 

 

Besides providing an algorithm for integer MFP (that can be extended to other 

multicommodity flow problems), we aim at exploring the branch-and-price method for 

problems with a network structure. In particular, by developing a branching scheme that may be 

considered in other types of problems. The innovative aspect of this approach is that it 

overcomes the possible generation of negative cycles in the shortest path (sub)problems. 

Although this issue has a clear interpretation in the DWD context, to our best knowledge, it has 

never been treated before. 

We now give examples where the approach presented here can be used for solving related 

problems, also noting that in some of the applications, it may be worth considering that the units 

of the commodities being routed are unsplittable.  

Here we consider that the arcs of the network are oriented. In the non-oriented version of 

the problem, the capacity of each arc limits the flow in both directions, and thus a different 

formulation must be considered. The method presented here can easily be extended to that 

closely related problem. 

In the maximum multicommodity flow, the arcs of the network and their capacities are 

known and a maximum flow of all commodities (from their origins to their destinations) is 

desired (Ford and Fulkerson, 1958; Kennington, 1978; Kapoor and Vaidya, 1996). The 
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approach presented here can be easily used in obtaining optimal solutions to that problem. 

As an example of a problem where the linear multicommodity flow can be used as a 

subproblem, we present the simple network design problem, where a selection of the arcs, each 

one associated with a fixed cost, must be performed with the objective of minimising the total 

cost (fixed cost plus routing cost on the selected arcs) (Magnanti and Wong, 1984; Minoux, 

1989; Gendron et al., 1999). For a fixed configuration of the network, the routing problem is a 

MFP. 

Taking into account the congestion of the arcs, which typically is modelled by concave 

functions, a nonlinear minimum cost multicommodity flow problem is obtained (Ouorou et al., 

2000). The algorithm presented here can be seen as a combination of branch-and-bound with a 

cutting plane method that can be applied to this concave problem by changing the RMP solver. 

 

We now outline the contents of this Chapter. In Section 3.2, we present a formal 

definition of the integer MFP and introduce three formulations for that problem. A review of 

solution methods to the linear relaxation of the integer MFP is also given in that Section. In 

Section 3.3, the proposed branch-and-price algorithm is presented. Two different branching 

rules and their consequences in the structure of the subproblem are discussed. The need for the 

cycle variables in the nodes of the branch-and-price tree is clarified. In Section 3.4, we describe 

some implementation issues and compare the computational performance of different versions 

of the algorithm for some instances. We also compare, for several publicly available sets of 

instances, the performance of our branch-and-price program with a program that uses Cplex 

callable library 6.6 (ILOG, 1999) to solve the arc formulation. In Section 3.5, we present the 

main conclusions of this work. 

3.2 Formulations and Review of Solution Methods 

3.2.1 Problem definition and arc formulation 

We consider a network defined by a set of n nodes, denoted by N, and a set of m directed 

arcs, denoted by A. We also consider a set of h commodities, denoted by K. Associated with 

each arc ij∈A, there is an origin node i and a destination node j. Associated with each node i and 

with each commodity k, there is a parameter bi
k. If bi

k 
> 0, node i is an origin to commodity k, 

with supply of bi
k
 units. If bi

k 
< 0, node i is a destination to commodity k, with demand of –bi

k
 

units. If bi
k 
= 0, the node is a transhipment node to commodity k. 

Associated with each arc ij and with each commodity k there is a parameter cij
k that 

corresponds to the unit flow cost of that commodity in that arc. The usual assumption, cij
k ≥ 0, 

∀ij∈A, ∀k∈K, is made. 
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Each arc ij has a capacity uij, which is the limit to the total flow in the arc. Supplies, 

demands and arc capacities are expressed in the same units. Each unit of flow crossing an arc 

consumes one unit of its capacity. 

A formulation for the integer MFP can be obtained using decision variables that represent 

the flows in all arcs for all commodities, xij
k, ∀ij∈A, ∀k∈K. The arc formulation is as follows: 

Min ∑ ∑
∈ ∈Kk Aij

  cij
k 
xij

k
 (AFI) 

subject to: 

∑
∈Aij:j

xij
k
 – ∑

∈Aji:j

xji
k
 = bi

k
 , ∀i∈N, ∀k∈K (3.1) 

∑
∈Kk

xij
k
 ≤ uij , ∀ij∈A (3.2) 

xij
k
 ≥ 0 and integer, ∀ij∈A, ∀k∈K. 

Constraints (3.1) are flow conservation constraints. They state that, for each commodity, 

the difference between the flow that enters a node and the flow that leaves that node is equal to 

the supply/demand of that node. Constraints (3.2) are capacity constraints. They state that the 

total flow on each arc must be less than or equal to its capacity. 

The integer MFP can be seen as an extension of the minimum cost flow problem: if we 

neglect the capacities of the arcs, we obtain a set of independent minimum cost flow problems, 

one for each commodity. However, the optimal solution of the linear relaxation of the integer 

MFP is not necessarily integer. That marks a clear difference between the two problems. There 

are several polynomial algorithms available to obtain an integer optimal solution to the 

minimum cost flow problem, but the integer MFP is NP-hard (Garey and Johnson, 1979). 

3.2.2 Tree formulations 

Taking the arc formulation, (AFI), as the original formulation in a DWD, and defining the 

subproblem with the flow conservation constraints (3.1), we obtain a minimum cost flow 

subproblem for each commodity. By denoting the set of extreme points of the subproblem of 

commodity k by Tk and the flow on the arc ij in the t-th solution of subproblem k by zij
tk, the 

master problem is  

Min tktk
ij

Kk Tt Aij

k
ij )zc(

k

λ∑ ∑ ∑
∈ ∈ ∈

 (TFI) 

subject to: 

∑ ∑
∈ ∈Kk Tt k

 zij
tk
 λtk

 ≤ uij ,∀ij∈A 

∑
∈ kTt

λtk
 = 1, ∀k∈K 



Chapter 3: Integer Multicommodity Flow Problem  

 

 

63 

∑
∈ kTt

 zij
tkλtk

 integer, ∀k∈K, ∀ij∈A (3.3) 

λtk
 ≥ 0, ∀k∈K, ∀t∈T

k
, 

where the decision variables λtk are the weights of the t-th (minimum cost flow) solution of 

subproblem k. The relation between the original and weight variables can be seen through 

constraints (3.3) that state that the original variables xij
k
, ∀ij ∈ A, ∀k ∈ K, must take integer 

values. 

When there is only one origin and several destinations for each commodity, or only one 

destination and several origins for each commodity, the subproblems are shortest path tree 

problems. When there is only one origin and one destination for each commodity, the 

subproblems are shortest path problems. In the latter case, the formulation is the same as the 

path formulation presented next. 

Note that every solution of a minimum cost multicommodity flow can be expressed as a 

set of flows on paths and cycles (for example, (Ahuja et al., 1993)) and that, in an optimal 

solution, since we assumed cij
k≥0, ∀ij∈A, ∀k∈K, all the flows on cycles will have zero value. 

Furthermore, all paths with positive flow have their origin in one supply node and their 

destination in one demand node. 

Being so, model (TFI) can be further decomposed by considering the subproblem of each 

commodity as a set of shortest path problems, one for each origin-destination pair of that 

commodity. Following this approach, we obtain what we call a path formulation. 

3.2.3 Path formulations 

We now introduce some new notation. We denote the set of all simple paths between all 

origin-destination pairs of commodity k by Pk, and the set of all origins and destinations of 

commodity k by Qk. If arc ij belongs to path p of commodity k, then yij
pk equals 1, and 0, 

otherwise. If node i is an origin of path p of commodity k, then δi
pk equals 1; if i is a destination, 

then δi
pk equals –1; otherwise, δi

pk equals 0. The unit flow cost of path p of commodity k, is 

represented as cpk = ∑
∈Aij

yij
pk
 cij

k, ∀p∈P
k
, ∀k∈K. 

The path formulation for the integer MFP is 

Min ∑ ∑
∈ ∈Kk Pp k

c
pkλpk

 (PFI) 

subject to: 

∑
∈ kPp

 δi
pk
 λpk

 = bi
k
 , ∀k∈K, ∀i∈Q

k
 (3.4) 

∑ ∑
∈ ∈Kk Pp k

yij
pk
 λpk 

 ≤ uij , ∀ij∈A (3.5) 
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∑
∈ kPp

 yij
pkλpk

 integer, ∀k∈K, ∀ij∈A (3.6) 

λpk
 ≥ 0, ∀k∈K, ∀p∈P

k
, 

where the decision variables λpk are the flows on each simple path p of commodity k.  

Constraints (3.4) force all the units of all commodities to leave the origins and reach the 

destinations. The other flow conservation constraints are implicitly considered in the decision 

variables: only paths linking origin-destination pairs are considered. Constraints (3.5) are the 

capacity constraints. 

The integrality of all the flows is forced by constraints (3.6), since  

xij
k
 = ∑

∈ kPp

 yij
pkλpk

, ∀k∈K, ∀ij∈A. 

The integrality constraints could also be imposed directly on the decision variables,  

λpk
 integer, ∀k∈K, ∀p∈P

k
. 

This issue will be discussed in more detail in subsection 3.3.2.  

When compared with the arc formulation, path formulations have, in general, a smaller 

number of constraints ( ∑
∈Kk

q
k
+m opposed to hn+m, where qk is the number of origins plus the 

number of destinations of commodity k) and a much larger number (exponential with respect to 

the dimension of the network) number of variables. However, in a basic solution of the path 

formulation, at most, ∑
∈Kk

q
k
+m variables have a positive value. The advantage of using a 

decomposition approach is clear: as long as an efficient subproblem solver is available (as is the 

case in the path formulations) we may expect to have much smaller problems to solve, which 

may be relevant for efficiency. Furthermore, less computational memory is required.  

Besides their potential efficiency, another advantage of path formulations can be relevant: 

modelling a MFP on paths allows the easy consideration of issues that may have an important 

practical meaning. We give two examples. In telecommunication routing models, a commodity 

is associated with the traffic between a given origin and destination, and the ability to model 

delay or survivability constraints is relevant. Those issues may be taken into account in a path 

formulation by using only paths with a limited number of nodes/arcs. The implication in terms 

of the column generation method amounts to slightly modifying the subproblem, to generate 

only paths with the desired characteristics (Holmberg and Yuan, 2001). Another example, taken 

from a stochastic MFP treated in (Soroush and Mirchandani, 1990), is the situation where the 

(expected) costs are associated with paths and not with arcs. 

When compared to tree formulations, as first noted in (Jones et al., 1993), path 

formulations tend to be more efficient.  
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We note that when all commodities have only one origin and one destination, tree and 

path formulations are equivalent.  

3.2.4 Review of solution methods 

In this subsection we review some of the major approaches that have been proposed to 

solve the linear MFP and variants.  

Specialised simplex methods (for example, (Kennington and Helgason, 1980)) work on 

the arc formulation, and partitioning the basis in network and non-network parts. This partition 

allows performing simplex iterations in a specialised way, using a working basis much smaller 

than the (original full) basis. Recent work on this approach is presented in (Castro and Nabona, 

1996; Chardaire and Lisser, 2002b; Detlefsen and Wallace, 2002). Specialised interior point 

methods, also based on the arc formulation, have also been developed (Castro, 2000; Chardaire 

and Lisser, 2002b). 

In a resource decomposition method, the node arc formulation is decomposed splitting 

the available capacities among the commodities. A master problem is responsible for specifying 

the available capacity for each arc and for each commodity, and a set of subproblems (minimum 

cost flow subproblems with upper bounds corresponding to the available capacities on the arcs), 

one for each commodity, is considered. This approach amounts to minimising a piecewise linear 

function whose value is defined by the subproblem. Methods for solving that type of problems 

(such as subgradient or cutting planes) in the context of this decomposition approach for the 

linear MFP are described in (Kennington and Shalaby, 1977; Assad, 1978; Kennington, 1978; 

Ahuja et al., 1993). 

The tree and path formulations can be obtained by applying Lagrangean relaxation (and 

dualising) (Held and Karp, 1970; Held and Karp, 1971; Lemaréchal, 2003) or DWD to the arc 

formulation. After the reformulation, a (restricted) master problem is responsible for setting the 

prices of the capacities and there is a set of subproblems (minimum cost flow problems with the 

costs modified by the prices of the capacities), one for each commodity. Several methods to 

implement this general approach to the linear MFP, usually referred to as price decomposition 

methods, have been described in the literature: subgradient (for example, (Saviozzi, 1986)), 

column generation (for example, (Tomlin, 1966; Jones et al., 1993)), bundle (Frangioni and 

Gallo, 1999) and analytic center cutting plane (Goffin et al., 1996). A related price 

decomposition approach, which uses quadratic penalisations in a Lagrangean relaxation context, 

is given in (Larsson and Yuan, 2004). 

A dual ascent heuristic (in a price decomposition context − path formulation) (Barnhart, 

1993), a primal-dual heuristic (arc formulation) (Barnhart and Sheffi, 1993) and a scaling 

algorithm (Schneur and Orlin, 1998) have also been devised for the linear MFP. 
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Combinations of (some of) the above methods have also been described. In (Farvolden et 

al., 1993) a simplex specialisation is applied in the path formulation. In (Barnhart et al., 1995) a 

different formulation (based on representing the flow of each commodity on a key path and 

cycles) is also used to combine a simplex specialisation with a price directive approach. In both 

cases, the master problem is not reoptimised but a simplex iteration on a partitioned basis is 

performed. In (Mamer and McBride, 2000; McBride and Mamer, 2001) a simplex specialisation 

in the arc formulation is used and the pricing of the non-basic variables is performed by solving 

path subproblems.  

In (McBride and Mamer, 1997; McBride, 1998) a simplex specialisation and a resource 

directive decomposition heuristic are combined. 

Parallel implementations of some of the solution methods mentioned above have also 

been described, as in (Shetty and Muthukrishnan, 1990) (resource directive), (Pinar and Zenios, 

1994) (price directive based on a linear-quadratic penalisations), (Cappanera and Frangioni, 

2003) (bundle), and (Castro and Frangioni, 2000) (specialised interior-point). 

Examples of approximation algorithms can be found in (Goldberg et al., 1998; Fleischer, 

2000). 

We now refer to some comparisons of the different implementations described in the 

literature.  

In (Ali et al., 1980), price decomposition (column generation), specialised simplex and 

resource decomposition (solved by the subgradient method) are compared. The first two 

approaches spend comparable computational times in obtaining optimal solutions. The third one 

is faster, but shows (for some instances) convergence difficulties. 

A more recent computational comparison is given in (Frangioni and Gallo, 1999): a 

bundle method is compared with a primal partitioning code (PPRN 1.0 (Castro and Nabona, 

1994)) and two general purpose solvers (Cplex 3.0 and LOQO 2.21). The bundle code proved to 

be the most efficient for several sets of instances, the difference being very meaningful for 

instances with a large number of commodities. 

In (Larsson and Yuan, 2004) some of those methods (namely, bundle, PPRN 1.0, and 

Cplex 5.0) are compared with a column generation implementation and with the augmented 

Lagrangean described in the paper. This last method resulted, by far, in the best computational 

times, obtaining approximate solutions of very good quality (relative duality gap frequently less 

than 0.1%). From the other methods, column generation provided the best computational times, 

solving all the instances in reasonable times. 

In (Chardaire and Lisser, 2002b), computational tests also showed that the column 

generation method is more efficient, when compared to Cplex 4.0, specialised simplex and 

interior point methods presented in the paper, as well as an analytic center cutting plane method. 

So far, in this subsection, we only provided references to the linear MFP. References to 
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the integer MFP are rare. The heuristic procedure based on a resource decomposition and 

parametric analysis given in (Aggarwal et al., 1995) is an exception. 

3.3 Branch-and-Price for the Integer MFP 

3.3.1 Solving the linear relaxation 

The application of column generation for the linear relaxation of the integer MFP where 

each commodity only has one origin and one destination is described in detail, for example, in 

(Ahuja et al., 1993). The case where commodities have one origin (destination) and several 

destinations (origins) can be easily transformed into the previous case by disaggregating the 

commodities in the model (as shown in (Jones et al., 1993)). Our column generation procedure, 

also based on a path formulation, is for the general case: each commodity may have several 

origins and several destinations. The formulation that we use is the path formulation given in 

subsection 3.2.3 (page 63). 

The column generation methodology is based on implicitly considering a large number of 

variables. In each iteration, a restricted master problem (RMP) and a subproblem are solved. 

The RMP is initialised with a restricted number of variables. After its optimisation, the values of 

the dual variables are transferred to the subproblem, which allows pricing the variables that are 

not present in the RMP. If there are attractive variables, one, or more, columns are inserted in 

the RMP, this problem is reoptimised, and the iterative process goes on. Otherwise, the optimal 

solution to the RMP is a provable optimal solution to the original problem.  

Some practical questions arise when implementing a column generation scheme, such as 

how to construct the first RMP and what to do with the columns that are nonbasic after the RMP 

optimisation. We did some computational tests in an attempt to answer these questions, and will 

discuss them later. 

In the resolution of the linear relaxation of the integer MFP using column generation, the 

RMP is initialised with a reduced number of paths. After optimising the RMP, we evaluate the 

attractiveness of the paths that are not present in the RMP by solving a subproblem that uses the 

values of the dual variables. The subproblem consists in determining the shortest path between 

all the origin-destination pairs of all the commodities in a network with modified costs, as 

follows.  

Representing the (nonnegative) dual variable associated with the capacity constraint of 

the arc ij as wij, and the (unrestricted in sign) dual variable associated with the flow conservation 

constraint of node i for commodity k as πi
k, the reduced cost of a path is given by 

pkc  = ∑
∈Aij

yij
pk
(wij + cij

k
) – πo

k
 + πd

k
, (3.7) 
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where the indices o and d represent the origin and destination nodes, respectively, of path p. All 

paths that belong to the RMP have nonnegative reduced costs, as follows from the linear 

programming optimality conditions. The optimal solution of the RMP will not be the optimal 

solution for the linear relaxation of the integer MFP, if there is a path not present in the RMP 

with negative reduced cost. In equation (3.7), for a given commodity k, the quantity − πo
k
 + πd

k 

is a constant for all the paths that have the same origin and the same destination. Each one of the 

remaining terms is associated with an arc, being constant for all the paths of a given commodity 

that include the arc. 

For a commodity k, the path with the smallest reduced cost between an origin o and a 

destination d is the shortest path between o and d in a network where the costs of the arcs are 

given by wij + cij
k
, ∀ij∈A.  

This path − denoted as p − is attractive if  

∑
∈Aij

yij
pk
(wij + cij

k
) < πo

k
 – πd

k
. 

Otherwise, it is guaranteed that there are no attractive paths for commodity k for the 

origin-destination pair o-d. Determining the most attractive path for each commodity 

corresponds to solving a shortest path problem for each origin-destination pair. We note that the 

network may have cycles, but since cij
k ≥ 0 and wij ≥ 0, ∀ij∈A, their cost is always nonnegative, 

and thus each shortest path problem has a finite solution and may be solved by Dijkstra’s 

algorithm (for example, (Gallo and Pallottino, 1988)).  

3.3.2 Branching rules 

In order to obtain an optimal solution to the integral MFP, we combine column 

generation with branch-and-bound. The main issue is the branching scheme. Below, we first 

discuss a branching rule based on the path variables, and then we propose one that is based on 

the arc variables. 

As noted in subsection 3.2.3 (page 63), the relation between arc flows and path flows is 

given by 

xij
k
 = ∑

∈ kPp

 yij
pkλpk

, ∀k∈K, ∀ij∈A; (3.8) 

thus, forcing the integrality of the flows in arcs is the same as forcing the integrality of the flows 

in paths. Being so, integrality constraints may be imposed directly on the path variables,  

λpk
 integer, ∀k∈K, ∀p∈P

k
, 

which leads to branching constraints of the type 
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 pkpk λλ ≤  and   1pkpk +≥ λλ , 

where pkλ  denotes the current (fractional) flow of the path p of commodity k. 

With these branching constraints in the RMP of a node of the search tree, the subproblem 

must take into account their dual variables. The issue here is that the dual variables of the 

branching constraints are associated with path variables, and the decision variables of the 

shortest path (sub)problem are related with flows on arcs. A way of overcoming this difficulty is 

to neglect the duals of the branching constraints and, if a path that is already being considered in 

the RMP is (re)generated by the subproblem, then the second best path is sought. In a node of 

the search tree with k branching constraints, this approach may lead to the k-shortest paths 

problem, making the subproblem much more difficult to solve than the one of the root node. 

Branching in the arc variables does not pose the regeneration difficulty. Given the 

relation between the arc and the path variables, expressed in (3.8), it is always possible to obtain 

the flow in an arc based on the flows in paths.  

Branching constraints of the type 

 kij
Pp

pkpk
ij xy

k

≤∑
∈

λ  and   1xy k
ij

Pp

pkpk
ij

k

+≥∑
∈

λ , 

where k
ijx  denotes the current (fractional) flow of commodity k in the arc ij, overcome the 

regeneration difficulties in the subproblem. Since these constraints are associated with flows in 

arcs, their duals are considered as the duals of the capacity constraints in the coefficients of the 

objective function. 

 Using this branching rule and representing Us as the set of branching constraints of type 

“≤”, indexed by u, and Ls as the set of branching constraints of type “≥”, indexed by l, the RMP 

of a node s of the search tree is 

Min ∑ ∑
∈ ∈Kk Pp k

c
pkλpk

  

subject to: 

∑
∈ kPp

 δi
pk
 λpk

 = bi
k
 , ∀k∈K, ∀i∈Q

k
 

∑ ∑
∈ ∈Kk Pp k

yij
pk
 λpk 

 ≤ uij , ∀ij∈A 

∑
∈ kPp

 yij
pk
 λpk

 ≤  xij
ku, ∀u∈U

s 
(3.9) 

∑
∈ kPp

 yij
pk
 λpk

 ≥  xij
kl, ∀l∈L

s 
(3.10)

 

λpk
 ≥ 0, ∀k∈K, ∀p∈ kP , 
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where kP  is the set of paths of commodity k that belong to the RMP, kk PP ⊆ , ∀k∈K. 

The reduced cost of a path p, with origin o and destination d, of a commodity k is now: 

pkc  = ∑
∈Aij

yij
pk
 (wij + ∑

∈ sUu

wij
ku
 – ∑

∈ sLl

wij
kl
 + cij

k
) – πo

k
 + πd

k
, 

where wij
ku and wij

kl are the dual variables associated with the branching constraints (3.9) and 

(3.10), respectively. Note that these variables are associated with arcs, and thus they can be 

included in the modified costs of the subproblem. 

Therefore, the subproblem continues to be a shortest path problem between all the origin-

destination pairs of each commodity in a network with modified costs. The modified cost of an 

arc ij, for a commodity k, is given by: 

wij + ∑
∈ sUu

wij
ku
 – ∑

∈ sLl

wij
kl
 + cij

k
. 

In the linear relaxation, there was the guarantee that all costs in the shortest path 

(sub)problems were positive. With the inclusion of branching constraints of type “≥” that 

guarantee does not hold anymore. This implies that the solution of the shortest path 

(sub)problem may be unbounded: a cycle with a negative cost may exist in its network. This 

issue could be overcome by considering only elementary paths. However, that approach is not 

promising, given that the shortest elementary path problem in a network with negative cost 

cycles is a NP-hard problem (Garey and Johnson, 1979).  

In the following subsection we manage to overcome this issue by explicitly considering 

cycle variables in the path formulation. 

3.3.3 Dealing with negative cost cycles 

The existence of a negative cost cycle in the subproblem of a commodity k is due the 

presence of branching constraints of type “≥” in the RMP. These constraints may force the 

existence of a positive flow in a cycle, as illustrated in Figure 3.1, where branching constraints 

of type “≥” on variables x12
k, x23

k and x31
k, for some commodity k, were imposed. When solving 

the subproblem of commodity k, the network may have negative cost cycles, because the sum of 

the modified cost of the arcs 12, 23 and 31 may be negative. 
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1

2

3

 

Figure 3.1 Illustration of a cycle with positive flow forced by branching constraints. 

Our approach consists in considering a formulation with variables associated with flows 

in cycles. The problem to solve on a node of the search tree is now 

Min ∑ ∑
∈ ∈Kk Pp k

c
pkλpk 

+ ∑ ∑
∈ ∈Kk Cc k

c
ckµck 

subject to:
 

∑
∈ kPp

 δi
pk
 λpk

 = bi
k
 , ∀k∈K, ∀i∈Q

k
 

∑ ∑
∈ ∈Kk Pp k

yij
pk
 λpk 

 + ∑ ∑
∈ ∈Kk Cc k

 yij
ck
 µck 

 ≤ uij , ∀ij∈A 

∑
∈ kPp

 yij
pk
 λpk

 + ∑
∈ kPp

 yij
ck
 µck

 ≤  xij
ku, ∀u∈U

s
 

∑
∈ kPp

 yij
pk
 λpk

 + ∑
∈ kPp

 yij
ck
 µck

 ≥  xij
kl, ∀l∈L

s 

λpk
 ≥ 0, ∀k∈K, ∀p∈P

k 

µck
 ≥ 0, ∀k∈K, ∀c∈C

k
, 

where the set of all cycles of commodity k is denoted as Ck, indexed by c; if arc ij belongs to 

cycle c of commodity k, then yij
ck equals 1, and 0, otherwise; the unit flow cost of cycle c of 

commodity k, is represented as cck = ∑
∈Aij

yij
ck 
cij

k, ∀c∈C
k
, ∀k∈K; the µck

 variables are associated 

with the flow in each cycle of each commodity. Note that the variables associated with the 

cycles do not appear in the flow conservation constraints, but do appear in the capacity and 

branching constraints. 

The reduced cost of a variable associated with a cycle c of a commodity k is 

ckc  = ∑
∈Aij

yij
ck
 (wij + ∑

∈ sUu

wij
ku
 – ∑

∈ sLl

wij
kl
 + cij

k
). 
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The reduced cost of a cycle is equal to the sum of the modified costs of the arcs that form 

that cycle. The existence of a negative cost cycle in the subproblem corresponds to the existence 

of an attractive cycle. 

In the nodes of the search tree, other than the root, the subproblems must be solved using 

an algorithm that identifies negative cost cycles, such as the labelling correcting algorithms (for 

example, (Gallo and Pallottino, 1988)). Each subproblem of a node of the search tree can return 

to the RMP a column that corresponds either to a cycle, if one is detected, or to a path, if no 

negative cycles are detected.  

It is relevant to note that, in an optimal integer solution, the variables associated with 

cycles have, necessarily, a null value. 

 

The branch-and-price algorithm presented here for the integer MFP has finite 

convergence, since the number of paths and cycles of a network is finite (although exponentially 

large with respect to the size of the network). The same can be said about the number of 

branching constraints (each branch is defined by one arc and one commodity, and thus its 

number is finite). So, there is the guarantee that the method obtains an optimal solution in a 

finite number of steps, which, in the worst case, may be exponential (as in general branch-and-

bound algorithms). 

3.4 Implementation Issues and Computational Results 

3.4.1 Objectives of the computational tests 

We implemented the proposed method and did some computational experiments with the 

following objectives: 

− to evaluate comparatively different alternatives for the branch-and-price algorithm, 

namely the method to obtain the first RMP, the criterion to remove columns and the algorithm 

to solve the RMPs; 

− to test experimentally the sensitivity of the method to the type of subproblem instances; 

− to compare the efficiency of the proposed method with that of a general-purpose linear 

and integer programming solver (Cplex 6.6 (ILOG, 1999)).  

In the comparison of our branch-and-price algorithm with the software package for 

solving general integer programs, we remark the considerable evolution, in recent years, of  

mathematical programming software, which has incorporated both sophisticated software 

implementation techniques and linear/integer programming theoretical concepts, such as the use 

of heuristics, strong branching, node pre-solve and cutting planes in the nodes of the branch-

and-bound tree (Bixby et al., 2000). 
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We performed two types of tests. In the preliminary tests, we ran the BP program (the 

implementation of our algorithm) as well as the Cplex 6.6 (each with different alternatives) to 

solve the linear relaxation of the integer MFP for a small set of instances. In the comparative 

tests, we solved all the instances with the alternatives that provided better results in the first 

group of tests.  

3.4.2 Test instances 

We performed computational experiments with five sets of instances, four of them taken 

from (Frangioni, 2005) and the fifth generated by the random generator Mnetgen available at the 

same site. We used the C++ service class graph, also available at the same site, for easiness of 

conversion between different formats. We now briefly describe the instances tested (for a more 

detailed description, as well as for their origin, we refer the reader to the reference mentioned 

above). 

One instance of a MFP can be characterised by the problems of each commodity when 

relaxing the capacity constraints: in problems in which each commodity is associated with an 

origin-destination pair, if we relax the capacity constraints, we will get a shortest path problem 

for each commodity. In the same way, we can get shortest path tree subproblems (one origin 

and several destinations, or one destination and several origins) or minimum cost flow 

subproblems (several origins and several destinations). When describing the types of instances, 

we refer to those subproblems, noting that the characterisation used bears no relation to the 

solution method, but rather to the type of instance. 

Aertranspo 

For each of the eight instances of this set, each commodity has just one origin and several 

destination nodes (so the subproblem is a shortest path tree). The numbers of nodes, arcs and 

commodities for each instance are given in the Table 3.1. 

 

Instance jl23 jl049 jl141 jl147 jl158 jl188 jl207 jl209 

n 23 49 141 147 158 188 207 209 

m 71 137 449 520 477 673 726 765 

h 18 40 132 140 138 166 189 194 

Table 3.1 Dimensions of the Aertranspo instances. 

Canad 

The Canad set of instances consists in three subsets: Bipart, Mulgen I and Mulgen II. 

The Bipart instances are defined over a bipartite network and the subproblems are 
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minimum cost flow problems without upper bounds for each commodity (more precisely 

transportation problems, since the network is bipartite). 

The Mulgen I instances have shortest path subproblems and the Mulgen II instances have 

minimum cost flow subproblems (over generic networks). 

The sizes of all the Canad instances are given in Table 3.2, Table 3.3, and Table 3.4. 

 

Instance p01-p04 p05-p08 p09-p12 p13-p16 p17-p20 p21-p24 p25-p28 p29-p32 

n 50 50 50 50 100 100 100 100 

m 400 400 625 625 1600 1600 2500 2500 

h 10 100 10 100 10 100 10 100 

Table 3.2 Dimensions of the Canad instances (subset Bipart). 

Instance p33-p36 p37-p40 p41-p44 p45-p48 p49-p52 p53-p56 p57-p60 p61-p64 

n 20 20 20 20 30 30 30 30 

m 230 229 289 287 517 519 669 688 

h 40 200 40 200 100 400 100 400 

Table 3.3 Dimensions of the Canad instances (subset Mulgen I). 

Instance p65-p68 p69-p72 p73-p76 p77-p80 p81-p84 p85-p88 p89-p92 p93-p96 

n 20 20 20 20 30 30 30 30 

m 230 229 289 287 517 519 669 688 

h 40 200 40 200 100 400 100 400 

Table 3.4 Dimensions of the Canad instances (subset Mulgen II). 

We note that these instances come from a fixed charge multicommodity flow problem, 

and that the only difference between the instances that form each consecutive pair is the fixed 

charge cost. As we do not consider the fixed cost, we only tested half of the original instances.  

We also neglected the individual upper bounds on commodities that these instances 

originally had. 

Mnetgen 

We generated three sets of instances with the generator Mnetgen. For the first one we 

generated instances in which the subproblem is a minimum cost flow problem for each 

commodity (with an equal number of origins and destinations). For the second one the 

subproblem is a shortest path tree for each commodity (in which half of the nodes are 
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transhipment nodes). For the third one the subproblem is a shortest path for each commodity.  

All the instances have 256 nodes. For the first set we generated four subsets of 12 

instances (4, 8, 16, and 32 commodities) and for the second and third sets we generated seven 

subsets of 12 instances with 4, 8, 16, 32, 64, 128, and 256 commodities. 

In Table 3.5 we present some of the input parameters for each of the subsets. 

 

Instances 1,2,3 4,5,6 7,8,9 10,11,12 

Density low low high high 

Capacitated arcs (%) 40 80 40 80 

Arcs with maximum cost (%) 10 30 10 30 

Table 3.5 Most relevant input parameters for the Mnetgen instances. 

We neglected the individual upper bounds on commodities that the Mnetgen generator 

specifies. 

The 1st, 2nd, 3rd, 6th, 7th, and 8th instances of each subset are expected to be easier to 

solve, given that they have a lower number of capacitated arcs and a higher number of arcs with 

maximum cost. Besides the internet site where this instance generator was obtained, the reader 

can find a related explanation in (Klingman et al., 1974), where the Netgen generator (a single 

commodity instance generator that is the base of Mnetgen) is presented. 

To identify each instance, the number of commodities precedes its number. If the name of 

the instance does not contain a letter it refers to an instance of the first set (minimum cost flow 

subproblems); if it contains an ‘o’ it is an instance of the second set (shortest path tree 

subproblems); and if it contains a ‘c’ it is an instance of the third set (shortest path 

subproblems). 

PDS 

This is probably the most exhaustively tested group of instances of MFPs. It has been 

used by several researchers to test specialised approaches for linear MFPs and also as a typical 

large linear program (as in (Carolan et al., 1990) and (Bixby et al., 2000)).  

We tested the PDS instances given on Table 3.6 and Table 3.7. Each commodity is 

associated with an origin-destination pair, so the subproblem is a shortest path. Each instance 

has 11 commodities. 
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Instance 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

n 126 252 390 541 686 835 971 1104 1253 1399 1541 1692 1837 1981 

m 339 685 1117 1654 2149 2605 2989 3348 3880 4433 4945 5527 6095 6636 

Table 3.6 Dimensions of the first 14 PDS instances. 

Instance 15 18 20 21 24 27 30 33 36 40 80 

n 2125 2558 2857 2996 3419 3823 4223 4643 5081 5652 10989 

m 7202 8925 1115 10630 12199 13662 15125 16721 18449 20697 40258 

Table 3.7 Dimensions of the 11 bigger PDS instances that were tested. 

We neglected the individual upper bounds on commodities that these instances originally 

had. 

Planar 

The planar instances are defined over a planar graph. The subproblem is a shortest path 

problem for each commodity. For each arc, all the commodities have the same cost. We tested 

the instances given on Table 3.8. 

 

Instance planar30 planar50 planar80 planar100 planar150 

n 30 50 80 100 150 

m 150 250 440 532 850 

h 92 267 543 1085 2239 

Table 3.8 Dimensions of the Planar instances. 

3.4.3 Implementation issues and preliminary tests 

We implemented the proposed method in C++ using the development environment 

Microsoft Visual Studio 6.0. We used Cplex 6.6 callable library to solve linear programs and 

LEDA 4.1 (Mehlhorn and Näher, 1999) to keep the network topology and data, and to solve 

shortest path problems. We refer to this computer program as BP.  

The obvious advantage of using a library of classes, as LEDA, is that it becomes easier to 

code an algorithm. Also, we can expect some algorithms (as the shortest path ones) to run more 

quickly. The main disadvantage is that the usage of memory becomes much higher, since we 

have to keep two heavy (and partially duplicated) data structures: the network data (in LEDA) 

and the linear programming data (in Cplex). All in all, since LEDA makes it possible to extend 

our code to implement other ideas regarding the same problem, or to extend the present 



Chapter 3: Integer Multicommodity Flow Problem  

 

 

77 

approach to other MFPs easily, we decided to sacrifice the computational tests on larger 

instances. 

We also implemented a program based on Cplex 6.6 callable library to solve the arc 

formulation of the integer MFP. 

The reported results were obtained on a personal computer equipped with a Pentium III, 

733 MHz processor, 256 Mb of RAM, running Windows ME. All the times are expressed in 

seconds and exclude input and output operations. In the tables, the best execution times are 

presented in bold. 

For the preliminary computational tests we selected one instance of each set. The chosen 

instances were: jl209 (Aertranspo), p31 (Canad − Bipart), p63 (Canad − Mulgen I), p95 (Canad 

− Mulgen II), all the 12th Mnetgen instances, PDS20, and Planar100.  

Method to obtain the first RMP 

We compared three different ways of generating the set of paths to be included in the first 

RMP. The common aspect of the three alternatives is that we solve a minimum cost flow 

problem for each commodity and then convert the arc flows to path flows (with the algorithm 

presented in (Ahuja et al., 1993)). This set of paths corresponds to the columns of the first RMP. 

For the first alternative, the minimum cost flow problem (of each commodity) has upper 

bounds equal to the capacities of the arcs. An artificial variable, associated to the arcs, is 

included in the RMP to guarantee a feasible solution. In this way an optimal solution to the first 

RMP can violate the capacity constraints but never the flow conservation constraints. We refer 

to this alternative as capacity relaxation. 

For the second and third alternatives, we start by setting the upper bounds equal to the 

capacities of the arcs, but as we solve minimum cost flow problems, we reduce the capacities 

available, that is, the upper bounds, for the next commodities by the amount of flow that already 

exists on the arcs.  

For the second alternative, if the problem of a commodity is unfeasible, we solve it again 

with the upper bounds equal to the capacities. As in the first alternative, an artificial variable is 

inserted in the RMP, and an optimal solution to the first RMP can violate the capacity 

constraints but never the flow conservation constraints. We refer to this alternative as capacity 

relaxation with upper bounds. 

For the third alternative, we add a super-origin and a super-destination to each minimum 

cost flow problem. A solution can be divided in two types of flow: the one that enters the 

original network passing through some origin and arriving at the some destination, and the one 

that cannot traverse the original network because of tight upper bound constraints, thus 

traversing the arc that links the super-origin to the super-destination. When the conversion 

procedure of arc flows to path flows is applied, the existence of this second type of flow will be 
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reflected in the fact that some of the origins (destinations) cannot send (receive) their supply 

(demand). An artificial variable is then associated with each of the flow conservation constraints 

of those origins (destinations). In this alternative, an optimal solution to the first RMP can 

violate the flow conservation constraints but never the capacity constraints. We refer to this 

alternative as flow conservation relaxation. 

In these preliminary tests, columns with a positive reduced cost were removed at every 

iteration and the primal simplex algorithm was used to optimise the RMPs. 

In Table 3.9 results are given for the methods to obtain the first RMP. 

We note that the second and third methods can obtain the same solution if a feasible 

solution is obtained.  

Besides the (obvious) suggestion that a better (less unfeasible in this case) initial solution 

is preferable, these tests also suggest that the effect of inserting poor quality columns (in the 

sense that they will not be positive in an optimal solution) can be very significant. It is better to 

have an initial solution with part of the supply not being delivered rather than having it 

delivered by a set of paths that exceed the capacity. It is not worth inserting columns based on 

dual values that are possibly far away from an optimal value. 

These results can also be explained in the context of Lagrangean duality. Column 

generation can be viewed as a method to, iteratively, approximate a piecewise linear function 

(the Lagrangean dual). Roughly speaking, when that approximation around the optimal solution 

is good enough, the optimisation of the approximated function has the same result as the 

optimisation of the original function, in the sense that both functions have the same optimal 

solution. It seems clear that obtaining a greater accuracy in the approximation for regions far 

away from the optimal solution is just time-consuming. 

For the following tests, the first RMP was obtained by relaxing the flow conservation 

constraints. 

Removal of columns 

In Table 3.10, we show the results of three strategies related to the removal of columns. 

The three different alternatives are “never remove columns” (column Never), “remove all 

columns with strictly positive reduced-cost at every iteration” (column PRC) and “remove all 

nonbasic columns at every iteration” (column NBC). We used the primal algorithm to optimise 

RMPs. 

We note that the results are different for the last two alternatives because of the 

degeneracy of the RMP (we defined that a reduced cost is positive if it is greater than 10-6).  

Maintaining only the basic columns in the RMP is clearly worse than the other two 

alternatives. The comparison of the result of the instance 256-12o, when columns are not 

removed, with the one of the 128-12o instance is surprising, is that an instance with twice the 
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number of commodities has a smaller solving time, especially when the percentage of saturated 

arcs in an optimal solution is approximately the same (7.3 vs. 7.2). It would be necessary to 

study in more depth the structure of those instances to explain this result. 

 

Instance Capacity relaxation 
Capacity relaxation 

with upper bounds 

Flow conservation 

relaxation 

jl209 220.0 227.1 120.6 

p31 22.2 4.4 4.4 

p63 3.9 1.1 1.1 

p95 40.6 11.7 11.7 

4-12 57.5 8.0 8.0 

8-12 246.0 73.1 73.1 

16-12 454.2 150.5 150.5 

32-12 823.6 710.7 404.4 

4-12o 7.6 0.8 0.8 

8-12o 15.6 1.9 1.9 

16-12o 28.5 9.5 9.5 

32-12o 90.1 12.4 12.4 

64-12o 345.0 43.2 43.2 

128-12o 1179.9 69.0 69.0 

256-12o 4958.8 180.0 180.0 

4-12c 1.9 0.2 0.2 

8-12c 1.0 0.5 0.5 

16-12c 3.1 1.2 1.2 

32-12c 4.0 1.6 1.6 

64-12c 18.8 3.1 3.1 

128-12c 43.7 9.6 9.6 

256-12c 197.7 26.9 26.9 

pds20 875.9 70.8 70.8 

planar100 403.9 79.0 56.3 

Table 3.9 Comparative results of the methods to obtain the first RMP. 

 In general, on the smaller instances, it is preferable to maintain all the columns in the 

RMP. As the size of the instances grows larger it is more efficient to remove the columns with 

positive reduced cost. We can conclude that, while the linear programming solver can 

efficiently optimise the RMPs, it is preferable not to remove columns. In the view of the 

discussion of the previous subsection, it is always better to have the best possible approximation 
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to the dual Lagrangean function that we are optimising. When removing columns we are losing 

quality in the approximation. Of course, if the linear programming solver cannot manage the 

size of the RMPs, it is better to have a worse approximation but still optimising it.  

We decided to never remove columns in all sets of instances, except Aertranspo.  

Theoretically, even though it is a remote possibility, removing columns can lead to 

cycling (see Chapter 2, subsection 2.2.5, page 25). In practice, we never observed that in our 

algorithm. 

Algorithm to solve the RMPs 

The Cplex algorithms used to solve the RMPs that we tested were: primal (P), dual (D), 

hybrid primal with preprocessing (HPP), hybrid dual with preprocessing (HDP), hybrid primal 

without preprocessing (HP) and hybrid dual without preprocessing (HD). The hybrid algorithms 

use an advanced basis obtained by solving the network type part of the problem. Preprocessing 

can destroy the network structure, so it is not clear if it should be used with hybrid algorithms. 

Table 3.11 presents the results obtained. 

The primal algorithm is the best alternative for almost all instances. The hybrid 

approaches are significantly worse. In the remaining tests we used the primal algorithm to solve 

the RMPs. 

Cplex 

We tested the four basic available alternatives for the optimisation algorithm of the nodes 

(including the root) of the branch-and-bound(-and-cut) tree when solving the instances with 

Cplex 6.6. Table 3.12 shows the results obtained. The Network column refers to the network 

algorithm followed by a dual one. 

We chose the best algorithm for each set of instances: Network for instances Aertranspo 

and Canad, Primal for PDS and Dual for the Planar instances. For the Mnetgen instances the 

best algorithm is not always the same. We chose the dual algorithm for its robustness. 
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Instance Never PRC NBC 

jl209 420.0 120.6 185.4 

p31 4.4 4.8 4.8 

p63 1.0 1.1 1.2 

p95 10.9 11.7 40.0 

4-12 5.4 8.0 9.3 

8-12 67.6 73.1 93.1 

16-12 136.7 150.5 176.3 

32-12 398.3 404.4 520.5 

4-12o 0.3 0.8 1.5 

8-12o 0.9 1.9 3.2 

16-12o 9.0 9.5 17.5 

32-12o 12.2 12.4 98.3 

64-12o 44.0 43.2 253.6 

128-12o 105.7 69.0 586.9 

256-12o 99.0 180.0 729.4 

4-12c 0.1 0.2 0.2 

8-12c 0.3 0.5 0.3 

16-12c 0.7 1.2 1.2 

32-12c 0.7 1.6 1.7 

64-12c 1.8 3.1 3.1 

128-12c 4.7 9.6 10.4 

256-12c 9.1 26.9 27.1 

pds20 51.1 70.8 79.4 

planar100 39.3 56.3 12.5 

Table 3.10 Comparative results for the removal of columns. 
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Instance P D HPP HDP HP HD 

jl209 120.6 523.9 72.2 741.4 706.7 728.1 

p31 4.4 4.3 21.1 23.4 22.5 34.6 

p63 1.0 1.2 1.5 1.3 1.6 1.3 

p95 10.9 17.6 23.2 29.1 21.1 24.8 

4-12 5.4 7.7 28.0 11.0 23.9 9.1 

8-12 67.6 115.1 613.3 147.3 651.2 159.9 

16-12 136.7 31.5 1160.1 1191.9 1562.5 600.9 

32-12 398.3 997.6 2863.3 1414.0 4191.4 1630.2 

4-12o 0.3 0.6 2.8 1.0 2.8 1.0 

8-12o 0.9 2.2 8.6 5.8 11.2 5.7 

16-12o 9.0 20.3 35.3 69.3 43.5 67.8 

32-12o 12.2 28.9 81.7 160.7 75.1 142.5 

64-12o 44.0 88.0 992.0 650.0 995.1 643.6 

128-12o 105.7 275.8 1783.7 1745.8 1778.4 445.7 

256-12o 99.0 345.5 6251.3 12888.4 11131.8 12956.6 

4-12c 0.1 0.2 0.5 0.2 0.5 0.2 

8-12c 0.3 0.4 1.1 0.5 1.1 0.5 

16-12c 0.7 1.0 2.8 1.3 2.6 1.2 

32-12c 0.7 1.1 1.9 1.1 1.8 1.2 

64-12c 1.8 2.7 3.2 2.8 3.4 4.3 

128-12c 4.7 6.5 10.4 7.8 10.9 10.8 

256-12c 9.1 15.3 43.4 29.7 43.7 30.5 

pds20 51.1 79.0 545.5 185.9 415.6 185.9 

planar100 39.3 57.7 113.6 87.3 105.6 74.0 

Table 3.11 Alternatives for the algorithm to optimise RMPs. 
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Instance Primal Dual Network Barrier 

jl209 1114.7 556.4 289.6 546.7 

p31 54.0 99.4 17.1 1739.5 

p63 150.4 18.8 15.2 860.5 

p95 2638.5 32.8 28.3 912.8 

4-12 23.6 11.3 15.3 32.3 

8-12 211.5 116.8 198.0 779.0 

16-12 541.1 53.8 75.1 559.9 

32-12 494.0 87.6 23.9 313.5 

4-12o 1.2 1.0 1.1 8.7 

8-12o 3.7 2.3 1.8 43.3 

16-12o 17.1 8.0 6.0 190.9 

32-12o 24.0 13.2 8.6 141.6 

64-12o 98.4 27.3 22.1 157.4 

128-12o 55.5 47.2 48.6 225.0 

256-12o 2082.5 285.7 275.2 1345.2 

4-12c 0.8 0.4 0.4 7.9 

8-12c 2.6 0.9 1.1 41.9 

16-12c 8.7 2.9 3.5 215.1 

32-12c 41.9 23.0 44.0 362.3 

64-12c 21.4 15.5 22.3 211.6 

128-12c 83.1 89.2 110.3 188.3 

256-12c 74.7 93.8 124.4 145.1 

pds20 33.7 82.8 49.9 924.5 

planar100 9129.7 1462.1 7582.6 7810.5 

Table 3.12 Alternatives for the Cplex algorithm. 

3.4.4 Comparative computational tests 

For testing all instances we used the alternatives fixed in the previous subsection. For 

traversing the branch-and-price tree we used a depth first strategy. The branching rule defined is 

to branch on the first fractional arc variable found. More precisely, the flow of each arc for each 

commodity is determined until a fractional value is obtained, and then branching is performed 

as proposed in subsection 3.3.2 (page 68).  

In all the tables the first column is the number of saturated arcs in an optimal solution to 

the linear relaxation, which, in general, is a measure of the difficulty of the instance. The 

column “gap” gives the absolute value of the integrality gap, which is the optimal integer value 
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minus the optimal value of the linear relaxation. The columns Time and Nodes present, 

respectively, the time spent in obtaining the optimal solution and the number of nodes 

(including the root one) that were optimised with BP and Cplex 6.6.  

Aertranspo 

In Table 3.13 the results for the Aertranpo instances are given. 

For all the instances the BP program was more efficient than Cplex 6.6. On average, BP 

is about three times faster than Cplex 6.6. That can be explained by the smaller number of 

constraints in the master problem of the BP approach, since these instances have several 

transhipment nodes. 

Canad – Bipart 

In Table 3.14 the results for the Canad – Bipart instances are given. 

The BP program is always faster than Cplex 6.6. 

For the instances with more than 10% of saturated arcs (p2, p11, and p15) the BP is 

considerably faster. The same is true for the two fractional instances (p11 and p27) even when 

the difference in the number of optimised nodes is very significant (p11).  

Canad – Mulgen I 

In Table 3.15 the results for the Canad − Mulgen I instances are given. 

None of the instances of this set is fractional. The BP program is consistently about three 

times faster than Cplex 6.6. This is due to the smaller number of constraints of the master 

problem of the BP approach, since the subproblems are shortest path problems. 

Canad – Mulgen II 

In Table 3.16 the results for the Canad − Mulgen II instances are given. 

For almost all instances, the BP program is slightly faster than Cplex 6.6. For these 

instances there are no transhipment nodes. We note the reduced proportion of saturated arcs in 

an optimal solution. In that case, in general, it is easier to obtain a good first set of columns and 

the column generation procedure converges rapidly.  

Mnetgen 1 

The results for the Mnetgen 1 instances are given in Table 3.17. The results presented in 

each row are relative to the average value of the three instances generated with the same input 

parameters. 

The results of the Cplex 6.6 program are clearly better than those of BP for all instances. 

We note that the instances of this group do not have any transhipment nodes. The high 
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proportion of saturated arcs suggests that the BP algorithm starts from a solution far from the 

optimal, which is confirmed when observing that several initial solutions are not feasible (in 

particular for the more difficult instances, that is, the groups 4, 5, 6, and 10, 11, 12). We can 

also note that for the 10-th, 11-th and 12-th instances with 8, 16 and 32 commodities the average 

number of nodes is very high when compared with Cplex 6.6. 

Mnetgen 2 

The results for the Mnetgen 2 instances are given in Table 3.18. The results presented in 

each row are relative to the average value of the three instances generated with the same input 

parameters. 

In this set of instances the BP results are better for the easy instances (1, 2, 3, and 7, 8, 9) 

and worse for the difficult instances (4, 5, 6, and 10, 11, 12). 

Mnetgen 3 

The results for the Mnetgen 3 instances are given in Table 3.19. Again the results 

presented in each row are relative to the average value of the three instances generated with the 

same input parameters. 

The results of the BP program are clearly better than the results of Cplex 6.6 for all 

instances. 

PDS 

In Table 3.20 the results for the PDS instances are given. 

These results are perplexing: for some instances BP is much better and for some others it 

is much worse. To analyse this in depth, it would be necessary to gain some insight into the 

structure of these instances. We note that these instances have a small number of commodities 

and a large number of transhipment nodes (in fact the subproblems are shortest path problems).  

Planar 

In Table 3.21 the results for the Planar instances are given. 

For these instances the BP program was clearly more efficient. Due to memory limits, it 

was not possible to solve the planar150 instance with Cplex 6.6. We note that the arc 

formulation for that instance has 335 850 rows and 1 903 150 columns, while the path 

formulation has only 3 089 rows and the RMP that gave the fractional optimal solution had 

14 944 columns. However, we could not find a feasible integer solution, after optimising 600 

nodes of the search tree. 
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Conclusions of the comparative computational tests 

The linear relaxation of almost all instances chosen to test our branch-and-price algorithm 

had an integral optimal solution, which does not allow drawing definitive conclusions about the 

efficiency of the proposed approach. However, noting that in some large instances the arc 

formulation requires prohibitive amounts of memory, we can conclude that, at least for those 

instances, our approach is clearly adequate for the integer MFP. 

For the instances Aertranspo, Canad, Mnetgen 3, and Planar, the branch-and-price 

algorithm performed better than Cplex 6.6. That is due to the structure of some of those 

instances (which include several transhipment nodes and/or shortest path subproblems) and to 

the quality of the initial solution, which was the case for instances with a small percent of 

saturated arcs in an optimal solution. For the Mnetgen 1 instances the BP program was clearly 

inefficient: the tightness of the capacity constraints and the inexistence of transhipment nodes 

made these instances very difficult for the BP program to solve. For the Mnetgen 2 and PDS 

instances the results were balanced. 

 

Time Nodes 
Instance 

Saturated 

arcs (%) 
Gap 

BP CPLEX BP CPLEX 

jl23 22.5 0.00 0.1 0.2 1 1 

jl049 23.4 0.00 0.3 0.7 1 1 

jl141 15.8 0.00 7.0 28.5 1 1 

jl147 21.5 0.00 17.6 91.2 1 1 

jl158 13.6 0.00 8.0 32.2 1 1 

jl188 3.3 0.00 5.7 35.8 1 1 

jl207 29.3 0.00 169.7 265.1 1 1 

jl209 30.1 0.00 126.8 289.6 2 1 

Table 3.13 Results for the Aertranspo instances. 
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Time Nodes 
Instance 

Saturated 
arcs (%) 

Gap 
BP CPLEX BP CPLEX 

p01 4.0 0.00 0.2 0.3 1 1 

p03 20.5 0.00 0.4 2.7 1 3 

p05 0.5 0.00 2.4 2.5 1 1 

p07 5.0 0.00 2.6 3.6 1 1 

p09 0.6 0.00 0.3 0.4 1 1 

p11 15.2 1.20 4.3 9.9 27 4 

p13 1.8 0.00 3.6 3.7 1 1 

p15 10.4 0.00 8.8 43.7 6 1 

p17 1.8 0.00 1.0 4.1 1 1 

p19 6.6 0.00 1.2 1.8 1 1 

p21 0.1 0.00 9.1 10.9 1 1 

p23 0.2 0.00 9.5 11.7 1 1 

p25 0.0 0.00 1.6 2.0 1 1 

p27 4.0 0.50 3.0 11.4 2 3 

p29 0.2 0.00 13.9 17.7 1 1 

p31 0.6 0.00 14.9 17.1 1 1 

Table 3.14 Results for the Canad − Bipart instances. 

Time Nodes 
Instance 

Saturated 
arcs (%) 

Gap 
BP CPLEX BP CPLEX 

p33 0.4 0.00 0.2 0.9 1 1 

p35 3.5 0.00 0.2 0.4 1 1 

p37 0.4 0.00 0.9 2.5 1 1 

p39 2.6 0.00 0.9 3.1 1 1 

p41 0.3 0.00 0.2 0.6 1 1 

p43 3.5 0.00 0.2 0.6 1 1 

p45 2.8 0.00 1.1 3.1 1 1 

p47 3.8 0.00 1.1 3.2 1 1 

p49 1.0 0.00 1.0 2.8 1 1 

p51 3.7 0.00 0.9 2.8 1 1 

p53 0.8 0.00 4.0 11.5 1 1 

p55 2.3 0.00 4.0 12.3 1 1 

p57 0.1 0.00 1.0 3.5 1 1 

p59 0.9 0.00 1.1 3.5 1 1 

p61 0.3 0.00 4.7 17.2 1 1 

p63 1.5 0.00 4.7 15.2 1 1 

Table 3.15 Results for the Canad − Mulgen I instances. 
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Time Nodes 
Instance 

Saturated 
arcs (%) 

Gap 
BP CPLEX BP CPLEX 

p65 2.2 0.00 0.3 0.4 1 1 

p67 3.0 0.50 0.7 1.2 2 1 

p69 3.1 0.00 2.9 2.8 1 1 

p71 5.2 0.00 3.0 3.1 1 1 

p73 0.7 0.00 0.4 0.6 1 1 

p75 1.7 0.00 0.6 0.6 1 1 

p77 0.0 0.00 2.3 3.0 1 1 

p79 3.8 0.00 2.9 3.3 1 1 

p81 2.5 0.00 3.2 3.0 1 1 

p83 4.1 0.00 2.8 3.5 1 1 

p85 1.0 0.00 11.9 12.0 1 1 

p87 4.8 0.00 15.2 18.0 1 1 

p89 0.9 0.00 2.9 3.8 1 1 

p91 4.3 0.00 3.3 4.1 1 1 

p93 1.5 0.00 12.3 20.9 1 1 

p95 4.9 0.00 16.0 28.3 1 1 

Table 3.16 Results for the Canad − Mulgen II instances. 

Time Nodes 
Instances 

Saturated 

arcs (%) 
Gap 

BP CPLEX BP CPLEX 

4-1,2,3 6.7 0.00 4.3 0.4 1.0 1.0 

4-4,5,6 13.9 0.08 10.3 1.8 6.3 1.7 

4-7,8,9 3.9 0.00 3.5 1.0 1.0 1.0 

4-10,11,12 8.5 0.07 11.5 6.6 4.0 2.3 

8-1,2,3 7.0 0.00 11.2 2.5 2.7 2.0 

8-4,5,6 14.2 0.08 37.5 4.2 5.7 2.3 

8-7,8,9 6.4 0.00 11.9 2.0 1.0 1.0 

8-10,11,12 13.9 0.47 554.2 67.7 70.7 12.7 

16-1,2,3 6.8 0.00 24.3 4.8 1.0 1.7 

16-4,5,6 17.1 0.38 225.6 27.6 9.0 2.7 

16-7,8,9 6.4 0.33 35.1 14.0 1.7 2.0 

16-10,11,12 14.6 0.49 1686.7 135.3 128.3 7.3 

32-1,2,3 9.0 0.00 121.9 21.1 1.7 2.3 

32-4,5,6 17.5 0.28 1189.9 48.8 4.0 4.3 

32-7,8,9 4.3 0.00 70.6 10.5 1.0 1.0 

32-10,11,12 12.8 0.44 2238.5 223.8 65.0 19.0 

Table 3.17 Average results for the Mnetgen 1 instances. 
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Time Nodes 
Instances 

Saturated 

arcs (%) 
Gap 

BP CPLEX BP CPLEX 

4-1,2,3o 1.0 0.00 0.4 0.6 1.0 1.0 

4-4,5,6o 2.4 0.00 0.5 0.7 1.0 1.0 

4-7,8,9o 0.9 0.00 0.5 0.9 1.0 1.0 

4-10,11,12o 1.3 0.00 0.6 1.1 1.0 1.0 

8-1,2,3o 1.7 0.00 0.9 2.0 1.0 1.0 

8-4,5,6o 5.1 0.00 4.5 3.4 1.0 1.0 

8-7,8,9o 1.0 0.00 0.9 1.9 1.0 1.0 

8-10,11,12o 2.7 0.00 2.1 2.3 1.0 1.0 

16-1,2,3o 2.3 0.00 1.9 4.4 1.0 1.0 

16-4,5,6o 8.8 0.44 32.1 28.4 4.0 2.0 

16-7,8,9o 1.0 0.00 1.7 4.5 1.0 1.0 

16-10,11,12o 3.0 0.00 9.0 8.2 1.3 1.0 

32-1,2,3o 5.3 0.00 11.1 10.7 1.0 1.0 

32-4,5,6o 7.9 0.00 41.3 12.9 1.0 1.0 

32-7,8,9o 0.7 0.00 2.6 7.9 1.0 1.0 

32-10,11,12o 4.4 0.00 69.4 18.0 1.3 1.0 

64-1,2,3o 2.4 0.00 13.0 15.0 1.0 1.0 

64-4,5,6o 8.4 0.00 200.9 26.3 1.0 1.0 

64-7,8,9o 1.7 0.00 8.5 16.1 1.0 1.0 

64-10,11,12o 6.8 0.00 51.3 38.4 1.0 1.0 

128-1,2,3o 3.4 0.00 27.3 36.7 1.0 1.0 

128-4,5,6o 8.8 0.00 664.8 86.3 1.0 1.0 

128-7,8,9o 4.2 0.00 18.1 48.0 1.0 1.0 

128-10,11,12o 8.9 0.00 827.2 56.6 1.0 1.0 

256-1,2,3o 4.2 0.00 81.9 87.2 1.0 1.0 

256-4,5,6o 8.7 0.00 940.5 166.9 1.0 1.0 

256-7,8,9o 5.0 0.00 48.1 149.1 1.0 1.0 

256-10,11,12o 8.0 0.00 194.2 240.5 1.0 1.0 

Table 3.18 Average results for the Mnetgen 2 instances. 
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Time Nodes 
Instances 

Saturated 

arcs (%) 
Gap 

BP CPLEX BP CPLEX 

4-1,2,3c 0.9 0.00 0.2 0.3 1.0 1.0 

4-4,5,6c 2.4 0.00 0.3 0.3 1.0 1.0 

4-7,8,9c 0.7 0.00 0.2 0.3 1.0 1.0 

4-10,11,12c 2.2 0.00 0.4 0.4 1.0 1.0 

8-1,2,3c 1.5 0.00 0.3 0.6 1.0 1.0 

8-4,5,6c 4.6 0.11 0.5 2.3 1.3 1.3 

8-7,8,9c 1.1 0.00 0.4 0.7 1.0 1.0 

8-10,11,12c 2.7 0.00 0.6 1.0 1.0 1.0 

16-1,2,3c 1.8 0.00 0.7 1.4 1.0 1.0 

16-4,5,6c 3.5 0.00 0.9 1.9 1.0 1.0 

16-7,8,9c 0.9 0.00 0.6 1.4 1.0 1.0 

16-10,11,12c 3.6 0.67 1.3 6.1 2.3 1.3 

32-1,2,3c 5.3 0.00 1.5 4.3 1.0 1.0 

32-4,5,6c 11.5 0.17 4.2 15.7 6.7 1.3 

32-7,8,9c 2.0 0.00 1.2 4.3 1.0 1.0 

32-10,11,12c 4.4 3.44 2.0 16.8 2.3 2.7 

64-1,2,3c 1.9 0.00 2.0 9.2 1.0 1.0 

64-4,5,6c 10.7 0.00 4.6 26.1 1.0 1.0 

64-7,8,9c 2.1 0.00 1.9 10.6 1.0 1.0 

64-10,11,12c 6.5 0.00 2.8 16.9 1.0 1.0 

128-1,2,3c 2.9 0.00 3.8 32.1 1.0 1.0 

128-4,5,6c 15.6 0.11 18.2 155.3 7.7 1.3 

128-7,8,9c 3.0 0.00 4.1 30.4 1.0 1.0 

128-10,11,12c 4.6 0.00 4.0 50.7 1.0 1.0 

256-1,2,3c 5.0 0.00 7.5 79.6 1.0 1.0 

256-4,5,6c 7.8 0.00 9.6 111.2 1.0 1.0 

256-7,8,9c 2.4 0.00 6.5 102.2 1.0 1.0 

256-10,11,12c 13.2 0.00 13.3 201.6 1.0 1.0 

Table 3.19 Average results for the Mnetgen 3 instances. 
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Time Nodes 
Instance 

Saturated 

arcs (%) 
Gap 

BP CPLEX BP CPLEX 

pds1 9.1 0.00 0.2 0.3 1 1 

pds2 7.2 0.00 0.3 0.8 1 1 

pds3 6.2 0.00 0.8 3.2 1 1 

pds4 5.3 0.00 1.3 2.9 1 1 

pds5 4.8 0.00 2.0 3.8 1 1 

pds6 4.6 0.00 2.9 5.2 1 1 

pds7 4.7 0.00 4.4 5.9 1 1 

pds8 4.6 0.00 4.8 6.8 1 1 

pds9 4.5 0.00 6.1 8.7 1 1 

pds10 4.3 0.00 8.0 9.3 1 1 

pds11 4.3 0.00 10.4 10.7 1 1 

pds12 4.3 0.00 11.3 13.4 1 1 

pds13 4.3 0.00 20.8 7.5 1 1 

pds14 4.2 0.00 22.9 10.9 1 1 

pds15 4.1 0.00 24.9 11.3 1 1 

pds18 4.0 0.00 37.7 18.3 1 1 

pds20 3.9 0.00 54.9 30.6 1 1 

pds21 3.8 0.00 62.9 24.8 1 1 

pds24 3.8 0.00 80.3 53.8 1 1 

pds27 3.7 0.00 108.7 206.9 1 1 

pds30 3.7 0.00 151.3 852.9 1 1 

pds33 3.7 0.00 183.3 248.3 1 1 

pds36 3.6 0.00 252.3 816.4 1 1 

pds40 3.6 0.00 513.6 899.1 1 1 

pds80 3.0 0.00 1017.1 399.4 4 1 

Table 3.20 Results for the PDS instances. 
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Time Nodes 
Instance 

Saturated 

arcs (%) 
Gap 

BP CPLEX BP CPLEX 

planar30 10.7 0.00 0.3 1.1 1 1 

planar50 12.4 0.00 2.1 21.6 1 1 

planar80 24.3 0.00 23.7 323.8 4 1 

planar100 16.4 0.00 48.5 1501.9 2 1 

planar150 27.8 * 1484.2* ** * ** 

Table 3.21 Results for the Planar instances.  
* An integer solution was not found after optimising 600 nodes of the BP tree.  

** A fractional optimal solution was not obtained due to excessive memory requirements. 

3.5 Conclusions 

In this Chapter we presented a branch-and-price approach to the minimum cost integer 

multicommodity flow problem. The developed algorithm is based on a path formulation derived 

for general instances (where commodities can have multiple origins and destinations) of the 

problem. 

The proposed approach is based on branching on the arc variables, taking into account 

that, in the nodes of the branch-and-price tree, other than the root, the subproblems (shortest 

path problems) may have negative cost cycles. Our algorithm deals efficiently with that 

possibility by explicitly introducing those cycles in the (restricted) master problem. This 

approach can be also used in other multicommodity flow problems (such as non-oriented 

problems, multicommodity maximal flow problems or multicommodity flow problems with 

extra constraints on paths − of which hop constraints are an example). 

Computational tests allowed us to compare different versions of the algorithm and to 

compare their results with a general purpose solver (Cplex 6.6) optimising the arc formulation. 

Conclusions of the computational tests were not so expressive as we expected, since the linear 

relaxation of almost all the instances tested had an integral optimal solution. Anyhow, the 

proposed algorithm provided better time results in several instances, and, for the larger ones, it 

can be concluded that it is the only feasible approach to be followed, given the huge memory 

requirements of the formulation that are needed by a general-purpose solver.  

Improvements can still be made, such as a more judicious choice of the branching 

variable and a more sophisticated search strategy. Also, more effective branching rules can be 

devised. With our approach, as long as branching rules are derived in the arc variables, they are 

compatible with the subproblem in all nodes of the branch-and-price tree. This allows their 

extension to branching rules based on several (arc) variables.  
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4 Binary Multicommodity Flow Problem 

In this Chapter, we address branch-and-price algorithms for the binary multicommodity 

flow problem. This problem is defined over a capacitated network in which we intend to route a 

set of commodities, each one with a given origin, destination and demand, at minimal cost, 

without exceeding the arc capacities. Furthermore, the flow of each commodity must be routed 

using a single path. 

Formulating this problem with decision variables representing flows on each arc for each 

commodity gives rise to a large linear (binary) program with two types of constraints: flow 

conservation constraints and capacity constraints. Based on the Dantzig-Wolfe decomposition 

principle we obtain two different decompositions (path and knapsack) depending on which type 

of constraints define the subproblem. In order to solve the binary problem, we combine column 

generation and branch-and-bound, developing branching rules that preserve the structure of the 

subproblem in the branch-and-bound tree for both decompositions. 

The linear relaxation of the path decomposition provides the same lower bound as the 

original formulation, and its potential advantage lies in capturing the “network with additional 

constraints” structure of the problem. The knapsack decomposition, in general, provides better 

lower bounds but does not explore the aforementioned structure of the problem. 

For the path decomposition, we compare the developed branching rule with one 

previously presented in (Barnhart et al., 2000). We present computational results for the two 

decompositions, and compare them with the ones given by a general-purpose integer 

programming solver. 
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4.1 Introduction 

The binary minimum cost multicommodity flow problem (MFP) is defined over a 

directed network in which several commodities share the capacity of the arcs in order to be 

shipped from the origin to the destination nodes. There is a unit cost flow associated with each 

arc of the network and with each commodity. The minimum cost binary MFP amounts to 

finding the minimum cost routing of all the commodities, taking into account that the flow of 

each commodity cannot be split. 

Other designations for this problem are common, such as non-bifurcated routing problem, 

traffic placement problem, single path routing problem, path selection problem or multiple 

source unsplittable MFP. Most of those designations refer to communication problems. In those 

applications, the routing of a set of traffic demands between different users is to be decided, 

taking into account the capacity of the network arcs and the fact that the traffic between each 

pair of users cannot be split. In (Parker and Ryan, 1994) an example of routing video data is 

described, and in (Ouaja and Richards, 2004) the binary MFP is described in the context of 

traffic engineering. 

Other applications, such as production planning and distribution/transportation (an 

example of express package delivery is given in (Barnhart et al., 2000)), may also be 

considered, whenever a multicommodity flow model is used and the commodities cannot be 

split. 

 

Most of the work on MFPs is about its linear version, where the demand of a commodity 

can be split along different paths. References to surveys, applications and solution methods to 

the linear MFP were given in Chapter 4, where the integer MFP was considered. In that 

problem, the demand of each commodity can be split but not each unit. 

Different approaches for the binary MFP have been proposed: approximation algorithms 

(for example, (Kolliopoulos and Stein, 1999)), heuristics ((Wang and Wang, 1999; Costa et al., 

2002)) and exact methods. 

In our present work, we develop two exact methods based on Dantzig-Wolfe 

decomposition (DWD) (Dantzig and Wolfe, 1960). The binary MFP is formulated by defining 

the decision variables as the flows in the arcs and with two types of constraints: flow 

conservation and capacity. In a path decomposition, the subproblem is defined by the flow 

conservation constraints; in a knapsack decomposition, the subproblem is defined by the 

capacity constraints. In both cases, we combine column generation and branch-and-bound 

(branch-and-price) to obtain optimal solutions to the binary MFP. Branch-and-price methods 
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were reviewed in Chapter 2; other surveys can be found in (Barnhart et al., 1998; Wilhelm, 

2001; Lübbecke and Desrosiers, 2002). 

For the path decomposition, the approach presented here follows the one introduced in 

(Barnhart et al., 2000), where cuts are also incorporated in the solution procedure (branch-and-

price-and-cut). We make a slight extension by using general lifted cover inequalities (instead of 

simple lifted cover inequalities), but our main contribution is the development of a different 

branching scheme, which may be seen as the fundamental issue when combining column 

generation and branch-and-bound. The main potential advantage of the path decomposition is 

that the size of the linear programs solved in a column generation scheme is, in general, 

considerably smaller than the size of the original linear program. In addition, the network 

structure of the problem is explored: the binary MFP can be seen as a set of shortest path 

problems (defined by the ‘easy constraints’, using a usual decomposition terminology), one for 

each commodity, and additional constraints that relate them (the ‘hard constraints’).  

A branch-and-price algorithm based on the knapsack decomposition is here developed 

and tested, to our best knowledge, for the first time. Similar approaches were used before to 

obtain lower bounds to network design problems (Holmberg and Yuan, 2000; Crainic et al., 

2001), but with different solution approaches from the one introduced here. The main potential 

advantage of this decomposition is that its lower bound is, in general, tighter than the given by 

the linear relaxation of the original formulation or by the path decomposition. 

 

Other exact methods have been described in the literature, some of them developed at the 

same time of ours (Alvelos and Carvalho, 2003). In (Belaidouni and Ben-Ameur, 2003) super 

additive cuts are used to strengthen the formulation based on flows in arcs; in (Park et al., 2003) 

a column generation formulation with two types of columns is combined with branch-and-

bound; in (Ouaja and Richards, 2003; Ouaja and Richards, 2004) a subgradient algorithm (for 

the Lagrangean relaxation of the capacity constraints or, equivalently, the path decomposition) 

is combined with constraint logic programming. In (Parker and Ryan, 1994) and (Park et al., 

1996), a related problem is treated. We will discuss with more detail some of those approaches 

when describing our work. In none of those references, the methods developed were compared 

with a state-of-the-art general-purpose solver, as they are in the present work. 

 

This Chapter is organised as follows. In the next Section, we formally describe the binary 

MFP and a formulation based on flows in arcs. That formulation is the base for the 

decompositions that will be introduced in the following two Sections. Section 4.3 is devoted to 

the path decomposition with a particular emphasis on branching rules and the use of lifted cover 

inequalities. In Section 4.4, the knapsack decomposition is introduced, the branch-and-price 

algorithm is described, and some variants are discussed in order to improve its computational 



Chapter 4: Binary Multicommodity Flow Problem 

 

 

96 

efficiency. In Section 4.5, computational results of both decompositions and of a general-

purpose solver (Cplex 8.1 (ILOG, 2002)) are given. Finally, in Section 4.6, we present the main 

conclusions of this work. 

4.2 Problem Definition and Original Formulation 

We consider a network formed by a set of n nodes, represented by N, and a set of m arcs, 

represented by A. We use an index i={1,...,n} to represent a node and a pair of indices ij to 

represent an arc which has origin in node i and destination in node j. We define a set K of h 

commodities, indexed by k. Each commodity k is characterised by an origin, ok, a destination, 

d
k, and an integer demand, rk, which is the number of units that are supplied at its origin and that 

are required at its destination. We also define an integer capacity uij associated with each arc of 

the network and a unit cost, cij
k, associated with the flow of commodity k on arc ij. We make the 

usual assumption, cij
k
 ≥ 0, ∀ij∈A, ∀k∈K.  

The binary MFP consists in finding the minimum cost routing of all the demand of all the 

commodities taking into account that the demand of each commodity cannot be split. 

The original formulation is obtained using decision variables that represent the proportion 

of the demand of each commodity that flows in each arc. Forcing those variables to be binary is 

the same as forcing every flow of every commodity to be routed along a single path. 

The decision variables are represented as xij
k. The original formulation is as follows. 

Min ∑ ∑
∈ ∈Kk Aij

cij
k
 r
k
 xij

k
  (OB) 

subject to: 

Kk,Ni,

di,oi if ,0

di if ,1

oi if ,1

xx
kk

k

k

Aji:j

k
ji

Aij:j

k
ij ∈∀∈∀









≠≠

=−

=

=− ∑∑
∈∈

 (4.1) 

∑
∈Kk

r
k
 xij

k
 ≤ uij, ∀ij∈A (4.2) 

xij
k
 ∈ {0,1}, ∀k∈K, ∀ij∈A. (4.3) 

Constraints (4.1) are flow conservation constraints. They state that, for each commodity, 

the difference between the flow that enters and the flow that leaves each node is equal to the 

supply/demand of that same node. Constraints (4.2) are capacity constraints. They state that the 

total flow on each arc must be less than or equal to its capacity. 

In this work, we apply two decompositions to the formulation (OB) and solve them by a 

column generation based algorithm. We now present a slightly different formulation that, 

potentially, is more adequate to be solved by column generation. 
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Column generation algorithms can also be viewed as cutting planes methods in the dual 

space (as detailed in Chapter 2). Primal degeneracy leads to the slower convergence of the 

column generation method (as in simplex methods) and corresponds to the presence of multiple 

dual optimal solutions. That can be done by excluding redundant primal constraints and turning 

primal equality constraints into inequalities, of course, as long the obtained model produces an 

optimal solution that may be used to retrieve an optimal solution to the original problem 

(Carvalho, 2000).  

The original formulation (OB) can be modified by removing the flow conservation 

constraint of each destination node (of all commodities) and by setting the sense of the other 

flow conservation constraints to “≥”. In this way, the following modified original model is 

obtained. 

Min ∑ ∑
∈ ∈Kk Aij

cij
k
 r
k
 xij

k
  (MOB) 

subject to: 

Kk,Ni,
oi if ,0

oi if ,1
xx

k

k

Aji:j

k
ji

Aij:j

k
ij ∈∀∈∀







≠

=
≥− ∑∑

∈∈

 

∑
∈Kk

r
k
 xij

k
 ≤ uij, ∀ij∈A 

xij
k
 ∈ {0,1}, ∀k∈K, ∀ij∈A. 

Applying the path and knapsack decompositions to the (OB) formulation does not involve 

substantial differences from their application to the (MOB) formulation. 

4.3 Branch-and-Price-and-Cut for the Path Decomposition 

4.3.1 Dantzig-Wolfe decomposition 

We apply the DWD principle to the original formulation (OB) presented in the previous 

Section, defining the subproblem with constraints (4.1) and (4.3). In this way, the subproblem is 

a set of h shortest path problems, one for each commodity, and thus its feasible region has no 

extreme rays, and each extreme point of the feasible region of subproblem k is associated with a 

path from ok to dk. We denote the set of indices p of all the extreme points of the subproblem of 

commodity k by Pk. We represent a given extreme point, with index p and associated with the 

subproblem of a commodity k, by ypk. The entry in that vector corresponding to the original 

variable xij
k is denoted by yij

pk, which takes the value 1 if arc ij belongs to the path p of 

commodity k, and 0 otherwise. The cost of one extreme point, cpk, is given by  
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∑
∈

=
Aij

k
ij

pk
ij

pk cyc . 

Finally, we define the weight variable associated with each extreme point, ypk, as λpk. 

According to the DWD principle and relaxing the binary requirements, we get the following 

master problem. 

Min ∑ ∑
∈ ∈Kk Pp k

c
pk
 r

k
 λpk

  (PB) 

subject to: 

∑
∈ kPp

λpk
 = 1, ∀k∈K (4.4) 

∑ ∑
∈ ∈Kk Pp k

yij
pk
 r

k
 λpk

 ≤ uij, ∀ij∈A (4.5) 

λpk
 ≥ 0, ∀k∈K, ∀p∈P

k
. 

A decision variable of (PB), λpk, can be seen as the proportion of the demand of the 

commodity k that is routed in path p. Constraints (4.4) are convexity constraints, forcing the 

demand of each commodity to be routed. Constraints (4.5) are the capacity constraints after the 

redefinition of variables subjacent to the DWD principle (when there are no extreme rays): a 

solution to (PB) can be represented as a convex combination of the extreme points of the 

subproblem. Given a solution of (PB), we can recover a solution of (OB) by using 

xij
k
 = ∑

∈ kPp

yij
pk
 λpk

, ∀ij∈A, ∀k∈K. (4.6) 

The linear relaxation of the path decomposition just presented gives a lower bound that is 

equal to the one given by the original formulation, since the subproblem has the integrality 

property (Geoffrion, 1974) (that is, all extreme points are integer). However, the efficiency of 

the solution methods of the linear relaxation can be very different. The dimension of the basis in 

the original formulation is n.h+m, while, in the path decomposition, it is h+m. Since the basis 

dimension is a major factor to simplex methods efficiency, we can expect the path 

decomposition to be more efficient in larger instances, given that we use a column generation 

scheme to deal with the exponential number of columns. 

The integrality of the decision variables can be forced in different ways, as we will 

discuss in subsection 4.3.3. 

We note that this formulation could be obtained directly by defining the variables λpk. 

However, turning explicit that this formulation can be obtained by a DWD provides additional 

insight. 
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4.3.2 Overview of the branch-and-price-and-cut algorithm 

As usual when dealing with path formulations of MFPs, in the resolution of the problem 

(PB) we use column generation and, in order to obtain binary optimal solutions, we combine 

column generation, branch-and-bound and cuts. 

In this subsection, we give an overview of the branch-and-price-and-cut algorithm, first 

introduced in (Barnhart et al., 2000). The differences of our approach are treated in the next 

subsections. 

The flowchart of the solution method for a node of the branch-and-price-and-cut tree is 

given in Figure 4.1.  

Setting the RMP amounts to considering the branching constraints that define the node. In 

the root node, the RMP must be initialised by including artificial variables (to avoid 

infeasibility). In the other nodes of the tree, the RMP can include cuts generated while solving 

other nodes (since global cuts are used as will be detailed in subsection 4.3.4).  

In the root node, the subproblem of a commodity k is  

z
k
 = Min ∑

∈Aij

(cij
k
 + wij) r

k
 xij

k
 – πk

, 

subject to: 

Kk,Ni,

di,oi if ,0

di if ,1

oi if ,1

xx
kk

k

k

Aji:j

k
ji

Aij:j

k
ij ∈∀∈∀









≠≠

=−

=

=− ∑∑
∈∈

 

xij
k
 ∈ {0,1}, ∀k∈K, ∀ij∈A. 

where wij is the (nonnegative) dual variable associated with the capacity constraint (4.5) of arc ij 

and πk is the (unrestricted in sign) dual variable associated with the convexity constraint of 

commodity k. Thus, the subproblem of a commodity k consists in determining the shortest path 

between its origin and its destination in a network with modified costs. If the optimal solution 

has a negative value, the path is attractive, and its associated column inserted in the RMP. 

We note that ∑
∈Kk

z
k
 is a lower bound to the optimal value of the root node (see 2.2.4, 

page 23), and thus it is possible to compute a gap in each iteration of the column generation 

procedure easily. This gap can be useful for three purposes. Firstly, as a stopping criterion in 

order to obtain optimal solutions within the desired accuracy. Secondly, columns of the RMP 

with a reduced cost greater than the gap can be removed from it, with the guarantee that they 

will never be generated again. Thirdly, if the lower bound of a given iteration of the column 

generation algorithm in any node of tree is greater than or equal to the incumbent value, the 

node can be pruned. We note that in the computation of the lower bound in nodes other than the 

root, branching and cutting constraints must be taken into account. The computation of the 
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lower bound is not straightforward in the branching schemes we will review in the next section, 

but it is straightforward with the proposed branching rule that we present at the end of that 

Section. 

 

Figure 4.1 Flowchart of the solution method of a node of the search tree. 

4.3.3 Branching rules 

The fundamental issue in a branch-and-price algorithm is the definition of branching rules 

that allow the exploration of the solution space without compromising the efficiency of the 

column generation approach to solve the nodes of the tree. 

We first review branching rules described in the literature and then propose a new one.  



Chapter 4: Binary Multicommodity Flow Problem 

 

 

101 

We consider that the flow of a given path p of a given commodity k is fractional, which 

means that more than one path is being used to route the demand of k. Thus, in general, a branch 

must force path ypk  to route all the demand (λpk 
= 1) and the other must force that path ypk not to 

be used (λpk 
= 0).  

In (Parker and Ryan, 1994) and (Park et al., 1996) a different problem is considered, but 

the branching rules presented there could also be used in the binary MFP. Forcing λpk
 = 1 is 

trivial. It is sufficient to delete all columns of the RMP that are not associated with path p and 

not to solve the subproblem of commodity k. Forcing λpk
 = 0 implies that path p of commodity k 

must be excluded from the solution space, which cannot be done in a direct way. Imposing the 

constraint in the RMP (by deleting its column) does not assure that that path is not (re)generated 

again by the subproblem.  

In (Parker and Ryan, 1994) this issue is overcome by considering several branches. Given 

b as the number of arcs of path p of commodity k, b+1 branches are generated. In one branch, 

λpk is forced to 1. In each of the others, one of the l arcs of the path is excluded from the shortest 

path (sub)problem of commodity k (and columns associated with paths with the same 

characteristic are deleted from the RMP), assuring that, taking them together, the only path 

excluded is path p. Note that it is trivial to exclude a set of arcs from a shortest path problem, 

but it is not trivial to force the inclusion of a set of arcs. An illustration of this branching rule is 

given in Figure 4.2.  

 

Figure 4.2 Illustration of the (Parker and Ryan, 1994) branching rule. 

As noted by the authors of the paper, branching in the arc flow variables has the 

advantage of taking into account several paths in the same branch, but, on the other hand, the 

number of nodes to be explored is considerable larger than in a standard branching scheme, 

where only two branches are created.  

In (Park et al., 1996) the regeneration issue is overcome at the expense of turning the 

subproblem capable of obtaining the second best shortest path (in the case the shortest path is 

the one to be excluded). The disadvantage of this approach is that in a node of the search tree 
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where there are l paths to be excluded, it may be necessary to determine the l-th shortest path. In 

addition, branching on a single path can lead to unbalanced search trees. 

In (Barnhart et al., 2000) another branching rule is proposed. The main idea is based on 

identifying a node where the flow of a commodity is first split into different paths, and then on 

branching by forbidding the flow on subsets of arcs that leave that node (avoiding regeneration). 

This branching rule also avoids the difficulty in solving the shortest path (sub)problem in which 

some arcs are forced to belong to the solution; the amendment in the subproblem is simply 

forbidding a set of arcs, which only requires their exclusion from the network.  

An illustration of this branching rule is given in Figure 4.3. It is assumed that a 

commodity has two paths with a flow of 0.5 and all arcs until node 1 are common to those paths 

(thus the flow in each of those arcs is 1). In node 1 the flow is split between arcs 12 and 15. 

Thus, two branches are created: in one of them, arcs 12 and 13 are excluded, and, in the other, 

arcs 14 and 15 are excluded. Note that different subsets of arcs could be considered, as long as 

arcs 12 and 15 were in different subsets. 

0.5

 

Figure 4.3 Illustration of the (Barnhart et al., 2000) branching rule. 

A disadvantage of this branching rule is that a feasible solution may belong to the 

solution spaces of different nodes of the tree. In the example depicted in Figure 4.3, if the set of 

paths that carry the flow in the optimal solution does not include any of the arcs that leave node 

1, the branch is irrelevant, since that solution is considered in the solution spaces of both 

descendant nodes. 

The main idea of the branching rule that we propose is to include branching constraints in 

RMP explicitly and to modify the subproblem accordingly.  

Branching constraints are defined in the original variables, given that their values can be 

easily calculated through (4.6) (page 98). Thus, in a branching scheme using only a fractional 
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variable xij
k, the branches are 

xij
k
 ≤ 0 and xij

k
 ≥ 1, 

or, in the path decomposition variables, 

∑
∈ kPp

yij
pkλij

pk
 ≤ 0  (4.7) 

and 

∑
∈ kPp

 yij
pkλij

pk
 ≥ 1. (4.8) 

The dual variables of these new constraints are then used to modify the costs of the arcs 

when solving the shortest path subproblems. The modified cost of an arc ij for a commodity k is 

now given by  

r
k
wij + ∑

∈ sUu

wij
ku
 – ∑

∈ sLl

wij
kl
 + r

k
cij

k
, 

where wij
ku e wij

kl are the dual variables associated with the branching constraints of type (4.7) 

and (4.8), indexed by u and l, respectively, and Us and Ls are the set of the indices of the 

branching constraints that include arc ij of commodity k. 

This branching rule, based on a single fractional original variable, can be extended to 

branching on several original variables, as exemplified in Figure 4.4. 

Any branching rule defined on the original variables can be easily used in this branch-

and-price approach. 

The disadvantage of this branching rule is that in a node of the branch-and-price tree the 

modified cost of an arc can be negative, which may imply the existence of a negative cost cycle 

in the subproblem (of course, if the network has cycles, which may not happen in the instances 

of some applications). 

If a negative cost cycle is identified for some commodity a variable associated with it is 

inserted in the RMP in the same way as in branch-and-price algorithm for the integer MFP 

(Chapter 3, subsection 3.3.3, page 70). 

In terms of algorithmic modifications, the subproblems in nodes other than the root must 

be solved by an algorithm that identifies negative cost cycles, such as the labelling correcting 

ones (for example, (Gallo and Pallottino, 1988)). In the root node, a more efficient labelling 

setting algorithm can be used. 

It is interesting to note that if a cycle variable has a positive value in the optimal solution 

of a node of the search tree that does not mean that the node can be pruned, something that 

might be concluded from a first look at this issue, since in an optimal solution all the cycle 

variables must have zero value. We now give an example that justifies this last observation. 
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0.5

 

Figure 4.4 Illustration of the proposed branching rule. 

Example 4.1 

Consider Figure 4.5, where a given commodity must be routed from node 1 to node 3. 

Consider that in the optimal solution of the problem of a node of the branch-and-bound tree, 

path 1-2-3 has flow 0.75 and path 1-4-3 has flow 0.25.  

 

Figure 4.5 Illustration for Example 4.1. 

Now consider the branch x12=1. One possible optimal solution, for the commodity in 

question, is the same as before plus a flow of 0.25 on the circuit 1-2-1. That will happen if the 

circuit cost is lower than the path 1-4-3 cost.  

In terms of flows on arcs, that solution respects the branching constraint. Note also that 

the branch was effective in the sense that the previous solution (that had x12=0.75) was removed 

from the solution space.  

An optimal solution does not have positive flows on cycles. However, the node in 

question cannot be pruned because the optimal solution for the overall problem can be, for 

example, routing the commodity through path 1-2-3. In that case it would be necessary a branch 

x14=0 or x43=0 to force the routing exclusively through 1-2-3. 

♦ 

x12 + x13 = 1 

or  
x12 + x13 = 0 
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4.3.4 Lifted cover inequalities (LCIs) 

Lifted cover inequalities (LCIs) are cuts that may be used to obtain stronger models. Each 

capacity constraint (4.2) of the original model is a knapsack constraint. (Barnhart et al., 2000) 

incorporated LCIs derived for the knapsack problem in the reformulated model, thus obtaining a 

branch-and-price-and-cut algorithm.  

Here we extend the type of LCIs used in (Barnhart et al., 2000), which are simple LCIs, 

to the use of general LCIs. A detailed exposition and comparison on different ways of 

generating LCIs is given in (Gu et al., 1998); here we will concentrate in their application to the 

binary MFP. 

Consider a fractional optimal solution of one node of the search tree, and the capacity 

constraint of one arbitrary arc ij (for simplicity of notation, we omit the arc index) 

∑
∈Ck

r
k
 x

k*
 ≤ u, 

where xk* is calculated through (4.6), and C stands for the indices of the commodities that have a 

positive flow on arc ij.  

The set of commodities C is a minimal cover if and only if (iff) ∑
∈Ck

r
k
 > u (it is a cover) 

and for each k′∈C, ∑
∈Ck

r
k
 − rk′

 ≤ u (it is minimal). Minimal covers do not necessarily define 

facets of the associated knapsack polytope. In order to obtain a facet of the knapsack polytope it 

may be necessary to lift the cover inequality.  

Starting from a minimal cover C, we define two disjoint sets C1 and C2, where C1≠0. The 

following inequality is a facet of the knapsack polytope 

∑
∈ 1Ck

x
k
 + ∑

∈ C\Kk

αk
x
k
 + ∑

∈ 2Ck

γk
 x

k
 ≤ |C1| − 1 + ∑

∈ 2Ck

γk
, 

where αk is obtained by up lifting and γk by down lifting (procedures to perform lifting can be 

found in (Nemhauser and Wolsey, 1999)).  

In our implementation we used the heuristic proposed in (Gu et al., 1998) to try to detect 

a violated LCI for each saturated arc. Thus, for each saturated arc, we first considered three sets: 

L = {k∈K:x
k
=0}, U = {k∈K:x

k
=1} and F = K\(L∪U). Then a minimal cover is constructed 

based on all the U elements and the elements of F that have the highest values. We define C2 = 

U and C1 = C\C2. The initial cover inequality is defined by the C1 elements. The sequence in 

which the variables are lifted is as follows: firstly, variables that are not in the cover but have a 

fractional value are up lifted; secondly, variables belonging to C2 are down lifted; thirdly, 

variables that are not in the cover and have a zero value are up lifted. The lifting sequence starts 

from the fractional variables (the more important ones in the sense that they are the cause of the 
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non integrality of the solution), goes to the variables with value equal to one (that are serious 

candidates for becoming fractional in a subsequent node) and finishes in the variables with 

value equal to zero (most of them, in general, will have always that value).  

The main difference of this way of generating LCIs, when compared to the one used in 

(Barnhart et al., 2000), is that our set C2 is not necessarily empty. That seems a good feature 

because, this way, we can construct LCIs in the basis that some variables have, necessarily, the 

value one. 

We note that this procedure does not guarantee that the lifted cover inequality found is 

violated by the current solution, but finding the most violated LCI is a NP-hard problem (Gu et 

al., 1999). We also note that, even if we generate all the possible LCIs, the optimal solution of 

the node could stay fractional, since with LCIs we are just trying to approximate the polytope of 

the capacity constraints, not considering the other constraints of the problem. In fact, the idea of 

applying the knapsack decomposition (next subsection) emerged from using an exact 

description of that polytope (given by the subproblem in the knapsack decomposition), and that 

decomposition, although giving a better bound, does not exclude the need to perform branching. 

We now discuss the implications of the presence of LCIs in the branch-and-price 

algorithm. After a node is optimised through column generation, we try to detect violated LCIs 

associated with all the saturated arcs. For each violated LCI found, a new constraint is inserted 

in the RMP, which is reoptimised using column generation. The procedure is repeated until no 

more violated LCIs are detected. Then, according to the branch-and-bound method, a decision is 

taken (for instance, branching if the optimal solution is fractional and the node cannot be 

pruned). 

A crucial issue is how to integrate the cuts added to the RMP in the column generation 

procedure. Firstly, the cuts are expressed in terms of the original variables (which are flows on 

arcs). That issue can be easily dealt with. Consider that one LCI associated with arc ij is inserted 

in the RMP, and that the coefficient of the xij
k in the LCI is β. Then the LCI constraint in the 

RMP must have the coefficient β for all paths that are associated with commodity k and include 

arc ij. Secondly, since the RMP has additional constraints, the subproblem must still be capable 

of correctly pricing the variables.  

We represent the dual variable associated with the l-th branching constraint of type “less 

than or equal to” (corresponding to branch on the arc ij and on the commodity k) by wij
kl. 

Similarly, we define wij
ku for the u-th branching constraint of type “greater than or equal to”. In 

a node s of the branch-and-price tree, we represent the two sets of branching constraints by Ls 

and Us. We define the dual variable associated with the g-th LCI constraint by wij
g. In a node s 

of the branch-and-price tree, we represent the set of LCI constraints by Gs. We also define βij
gk 

as the coefficient in the LCI with index g (associated with arc ij) of the commodity k. One path p 

of one commodity k is attractive iff 
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∑
∈Aij

r
k
yij

pk
 (wij + cij

k
) + ∑

∈ sUu

yij
pk
 wij

ku
 – ∑

∈ sLl

yij
pk
 wij

kl
 + ∑

∈ sGg

yij
pk
 βij

gkλij
g
 < πk

. 

In this way, the subproblem remains a shortest path for each commodity, and the presence 

of LCIs constraints does not destroy its structure. 

Given their senses, the LCIs constraints have a positive contribution to the modified costs 

of the arcs, and thus they do not contribute to the existence of negative cost cycles.  

Any type of valid inequalities could be used, as long as they were defined in terms of the 

original variables and inserted in the RMP in the same manner as the LCIs with the same type 

of modifications in the subproblem. 

A last issue about the branch-and-price-and-cut algorithm is that the cuts inserted in one 

of nodes of the tree are feasible for all nodes of the tree (global cuts). That is achieved in the 

construction of each of the LCIs. In an arbitrary node of the tree, we start from a minimal cover 

(that is a valid inequality for all the nodes), then all the variables that have value one are down 

lifted (assuring the validity for all the nodes of the tree) and the remaining variables are up lifted 

(strengthening the constraint). 

4.4 Branch-and-Price for the Knapsack Decomposition 

4.4.1 Dantzig-Wolfe decomposition 

In the knapsack decomposition, we apply the DWD principle to the original formulation, 

defining the subproblem with constraints (4.2) and (4.3). In this way, the subproblem is a set of 

m binary knapsack problems, one for each arc, and thus it has no extreme rays, and each 

extreme point of subproblem of arc ij is associated with a set of commodities that, together, can 

use arc ij without exceeding its capacity. 

We denote the set of indices q of all the extreme points of the subproblem of arc ij by Qij. 

We represent a given extreme point, with index q and associated with the subproblem of an arc 

ij, by yqij. The entry in that vector corresponding to the original variable xij
k is denoted by yk

qij. 

Thus, the cost of one extreme point, yqij, is given by 

c
qij
 = ∑

∈Kk

 yk
qij
r
k 
cij

k
. 

Finally, we define the weight variable associated with each extreme point, yqij, as λqij. 

According to the DWD principle and relaxing the binary requirements, we get the following 

master problem: 

Min ∑ ∑
∈ ∈Aij Qq ij

c
qijλqij

  (KB) 

subject to: 
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∑
∈ ijQq

λqij
 ≤ 1, ∀ij∈A  (4.9) 

∑ ∑
∈ ∈Aij:j Qq ij

yk
qij
 λqij

 − ∑ ∑
∈ ∈Aji:j Qq ji

yk
qji
 λqji

 = Kk,Ni,

di,oi if 0

di if 1

oi if 1

kk

k

k

∈∀∈∀








≠≠

=−

=

 (4.10) 

λqij
 ≥ 0, ∀ij∈A, ∀q∈Q

ij. 

The decision variables of this (re)formulation, λqij, are associated with the selection of the 

set of commodities that use each arc, being the alternatives the possible combinations of 

commodities, defined by yqij. Constraints (4.9) are convexity constraints: at most one set of 

commodities will use each arc. We note that the origin is an extreme point for each subproblem 

(associated with not using the arc at all), which justifies the sense of the convexity constraints.  

Constraints (4.10) are the flow conservation constraints after the redefinition of variables 

subjacent to the DWD principle.  

Given a solution of (KB), we can recover a solution of (OB) by using 

xij
k
 = ∑

∈ ijQq

yk
qij

 λ
qij
, ∀ij∈A, ∀k∈K. (4.11) 

The number of constraints of this (re)formulation is the same as the number of constraints 

of the original formulation. The number of decision variables is much larger (one decision 

variable for each arc and for each possible combination of commodities that use the arc). 

Being so, in general, this decomposition approach does not reduce the size of the 

problems to be solved. However, the lower bounds it gives are, in general, tighter than the ones 

given by the original formulation or by the path decomposition, since the subproblems are 

binary knapsack problems that do not have the integrality property. The original formulation or 

the path decomposition consider that the flow on each arc may be fractional, and thus each 

capacity constraint can be seen as a continuous knapsack constraint. In this decomposition, all 

solutions that are feasible to the continuous knapsack constraint, but are not feasible considering 

binary variables are excluded. These solutions are the same that we exclude when using lifted 

cover inequalities in the path decomposition. In that case, the LCIs define facets of the polytope 

defined by the binary knapsack constraints. In this case, those facets are implicitly defined by 

taking convex combinations of the binary extreme points of the same polytope.  

4.4.2 Solving the root node 

We assume that a set of subproblems’ solutions, associated with a set of indices, ⊆ijQ  

Q
ij, ∀ij∈A, which allows building a feasible solution to the following restricted master problem 

(RMP), is known. 
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Min ∑ ∑
∈ ∈Aij Qq ij

c
qij
 λqij

  (KRMP) 

subject to: 

∑
∈ ijQq

λqij
 ≤ 1, ∀ij∈A  (4.12) 

∑ ∑
∈ ∈Aij:j Qq ij

yk
qij
 λqij

 − ∑ ∑
∈ ∈Aji:j Qq ji

yk
qji
 λqji

 = Kk,Ni,

di,oi if 0

di if 1

oi if 1

kk

k

k

∈∀∈∀








≠≠

=−

=

 (4.13) 

λqij
 ≥ 0, ∀ij∈A, ∀q∈ ijQ . 

We define πij as the (nonnegative) dual variables of constraints (4.12) and wi
k as the 

(unrestricted in sign) dual variables of constraints (4.13). 

For arc ij the subproblem is  

z
ij
 = Min ∑

∈Kk

(cij
k
 r
k
 − wi

k
 + wj

k
) xij

k
 − πij

  (KSP) 

subject to: 

∑
∈Kk

r
k
 xij

k
 ≤ uij  

xij
k
 ∈ {0,1}, ∀k∈K. 

As in the case of the path decomposition (subsection 4.3.2), or in the general application 

of DWD principle (subsection 2.2.4), the value given by ∑
∈Aij

z
ij
 is a lower bound to the optimal 

value of the root node, and thus it is possible to compute a gap in each iteration of the column 

generation procedure easily. As described for the path decomposition (subsection 4.3.2), this 

gap can be useful for obtaining optimal solutions within the desired accuracy, for fixing 

variables (which can be useful when removing columns) or for fathoming nodes as soon as, in a 

given column generation iteration, the lower bound is larger than the incumbent value in a node 

of the tree. 

We note that in the computation of the lower bound in nodes other than the root, 

branching must be taken into account, an issue that will be discussed in the next subsection. 

As will be shown in the Section 4.5, this decomposition turned out to be difficult to deal 

with. The columns of the RMP are dense columns (in the worst case, if all commodities use the 

same arc, one column may have 2h+1 non zeros) and the network structure of the original 

problem is lost. We used three strategies to try to overcome that issue that we now briefly 

describe. 

Firstly, the first RMP only includes the origin flow conservation constraints. Whenever 

no columns are generated by the subproblems, violated rows not present in the RMP are 
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inserted and the same procedure goes on until neither attractive columns nor violated rows are 

detected. An analogy with branch-and-price-and-cut is direct: the constraints play the role of the 

cuts and the separation problem consists in passing through all that are not present in the RMP, 

finding the ones that are currently being violated. The flowchart of Figure 4.1 (page 100), with 

minor terminology modifications, describes the algorithm. 

Secondly, in order to try to keep the size of the RMPs manageable by the LP solver, in 

some iterations, we perform columns removal in such a way that the number of columns of the 

RMP is kept approximately equal to 3r, where r is the total number of rows. The selection of 

columns to be removed is made by sorting them by decreasing reduced costs, reducing the 

probability that a removed column will be generated again in a subsequent iteration. 

Thirdly, we used an inexact RMP solver. For the column generation algorithm to proceed 

it only needs the RMP to provide a feasible dual point. In particular, in early iterations, it may 

not be worth solving the RMP exactly, since the columns generated in an optimal dual point 

may have poor “quality” anyway (in the sense that they have a small probability of being 

present in an optimal solution). Thus, the time spent in solving the RMP exactly can be spent in 

generating more columns that allow reaching a “good” solution (or a feasible one, in a difficult 

instance) earlier. 

4.4.3 Branching rules 

Branching rules can be defined on the original variables or on the weight variables. We 

first discuss a branching rule based on the weight variables, noting that if a binary solution is 

obtained on the weight variables then it corresponds to a binary solution on the original 

variables. That is not the case in problems with general integer variables. 

We branch by creating two nodes: in one of them, one weight variable is set to one and, 

in the other, the same variable is set to zero. 

In the branch where the fractional variable is set to one, all columns associated with 

different variables of the same arc must be deleted from the RMP. The convexity constraint of 

the arc must be set to equality. The subproblem of the arc does not need to be solved: there is 

already one extreme point in the RMP for that arc that has value one. 

In the other branch, where the variable is set to zero, we set the cost of the corresponding 

column to a big value, forcing it to have zero value in the RMP. When solving the subproblem 

associated with its arc, if the optimal solution is not attractive, or if the column associated with 

it is attractive but is not yet in the RMP, then there are no changes, when compared with the 

standard procedure for solving the subproblem. However, if the column is attractive and the 

corresponding column is already in the RMP, we must find the second best solution. That can 

be done by using a general procedure for finding the second best solution in a general binary 
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problem, which consists in adding the following constraint to the problem 

∑
∈ 1Kk

x
k
 − ∑

∈ 1K\Kk

 x
k
 ≤ |K1

|−1, 

where K1 is the set of commodities that have value one in the current solution. 

This procedure is repeated until we can conclude whether or not the best column not 

present in RMP is attractive. 

One disadvantage of this approach is that the knapsack structure of the subproblem is 

lost, and thus we cannot use a specialised algorithm to solve it. Branching in the weight 

variables is not frequently used because, as exemplified here, it leads to major changes in the 

subproblem. We now turn to branching rules based on the original variables. 

The branching rules based on the original variables described for the path decomposition 

(subsection 4.3.3, page 100) can be used in the knapsack decomposition. The difference is, of 

course, the calculation of the values of the original variables (through (4.11)) and the 

modifications implied by forcing an arc to have flow of a commodity or not. 

If xij
k has a fractional value, we can derive two branches: xij

k
 = 0 and xij

k
 = 1. In both 

cases, we have to remove some columns related with commodity k and arc ij prior to optimising 

the resulting node.  

In the branch xij
k
 = 0 we remove the columns associated with arc ij that include 

commodity k and we also exclude commodity k from the subproblem associated with that arc. 

This way we guarantee that the optimal solution of the node will have xij
k
 = 0.  

In the branch xij
k
 = 1 we remove the columns associated with arc ij that do not include 

commodity k and we force the solution of the subproblem of arc ij to include commodity k. That 

is not enough to guarantee that the total demand of commodity k will flow through arc ij. We 

also have to modify the sense of the convexity constraint of arc ij to an equality. Note that, as 

opposed to the path decomposition, setting an original variable to one, can be dealt with easily. 

The extension to forcing a set of original variables to zero, or to forcing a set of variables 

to one (which is required by some of the branching rules introduced for the path decomposition) 

can be easily performed. 

The new branching rule introduced in subsection 4.3.3 for the path decomposition can 

also be used in the knapsack decomposition (in fact, in any branch-and-price algorithm for 

which an original formulation is known, as detailed in Chapter 2).  

By explicitly introducing branching constraints in the master (based on the original 

variables but, of course, translated into the weight variables) and by taking into account their 

duals in the objective function of the subproblems, the column generation procedure to solve the 

problem of each node of the tree suffers minor modifications. The subproblems remain binary 

knapsack problems. In our implementation of the branch-and-price algorithm, we used this last 
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branching scheme. 

4.4.4 Combination of the two decompositions 

In (Park et al., 2003) a way of combining the two decomposition approaches presented 

here is proposed. The main idea is to have a master problem where there are two types of 

columns: the ones associated with paths and the ones associated with binary knapsack solutions. 

Being so, there are also two types of subproblems: shortest paths and binary knapsacks. In the 

RMP, the weight variables associated with each type of subproblems are related by stating that a 

path of a commodity can only use a given arc if it belongs to the binary knapsack solution of 

that arc. As described by the authors, the branching rules previously described can easily be 

applied in that approach, which has the clear advantage of taking the best part of the two 

decompositions: capturing the network structure (path decomposition) and obtaining good 

quality lower bounds (knapsack decomposition). The authors describe computational tests that 

confirm the potential of their approach. A computational comparison of the two decompositions 

presented here and the approach of (Park et al., 2003) is a natural extension of the 

computational tests that we made, and will describe in the next Section.  

Although in (Park et al., 2003) the contextualisation of the approach in a DWD 

framework was not treated, the proposed algorithm can be seen as an application of multiple 

DWD (subsection 2.5.5, page 50). 

4.5 Computational Results 

4.5.1 Computational environment and parameters 

We performed a set of computational tests for different variants of the branch-and-price 

algorithms for the path and the knapsack decompositions and compared them with the results 

obtained by solving the original formulation with a general-purpose solver (Cplex 8.1 (ILOG, 

2002)).  

The branch-and-price algorithms were implemented using ADDing − Automatic Dantzig-

Wolfe Decomposition for INteger column Generation, a set of C++ classes that implements a 

generic branch-and-price algorithm. In its basic use, the user is only required to provide an 

original formulation and the decomposition to be used (that is, which constraints define the 

subproblem(s)), along with some parameters. ADDing implements, in a transparent way to the 

user, a branch-and-price algorithm based on the defined decomposition, returning an optimal 

solution in the original variables (if there is one, and any stopping criteria specified by the user 

− for example, maximum number of nodes of the tree − is not achieved). In a more advanced 

mode, the user may customise parts of ADDing, such as the subproblem solver, the use of 
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subproblem heuristics, and/or the branching rules, as we did. 

ADDing was implemented using the development environment Microsoft Visual Studio 

6.0 and uses Cplex 8.1 for solving the RMPs, and will be presented in Chapter 6. 

All the reported results were obtained on a personal computer with a Pentium 4, 2.80 

GHz processor, 1 GB of RAM, running Windows XP Professional Edition. All the time values 

exclude the file input and output and are expressed in seconds. In the case of the Cplex tests, 

they also exclude the construction of the model. 

For the linear relaxations, when solved by Cplex or by ADDing, we set the optimality 

tolerance to 1e−5. For the integer problems, when solved by Cplex or by ADDing, we set the 

absolute integer gap tolerance to 1e−5. We used the same tolerance for the integrality of values, 

that is, a variable is integer if its absolute value differs from an integer by at most 1e−5. Since, 

currently, ADDing does not have a stopping criterion based on the relative tolerance, we set the 

Cplex relative tolerance to a very small value (1e−12).  

4.5.2 Test instances 

For computational test purposes, we used as test instances the Carbin instances (Alvelos, 

2005). These instances were generated by a random instance generator based on the LEDA class 

library (Mehlhorn and Näher, 1999). The input of the generator is a set of parameters that 

restrains the characteristics of the instance that will be created, as the number of nodes, arcs, 

commodities, the minimum and maximum values of the demands, capacities, and costs (which, 

for each arc, may vary by commodity or not). Some of these values are only indicative values. 

One feature of the generator is that it always creates a feasible instance (when considering the 

linear relaxation of the original formulation). Thus, the number of arcs given by the user may be 

slightly increased, and some capacities may be larger than the maximum value specified. In 

order to obtain potentially difficult instances, some of the arcs (in particular, those created for 

feasibility) have a higher probability of getting the maximum cost. 

There are 48 Carbin instances that can be classified according to five characteristics: the 

ratio mean capacity of the arcs / mean demand of the commodities, the number of commodities, 

the density of the network, type of costs (for a given arc, being equal for all commodities or not) 

and variance of costs. All the instances have 32 nodes. They can be divided in two main classes 

of 24 instances each: for instances with an s in their name the ratio mean capacity / mean 

demand is 1.5; for the instances with an l, that ratio is 10. In Table 4.1 and in Table 4.2, the 

characteristics of these 48 instances are presented (replacing x by s or l).  

We also tested two Planar instances. These instances come from (Larsson and Yuan, 

2004) and were obtained in (Frangioni, 2005). Their number of nodes, arcs and commodities are 

given in Table 4.3. 
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In the computational tests, we divided the instances in two sets: one of smaller instances 

(bs01 to bs08, bl01 to bl08, and planar30) and another of larger instances. 

 

Instance n m h m/n h/n 

bx01-bx04 32 96 48 3 1.5 

bx05-bx08 32 320 48 10 1.5 

bx09-bx12 32 96 192 3 6 

bx13-bx16 32 320 192 10 6 

bx17-bx20 32 96 320 3 10 

bx21-bx24 32 320 320 10 10 

Table 4.1 Characteristics of the Carbin instances. 

Position in the group Maximum cost Arc cost depends on the commodity? 

First 1000 No 

Second 1000 Yes 

Third 10 No 

Fourth 10 Yes 

Table 4.2 Characteristics of each group of four consecutive Carbin instances 

Instance planar30 planar50 

n 30 50 

m 150 250 

h 92 267 

Table 4.3 Dimensions of the tested Planar instances. 

4.5.3 LCIs and branching rules for the path decomposition 

Implementation issues 

For the path decomposition we implemented the L−2queue algorithm (Gallo and 

Pallottino, 1988) to solve the shortest path (sub)problems, and used the COIN implementation 

of the Horowitz-Sahni algorithm (Horowitz and Sahni, 1974) to solve the knapsack problems 

when constructing LCIs. We used the Cplex 8.1 dual simplex algorithm to solve the RMPs. 

When constructing the first RMP we generated columns by two different procedures: 

solving the subproblems with the original costs, and using a heuristic that sequentially solves 

the shortest path subproblem of each commodity, deleting the arcs that do not have enough 
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capacity for the current commodity (of course, updating the capacities according to the paths 

found previously). 

Those procedures do not guarantee that the first RMP has a feasible solution, and thus we 

add one artificial variable for each convexity constraint. 

LCIs 

The first set of computational tests was meant to compare the use of simple and general 

LCIs. In Table 4.4 and in Table 4.5, results for the root node of the comparison between no use 

of LCIs (N columns), simple LCIs (S columns) and general LCIs (G columns), are given for the 

smaller and larger instances, respectively. The use of simple LCIs translated into an average 

relative improvement of the lower bound of 3.3%, when compared to not using LCIs.  

As expected, on average, using general LCIs is more time-consuming than using simple 

LCIs. However, for 29 of the 50 instances, it produces a strictly better lower bound (in six 

instances the lower bound obtained by the use of two types of LCIs is the same). The average 

relative improvement in the lower bound is 0.02% and the average relative increase of the 

optimisation time is 25.6%. 

In the subsequent computational tests, we used general LCIs in all nodes of the tree. 

Branching rules 

The actual version of ADDing has some default branching rules based on the original 

variables, also allowing the customisation of branching rules according to the problem at hand. 

Branching is performed by dualising the branching constraints (that is, keeping them in the 

RMP, taking into account their duals when solving the subproblem). That approach can be used 

in any integer problem (pure binary, pure integer or mixed integer problems). Although the 

original implementation of the branching rule of (Barnhart et al., 2000) is made by including the 

branching constraints in the subproblem (changing the RMP accordingly), branching by 

dualising the branching constraints leads (theoretically) to the same branch-and-price tree. The 

only difference is how each node is solved, but the solution space is equal in both cases. 

We compared a default branching rule (branching in the variable with the fractional part 

closest to 0.5) with three others, for the smaller instances. The number of optimised nodes, for 

each branching strategy, is given in Table 4.6. The search strategy used (default of ADDing) 

consists in using a depth first search when the node generates descendants and best bound 

search otherwise. 

Column DD refers to the default branching rule with down branching first. Column DU 

refers to the default branching rule with up branching first. Columns AD (down branching first) 

and AU (up branching first) refer to the branching variable being the one associated with the arc 

with more commodities with fractional flow and, among them, the one with greater demand. 
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Column B refers to the branching rule of (Barnhart et al., 2000). Columns CD (down branching 

first) and CU (up branching first) refer to the branching rule proposed in subsection 4.3.3 

(considering one commodity and a set of arcs leaving the same node).  

The first four branching strategies gave a clearly worst result in the last instance 

(planar30).  

Comparing CD and CU, CD gave better results in six instances and worse in three 

instances. Comparing CD and B, CD gave better results in six instances (including the two 

where more nodes were optimised: bs07 and planar30) and worse in two instances. 

 

Time Value 
Value 

Improvement (%) Instance 

N S G N S G S/N G/S 

bl01 0.0 0.4 0.4 1549772.0 1608223.6 1608868.0 3.77 0.04 

bl02 0.0 0.5 0.5 1641924.0 1793115.5 1792955.6 9.21 −0.01 

bl03 0.1 0.6 0.5 15963.0 17246.7 17261.7 8.04 0.09 

bl04 0.0 1.0 1.0 17875.0 19019.8 19059.6 6.40 0.21 

bl05 0.0 0.1 0.1 469918.0 474782.0 474782.0 1.04 0.00 

bl06 0.0 0.1 0.1 407297.0 411480.0 411480.0 1.03 0.00 

bl07 0.0 0.1 0.1 5719.0 5751.0 5751.0 0.56 0.00 

bl08 0.0 0.0 0.0 5658.0 5688.0 5688.0 0.53 0.00 

bs01 0.0 0.5 0.5 1538239.0 1639862.0 1639637.4 6.61 −0.01 

bs02 0.0 0.6 0.7 1556653.5 1694567.8 1693413.5 8.86 −0.07 

bs03 0.0 0.1 0.2 16593.0 16828.0 16828.0 1.42 0.00 

bs04 0.1 0.6 0.6 18462.0 19605.4 19501.9 6.19 −0.53 

bs05 0.0 0.5 0.6 459174.0 498933.4 499341.9 8.66 0.08 

bs06 0.1 0.3 0.2 467310.5 500183.9 498365.1 7.03 −0.36 

bs07 0.0 0.6 0.5 6536.0 7145.8 7143.7 9.33 −0.03 

bs08 0.0 0.3 0.3 6133.0 6454.0 6427.1 5.23 −0.42 

planar30 0.0 0.2 0.3 44350624.0 44453752.5 44451958.5 0.23 0.00 

Table 4.4 Path decomposition computational results: use of LCIs in the root node. 
N − No LCIs; S − Simple LCIs; G − General LCIs. 
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Time Value 
Value 

Improvement (%) Instance 

N S G N S G S/N G/S 

bl09 0.1 1.9 3.0 6108239.0 6183542.6 6192318.2 1.23 0.14 

bl10 0.1 1.6 1.9 6192262.0 6243977.6 6245926.7 0.84 0.03 

bl11 0.0 0.8 0.7 68302.0 68971.0 68967.0 0.98 −0.01 

bl12 0.1 1.1 1.4 64807.2 65647.7 65644.8 1.30 0.00 

bl13 0.1 6.1 7.0 3010940.0 3118060.2 3123924.2 3.56 0.19 

bl14 0.1 1.9 2.0 2324767.0 2425133.1 2422987.3 4.32 −0.09 

bl15 0.1 2.6 3.0 33297.0 34182.5 34215.9 2.66 0.10 

bl16 0.1 1.9 2.1 26844.0 28012.9 28013.1 4.35 0.00 

bl17 0.1 3.2 6.5 13086437.0 13149043.0 13154923.4 0.48 0.04 

bl18 0.1 2.9 6.2 10401389.0 10460082.0 10467268.8 0.56 0.07 

bl19 0.1 3.7 8.2 108049.0 108544.9 108602.6 0.46 0.05 

bl20 0.2 3.5 4.5 109612.3 110667.9 110635.4 0.96 −0.03 

bl21 0.2 11.2 17.3 5612118.1 5759495.7 5770619.3 2.63 0.19 

bl22 0.2 7.9 9.5 4058714.3 4194404.6 4197869.3 3.34 0.08 

bl23 0.1 10.6 11.6 55084.5 56468.0 56527.6 2.51 0.11 

bl24 0.1 5.5 6.6 46053.0 47843.8 47860.9 3.89 0.04 

bs09 0.1 1.3 2.6 6189414.0 6237946.0 6248836.4 0.78 0.17 

bs10 0.1 2.0 2.0 6888128.0 7017450.8 7006625.6 1.88 −0.15 

bs11 0.1 4.2 6.1 63413.3 64108.4 64167.3 1.10 0.09 

bs12 0.1 1.5 2.0 69525.5 70597.5 70707.2 1.54 0.16 

bs13 0.1 7.6 7.9 3404629.0 3577103.3 3579101.7 5.07 0.06 

bs14 0.3 9.6 9.2 2618327.9 2826044.0 2821923.4 7.93 −0.15 

bs15 0.1 2.4 2.4 37110.0 38403.7 38392.1 3.49 −0.03 

bs16 0.2 3.7 3.9 29347.0 31010.5 31014.1 5.67 0.01 

bs17 0.1 1.8 2.9 11336035.0 11367896.9 11373239.5 0.28 0.05 

bs18 0.2 2.5 5.5 10382306.5 10448178.6 10457064.6 0.63 0.09 

bs19 0.1 2.7 4.9 105449.5 105867.7 105918.2 0.40 0.05 

bs20 0.1 2.8 4.8 106072.0 107179.7 107197.3 1.04 0.02 

bs21 0.3 21.3 37.6 5307803.7 5515064.2 5526243.9 3.90 0.20 

bs22 0.8 20.6 27.3 4180407.3 4418340.0 4423735.2 5.69 0.12 

bs23 0.2 14.5 22.7 55368.0 57237.8 57328.8 3.38 0.16 

bs24 0.2 10.3 12.1 48674.0 50761.2 50815.9 4.29 0.11 

planar50 0.1 0.8 1.0 122199689.0 122218805.0 122218805.0 0.02 0.00 

Table 4.5 Path decomposition computational results: use of LCIs in the root node. 
N − No LCIs; S − Simple LCIs; G − General LCIs. 
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Instance DD DU AD AU B CD CU 

bl01 41 40 16 28 27 25 48 

bl02 19 32 26 23 17 18 46 

bl03 81 19 46 23 25 19 17 

bl04 ** ** ** ** ** ** ** 

bl05 1 1 1 1 1 1 1 

bl06 1 1 1 1 1 1 1 

bl07 1 1 1 1 1 1 1 

bl08 1 1 1 1 1 1 1 

bs01 3 4 3 3 3 3 3 

bs02 11 9 9 5 11 5 7 

bs03 1 1 1 1 1 1 1 

bs04 289 125 202 159 102 120 191 

bs05 13 20 31 18 14 14 19 

bs06 42 40 24 32 34 28 33 

bs07 135 111 107 73 199 142 125 

bs08 8 12 20 17 23 23 23 

planar30 * * 2258 1305 353 216 214 

Table 4.6 Path decomposition computational results: number of optimised nodes for different 
branching rules. 

* Integer optimal solution not found within ten minutes. 
** Feasible integer solution not found within ten minutes. 

 

Branching rules with RMP heuristic 

In the following tests, we introduced the use of a heuristic at the end of the optimisation 

of the root node. The heuristic consists in solving the RMP (with Cplex MIP Solver) of the root 

node, considering that all the variables must be binary. The results obtained for some of the 

smaller instances (the ones where the number of nodes was larger than 5 for all the branching 

strategies of Table 4.6) are given in Table 4.7 (columns with an H are the ones where the 

heuristic was used). 

The improvement of the number of optimised nodes is significant for both branching 

rules. The proposed branching rule with heuristic gave better results concerning the number of 

nodes in seven instances (including the three more difficult ones) and worst in two, when 

compared with BH. 

For instance bl04, none of the branching rules strategies, with or without heuristic, gave a 

feasible integer solution. For that instance, we tested two other search strategies: depth search 

and best search. Depth first was the only one to find an incumbent solution. 
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B CD BH CDH 
Instance 

Time Nodes Time Nodes Time Nodes Time Nodes 

bl01 0.7 27 0.8 25 0.7 17 0.7 20 

bl02 10.8 17 11.1 18 1.7 11 1.7 8 

bl03 6.3 25 4.8 19 8.9 20 8.0 19 

bl04 ** ** ** ** ** ** ** ** 

bs02 1.7 11 1.0 5 2.3 12 1.6 6 

bs04 65.2 102 85.3 120 71.1 75 53.8 73 

bs05 1.3 14 1.3 14 1.6 14 1.5 14 

bs06 1.2 34 0.9 28 1.4 23 1.6 25 

bs07 10.3 199 7.5 142 5.8 98 4.6 78 

bs08 0.6 23 0.6 23 0.8 24 0.8 23 

planar30 34.7 353 17.4 216 10.5 144 6.8 73 

Table 4.7 Path decomposition computational results for branching rules with the RMP heuristic. 
** Feasible integer solution not found within one hour. 

 For the larger instances, we used depth search and the RMP heuristic. In addition, we 

removed columns with reduced cost greater than the gap, in every five iterations. The results for 

these instances are given in Table 4.8 for the (Barnhart et al., 2000) branching rule and the one 

proposed. The results were similar in almost all instances. The time results were significantly 

different in three instances (bl11, bl14, and bl15), with the proposed branching rule giving better 

results in all of those. The quality of the incumbent solutions was different in two instances 

(bl12 and bl22), in favour of the (Barnhart et al., 2000) branching rule in one instance and in 

favour of the proposed branching rule in the other. 

4.5.4 Comparative computational results 

Implementation issues for the knapsack decomposition 

For the knapsack decomposition we used the COIN implementation of the Horowitz-

Sahni algorithm (Horowitz and Sahni, 1974) to solve the knapsack (sub)problems. We used the 

Cplex 8.1 dual simplex algorithm to solve the RMPs. The branching rule proposed in subsection 

4.3.3 (considering one commodity and a set of arcs leaving the same node) with down 

branching first was used. We kept the default search strategy of ADDing: using a depth first 

search when the node generates descendants and best bound search otherwise. 
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BH CDH 
Instance 

Time Value Time Value 

bl09 ** ** ** ** 

bl10 ** ** ** ** 

bl11 725.0 69018 470.8 69018 

bl12 * 66022 * 66019 

bl13 * 3155673 * 3155673 

bl14 371.7 2433011 303.6 2433011 

bl15 359.1 34274 318.5 34274 

bl16 38.6 28074 39.1 28074 

bl17 * 13324233 * 13324233 

bl18 ** ** ** ** 

bl19 ** ** ** ** 

bl20 ** ** ** ** 

bl21 * 5837994 * 5837994 

bl22 * 4216651 * 4217172 

bl23 * 56970 * 56970 

bl24 * 51081 * 51081 

bs09 * 6308373 * 6308373 

bs10 ** ** ** ** 

bs11 ** ** ** ** 

bs12 ** ** ** ** 

bs13 * 3615375 * 3615375 

bs14 * 3181860 * 3181860 

bs15 115.2 38533 120.7 38533 

bs16 344.0 31124 337.8 31124 

bs17 ** ** ** ** 

bs18 ** ** ** ** 

bs19 * 106369 * 106369 

bs20 ** ** ** ** 

bs21 ** ** ** ** 

bs22 * 4796079 * 4796079 

bs23 * 57821 * 57821 

bs24 * 51045 * 51045 

planar50 * 123226335 * 123226335 

Table 4.8 Path decomposition computational results: two branching rules in the larger instances. 
* Integer optimal solution not found within one hour. 
** Feasible integer solution not found within one hour. 
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The first RMP is constructed based on the original variables. Each original variable 

corresponds to one arc ij and one commodity k. If the demand of commodity k is lower than or 

equal to the capacity of arc ij, then this variable is used on the RMP, since it corresponds to the 

extreme point of the subproblem in which commodity k is the only one with value equal to one, 

that is, the commodity k is the only one to traverse arc ij. In the first RMP only the flow 

conservation constraints related with the origin constraints are present. When that relaxation is 

solved (that is, the subproblem does not generate any attractive column), constraints that are not 

present in the RMP are checked and, in the case they are violated by the current solution, 

associated columns are inserted in the RMP. We denote this strategy by dynamic row 

management. 

For the smaller instances the usual model was used, that is, all flow conservation 

constraints are equalities. 

For the larger instances we used the decomposition based on the model with inequality 

constraints (MOB) presented in Section 4.2 (page 96), the inexact RMP strategy and removal of 

columns in some iterations, both described in subsection 4.4.2 (page 108). 

We used the dynamic management of rows (also described in subsection 4.4.2, page 108) 

for all the instances, since we soon realised that it is a crucial factor for the efficiency of this 

decomposition. For example, the root node of instance bl01 took 873.5 seconds to be solved 

without dynamic management of rows, as opposed to the 8.4 seconds to be showed in Table 4.9. 

Smaller instances 

Table 4.9 presents the results for the three approaches (columns P for path 

decomposition, columns K for the knapsack decomposition and column O for the original 

formulation solved with Cplex) for the smaller instances. 

The “Root / LR gap” column refers to the relative percentage gap between the optimal 

integer value and the value of the root node for the two decompositions (including the use of 

LCIs in the case of the path decomposition), and between the optimal integer value and the 

value of the linear relaxation in the case of original formulation solved by Cplex.  

The “Nodes” and “Time” columns refer to the number of optimised nodes for the three 

approaches and the total optimisation time, respectively. 

 

The quality of the lower bound of the root node given by the knapsack decomposition is 

significantly better than the one provided by the linear relaxation of original formulation or even 

by the root node of the path decomposition with the use of LCIs. With two exceptions, it is 

always less than 0.5%. For instance bl04 it is larger than 0.5%, but significantly smaller than 

any one of the other approaches. The quality of the lower bounds provided by the knapsack 

decomposition justifies the smaller number of nodes that were optimised for all instances, when 
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compared with the path decomposition (for five instances, the optimal solution was found in the 

root node). When the number of nodes is compared with Cplex, we must note that the linear 

relaxation value of that approach is not the same as its root value. Cplex uses several different 

families of cuts, namely in the root node, when solving an integer problem. That may explain 

the fact that the number of optimised nodes of Cplex is, for some instances, smaller than the one 

of the knapsack decomposition. 

 

Root / LR gap Nodes Time 
Instance IP Value 

P K O P K O P K O 

bl01 1615947 0.4 0.2 4.1 20 13 1 0.7 8.3 0.6 

bl02 1816947 1.3 0.0 9.6 8 1 1 1.7 13.1 1.5 

bl03 17340 0.5 0.0 7.9 19 1 32 8.0 4.8 4.6 

bl04 21370 10.8 6.3 16.4 ** 112 567 ** 1286.8 54.6 

bl05 474782 0.0 0.0 1.0 1 1 1 0.1 7.6 0.3 

bl06 411480 0.0 0.0 1.0 1 1 1 0.0 1.7 0.3 

bl07 5751 0.0 0.0 0.6 1 1 1 0.0 3.1 0.3 

bl08 5688 0.0 0.0 0.5 1 1 1 0.0 1.3 0.3 

bs01 1639862 0.0 0.0 6.2 3 1 1 0.3 1.4 0.1 

bs02 1702368 0.5 0.0 8.6 6 1 5 1.6 6.0 1.9 

bs03 16828 0.0 0.0 1.4 1 1 1 0.1 2.8 0.1 

bs04 20213 3.5 0.2 8.7 73 5 3 53.8 49.7 2.0 

bs05 500870 0.3 0.0 8.3 14 5 1 1.5 2.7 2.4 

bs06 502151 0.8 0.4 6.9 25 18 3 1.6 4.9 3.7 

bs07 7223 1.1 0.5 9.5 78 50 75 4.6 9.1 8.1 

bs08 6471 0.7 0.0 5.2 23 1 1 0.8 1.8 0.8 

planar30 44471934 0.0 *** 0.3 73 *** 8 6.8 *** 2.0 

Table 4.9 Computational results: smaller instances. 
** Feasible integer solution not found within one hour. 

*** Root node not solved within one hour. 

In general, the quality of the lower bounds of the knapsack decomposition does not 

translate into a competitive solution time, when compared with the other two approaches (with 

some exceptions when compared with the path decomposition, as, for example, in the instance 

with greater gap, bl04, in which the path decomposition did not obtain an optimal solution in 

one hour, and the knapsack decomposition obtained it in 20 minutes, approximately). The 

knapsack decomposition could not solve the root node of the planar30 instance in one hour, 

while the path decomposition and Cplex obtained an optimal binary solution in a few seconds.  
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The path decomposition gave better time results than Cplex for the instances with a larger 

number of arcs (bl05 to bl08 and bs05 to bs08). For the other instances, it gave worst time 

results, in particular for instance bl04, where an optimal solution was not obtained within one 

hour. 

Table 4.10 gives detailed results for the instances bl04 and bs04 for both decompositions. 

A significant difference between the two is the time spent on solving the root node. For the path 

decomposition, that time is negligible, while for the knapsack decomposition the same does not 

happen (which is a major issue in the large instances to be analysed next). Solving the RMPs is 

the main time-consuming task for both decompositions. For the knapsack decomposition, 

although the binary knapsack subproblems are not solvable in polynomial time, the time spent 

on them represents a very small percentage of the overall time. The same happens with the 

generation of LCIs for the path decomposition.  

Larger instances 

In Table 4.11, results are presented for the larger instances. Columns “RQ” give the 

relative increase of the IP solution obtained by the two decompositions when compared with the 

one from the original formulation (an equal sign means that the optimal solution was obtained). 

The results are surprising. The general-purpose solver Cplex 8.1 obtained an optimal 

solution in 23 out the 33 instances, while the path decomposition achieved it in only 6 instances. 

For the others, although the root node was solved in a small amount of time, the search of the 

tree was ineffective. Only on the instances with a large number of arcs and a medium number of 

commodities (bl13 to bl16 and bs13 to bs16) the path decomposition gave time results that 

approximate the ones of Cplex. 

Knapsack decomposition gave an optimal solution in only 4 instances and could not solve 

the root node in 24. For the 7 instances where the root node was solved, the comparative quality 

of lower bound given by this decomposition was confirmed. 

To our best knowledge, a computational study comparing a general-purpose solver with a 

specific method for the binary MFP was never done before. Quoting (Barnhart et al., 2000), 

“Without decomposition, these LP relaxations [original formulation linear relaxation and linear 

relaxation of the (full) master of the path formulation] may require excessive memory and/or 

run times to solve.”  

The computational results here presented suggest precisely the opposite. Even improving 

the (Barnhart et al., 2000) approach (with general LCIs, a RMP heuristic and a slightly better 

branching rule, judging from the smaller instances results), Cplex 8.1 clearly outperforms the 

branch-and-price-and-cut specific method. 

The coding efficiency of Cplex 8.1 can be easily confirmed by the large number of nodes 

it searches, compared with the much smaller number of the decompositions (for example, in 
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instance bl17 Cplex searched 8807 nodes of the tree, while the path decomposition only 321 in 

same amount of time). 

Furthermore, Cplex uses several different families of cuts (for example, clique, cover, 

flow cover, disjunctive, Gomory, ...), heuristics in the nodes of the tree, strong branching, 

preprocessing, just to name a few of the issues involved in that state-of-the-art implementation 

of branch-and-cut. 

 

A point worth noting is that the same approach used in the proposed branching rule can 

be used with all types of constraints that are based on the original variables, namely with the 

families of cuts Cplex uses. The proposed branching rule demonstrates how both formulations 

can be used together: all the constraints (cuts or branches) that are derived based on the original 

variables can be used in the path decomposition in the same manner as the proposed branching 

rule and the LCIs were used, that is, by keeping them in the RMP. Although this approach is 

nothing more than dualising the constraints that do not define the subproblems in all of the 

problems of the nodes of the tree, it allows a generalisation that is not usually explored in 

branch-and-price-and-cut algorithms, where the branching is forced in the subproblem and cuts 

must be dealt with some specific procedure. 

 

Instance bl04 bs04 

  P K P K 

Total Time 605.8 1286.8 53.8 49.7 

Time 0.3 25.1 0.1 27.5 

Iterations 71 333 53 427 

RMP time (%) 73.3 90.4 43.6 91.1 

SP time (%) 13.2 2.6 0.0 2.2 R
o
o
t 
n
o
d
e 

LCIs time (%) 36.7 − 31.6 − 

Time 601.5 1259.4 52.2 22.2 

Nodes 65 113 73 5 

Time/Node 9.3 11.1 0.7 4.4 

Iterations 829 2692 574 253 

RMP time (%) 96.4 97.5 93.1 92.5 

SP time (%) 0.9 1.1 1.6 2.1 

O
th
er
 n
o
d
e
s 

LCIs time (%) 0.5 − 1.6 − 

Table 4.10 Detailed computational results for two instances for the decompositions. 
− Does not apply. 
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Root / LR gap RQ Nodes Time 
Instance IP value 

P K O P K P K O P K O 

bl09 6261671.0 1.1 *** 2.5 ** *** ** *** 4155 ** *** 1087.2 

bl10 ** ** *** ** ** *** ** *** ** ** *** ** 

bl11 69018.0 0.1 *** 1.0 = *** 774 *** 234 470.8 *** 17.5 

bl12 65902.0 0.4 *** 1.7 0.2 *** * *** 614 * *** 182.1 

bl13 3132695.0 0.3 0.0 3.9 0.7 = * 16 276 * 1766.6 176.5 

bl14 2433011.0 0.4 0.1 4.4 = 0.2 835 * 108 303.6 * 117.9 

bl15 34274.0 0.2 0.0 2.9 = 0.0 283 * 289 318.5 * 96.3 

bl16 28074.0 0.2 0.1 4.4 = = 117 31 62 39.1 1359.4 57.1 

bl17 13190922.0 0.3 *** 0.8 1.0 *** * *** 8807 * *** 2881.7 

bl18 10496120.0 0.3 *** 0.9 ** *** ** *** 3928 ** *** 1448.4 

bl19 * 109556.0 0.9 *** 1.4 ** *** ** *** * ** *** * 

bl20 * 111604.0 0.9 *** 1.8 ** *** ** *** * ** *** * 

bl21 * 5800149.0 0.5 *** 3.2 0.7 *** * *** * * *** * 

bl22 4209266.0 0.3 *** 3.6 0.2 *** * *** 144 * *** 389.1 

bl23 56856.0 0.6 *** 3.1 0.2 *** * *** 2176 * *** 2250.2 

bl24 47964.0 0.2 *** 4.0 6.5 *** * *** 234 * *** 250.8 

bs09 6287195.0 0.6 *** 1.6 0.3 *** * *** 3238 * *** 665.3 

bs10 7072735.0 0.9 *** 2.6 ** *** ** *** 3363 ** *** 643.2 

bs11 * 65168.0 1.5 *** 2.7 ** *** ** *** * ** *** * 

bs12 71483.0 1.1 *** 2.7 ** *** ** *** 4811 ** *** 2235.8 

bs13 3605397.0 0.7 0.3 5.6 0.3 1.6 * * 579 * * 532.2 

bs14 * 2872664.0 1.8 1.0 8.9 10.8 ** * ** 2206 * ** * 

bs15 38533.0 0.4 0.1 3.7 = = 131 37 133 120.7 290.2 99.0 

bs16 31124.0 0.4 0.0 5.7 = = 259 1 45 337.8 630.0 95.3 

bs17 * 11447995.0 0.7 *** 1.0 ** *** ** *** * ** *** * 

bs18 10486796.0 0.3 *** 1.0 ** *** ** *** 1719 ** *** 746.2 

bs19 106142.0 0.2 *** 0.7 0.2 *** * *** 7218 * *** 913.0 

bs20 107712.0 0.5 *** 1.5 ** *** ** *** 2142 ** *** 896.1 

bs21 * 5562469.0 0.7 *** 4.6 ** *** ** *** * ** *** * 

bs22 * 4487045.0 1.4 *** 6.8 6.9 *** * *** * * *** * 

bs23 57548.0 0.4 0.1 3.8 0.5 ** * ** 2547 * ** 3301.3 

bs24 50980.0 0.3 *** 4.5 0.1 *** * *** 1555 * *** 2919.6 

planar50 * 122272951.0 0.0 *** 0.1 0.8 *** * *** * * *** * 

Table 4.11 Computational results: larger instances. 
* Integer optimal solution not found within one hour.The IP value is the value of the incumbent 

solution given by Cplex.  
** Feasible integer solution not found within one hour.  

*** Root node not solved within one hour.  
= Optimal solution. 
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4.6 Conclusions 

In this Chapter, we presented two decompositions, and developed two branch-and-price 

algorithms in order to solve exactly the binary multicommodity flow problem. The branch-and-

price-and-cut algorithm for the path decomposition follows the approach presented in (Barnhart 

et al., 2000). We extend the approach given in that reference by using general LCIs instead of 

simple LCIs and a new RMP heuristic. Our main contribution, with respect to that 

decomposition, was the development of a new branching rule that gave slightly better results for 

the smaller instances tested than the one proposed in that reference. In addition, the new 

branching rule suggests how other families of cuts can be used in a more effective branch-and-

price-and-cut algorithm.  

The second branch-and-price algorithm is based on a knapsack decomposition, which 

allows obtaining better lower bounds in the nodes of the branch-and-price tree. The quality of 

the lower bounds was proved empirically by the computational tests performed. However, it 

turned out that, in particular for the larger instances tested, this decomposition is particularly 

difficult to deal with. Even with dynamic management of rows and columns, and with an 

inexact RMP strategy to speed up its solution time, the larger instances could not be solved in a 

reasonable amount of time. Column generation stabilisation, analytic center cutting plane or 

bundle methods are natural candidates for the improvement of the efficiency of this 

decomposition approach.  

Solving the original formulation with Cplex 8.1 clearly outperformed the two 

decomposition approaches presented here. The exception was a set of few instances with a large 

number of arcs, where the path decomposition gave similar results. To our best knowledge, the 

comparison between decomposition approaches and a general-purpose solver for the binary 

MFP was made here for the first time. Given the fact that, in the literature, that approach is 

taken as non promising, this result came as a surprise. 
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5 Accelerating Column Generation for Planar 
Multicommodity Flow Problems 

In this Chapter, we present a way of accelerating a column generation algorithm for the 

linear minimum cost multicommodity flow problem. We use a new model that, besides the 

usual variables corresponding to flows on paths, has a polynomial number of extra variables 

(when the problem is defined in a planar network), corresponding to flows on circuits. Those 

extra variables are explicitly considered in the restricted master problem, from the beginning of 

the column generation process. The subproblem remains a set of shortest path problems, one for 

each commodity. 

We present computational results for the comparison of this new approach with standard 

column generation, a bundle method, and a general-purpose solver. For the tested instances, 

there is an effective improvement in computational time of the column generation method when 

the model with extra variables is used. 
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5.1 Introduction 

In this Chapter we present an approach for accelerating column generation for the linear 

minimum cost multicommodity flow problem (MFP). 

Column generation is a technique to solve linear programs with a large (possibly 

exponential) number of variables. One important group of these large linear programs is the one 

resulting from applying a Dantzig-Wolfe decomposition (DWD). 

Although column generation has been known for several decades (its roots lie in the work 

of Ford and Fulkerson (Ford and Fulkerson, 1958), Dantzig and Wolfe (Dantzig and Wolfe, 

1960), and Gilmore and Gomory (Gilmore and Gomory, 1961; Gilmore and Gomory, 1963)), a 

renewed interest about this subject can be noted in the last few years. Reasons for that may be 

found in the evolution of the hardware that made possible to solve large practical problems and 

in the availability of robust and efficient commercial software to solve linear programs (Bixby 

et al., 2000). In this way, memory requirements and coding complexity, which could be thought 

as major disadvantages when implementing a column generation algorithm (when compared 

with a subgradient algorithm to solve its dual, for example), became less problematic. 

Another reason for the renewed interest in column generation comes from the better 

understanding of its potential to solve integer problems. Branch-and-price algorithms 

(combining column generation and branch-and-bound) have been also a major topic of research 

in the last few years, having its root in the work of Desrosiers, Soumis and Desrochers 

(Desrosiers et al., 1984). Surveys on the column generation / branch-and-price methods can be 

found in (Soumis, 1997; Barnhart et al., 1998; Wilhelm, 2001; Lübbecke and Desrosiers, 2002). 

 

One major disadvantage of column generation is the well-known tail-off effect that, 

usually, implies a slow convergence of the method. To deal with that issue several methods 

have been devised (see (Lübbecke and Desrosiers, 2002) for a more detailed description and 

additional references), usually taking a dual perspective, given that column generation can be 

seen as a cutting plane algorithm applied to the dual problem. 

Marsten et al. (Marsten et al., 1975) developed the boxstep method, in which the dual 

variables, in each iteration, are confined to lie inside or in the boundary of a box centred in the 

previous solution; Wentges (Wentges, 1997) suggested the use of a convex combination 

between the best dual variables found so far and the optimal dual variables of the current 

iteration; du Merle et al. (Merle et al., 1999), introduced a stabilisation method that amounts to 

penalising solutions that lie outside a predetermined box, which may be adjusted as the 

algorihtm proceeds, and includes a right-hand side perturbation; Kallehauge, Larsen, and 
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Madsen (Kallehauge et al., 2001) proposed a trust region method to try to avoid the oscillation 

of the dual variables by restricting them to a box with an automatically adjusted size; finally, in 

bundle methods (Frangioni, 2002), a penalisation is added to points that are distant from the 

current one, which implies a quadratic term in the objective function of the model, leading to a 

nonlinear master problem − for a clear explanation of the relation between bundle methods and 

column generation / cutting plane methods, see (Frangioni, 1997).  

Our present work is based on the method proposed by Valério de Carvalho (Carvalho, 

2000). The author presented a way of reducing the tail-off effect by including a polynomial 

number of extra dual optimal cuts (extra primal variables) in the restricted master problem prior 

to the beginning of the optimisation process. The motivation is the following: the use of a 

tighter dual space restriction from the start may help in finding the optimal solution faster. 

Under certain conditions, the primal space is not relaxed, and it is possible to recover an optimal 

solution to the original problem from the optimal solution to the extended model. In this work 

we apply a similar idea to the linear minimum cost MFP defined over planar graphs. 

 

The minimum cost MFP is defined over a network in which we want to route, with 

minimal cost, a set of commodities from their origins to their destinations without exceeding the 

capacities of the arcs.  

This problem, as well as related multicommodity flow problems, has been the subject of 

interest of the research community for its applications (namely in transportation/distribution 

systems, telecommunications networks and production planning) and for its role as a typical 

model with the so-called block-angular structure, thus being a representative problem (maybe 

the most used one) for which several decomposition methods can be applied and tested. 

A description of several applications can be found in the surveys presented in (Assad, 

1978; Kennington, 1978; Ahuja et al., 1993). In the same surveys, classical methods (since they 

were first developed in the 1960s and 1970s) are described (which can be grouped in price 

directive decompositions, basis partitioning methods, and resource-directive decompositions). 

More recently, several approaches have been developed. Among them, we refer to specialised 

interior point methods (Schultz and Meyer, 1991; Castro, 2000) and bundle methods (Frangioni 

and Gallo, 1999). A more detailed review on solution methods for the linear MFP was given in 

Chapter 3, subsection 3.2.4 (page 65). 

 

Our present work deals with the origin-destination MFP, that is, problems where a 

commodity is defined by the node in which it is supplied and by the node in which it is required. 

However, it can be easily extended to problems with multiple origins and destinations, using the 

more general framework presented in Chapter 3 in the context of the integer MFP. 

We consider that, for each arc, the costs of all commodities are the same. This happens in 
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some applications of the multicommodity flow models, as, for example, in computer networks, 

where the commodities are usually associated with streams of traffic between different pairs of 

users. 

As we said before, our present work is based on the approach first presented in (Carvalho, 

2000). The basic idea is that by adding extra variables (extra dual cuts), prior to the beginning of 

the column generation process, we can speed up the column generation algorithm and improve 

its practical convergence properties. The results reported in (Carvalho, 2000) for the cutting 

stock problem show that, for some classes of instances, the speed up factor is close to five.  

The extra variables added to the model must be tailored to the specific problem at hand. 

In the case of the MFP, we use variables associated with flows on circuits. An important issue is 

that the number of extra variables must be tractable for the master problem. Given that the 

number of circuits of a general network is exponential with respect to its size, we restrict our 

present work to the MFP defined on planar graphs, where it is possible to select a polynomial 

number of elementary circuits, based on which all circuits of the network can be implicitly 

considered. 

 

This Chapter is organised as follows. In Section 5.2, we resume the original formulation 

and the formulation that results from applying DWD, giving origin to the path decomposition 

formulation. In Section 5.3, we briefly describe the standard column generation procedure for 

the problem in study. In Section 5.4, we present and discuss our approach to accelerate column 

generation when applied to the MFP. In Section 5.5, we prove that the number of extra variables 

used is polynomial with respect to the dimension of the network. In Section 5.6, we describe 

and discuss the results of the computational tests performed. In Section 5.7, we present our main 

conclusions and future work directions. 

5.2 Formulations 

5.2.1 Arc formulation 

We consider a network formed by a set of n nodes, represented by N, and a set of m arcs, 

represented by A. We use an index i={1,...,n} to represent a node and a pair of indices ij to 

represent an arc which has origin in node i and destination in node j. We define a set K of h 

commodities, indexed by k. Each commodity k is characterised by an origin, ok, a destination, 

d
k, and an integer demand, rk, which is the number of units that are supplied at its origin and that 

are required at its destination. We also define a capacity, uij, and a linear unit cost, cij, both 

associated with each arc of the network. We make the usual assumption cij
 ≥ 0, ∀ij∈A. 

The arc formulation of the minimum cost MFP is obtained using decision variables that 
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represent the flows in all arcs for all commodities. Those decision variables are represented as 

xij
k. The formulation is as follows: 

Min ∑ ∑
∈ ∈Aij Kk

cij
 
xij

k 

subject to:
 

∑
∈Aij:j

xij
k
 – ∑

∈Aji:j

xji
k
 = bi

k
 , ∀i∈N, ∀k∈K (5.1) 

∑
∈Kk

xij
k
 ≤ uij , ∀ij∈A (5.2) 

xij
k
 ≥ 0, ∀ij∈A, ∀k∈K, 

where 









=−

=

=

otherwise. 0

di if r

oi if r

b k
k

k
k

k
i  

Constraints (5.1) are flow conservation constraints. They state that, for each commodity, 

the difference between the flow that enters a node and the flow that leaves that node is equal to 

the supply/demand of that node. 

Constraints (5.2) are capacity constraints. They state that the total flow on each arc must 

be less than or equal to its capacity. Without these constraints, an optimal solution to the 

problem could be found by solving independent shortest path problems (one for each 

commodity). 

5.2.2 Path formulation 

We represent the set of all simple paths between the origin and the destination of 

commodity k by Pk. If the arc ij belongs to path p of commodity k, then yij
pk equals 1; otherwise, 

yij
pk
 equals 0. The unit flow cost of path p of commodity k, is cpk = ∑

∈Aij

yij
pk
 cij, ∀p∈P

k
, ∀k∈K. 

When we refer to a path of a commodity, we mean a simple path that begins at the origin of a 

commodity and ends at its destination. 

The path formulation is obtained by defining the decision variables, λpk, as the flow on 

each path of all commodities. 
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Min ∑ ∑
∈ ∈Kk Pp k

c
pkλpk 

subject to: 

 ∑
∈ kPp

 λpk
 = r

k
 , ∀k∈K (5.3) 

∑ ∑
∈ ∈Kk Pp k

yij
pk
 λpk

 ≤ uij , ∀ij∈A (5.4) 

λpk
 ≥ 0, ∀k ∈K, ∀p∈P

k
. 

This formulation can be obtained directly by defining decision variables, λpk, that 

represent the flow on path p of commodity k.  

Constraints (5.3) ensure that the demand is routed from the origin to the destination, for 

all commodities, and constraints (5.4) are the capacity constraints. 

As proved in (Tomlin, 1966), the path formulation can be obtained by applying a DWD 

on the arc formulation. In fact, the roots of DWD can be found in the approach of Ford and 

Fulkerson (Ford and Fulkerson, 1958) to the maximal multicommodity flow problem as stated 

in (Dantzig, 1963). 

Although being equivalent, the practical behaviour of the two just presented formulations 

can be very different. The arc formulation has m.h variables and n.h+m constraints, while the 

path formulation has only h+m constraints and an exponential number of variables (with respect 

to the size of the network). However, h+m is an upper bound for the number of variables with a 

positive value in a basic solution. 

Since the size of the basis is one major factor to simplex methods’ efficiency, we can 

expect the path formulation to be more efficient in larger instances, given that we use a column 

generation scheme to deal with the huge number of columns (even for moderate size instances).  

We note that it is always possible to find a feasible solution to a model from a feasible 

solution to the other model with the same cost. The ways of performing those transformations 

and their proofs can be found in (Ahuja et al., 1993).  

We finish this Section by noting that there are other possible decompositions leading to 

different problems, namely by the aggregation of commodities by origin or destination. 

However, computational experiments (and the fact that it seems easier for the master problem to 

combine “smaller pieces”) point to the one used here as being the most efficient (Jones et al., 

1993). 
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5.3 Standard Column Generation 

5.3.1 Overview 

In the resolution of the path formulation using column generation, a restricted master 

problem (RMP), that is a problem where not all paths are considered, is optimised first. After 

optimising the RMP, the attractiveness of the paths that are not present in the RMP is evaluated 

by solving a subproblem that uses the values of the dual variables. That subproblem consists in 

determining the shortest path between their origin and their destination for all commodities in a 

network with modified costs. After inserting the attractive paths in the RMP, the procedure is 

repeated until no more attractive paths are returned by the subproblem. A detailed exposition of 

this procedure is presented in (Ahuja et al., 1993). Here we just note that a path p of a 

commodity k is attractive if  

∑
∈Aij

yij
pk
(wij + cij) < πk 

(5.5) 

where wij≥ 0, ∀ij∈A, is the dual variable associated with the constraints (5.4) and πk
, k∈K, is the 

dual variable (unrestricted in sign) associated with constraints (5.3). Inequality (5.5) justifies the 

fact that the subproblem of each commodity can be solved by a shortest path subproblem in a 

network with modified costs. 

5.3.2 Implementation issues 

One critical issue must be decided when implementing a column generation algorithm, 

namely the way of obtaining the first RMP. The first RMP must be feasible and, in general, it is 

not clear how to select a set of columns that ensures that. Furthermore, the set of columns that is 

chosen to be part of the first RMP, even when they do not guarantee a feasible solution (thus 

used in conjunction with artificial variables), may be decisive in the efficiency of the method. 

We used an algorithm that is based on solving shortest path problems of each commodity (its 

associated columns being inserted in the first RMP), successively reducing the available 

capacity of the arcs. When it is not possible to send the flow (or part of it) of a commodity from 

its origin to its destination, an artificial variable is inserted in order to satisfy the flow 

conservation constraint associated with it. Comparative computational tests with other strategies 

can be found in Chapter 3.4.3 (page 76).  

Another important issue is the column management. Our previous experience is that 

when the number of variables is manageable by the LP solver, it is better to keep all the 

columns generated always in the RMP.  
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5.4 Accelerating Column Generation 

5.4.1 An extended model with circuits 

The main idea behind our procedure to accelerate the column generation method to solve 

the linear MFP is to add variables corresponding to circuits to the path formulation, thus 

obtaining a new model. In this subsection we present that extended model. In subsection 5.4.3 

we will show its equivalence with the original one. In subsection 5.4.6 a small example is given. 

The circuits that we consider have no arc repetitions, are oriented and formed by, at least, 

three arcs. One of the arcs of the circuit is traversed in the opposite direction of its orientation 

(backward arc) and all the remaining arcs are traversed in the same direction as their orientation 

(forward arcs). 

We consider the set D formed by all the circuits such as the ones defined above, to be 

indexed by s=1,...,|D|. From now on, when referring to circuits, we mean circuits belonging to 

D, except when explicitly stated otherwise. 

We define a parameter γij
s
, ∀ij∈A, ∀s∈D, that is equal to 1, if arc ij is a forward arc of 

circuit s; equal to −1 if arc ij is the backward arc of circuit s; equal to 0, if arc ij does not belong 

to circuit s. We associate with each circuit s, s∈D, a variable ds≥0, which corresponds to the 

flow in circuit s. The unit flow cost of circuit s is cs = ∑
∈Aij

γij
s
 cij, ∀s∈D. 

By using the circuits defined above, it may be possible to represent one solution of the 

path model by a set of paths and circuits with flow, since some paths with flow can be 

represented as the sum of other paths and circuits. We note that the definition of the unitary 

costs of the paths and of the circuits implies that the cost of the solution is the same in both 

representations.  

Example 5.1 

Consider a (partial) solution in which there is a flow of commodity k in the two paths 

represented in Figure 5.1. 

p1 p2

 

Figure 5.1 One solution represented with two paths. 
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For easiness of explanation, suppose that λp1k
 ≥  λ

p2k. The same (partial) solution can be 

represented as showed in Figure 5.2, where the flow on path p1, λp1
k*, is now λp1

k*
  = λp1

k
 + λp2

k 

and ds
 = λp2k, since p1 + s = p2. 

sp1

 

Figure 5.2 One solution represented as one path and one circuit. 

♦ 

We now present an extended model that, besides the path variables, also includes circuit 

variables. 

Min ∑ ∑
∈ ∈Kk Pp k

c
pkλpk

 + ∑
∈Ds

c
s
 d

s
 

subject to: 

 ∑
∈ kPp

 λpk
 = r

k
 , ∀k∈K (5.6) 

∑ ∑
∈ ∈Kk Pp k

yij
pk
 λpk

 + ∑
∈Ds

γij
s
 d

s
 ≥ 0 , ∀ij∈A (5.7) 

∑ ∑
∈ ∈Kk Pp k

yij
pk
 λpk

 + ∑
∈Ds

γij
s
 d

s
 ≤ uij , ∀ij∈A (5.8) 

λpk
 ≥ 0, ∀k ∈K, ∀p∈P

k
 

d
s
 ≥ 0, ∀s∈D. 

We can see this model as giving an optimal solution on paths (to satisfy constraints (5.6)) 

and then, through the circuits, redirecting their flow to other paths (that, in the case of a RMP, 

may not be explicitly present in the model).  

Circuit variables are not present in constraints (5.6), since they respect the flow 

conservation of all nodes. 

We do not associate commodities with the circuit variables because they all have the 

same cost and the circuits only have one backward arc. Thus, the choice of the commodity for 

which its flow (or part of it) is redirected is irrelevant. In this way, we keep the number of new 

variables and constraints small. Furthermore, (5.7) and (5.8) can be joined to form a ranged 

constraint. 

The new set of constraints (5.7) states that it is only possible to redirect flow through a 
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circuit if that flow exists. If we had not constrained the total flow of the arcs to be nonnegative 

we could get an unbounded solution (since some circuits may have a negative cost), or a 

solution that was impossible to transform into a feasible solution to the path formulation (since 

it had a smaller value). In other words, the set of constraints (5.7) assures that the original space 

is not relaxed: only positive flows are still allowed. 

With this methodology, we are adding more variables and turning a set of constraints into 

a set of ranged constraints. In turn, with the same set of paths in the RMP and with the circuits, 

we are considering implicitly a much larger number of extreme points of the subproblems, 

since, besides the paths that are present in the RMP, we are considering all the paths that can be 

obtained by adding circuits to them. We note that the same circuit, when combined with 

different paths, may allow the implicit consideration of several paths. 

5.4.2 Dealing with negative cost cycles 

The dual variables of constraints (5.7) contribute with a negative value to the modified 

cost of the arcs in the subproblem objective function, leading to arcs with a negative modified 

cost, and even to negative cost cycles. Note that this never happens in the column generation 

procedure for the path formulation, because it does not have any “greater than or equal to” 

constraints. 

Formally, we define the nonnegative dual variable associated with constraint (5.7) of arc 

ij as vij. A path p of a commodity k is now attractive if 

∑
∈Aij

yij
pk
(wij − vij + cij) < πk

. 

The subproblem of a commodity k still is a shortest path problem but now in a network 

that can have negative cycles (all arcs traversed in the direction of their orientation), which is 

NP-hard. In order to avoid solving a NP-hard problem, we can overcome this issue by solving a 

shortest path problem with a label correcting algorithm, and, when a negative cycle is detected, 

we add the associated variable to the RMP. After reoptimising the RMP, the negative cost cycle 

previously detected will never be generated again.  

In this way subproblems may suggest paths or cycles to the RMP. This issue was 

previously discussed in the context of a branch-and-price algorithm for the integer MFP in 

Chapter 3, subsection 3.3.3 (page 70).  

Note that these cycle variables are not related with the extra circuit variables that are 

present from the very beginning in the RMP. All the arcs of the cycles are forward arcs. Since 

the arc costs are nonnegative, there is an optimal solution where all the cycle variables have a 

null value. 
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5.4.3 Obtaining the optimal solution of the path formulation 

We now present a procedure to perform the conversion of one optimal solution of the 

extended model to one optimal solution of the path model, with the same cost. The main idea is 

to redirect all the flow on circuits to paths.  

 

(a) Select a circuit s with positive flow (ds > 0) and its backward arc ij. If there are no 

such circuit then stop: the actual solution is optimal to the path model. 

(b) While ds > 0 and there exists a path p of a commodity k, which includes the arc ij, 

with positive flow (λpk 
> 0), then do the following: if λpk 

> ds then transfer ds units of flow to the 

path (commodity k) obtained by adding p (commodity k) and s, let λpk
 = λpk− ds and ds = 0; else 

transfer λpk
 units of flow to the path (commodity k) obtained by adding p (commodity k) and s, 

let λpk
 = 0 and ds = ds− λ

pk. 

(c) If ds > 0 select a circuit t and an arc ab such that γij
s 
= 1, γab

t 
= −1 and dt > 0. Let ij = 

ab and s = t and go to step (b). 

(d) Go to step (a). 

 

If there are no circuit variables with positive values then the actual solution is optimal to 

the path model. Otherwise, the algorithm starts by selecting a circuit variable with positive flow. 

By definition of the circuits, one of the arcs of that circuit is a backward arc. By the constraint 

(5.7) of that arc, there must be a positive flow on paths or in other circuits. If there are positive 

flows on paths, we transfer the flow of the circuit to other paths. We note that the order in which 

the paths are considered is irrelevant, since we always get a solution that has the same value and 

maintains the feasibility with respect to all constraints. If the flow of the circuit is still positive 

after transferring the flows of the paths, then constraint (5.7) of arc ij only has circuit variables 

with positive values. In that case, since circuit s has a positive flow and a coefficient −1 in that 

constraint, there must be, at least, one circuit t with coefficient +1 in that constraint, such that 

the constraint is not violated. Thus, the circuit t of step (c) always exists. By definition of 

circuits, circuit t has one backward arc, which is different from arc ij (if it were the same its 

coefficient in the constraint (5.7) of arc ij would not be +1). 

In each outer loop (steps (a) to (d)) the flow of, at least, one circuit is reduced down to 

zero. Thus, at the end, we will get an optimal solution with flows exclusively on paths. 

5.4.4 Comparison with standard column generation 

There are two main additional steps in our procedure when compared to the standard 

column generation algorithm that was briefly described in subsection 5.3.1. The first one is that 

in the construction of the first RMP, we add all the circuit variables to it. The second one is that 
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after obtaining an optimal solution to the extended model, we need to recover a solution for the 

path model with flows only on paths.  

Besides those algorithmic differences, the master problem and the subproblem also 

present some modifications, described above, that we now summarise in terms of advantages 

and disadvantages of our method when compared with standard column generation.  

The disadvantages are: the extended RMP has ranged constraints; the subproblem can 

have arcs with negative costs (the algorithm used to solve it becomes less efficient) and also 

negative cycles (it may be necessary to insert cycles in the RMP). The main advantage is that 

we are implicitly considering a much larger number of extreme points in all the RMPs that we 

have to solve, thus we can expect to solve the problem in less iterations (that is, solve a smaller 

number of RMPs).  

Our computational results, which will be presented later, clearly support that the 

advantage overcomes the disadvantages. Furthermore, they show that, in spite of the ranged 

constraints and of the larger number of variables (at least in the first iterations), the average time 

spent on solving the RMPs is smaller in the accelerated column generation algorithm when 

compared with the standard one. The extra variables seem to make the RMPs easier to solve. 

Besides that, we note that our test program uses a linear programming general solver (ILOG, 

1999) to optimise the RMPs. Taking into account the level of efficiency and robustness that this 

kind of software has achieved in recent years (Bixby et al., 2000), the disadvantages may be 

regarded as more theoretical than practical. 

So far, we neglected the fact that the number of circuit variables can be very large. In 

fact, in a general network, it is exponential with respect to the dimension of the network. A 

strategy to deal with that issue is to choose a subset of circuits, heuristically or by defining some 

preprocessing rules. An alternative is to allow deletion and insertion of circuit variables during 

the optimisation process. 

Here we just present results for instances defined in planar graphs. In this case, we can 

identify a polynomial number of simple circuits such that all the graph circuits can be 

represented as their nonnegative combinations. Based on those circuits, we can define a 

polynomial number of circuit variables. Those circuit variables may be seen as elementary, in 

the sense that by their nonnegative combinations we can obtain other circuit variables. In fact, in 

our column generation algorithm for planar networks, we add a tractable number of circuit 

variables (the elementary ones) to the first RMP, and maintain them during all the column 

generation procedure, allowing the RMP to perform those nonnegative combinations, 

considering implicitly a much larger number of circuit variables. 

In Section 5.5, we will demonstrate that the number of elementary circuit variables is 

polynomial. 
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5.4.5 Interpretation in the context of the Dantzig-Wolfe decomposition 

The path formulation can be seen as the result of applying a DWD to the arc formulation, 

defining the subproblem with the flow conservation constraints. In this way, each path of a 

commodity is one extreme point of the subproblem of that commodity. In the master, the flow 

conservation constraints may be seen as convexity constraints. 

In the column generation procedure, when optimising the RMP, we are selecting the best 

feasible (in the sense that the constraints that were kept in the master must be satisfied) solution 

that is obtainable by the convex combination of the extreme points of the subproblems 

generated so far.  

In this context, the circuits that we add to the RMP can be seen as vectors vectors which, 

when added to some extreme points, allow us to reach feasible points that may be not reachable 

only with the extreme points present in the RMP. Also, those vectors can be added to extreme 

points of different subproblems. The set of constraints (5.7) is there to force the resulting 

point(s) to be feasible. 

5.4.6 Example 

We consider an instance of the MFP with two commodities defined over the network of 

Figure 5.3. The first commodity has demand 5, origin 1 and destination 4; the second 

commodity has demand 4, origin 1 and destination 3. Next to each pair of arcs, their cost (cij = 

cji) and their capacity (uij = uji) are given by this order. 

1

3

2

4

(1,5)

(3,4)

(5,6)

(7,4)

(9,5)

  

Figure 5.3 Some data of one instance of the multicommodity flow problem. 

All circuits belonging to D are represented in Table 5.1. 
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arc/circuit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

12   −1 1 1         1 1 1 −1    

21 1 1    −1       −1     1 1 1 

13 1  1  −1         −1   1  1 1 

31  −1  1  1       1  1 1  −1   

23 −1    1 1 1 1    −1         

32  1 1 −1     −1 1 1          

24       −1    1 1 1 1 1     −1 

42        1 1 −1      −1 1 1 1  

34       1  1  −1    −1  1 1  1 

43        −1  1  1 1 1  1   −1  

Table 5.1 Circuits of the network of the example belonging to D. 

We form the first RMP by considering all the circuits, the paths 1-3-4 and 1-2-4 for 

commodity 1 and the path 1-3 for commodity 2. The optimal solution of the RMP, which is also 

the optimal solution to the master problem, is λ11
=1, λ21

=4, λ12
=4, and d5

=1. This optimal 

solution can be converted to λ11
=1, λ21

=4, λ12
=3, and λ22

=1 (the second path of commodity 

being 2 the path 1-2-3) or to λ21
=4, λ12

=4, and λ31
=1 (the third path of commodity 1 being the 

path 1-2-3-4). We note that if the circuits were not used, the RMP would be unfeasible, being 

necessary to add artificial variables or more paths to it and to (re)optimise it. 

5.5 Planar Networks 

Our objective in the current Section is to show how an elementary set of circuit variables 

can be found and that their number is polynomial, when the MFP instance is defined on a planar 

graph. 

 We give a brief, informal, introduction to some concepts related to planar graphs. A 

formal and deeper treatment of this subject can be found, for instance, in (Behzad et al., 1979).  

Roughly speaking, a graph G is said to be planar if it can be drawn on a plane without any 

intersection of its edges (except in the vertices). If we consider such a drawing of G, we define a 

region of G as a maximal portion of the plane for which any two points can be joined by a curve 

that does not cross any edge or vertex. Any planar graph has an unbounded region, which is 

called exterior region. 

Any connected planar graph with p vertices and q edges has 2−p+q regions (Euler’s 
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formula). Also, if p≥3, then q≤3p−6. So far, we considered a drawing of the graph (more 

formally, a geometric embedding of the graph into the plane). It is also possible to represent a 

planar graph by a combinatorial embedding (the adjacency lists of the vertices are sorted 

according to a fixed geometric embedding) that can be obtained in polynomial time (Hopcroft 

and Tarjan, 1974). In the development of our method, we only need such a representation of the 

graph. A survey of the subject of planarising graphs can be founded in (Liebers, 2001).  

In order to derive the elementary circuit variables introduced previously and to prove that, 

for planar networks, their number is polynomial, we consider all regions of the graph on which 

is based the MFP. Associated with each region there is a set of edges that form its boundary. 

Since our network is directed, the number of arcs m is limited by 2(3n−6) where n is the number 

of nodes. We associate a set of circuits with the boundary of each region. Since we are dealing 

with a directed graph, we replace each edge by two arcs (one in each direction). Furthermore, by 

definition of the circuit variables, the boundary of a region can originate more than one circuit 

variable. For instance, the network represented in Figure 5.4 has two regions. Considering one 

of them (in this case their boundary is the same), we will get six circuit variables: 21-23-31, 12-

32-31, 12-23-13, 12-13-32, 21-31-32, and 21-13-23. 

1

2

3
 

Figure 5.4 An example of generating circuits from a region. 

Given that 2−n+m, m, and 2m are upper bounds for, respectively, the number of regions 

that may be used in deriving circuit variables, the number of arcs of a region, and the number of 

different circuit variables based on the same region, an upper bound for the total number of 

circuit variables is 

(2−n+m).2m. 

Replacing m with its upper bound given by 2(3n−6), we get 

(5n−10).(12n−24), 

which is a polynomial. 
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5.6 Computational Tests 

We implemented the proposed method for accelerating column generation and did some 

computational experiments with two objectives. The main objective was to test if there is a 

practical improvement of the proposed method over the standard column generation procedure. 

The second objective was to evaluate column generation efficiency when compared with other 

specialised code for MFPs based on a bundle method (Frangioni and Gallo, 1999) and with a 

general-purpose linear programming solver, namely Cplex 6.6 (ILOG, 1999).  

Our code was developed in C++ using the development environment Microsoft Visual 

Studio 6.0. We used the class library LEDA 4.1 (Mehlhorn and Näher, 1999) for identifying the 

circuits and also to solve the shortest path subproblems. We used Cplex 6.6 to solve the RMPs. 

The Bundle code was provided to us by Professor Antonio Frangioni. We note that this 

code can be used with more general instances (namely instances with multiple origins and 

destinations). We also note that the adjustment of its parameters was, by no means, exhaustive 

and not done by an experienced user.  

In spite of the theoretical closeness of the two methods (column generation and bundle), 

the implementations tested have a major difference: the column generation uses a disaggregated 

approach and the bundle an aggregated one. Both methods, taking a dual perspective of the 

column generation method, aim at maximising the dual Lagrangean function (obtained by 

relaxing the capacity constraints). That function is decomposable by commodity, thus, in each 

iteration, the subproblem can return (to the master) subgradients associated with the 

commodities (disaggregated version) or return one subgradient associated with the whole 

function (aggregated version). In the column generation algorithm implemented, the 

subproblem returns one extreme point per commodity (or dually, one subgradient associated 

with the component of one commodity of the decomposable dual Lagrangean function). In the 

case of the bundle implementation used in these tests, the subproblem returns one subgradient of 

the whole dual Lagrangean function.  

It is worth noting that a disaggregated bundle algorithm could also be implemented, 

which might significantly improve its solution times. 

 

We refer to the different programs described above as: CG (column generation), CGA 

(column generation with acceleration), Cplex (the problem, formulated with flows on arcs, by 

using only Cplex 6.6) and Bundle. 

All the reported results were obtained on a personal computer equipped with a Pentium 4, 

2 GHz processor, and 1 GB of RAM, running Windows XP Professional Edition. All the time 

values presented are expressed in seconds. 
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5.6.1 Test instances 

In order to test the empirical efficiency of the developed methodology, we performed 

some computational tests on three groups of instances. Two of them, which we refer to as A and 

B, were generated with a random generator for MFPs in planar graphs, implemented in C++ 

using the development environment Microsoft Visual Studio 6.0 and the class library LEDA 4.1 

(Mehlhorn and Näher, 1999). The other one comes from (Larsson and Yuan, 2004) and was 

obtained in (Frangioni, 2005). We refer to this last set of instances as the Planar instances, in 

order to keep their original designation, while noting that all the instances in all sets are planar. 

For the two first groups of instances (A and B), the underlying graph is constructed by 

using the LEDA functions random_planar_map and random_planar_graph, which we now 

briefly describe. First, n random points in the unit square are generated and their triangulation is 

computed. Then m arcs are kept. Instances A are generated considering undirected arcs that are 

replaced by two directed arcs between the same pair of nodes. Thus, for this group of instances, 

if an arc ij exists then the arc ji also exists and both have the same cost and capacity. Instances B 

are generated in a similar way. The difference is that the undirected arcs are replaced with just 

one directed arc, thus if an arc ij exists then the arc ji does not exist. For both groups of 

instances the cost of each arc is the Euclidean distance between its origin and destination nodes. 

Each commodity is defined by its origin-destination pair, in a random way (without repetitions). 

Their demands are randomly chosen up to a maximum value given as input. In order to generate 

only feasible instances, some capacities are calculated as the total flow of arcs given by the 

shortest path solution of each commodity. The others are randomly assigned with values 

between two input parameters. 

For each group, we generated two sets of instances, one with 100 nodes and the other 

with 600 nodes. For each of these sets we generated four subsets with different densities and 

different numbers of commodities. For each subset, we generated three instances, for which we 

present average results. The number of arcs and commodities for each subset are given in Table 

5.2 and Table 5.3. The name of the instance has the following meaning: group, number of 

nodes, density (s − sparse, d − dense) and a qualitative measure of the number of commodities 

(s − small, l − large). A dense graph has a number of arcs close to its maximum in a planar 

graph, that is, 2(3n−6) for instances of group A and 3n−6 for instances of group B. 

The number of nodes, arcs, and commodities of the planar instances are given in Table 

5.4. 
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Instances A100dl A100ds A100sl A100ss A600dl A600ds A600sl A600ss 

m 569 572 400 400 3562 3557 2400 2400 

h 600 300 600 300 3600 1800 3600 1800 

Table 5.2 Average number of arcs and number of commodities of group A instances. 

Instances B100dl B100ds B100sl B100ss B600dl B600ds B600sl B600ss 

m 285 286 200 200 1771 1778 1200 1200 

h 600 300 600 300 3600 1800 3600 1800 

Table 5.3 Average number of arcs and number of commodities of group B instances. 

Instance planar30 planar50 planar80 planar100 planar150 

n 30 50 80 100 150 

m 150 250 440 532 850 

h 92 267 543 1085 2239 

Table 5.4 Number of nodes, arcs and commodities of the planar instances. 

5.6.2 Preliminary tests 

The general-purpose linear programming solver Cplex 6.6 can use different algorithms to 

optimise a linear programming problem, namely simplex primal (referred to in this text as P) 

and dual (D), hybrid primal (HP) and hybrid dual (HD), and a barrier algorithm (B). Hybrid 

algorithms use an advanced basis obtained by solving the network type part of the problem and 

then simplex primal or dual. We ran preliminary tests to determine which of these alternatives 

results in a smaller computational time in obtaining the optimal solution for our code (that uses 

Cplex 6.6 callable library in order to solve the RMPs) and for solving the problem, formulated 

with flows on arcs, by only using Cplex 6.6.  

We now present the results from the preliminary tests for each of the methods.  

Cplex 

We tested the five algorithms with a few instances in order to select one algorithm to use 

in the tests of all instances. We kept all the parameters of Cplex in their default values. In 

particular, the Cplex optimality tolerance was not changed, thus being equal to 1e−6. 

The instances that we tested were: A100dl1, B100dl1 (larger instances with 100 nodes), 
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A100ss1, B100ss1 (smaller instances with 100 nodes) and the planar instances. For instances 

with 600 nodes, Cplex could not solve the problem due to the huge size of the models. The 

same happened with the larger planar instance (planar150). For almost all the other planar 

instances, the dual algorithm resulted in the best computational times. The exception was the 

planar50 instance, for which the best result was obtained when using the primal algorithm. 

The results for the tested instances with 100 nodes are given in Table 5.5. 

 

Algorithm 
Instance 

P D HP HD B 

A100dl1 4467.3 188.5 2479.9 481.4 267.3 

A100ss1 294.1 24.4 181.4 54.0 91.3 

B100dl1 87.9 250.8 83.3 149.7 17.1 

B100ss1 1.8 1.5 1.3 1.5 1.9 

Table 5.5 Cplex results of the preliminary tests. 

After those tests, we decided to test each subset of instances with the best algorithm, 

since the preliminary tests with one of the smaller and one of the larger instances indicated 

different algorithms. Thus, we carried out also a preliminary test with one instance from the 

subset B100ds and one other from B100sl. For the instance from the subset B100ds Barrier was 

the best algorithm (5.3 seconds against the 16.1 of the second best that was Hybrid Primal) and 

for the instance from the subset B100sl Hybrid Primal performed better than all the others (3.0 

seconds against 3.4 of the second best that was the Primal). 

Bundle 

We calibrated a few parameters of the Bundle in one instance of each subset of A100 and 

B100. We set at 1e−5 the relative tolerance desired and we accepted (dual) solutions for which 

the final norm of the direction was smaller than 1e−3 (controlled through the t* parameter − for 

a description of the parameters of the used implementation of the bundle method, we refer the 

interested reader to the reference (Crainic et al., 2001)). We tried, with a few runs, to adjust the 

initial t, choose between m1=0.1 and m1=0 and also select the most efficient shortest path 

algorithm for the solution of the subproblems. The other parameters of the algorithm were set to 

their default values (chosen by the developer of the code). 

Being a dual method, the obtainable primal solution may be slightly unfeasible. With the 

parameter setting just described, that solution is 1e−5-optimal and, the violation of the 

constraints is, at most, 1e−3. 

We did not perform tests with the Bundle for instances with 600 nodes, given that for one 
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of the smaller instances with that number of nodes (B600ss1) the algorithm reached the 

maximum number of iterations set by us (10000), taking more than 1500 seconds. 

We did not test the planar instances, since previous computational results with standard 

column generation and bundle methods were reported in (Larsson and Yuan, 2004). 

Standard column generation 

In both column generation algorithms (standard and accelerated), we used the same 

stopping criterion: the algorithm stops when there are no attractive columns within a tolerance 

of 1e-5. This means that, in the worst case, the solution obtained is h.(1-e5)-optimal (we 

remember that h is the number of commodities/subproblems), since the sum of the reduced costs 

given by the most attractive columns of each of the subproblems is precisely a duality gap (as 

can be proved through the equivalence of Lagrangean relaxation and DWD). 

In Table 5.6 we present the results of the preliminary tests for standard column 

generation. For the A100, B100, and B600 instances, we decided to run the primal algorithm. 

For the A600 instances, we decided to run both primal and dual on the four subsets of instances 

and to choose the best result for each. For the instance B600dl1, the number of columns needed 

to obtain an optimal solution was significantly larger than for the other instances, so we also 

tested (for that instance, with the best algorithm, that is the primal) the removal of columns with 

a positive reduced cost in every iteration. That test is signalled with ‘*’ in Table 5.6. Its result 

shows that the alternative in question is not efficient. The primal algorithm resulted in the best 

computational time for all the planar instances. 

Accelerated column generation 

In Table 5.7 we present the results of the preliminary tests for CGA. For all the instances, 

the primal algorithm was the most efficient. Again, for the instance B600dl1, the number of 

columns needed to obtain an optimal solution was significantly larger than for the other 

instances, so we also tested the removal of columns with a positive reduced cost in every 

iteration. That test is signalled with ‘*’ in Table 5.7. Its result shows that performing the 

removal of columns (all that have positive reduced cost except the ones corresponding to 

circuits) is clearly preferable. The primal algorithm resulted in the best computational time for 

all the planar instances. 
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Algorithm 
Instance 

P D HP HD B 

A100dl1 1.5 1.6 6.6 2.2 9.9 

A100ss1 0.5 0.6 1.9 0.7 3.0 

A600dl1 168.8 188.5 2252.4 339.3 >2000 

A600ss1 258.0 174.4 >2000 339.2 1573.5 

B100dl1 2.3 5.3 7.4 7.1 9.0 

B100ss1 0.2 0.3 0.7 0.4 1.6 

B600dl1 1326.6 3090.7 11936.7 1837.6 1326.6 

B600dl1 9523.5*     

B600ss1 74.3 120.2 634.4 602.1 341.3 

Table 5.6 Standard column generation results of the preliminary tests. 
* Removal of columns with positive reduced cost in every iteration. 

Algorithm 
Instance 

P D HP HD B 

A100dl1 1.5 1.5 10.7 2.4 10.6 

A100ss1 0.5 0.5 4.0 0.8 5.4 

A600dl1 59.0 105.7 1003.0 122.2 >2000 

A600ss1 103.1 137.5 1452.8 196.4 1131.9 

B100dl1 1.3 1.6 7.5 4.9 4.9 

B100ss1 0.2 0.2 0.6 0.3 0.9 

B600dl1 252.1 461.7 1962.4 719.4 252.1 

B600dl1 161.8*     

B600ss1 24.4 31.2 222.7 64.5 95.4 

Table 5.7 Accelerated column generation results of the preliminary tests. 
* Removal of columns with positive reduced cost in every iteration. 

5.6.3 Computational results 

We now present the computational results for all instances. The results reported are the 

average of each subset of three instances, except for planar instances. 

Instances A 

In Table 5.8 and Table 5.9 we report the results for instances A. The last column in Table 

5.8 is the relative variation (in percentage) of CGA with respect to CG (their values are 
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calculated with more precision than the absolute times presented). 

 

Instance Cplex Bundle CG CGA %∆ 

A100dl 195.2 18.2 1.2 1.1 −10.2 

A100ds 29.7 9.4 0.6 0.7 31.9 

A100sl 77.1 5 0.8 0.8 −4.1 

A100ss 23.8 2.9 0.5 0.5 5.3 

A600dl − − 154.4 52.8 −65.8 

A600ds − − 82.7 30.9 −62.6 

A600sl − − 173.5 98.4 −43.3 

A600ss − − 54.9 34.4 −37.4 

Table 5.8 Time results for A instances. 
− Not tested. 

Number of iterations Number of columns Mean time RMPs 
Instance 

Bundle CG CGA CG CGA CG CGA 

A100dl 601* 8.0 7.3 2228 2782 0.08 0.09 

A100ds 422* 8.7 7.7 1155 2087 0.02 0.06 

A100sl 428* 8.0 7.7 2046 2831 0.05 0.05 

A100ss 239* 8.7 7.7 1143 1815 0.03 0.04 

A600dl − 12.3 8.7 18551 19262 10.0 3.7 

A600ds − 11.0 8.7 10867 13761 6.0 2.2 

A600sl − 11.3 10.3 18863 20593 13.4 7.9 

A600ss − 11.0 11.0 9295 14180 3.9 2.2 

Table 5.9 Detailed results for A instances.  
Values marked with * are for the first instance of the corresponding set.  

− Not tested. 

Instances B 

In Table 5.10 and Table 5.11 we report the results for the B instances. 
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Instance Cplex Bundle CG CGA %∆ 

B100dl 20.1 38.3 2.1 1.2 −44.9 

B100ds 7.2 5.3 0.7 0.5 −31.1 

B100sl 3.5 10.6 0.6 0.4 −38.2 

B100ss 1.5 2.2 0.3 0.2 −1.3 

B600dl − − 1470.9 175.1 −88.1 

B600ds − − 685.3 166 −75.8 

B600sl − − 255.1 78.9 −69.1 

B600ss − − 75.9 26.9 −64.6 

Table 5.10 Time results for B instances. 
− Not tested. 

Instance Number of iterations Number of columns Mean time RMPs 

 Bundle CG CGA CG CGA CG CGA 

B100dl* 1462* 8.3 5.7 3272 2257 0.22 0.13 

B100ds* 295* 10.0 7.0 1779 1394 0.05 0.04 

B100sl* 962* 6.7 5.3 2593 1612 0.06 0.03 

B100ss* 340* 6.3 6.0 1173 868 0.02 0.01 

B600dl − 13.3 48.3** 39636 8880** 109.1 3.1 

B600ds − 16.3 10.3 24791 15357 41.3 15.3 

B600sl − 11.3 6.3 27958 17465 21.5 10.4 

B600ss − 12.0 7.3 13057 8673 5.5 2.7 

Table 5.11 Detailed results for the B instances.  
 * First instance of the corresponding set.  

** We recall that, in all iterations, removal of columns is performed. 
− Not tested. 

Planar instances 

In Table 5.12 and Table 5.13 we report the results for the planar instances. 
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Instance Cplex CG CGA %∆ 

planar30 0.2 0.1 0.1 −14.3 

planar50 3.9 0.2 0.2 11.8 

planar80 73.0 1.3 0.8 −38.4 

planar100 291.2 3.1 2.0 −35.5 

planar150 − 88.6 43.6 −50.7 

Table 5.12 Time results for the planar instances. 

Number of iterations Number of columns Mean time RMPs 
Instance 

CG CGA CG CGA CG CGA 

planar30 4 4 223 500 0.01 0.01 

planar50 9 8 806 1290 0.00 0.01 

planar80 9 7 2410 2632 0.10 0.07 

planar100 9 7 4256 4372 0.23 0.18 

planar150 14 11 14900 12746 6.0 3.7  

Table 5.13 Detailed results for the planar instances. 

We now summarise the conclusions that can be drawn from the computational tests just 

presented. 

When compared with Cplex, standard column generation is a very efficient method to 

solve the tested type of instances. In the smaller instances, it was always faster (at least five 

times but frequently much more). For the larger instances, which Cplex could not solve with the 

available memory, standard column generation could do it in reasonable amounts of time. 

When compared with the bundle method, standard column generation is also more 

efficient for the instances tested. We note that the fact that the bundle code used is an 

aggregated implementation of the method may be a significant reason for its poor results, as the 

number of iterations is extremely large when compared with column generation. 

The computational tests clearly show the effectiveness of the method proposed in this 

work to accelerate column generation. In fact, for all groups of instances that took more than 

two seconds to be solved by standard column generation, the relative improvement is always 

greater than 35% and frequently greater than 60%. 

The best relative improvements were achieved in the larger instances, and, in particular, 

in the instances with a large number of commodities defined in dense networks. 

 

We expected a smaller number of iterations (that is the number of RMPs solved) for the 

proposed method, when compared to standard column generation. For almost all sets of 
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instances, that was the case, but the difference was not as significant as expected. As for the 

number of columns, the results show that the insertion of extra variables does not change 

significantly the size of the RMPs; in fact, sometimes the final number of columns is inferior in 

the accelerated column generation case. We expected the time spent in solving the RMPs to 

increase in the case of the extended model, due to the presence of extra constraints (in fact, 

ranged constraints). However, that did not happen: the presence of the extra variables made the 

solution of the RMPs easier, as can be seen in the average time spent on the RMPs. 

5.7 Conclusions 

In this Chapter, we presented a way of accelerating column generation for the linear MFP 

in planar graphs. The method used is based on a new model, which includes a polynomial 

number of extra variables corresponding to flows on circuits. After an optimal solution to the 

model with extra variables is obtained, we recover an optimal solution to the original model by 

a procedure that forces all the extra variables to have a null value by redirecting its flow to the 

original variables, which are flows on paths. 

Computational tests were made for three sets of randomly generated instances: two of 

them, generated by us, with 24 instances (several groups of three instances with similar 

characteristics) and the third, not generated by us, with five instances. The results of these tests 

empirically showed that our method to accelerate column generation is effective. In almost all 

instances, our procedure reduced the computational time by significant amounts. In particular, 

for all groups of instances that took more than two seconds to be solved by standard column 

generation, the relative improvement was always greater than 35% and frequently greater than 

60%. 

 

The presented approach poses no theoretical difficulties when applied to other 

multicommodity flow problems. In particular, the extension to instances with multiple origins 

and destinations is trivial.  

A natural development of the current work is to apply the same approach on 

multicommodity problems defined in general networks. The main question that arises is how to 

control the (exponential) number of extra variables, or, in other words, how to select an 

effective subset of extra variables such that they do not render the master problem too large. 
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6 ADDing: Automatic Dantzig-Wolfe Decomposition 
for Integer Column Generation 

In this Chapter, we describe ADDing, an implementation of a general branch-and-price 

algorithm in C++.  

The main distinctive feature of ADDing is that it can be used as a “black-box”: all the 

user is required to do is to provide an original (mixed) integer model. ADDing automatically 

decomposes the original model and combines column generation and branch-and-bound 

(branch-and-price) to obtain an (integer) optimal solution. All the (non-trivial) implementation 

details of such type of algorithms (such as interaction between the restricted master problem and 

the subproblem(s), combination of column generation and branch-and-bound, rows and columns 

management, management of the search tree, data structures, ...) are transparent to the user, 

although controllable by a set of input parameters. 

ADDing can also be customised to meet a specific problem, if the user is willing to 

provide a subproblem solver and/or specific branching rules. Those can be implemented with a 

few functions. 
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6.1 Introduction 

 

ADDing, Automatic Dantzig-Wolfe Decomposition for INteger column Generation, is an 

implementation of a general branch-and-price algorithm in C++. The main objective of its 

development was to provide an easy and fast way to implement (different) decomposition 

approaches for (mixed) integer problems.  

 

Branch-and-price combines two well-established methods, column generation and 

branch-and-bound, to obtain the optimal solution of (mixed) integer problems. Although those 

two methods are known since the late 1950s, only in the middle 1980s their first combination 

was developed to obtain optimal integer solutions for a routing problem (Desrosiers et al., 1984) 

and only in the late 1990s the first revision paper about branch-and-price was published 

(Barnhart et al., 1998). Branch-and-price methods were reviewed in Chapter 2; other surveys, 

besides the one already mentioned, can be found in (Wilhelm, 2001; Lübbecke and Desrosiers, 

2002). 

 

In its more simple use, the main feature of ADDing, is that its user only needs to specify 

an original formulation for the (mixed) integer problem (MIP) he/she wants to solve, along with 

the decomposition to be used (that is, which constraints define the subproblem(s)). All the (non-

trivial) implementation details of such type of algorithms (such as interaction between the 

restricted master problem (RMP) and the subproblem(s), combination of column generation and 

branch-and-bound, rows and columns management, management of the search tree, data 

structures, ...) are hidden and the user does not need to worry about them. Being so, ADDing can 

be used as a “black-box” where the input is a MIP model and the specification of a 

decomposition and the output is an optimal solution obtained by branch-and-price (of course, if 

the problem has one, and a time limit or other stopping conditions specified by the user through 

parameters were not met). 

ADDing can also be customised for a specific problem by letting its user implement two 

major pieces of branch-and-price algorithms: the subproblem solver and branching rules. This 

allows the full exploration of the structure of the problem at hand. In this type of use, one exact 

subproblem solver must be provided. An unlimited number of subproblem heuristics may also 

be provided; these may be used in constructing the first RMP and in solving the subproblems 

heuristically. Specific branching rules play a fundamental role in an efficient search of the tree, 

and can also be provided by the user. Being so, besides the “black-box” use, ADDing can also 
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be used as a “tool-box”, where the user only implements small blocks of code related with the 

specific problem he/she wants to solve. 

The two types of use described in the two previous paragraphs are, by no means, 

exclusive. In a first approach to a structured MIP, ADDing can be used as a “black-box” in order 

to test different decompositions and, roughly, the efficiency of the branch-and-price method. 

That is done with a very small coding effort. The use of ADDing as a “tool-box” afterwards 

allows the improvement of the algorithm’s efficiency. 

The generality of ADDing relies on the exchange of information between the original 

formulation (provided by the user) and the master model (derived internally). The branching 

scheme consists in deriving branching constraints in the original variables and including them in 

the master problem, modifying the objective function of the subproblem(s) accordingly (as 

opposed to branching by subproblem and master modifications, as is common in branch-and-

price algorithms for binary problems). 

The current version of ADDing is 1.0. It has been used as a “tool-box” for two different 

decompositions for the binary multicommodity flow problem (see Chapter 4) and, as a “black-

box”, for two different decompositions for a MIP (multi-item lot sizing with setup times) 

(Pimentel et al., 2004). 

 

Several frameworks have been developed to make the implementation of branch-and-

price algorithms (in fact, branch-and-cut-and-price algorithms) easier, such as Abacus (Thienel, 

1995; Jünger and Thienel, 2000), COIN/BCP (Ralphs and Ladányi, 2001) and Symphony 

(Ralphs and Ladányi, 2003). A distinctive feature of ADDing is the “black-box” use. At least in 

a preliminary phase, for example when testing different decomposition approaches, it may serve 

as a guide to the subsequent full exploration of a branch-and-price algorithm.  

The current version of ADDing by no means attains the power and flexibility of those 

frameworks (for example, it does not include the use of cuts), neither implements several 

components that certainly would improve branch-and-price efficiency (such as preprocessing 

and reduced cost fixing), some of which are detailed in (Vanderbeck, 2005). However, we 

believe its simplicity of use and future improvements related with issues not implemented in 

those frameworks (such as stabilisation techniques and multiple Dantzig-Wolfe decomposition, 

addressed in Chapter 2, subsection 2.5.5, page 50) justify its further development. 

 

This Chapter is written with two purposes: to introduce to the use of ADDing and to 

describe briefly its internal structure. We do not detail the theoretical foundations behind it, 

which were presented in Chapter 2. Section 6.2 (along with the Appendix) can be taken as a 

brief users’ manual for using ADDing as a “black-box” and as a “tool-box”. In Section 6.3, the 

general structure and the main classes of ADDing are described. In Section 6.4, conclusions 
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from this work are drawn and future developments are discussed. 

6.2 Using ADDing 

In this Section we provide an overview of ADDing from a user perspective. 

ADDing was programmed in C++ in the development environment Microsoft Visual 

Studio 6.0 and uses Cplex (ILOG, 2002) for solving the RMPs and the subproblem(s) (when the 

user does not provide an exact subproblem solver). 

The main purpose of ADDing is to provide an automatic way of solving a MIP problem 

by decomposing it (using Dantzig-Wolfe decomposition) and combining column generation and 

branch-and-bound (branch-and-price). 

6.2.1 Models representation 

It is assumed that the user has one model, denoted as the original model, which can be 

schematically depicted as in Figure 6.1. We omit the size of vectors and matrices for simplicity 

of notation. Rows SP refer to the constraints that define the subproblems.  

 e x
1 

... x
h 

  

SP 1  A
1 

  {≤,=,≥} b
1 

...   ...  ... ... 

SP h    A
h 

{≤,=,≥} b
h 

Linking 

constraints 
E D

1 
... D

h 
SenseLink RhsLink 

Objective 

coefficients 
EObj DObj

1 
... DObj

h
   

Figure 6.1 Schematic representation of an original model for ADDing. 

We now point out some issues related with the original model and its schematic 

representation. 

• The original model has a block angular with linking constraints structure. However, 

considering only one (A) block, that is h=1, a general MIP may be considered. If the 

only block has a block diagonal structure, we obtain an aggregated decomposition. 

• A different ordering of the variables gives another representation that leads to a 

different decomposition. 
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• The x variables can be linear and/or integer and/or binary. In the current version of 

ADDing the e variables, denoted as extra variables, must be linear. 

• The e variables, may be used as stabilisation variables (a model that uses this type of 

variables was presented in Chapter 5). 

 

Based on the original model, ADDing builds an internal master problem, as depicted in 

Figure 6.2 (in fact, it does not use that representation explicitly, since, of course, columns are 

dynamically generated − and, depending on some input parameters, removed; the same happens 

with rows − however, the user does not have to worry about these internal details).  

Columns Art and e are associated with artificial and extra variables, respectively. The e 

variables were already defined in the original model, and since they do not belong to any 

subproblem, their translation to the master problem is straightforward. As for the artificial 

variables, we decided to let the user specify their number and coefficients in the master model, 

possibly taking advantage of his knowledge of the problem. However, ADDing has a hidden 

artificial variable, allowing the user not to include artificial variables explicitly in the master 

model. Again the user is allowed to incorporate his/her knowledge in the master model by 

defining the sense of convexity constraints (for example, when the feasible region of the 

subproblem includes the origin, the user may prefer to define “less than or equal to” convexity 

constraints, as opposed to the usual equalities). Letting the user specify the right-hand side 

(RHS) of convexity constraints extends the possible use of ADDing. For example, in the path 

decomposition for the integer multicommodity flow problem (addressed in Chapter 3) those 

constraints have a RHS different from one. 

 

In Figure 6.2 two columns (λk1 and µk1
) related with one extreme point (y

k1
) and one 

extreme ray (uk1
) of a subproblem k (1≤ k≤ h) are represented. We note that, as shown in the 

same Figure, all the coefficients of these columns can be computed given the original model. 

We also note that if the subproblem(s) do(es) not have extreme points, but only extreme rays, 

there are no convexity constraints in the master model. 

Summing up, the user of ADDing must provide all the decomposition information, which 

includes the one depicted with colours in Figure 6.1 and Figure 6.2 (including the dimensions of 

the matrices and vectors). Along with that information, the user may specify which constraints 

are present in the first RMP. That issue is related with the dynamic management of rows, which 

is controlled through a set of parameters. In some models, the D matrices are all equal, that is 

D=D
1
=...=D

h. For those models, the user may define only one D matrix. 

In a “black-box” use, the subproblems (represented in yellow in Figure 6.1) only need to 

be specified, that is, the user must provide no solver. In a “tool-box” use, the subproblems are 
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totally managed by the user: he/she must implement some functions in order to return solutions 

to them. 

Variables Art e λk1
 µk1

 ...   

...  ... ... ... ... ... 

Convexity 

constraint 

of SP k 

 1 0 ... SenseConv[k] RhsConv[k] 

...  ... ... ... ... ... 

Linking 

Constraints 

E’ 

E D
k
y
k1

 D
k
u
k1
 ... SenseLink RhsLink 

Objective ArtCost EObj DObj
k
 y

k1 
DObj

k
u
k1
 ...   

Figure 6.2 Schematic representation of the master model. 

6.2.2 “Black-box” use 

In Figure 6.3, we illustrate the use of ADDing. In a “black-box” use, all the user must do 

is to: 

• Create one object of the class Decomposition Model. 

• Use the public member functions of Decomposition Model to specify the 

decomposition (these are detailed in the Appendix, page A2). 

• Create an object of the class Branch and Price, whose constructor has three 

arguments: one decomposition model object, one string with the name of the file with 

the parameters (detailed in the Appendix, page A5) and one string with the name of 

the file where the results will be written (detailed in the Appendix, page A13). 

• Call the Optimise(...) public member function of Branch and Price that returns the 

final status of the optimisation (the possible values are given in Figure 6.4).  

 

The public member functions of the Decomposition Model class allow the specification of 

the decomposition model to be used. Two examples of such functions, SetDimensions(...) and 

SetTypeVars(...), are given in Figure 6.3. All the member functions the user must be aware of 

are detailed in the Appendix, page A2. Almost all of them have to do with the definition of the 

matrices and vectors represented with colours in Figure 6.1 and in Figure 6.2. All the user must 

do is to represent them in a compressed (column oriented) format (as the one used, for example, 

in COIN and Cplex). An issue worth pointing out is that the user may decide which rows will be 



Chapter 6: ADDing: Automatic Dantzig-Wolfe Decomposition for Integer Column Generation 

 

 

158 

generated only if needed (that is, if they are violated in an optimal solution). This type of 

dynamic management of rows, which can be further controlled by some parameters, can 

significantly improve the solution time of the algorithm. 

 

 

// Decomposition model 

decmodel *DM=new decmodel; 

  

// Construct the decomposition model  

DM->SetDimensions(10,20,30,30); 

DM->SetTypeVars(0,10,0); 

// ... 

  

// Branch-and-price solver 

branchprice *BP=new 

 branchprice(DM,"parameters_file.txt","results_file.txt"); 

 

int status = BP->Optimise(); 

cout << endl << status << endl; 

 

delete DM; 

delete BP; 

 

Figure 6.3 Using ADDing as a “black-box”: code required to the user (not including the 
specification of the decomposition model). 

0: An optimal solution was found. 

1: Time limit achieved in the root node. 

2: Time limit achieved not in the root node. 

3: The root node is unfeasible. 

4: There are no integer feasible solutions. 

5: A solution could not be obtained (numerical difficulties in 

solving the RMP). 

6: Problem is unbounded. 

7: Maximum number of optimised nodes achieved. 

Figure 6.4 Return values for branchprice->optimise(). 

 The use of user-defined parameters allows controlling several features of the branch-and-

price algorithm. Their use and meaning are detailed in the Appendix, page A5. Here we point 

out some of the main features the user may control using parameters (additional features, related 

with the user customisation of ADDing are listed in the next subsection): 

• The use of a heuristic at the root node. The heuristic consists in solving with Cplex the 

MIP associated with the (“optimal”) RMP obtained in the root. 

• The inexact solution of the RMP in some iterations. 

• The dynamic management of columns and rows. 

• The search strategy of the tree (depth, breadth, best, depth until an incumbent is found 

and then best, depth when branching occurs, best in the other situations). 

• The branching variable (fractional variable with fractional part closest to 0.5, first 
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fractional variable found, fractional variable with fractional part closest to 1, fractional 

variable with fractional part closest to 0). When customising ADDing (see next 

subsection) the user may specify other branching types, namely by generating 

branching constraints with more than one variable (branching on hyperplanes). 

• The specification of tolerances. 

The output of ADDing is a file with the results (name given as the third argument to 

branchprice::optimise() and extension “rst”) and another file (same name, extension “sol”). The 

results file has various information on the optimisation process, including the times spent in 

different parts of the algorithm, the value of the solutions, the number of optimised nodes in the 

tree and the number and largest dimensions of the RMPs solved. An example of such a file is 

given in the Appendix, page A13). 

6.2.3 “Tool-box” use 

When using ADDing as a “tool-box”, it is up to the user to provide a subproblem solver 

and/or one branching scheme. For that purpose, a user class must be derived from the base class 

Subproblem (which does not have pure virtual member functions in order to allow the “black-

box” use described before) (re)defining a set of virtual member functions. We denote that 

derived class by MySubproblem. We now briefly describe the fundamental issues related with 

its implementation; details are given in the Appendix, page A14. 

 

When implementing a subproblem solver, there are two functions that have to be 

necessarily redefined by MySubproblem: SetSP(...) and Optimise(...). The first one is conceived 

to receive the modified costs of the current iteration of the column generation algorithm. Those 

will be used in Optimise(...), which must implement an exact subproblem solver, returning an 

optimal extreme point or a ray. 

Other member functions of Subproblem may be redefined by MySubproblem (in fact, 

defined, since they are virtual dummy functions, the base class does not have a default 

implementation). Those are related with subproblem heuristics, second best solutions, and 

explicitly defined sets of feasible solutions of the subproblem.  

Subproblem heuristics can be used for three purposes: constructing the first RMP, solving 

the subproblem heuristically (which can be useful if the subproblem is a “difficult” one − in that 

case, when the heuristics do not generate attractive columns, the exact solver is used to ensure 

optimality) or inserting additional attractive columns in some iterations of the column 

generation algorithm.  

Two types of heuristics can be implemented: aggregated and disaggregated. In an 

aggregated heuristic the solution of one subproblem influences the solution of the others. In a 
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disaggregated heuristic each subproblem is solved independently. We note that the extreme 

points will always be inserted in the RMP in a disaggregated manner. Currently ADDing does 

not support aggregated columns (that is, the possibility of one column being related with more 

than one subproblem). 

The MySubproblem class may also implement a function (OptimiseNext(...)) to provide 

the second best, third best, and so on, solutions. This function is useful for generating additional 

columns of good quality in some iterations of the column generation algorithm.  

The first RMP may have a set of points, or rays, explicitly given by the MySubproblem 

class, which is achieved by implementing the function GetSetExtreme(...). 

 

When implementing specific branching rules, the only function that has necessarily to be 

redefined by MySubproblem is GetBranches(...). The MySubproblem class can access the 

current (fractional) solution values (by using a public member function of the class Original 

Solution). Based on that solution it must construct a set of branching constraints (one for each 

new node), based on the original variables, through the use of the public member functions of 

class Constraint (an array of objects of the class Constraint are passed by reference in this 

function). 

 

A set of parameters controls the use of all the features described in this subsection. All 

the details about the functions mentioned here and those parameters are given in the Appendix. 

6.3 Inside ADDing 

6.3.1 Overview 

The main two pre-requisites we considered for the development of ADDing were: (i) it 

should be simple to use, either as a “black-box” or as a “tool-box” and (ii) its design should 

allow an easy incorporation of new features, compromising as little as possible its overall 

structure. 

The concepts of inheritance and polyphormism of object-oriented programming clearly 

seemed to allow the accomplishment of the first pre-requisite. In addition, the modular approach 

of object-oriented modelling seemed to make easier the accomplishment of the second pre-

requisite, allowing changes to the implementation of part of the overall algorithm without 

involving modifications in the other parts, making the maintenance and extension easier. 

The programming language C++, given its widespread use in the Optimisation 

community, was the one chosen for coding ADDing.  

In this first full cycle (from the analysis phase to the test phase) of the development of 
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ADDing, we concentrated on the accomplishment of the first pre-requisite, while always having 

in mind the second one. 

6.3.2 Main classes 

In Figure 6.5, a simplified UML (Unified Modelling Language) class diagram of ADDing 

is depicted. After commenting on that simplified diagram, we will point out some classes and 

relations that were excluded. We designate classes with a capital letter and the objects that 

instantiate them in lower case. 

The classes Decomposition Model and Parameters can be seen as inputs for the Branch 

and Price class that coordinates the branch-and-price algorithm, sending the output to the 

Results class. These one-to-one associations between those classes are denoted by the lines 

without arrows. 

The class Branch and Price is composed (black diamond) of Node Solver and Tree. The 

Node Solver class is responsible for solving a node of the search tree. For that purpose, it is 

composed by a Column Generation class that has an association with Subproblem. This last 

class, as detailed in the previous Section, is the base class of an inheritance relation with 

MySubproblem.  

An object of the class Tree is composed by several objects of the class Node (each 

associated with a node of the search tree). In addition, the class Tree has an association with the 

class Subproblem in order to generate branches. 

The Subproblem class is associated with two very different classes. We chose that design 

option, for a practical reason: it allows the “tool-box” user to deal with only one class (apart 

from, of course, the Decomposition Model class). 

The implementation of ADDing has a major difference in relation to the class diagram of 

Figure 6.5. In fact, the Decomposition Model class is composed by one Subproblem class. The 

same practical reason justifies that design option: in this way, a “black-box” user deals with 

only the class Decomposition Model. 

One important class is not depicted in Figure 6.5: the one which represents an Original 

Solution. This class has associations with almost all the others. Along with a Node object 

(whose entire set of associatios are also not depicted in the simplified UML class diagram), it is 

responsible for the main flow of information between the classes. 
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Figure 6.5 UML class diagram of ADDing. 

6.3.3 Information flow 

Two objects are responsible for the main flow of information, allowing the interaction of 

the other objects in order to implement the branch-and-price algorithm. Those two objects, 

namely original solution and actual node (class Node) are passed between public member 

functions of the classes that require them and modified through their own public member 

functions. 

We now briefly describe their “journey” following a normal execution of a branch-and-

price algorithm, giving some details on how the other classes deal with them. 

The actual node object essentially contains the branching constraints of the node to be 

optimised, the lower bound given by its father, and (after being optimised) its own lower bound. 

The original solution object contains the information about the solution associated with the 
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node. Its flow is similar to the one of actual node. 

It is up to the tree object to set the node to be optimised, returning it to branch and price 

when its function GetNode() is called. Then branch and price passes it down to node solver, 

which in turn passes the information relevant for the column generation algorithm (that is, the 

branching constraints) to column generation. This last object returns the result of the 

optimisation of the node and, if a feasible solution is obtained, updates original solution. 

About the Column Generation class it is worth noting that the master model depicted in 

Figure 6.2 is not explicitly considered. All constraints (convexity, linking, and branching) are 

represented in the original variables in an object of a class Constraint (which distinguishes its 

type by an integer code) and has a pointer to the index of the corresponding row in the LP solver 

(currently only Cplex can be used). A similar representation is done for columns. 

After the optimisation of the node, actual node and original solution make the inverse 

path, up to the branch and price object, which sends them along with the result of the 

optimisation (an integer) to the tree object. The tree private data structures are updated 

(generation of new nodes, modifying the incumbent value, ...) and the overall process is 

repeated until the tree states to branch and price that there are no more nodes to optimise. 

 

In the current version of ADDing, the Node Solver class may seem redundant. It is 

included to allow the possible extension of ADDing in two directions: (i) by adding cuts and (ii) 

by allowing to solve a node by different solution methods.  

In fact, a Cut Generation class (for lifted cover inequalities) at the same level as Column 

Generation in the UML class diagram was already implemented and tested in a specific 

problem. However, in order to belong to ADDing, more generality and simplicity of use (our 

main purposes) must be achieved with that class. 

6.4 Conclusions 

In this Chapter we presented ADDing (Automatic Dantzig-Wolfe Decomposition for 

INteger column Generation), a set of C++ classes that implements a branch-and-price 

algorithm, based on decomposing a (mixed) integer programming model.  

Our main goal when developing ADDing was to provide its users with a simple and fast 

way to implement decomposition approaches for solving (mixed) integer problems. That goal 

was clearly obtained. When using ADDing as a “black-box”, an original user-provided model is 

the only input required for ADDing to perform a decomposition and to obtain an optimal 

(integer) solution using branch-and-price. A main feature of ADDing is that the user can 

dynamically manage rows (in a transparent way), which may considerably improve the 
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efficiency of branch-and-price / column generation. 

ADDing can also be used as a “tool-box”. In that case, the user may implement specific 

subproblem solvers (including heuristic ones) and specific branching rules. That kind of 

utilisation involves a deeper knowledge of C++, but the few functions that have to be 

implemented in the derived class are expected to be easy to understand. 

The internal structure of ADDing is based on the exchange of information between the 

original model and the master model. Keeping the branching constraints, derived in the original 

variables, in the model made the general − but simple − use that we intended easier. 

 

At this time, the first cycle of the development of ADDing is finished. It has been used as 

a “tool-box” for two different decompositions for the binary multicommodity flow. All the 

features of ADDing here described were tested. It has also been used as a “black-box” for two 

different decompositions for a multi-item lot sizing with setup times problem. 

We plan to improve ADDing further, in a near future, with two features already at an 

experimental phase: the incorporation of lifted cover inequalities and the combination of 

column generation and subgradient optimisation. In addition, there are two issues that can 

improve significantly the usability of ADDing: allowing the use of different LP solvers (which 

can be done by interfacing ADDing with COIN) and exploring the possibility of specifying the 

original model with a high-level / modelling language. 

 

We definitely plan to explore other ideas. Firstly, multiple Dantzig-Wolfe decomposition. 

Secondly, hybridisation of branch-and-price and heuristics. 

Having in mind that we must keep what we believe to be the main characteristic of 

ADDing − its simplicity of use −, those are challenging tasks. 
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7 General Conclusions 

In the present Thesis, we presented column generation based algorithms for the linear, 

general integer, and binary minimum cost multicommodity flow problems. 

Our general approach for (mixed) integer problems is based on using the Dantzig-Wolfe 

decomposition in a compact (original) formulation, combining column generation and branch-

and-bound by defining the branching constraints on the original variables and keeping them in 

the (restricted) master model. 

This approach was applied in the integer and in the binary multicommodity flow 

problems using a path decomposition. For the binary multicommodity flow problem, we also 

presented a decomposition based on defining the subproblem as a set of independent binary 

knapsack problems, which gives better quality lower bounds. 

For the linear multicommodity flow problem defined in a planar network, we proposed a 

new model that allows the column generation approach to be significantly accelerated. 

We detailed how to deal with negative cost cycles when using column generation for 

solving the path based decompositions of the three different multicommodity flow problems. In 

the case of the integer and the binary problems that is an important issue, because of the 

branching constraints of the type “greater than or equal to”. In the case of the approach 

presented for accelerating column generation for the linear multicommodity flow problem in 

planar networks, negative cost cycles may appear because of the extra constraints used in the 

extended model. 

 

Comparative computational results with a general-purpose solver were given for all the 

developed algorithms. 

For the integer multicommodity flow problem, we used a set of instances publicly 

available that have been tested before by several other authors using methods for the linear 

multicommodity flow problem. The conclusions from those computational tests were not as 

expressive as we expected, since the linear relaxation of almost all the instances tested had an 

integral optimal solution. Anyway, the proposed algorithm provided better time results in 

several instances, and, for the larger ones, it can be concluded that it is the only feasible 
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direction to be followed, given the huge memory requirements of the formulation that must be 

used by a general-purpose solver (the one used in this work was Cplex 6.6). 

For the binary multicommodity flow problem, our branch-and-price algorithm for the 

path decomposition provided slightly better results than the one previously developed in 

(Barnhart et al., 2000) (the main difference between the two algorithms is the branching 

strategy). Even with the use of general lifted cover inequalities in that algorithm (branch-and-

price-and-cut) the results obtained were not competitive with the ones of the general-purpose 

solver Cplex 8.1, except for a few instances. The same happened with the branch-and-price 

algorithm based on the knapsack decomposition. Although giving better lower bounds, this 

decomposition proved to be particularly difficult to solve. Even using dynamic insertion and 

removal of rows, the majority of the larger instances tested could not be solved in one hour. To 

our best knowledge, the comparison between decomposition approaches and a general-purpose 

solver for the binary multicommodity flow problem was made for the first time. Given the fact 

that, in the literature, that approach is always taken as non-promising, this result came as a 

surprise. 

For the linear multicommodity flow problem defined in a planar network, the proposed 

method for accelerating column generation was significantly faster than standard column 

generation in the randomly generated instances (some of them generated by other authors). For 

all instances that took more than two seconds to be solved by standard column generation, the 

relative improvement was always greater than 35% and frequently greater than 60%. 

 

ADDing (Automatic Dantzig-Wolfe Decomposition for INteger column Generation), a set 

of C++ classes, was developed. Its main purpose is to provide a simple and fast way to 

implement decomposition approaches for solving integer programming models by branch-and-

price. The main distinctive feature of ADDing, when compared with the existing frameworks, is 

that it can be used as a “black-box”: all that the user is required to do is to provide an original 

(mixed) integer model. It includes several features, in a transparent way to the user, that are 

time-consuming (and non-trivial) tasks when programming column generation based 

algorithms, such as the dynamic management of rows. 

ADDing was used only to implement the decompositions and branch-and-price 

algorithms for the binary multicommodity flow problem, since its development was undertaken 

after the implementation of the algorithms for the other two problems.  

 

Several issues were left open in this work. 

We presented multiple Dantzig-Wolfe decomposition but did not implement it. In 

addition, we described how general cuts can be incorporated in branch-and-price, as long as 

they are based on the original variables, but only implemented lifted cover inequalities for a 
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specific decomposition. We plan to work on those issues in a near future. 

The general-purpose solver we used (Cplex) was extremely efficient in solving a large 

number of instances of the problems we treated. However, decomposition approaches have clear 

advantages (at least, allowing the derivation of better lower bounds). We used a heuristic that 

consisted in solving a restricted master problem with Cplex at the end of the optimisation of the 

root node. We intend to explore further that kind of combination of column generation and a 

general-purpose integer programming solver. 

The generality of the branch-and-price methodology presented here allows its extension 

to any (mixed) integer problem. Its implementation for other problems may further contribute to 

clarify the practical advantages and disadvantages of decomposition approaches when compared 

with state-of-the-art general-purpose solvers. ADDing may play an important role in that kind of 

comparison. 

We intend to further explore column generation stabilisation methods, in particular for the 

knapsack decomposition of the binary multicommodity flow problem and by extending the 

stabilisation approach that was successfully used for the planar multicommodity flow problem 

to other network flow problems. 
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decmodel functions 

Dimensions and information about variables 

void SetDimensions (int NumSPs, int NumVars, int NumArts, int NumExtraVars) 

Sets the number of subproblems, the number of variables of each subproblem, the number 

of artificial variables to be used and the number of extra variables. Extra variables are linear 

variables that do not appear in the subproblem. Artificial variables can appear in the convexity 

and/or the original constraints of the master problem. The number of extra variables includes the 

number of artificials. Artificial variables are in the first NumArts positions of NumExtraVars. In 

the example of Figure 6.3, page 158 of the main text, the original model has 10 subproblems, 

each with 20 variables. The number of artificial variables to be used is 30. There are no extra 

variables. 

void SetTypeVars (int NumLinVars, int NumBinVars, int NumIntVars) 

Sets the number of linear variables, binary variables and general integer variables. The 

order is important: first NumLinVars are linear, the next NumBinVars are binary and the next 

NumIntVars are general integer ones. Note that NumLinVars + NumBinVars + NumIntVars must 

be equal to aNumVars defined in the previous method. In the example of Figure 6.3, page 158 

of the main text, the original model has 10 binary variables. 

void SetObjVars (double ** ObjVars) 

Sets the coefficients of the variables in the objective function, ObjVars[k][j] contains the 

coefficient of the (j+1)-th variable of the (k+1)-th subproblem.  

Linking constraints 

void SetLink (int NumLink, char * SenseLink, int * RhsLink, bool * PresentLink) 

Sets the number, sense, and right-hand side of linking constraints. The sense of each 

constraint may be 'L', 'E' or 'G'. The last argument is used to tell which linking constraints will 

be kept in all (restricted) master problems. If PresentLink[i]==true then the (i+1)-th linking 

constraint will be present in the first (restricted) master problem (RMP) and never deleted. If 

PresentLink[i]==false then the (i+1)-th linking will not be present in the first RMP and may be 

deleted. This last option can be overriden by the input parameter ParDynLink. 

void SetDEqual (bool DEqual) 

If DEqual==true then D1
=...=D

h
=D.  
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If this function is not called it is assumed that all D matrices are different. After setting 

DEqual to true, function SetD(...) (and not SetDk(...)) must be called. 

void SetD (int *DBeg, int *DInd, double *DVal, int DNnz) 

Defines the matrix D in the case D=D
1
=...=D

h. Must be called after a call to 

SetDEqual(true).  

DBeg is an array of length NumVars where DBeg[j] contains the first index in DInd and 

DVal related with the (j+1)-th variable. DInd and DVal must contain the indices and values, 

respectively, in the original rows (excluding constraints related with subproblem − original 

model −, or convexity constrains − master model). DNnz is the length of the arrays DInd and 

DVal. 

void SetDk (int ** DkBeg, int ** DkInd, double ** DkVal, int * DkNnz) 

Same as SetD(...) but for the case where the D matrices are not all equal. For each 

subproblem k, the meaning of the arguments is equivalent to the one explained in SetD(...). 

Extra variables 

void SetE (int * EBeg, int * EInd, double * EVal, int ENnz) 

Sets the E matrices. EBeg is an array of length NumExtraVars where EBeg[j] contains the 

first index in EInd and EVal related with the (j+1)th extra variable. EInd and EVal must contain 

the indices and values, respectively, in the rows of the master (including convexity constraints, 

which allows using artificial variables in those constraints). ENnz is the length of the arrays 

EInd and EVal. 

void SetObjExtraVars (double * ObjExtraVars) 

Sets the coefficients of the extra variables in the objective function. ObjExtraVars[j] 

contains the coefficient of the (j+1)-th extra variable. 

void SetArtCost (double aArtCost) 

Sets the artificial cost value. An artificial cost is needed for keeping feasibility of the 

master in all nodes of the tree, since a hidden artificial variable is used there. 

Convexity constraints 

void SetConv (int NumConv, char * SenseConv = NULL, int * RhsConv = NULL, 

bool * PresentConv = NULL) 

Sets the number, sense, and right-hand side of convexity constraints. The sense of each 

may be 'L', 'E' or 'G'. The last argument is used to define which convexity constraints will be 

kept in all (restricted) master problems. If PresentConv[i]==true then the (i+1)-th convexity 

constraint will be present in the first (restricted) master problem (RMP) and never deleted. If 
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PresentConv[i]==false then the (i+1)-th linking will not be present in the first RMP and may 

be deleted. This last option can be overriden by the input parameter ParDynConv (defined in the 

next section). 

Subproblem definition 

void SetSubproblem (int * NumConstraintsk, char ** Sensek, double ** Rhsk, int 

** AkBeg, int ** AkInd, double ** AkVal, int * AkNnz) 

Defines the default subproblem(s). That is, the yellow blocks in Figure 6.1, page 155 of 

the main text. 

void SetSubproblem (subproblem *MySubproblem) 

If a specific subproblem solver or specific branching rules are to be used, an object of a 

class derived from the base class subproblem is passed by calling this function. In this case, it is 

up to the MySubproblem object to know about the model he will be asked to solve. 
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Parameters 

In order to use ADDing a parameters input file must be given. Each line of that file may 

be: 

• Empty.  

• Start with * (comment line). 

• Of the format \t* (comment line). 

• Of the format Value \tParameter. 

The Value field gives the value for the parameter specified by the field Parameter. Any 

missing parameter will take its default value. An example of a parameter file is given in Figure 

A.1. 

 

 

 ****************** 

 * General  * 

 ****************** 

 

 ParMaxTime 

false ParOnlyRoot 

 ParWriteSolution 

 

 ************** 

 * TREE       * 

 ************** 

 

 ParMaxOptimisedNodes 

 ParTypeSearch 

 ParUpBranchFirst 

-1 ParTypeBranch 

 ParRestartIterCount 

 ParRootHeur 

 

 ********************* 

 * FIRST RMP      * 

 ********************* 

true ParExtraSetFirstRMP 

false ParSPFirstRMP 

10 ParHeurFirstRMP 

 

 ********************* 

 * RMP OPTIMISATION  * 

 ********************* 

 

 ParRMPSolver 

20 ParIterExactRMP 

.001 ParMaxIterRMP 

 

 ********************* 

 * COLS MANAGEMENT   * 

 ********************* 

 

2 ParColsRemove 
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10 ParIterColsRemove 

 ParColsMaxInactivity 

 

 ************************ 

 * CONV ROWS MANAGEMENT * 

 ************************ 

 

false ParDynConv 

 ParConvRemove 

 ParIterConvRemove 

 ParConvMaxInactivity 

 ParIterConvInsert 

 

 ************************ 

 * LINK ROWS MANAGEMENT * 

 ************************ 

 

true ParDynLink 

 ParLinkRemove 

 ParIterLinkRemove 

 ParLinkMaxInactivity 

10000 ParIterLinkInsert 

  

 ********************* 

 * SUBPROBLEM     * 

 ********************* 

 

 ParSolveSPHeur 

 ParExtraHeurSols 

 ParIterExtraHeurSols 

 ParNumSPSolsAsked 

 

 ********************* 

 * LCI CUTS     * 

 ********************* 

 

 ParTypeLCICuts 

 ParDepthLCICuts 

 ParFirstLCICuts 

 ParFreqLCICuts 

  

 

 ************** 

 * TOLERANCES * 

 ************** 

 

 ParTolVar 

 ParTolObj 

 

Figure A.1 Example of a parameters file. 

We now describe the meaning of each parameter. 

General 

int ParMaxTime 

Maximum time, expressed in seconds, allowed to solve the problem.  

A negative value means no time limit is set. Possible values: any positive integer. 

Default: 3600. 
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bool ParOnlyRoot 

Specifies wether only the root is to be solved or not.  

Possible values: “true”, only the root node is solved; “false”, the integer problem is 

solved. Default: “false”. 

bool ParWriteSolution 

Defines if the obtained solution should be written to a file.  

Possible values: “true”, the obtained solution (in the original space) is written in a text file 

with the same name as the results file, with the extension 'sol'; “false”, the obtained solution is 

not written. Default: “false”. 

int ParMaxOptimisedNodes 

Limit to the number of optimised nodes of the search tree. A non-positive value means no 

limit is imposed. Default: 0. 

Tree 

int ParTypeSearch 

Search tree strategy. Possible values: 1, depth first; 2, breadth first; 3, best first; 4, depth 

until an incumbent is found and then best; 5, depth when branching occurs, best in the other 

situations. Default: 5. 

int ParTypeBranch 

Branching rule. For every default branching rule, binary variables have priority over 

general integer ones. Specific branching rules can be implemented in the class MySubproblem. 

Those should be assigned with negative integer values. Possible values: 1, fractional variable 

with fractional part closest to 0.5; 2, first fractional variable found; 3, fractional variable with 

fractional part closest to 1; 4, fractional variable with fractional part closest to 0. Default: 1. 

bool ParUpBranchFirst 

Specifies if priority should be given to up branches (last branching constraint of type “≥”) 

or down branches (“≤”). Possible values: “true”, first up branch is chosen before the down 

branch; “false”, first down branch is chosen before the up branch. Default: “false”.  

bool ParRestartIterCount 

Defines how the iteration count is performed in the nodes of the tree, other than the root. 

If this parameter takes value “true” then the iteration counter of column generation is reset in 

every node of the tree. That means that, for example, if the columns removal is performed every 

10th iteration and all the nodes of the tree are solved in less than 10 iterations then no columns 

removal is performed in the tree. The same applies to all parameters that depend on the iteration 

count. Possible values: “true” and “false”. Default: “false”. 
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bool ParRootHeur 

Defines wether a RMP heuristic is used at the root or not. The RMP heuristic consists in 

solving with Cplex the MIP associated with the last RMP obtained. Currently, the time spent in 

Cplex is limited to 60 seconds (more elaborated alternatives will be explored in a near future). 

Possible values: “true” and “false”. Default: “false”. 

First restricted master problem (RMP) 

bool ParExtraSetFirstRMP 

Controls if an extra set of extreme points and/or rays are asked to the subproblem in the 

construction of the first RMP. The availability of those additional columns are of the 

responsibility of the class MySubproblem. Possible values: “true” and “false”. Default: “false”. 

bool ParSPFirstRMP 

Controls if the first RMP includes columns associated with the optimal solutions of the 

subproblems solved with the original costs. Possible values: “true” and “false”. Default: “false”. 

char* ParHeurFirstRMP 

Heuristics must be implemented in the MySubproblem class. This parameter specifies 

which ones will be used in constructing the first RMP. Possible values: "-", do not use 

heuristics; any binary string, for instance “01010” means that the second and fourth heuristics 

will be used in constructing the first RMP (in this example, if MySubproblem only provides e. g. 

two heuristics, of course the fourth will not be used). Default: "1".  

RMP optimisation 

char* ParRMPSolver 

Solver of the RMPs. Possible values: “Cplex_P”, Cplex primal; “Cplex_D”, Cplex dual; 

“Cplex_N”, Cplex network followed by dual; “Cplex_B”, Cplex barrier. Default: “Cplex_D”. 

int ParIterExactRMP 

ADDing implements a non-standard procedure to deal with decompositions where the 

RMPs are particularly difficult to solve. The procedure consists in not solving the RMP exactly, 

but only performing a given number of simplex iterations (or finding a feasible dual solution if 

that number of iterations was not sufficient to find one), in some column generation iterations. 

Currently, ParIterExactRMP gives the initial frequency for solving exactly the RMP. Every 10 

iterations that frequency is decreased by one, until the RMP is solved exactly in all iterations. 

This strategy is particularly devised for generating quickly a large number of columns in the 

first iterations in order to obtain feasible solutions. Other strategies will be explored in a near 

future. This parameter will have effect only if the parameter ParRMPSolver is set to 

“Cplex_D”. Possible values: any positive integer. Default: 1. 



APPENDIX − ADDing Details 

 

 

A9 

double ParMaxIterRMP 

Sets the maximum number of (dual) simplex iterations when solving the RMP inexactly. 

If a feasible dual solution is not found in that number of iterations, the optimisation proceeds 

until that occurs. This parameter is irrelevant if ParExactRMP is set to 1 or ParRMPSolver is 

not “Cplex_D”. The unit measure of this parameter is equal to the number of convexity 

constraints plus the number of linking constraints. Possible values: any positive fractional. 

Default: 0.5. 

Columns management 

int ParColsRemove 

Parameter that controls the removal of columns. Possible values: 0, no columns removal 

is performed; 1, remove all columns inactive for more than ParColsMaxInactivity (see below) 

iterations; 2, remove columns if their number exceed three times the number of linking 

constraints plus the number of convexity constraints (starting with the ones with larger reduced 

cost); 3, remove all columns with reduced cost greater than the gap. Default: 0. 

int ParIterColsRemove 

Parameter that controls the frequency of columns removal (see ParColsRemove). Possible 

values: any positive integer. Default: 5. 

int ParColsMaxInactivity 

A column is inactive in one iteration if its reduced cost is greater than 1. If that happens 

for more than ParColsMaxInactivity consecutive iterations, that column is removed (if 

ParColsRemove is set to 2). Possible values: any positive integer. Default: 10.  

Convexity rows management 

bool ParDynConv 

If this parameter is set to “true”, convexity rows can be managed dynamically (that is, 

inserted and/or removed in some iterations) according to other parameters (see below). In that 

case, it is up to the decomposition model to specify which convexity rows cannot be removed. 

Setting this parameter to “false” overrides any intention of the decomposition model. Possible 

values: “true” and “false”. Default: “false”. 

int ParConvRemove 

Parameter that controls the removal of convexity rows. It only has effect if ParDynConv 

is set to “true”. Possible values: 0, no convexity rows removal is performed; 1, all rows that 

were inactive for the last ParConvMaxInactivity (see below) iterations. Possible values: any 

non-negative integer. Default: 0. 

int ParIterConvRemove 
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Parameter that controls the frequency of convexity rows removal. Only has effect if 

ParDynConv is set to “true” and ParConvRemove > 0. Possible values: any nonnegative 

integer. Default: 5. 

int ParConvMaxInactivity 

A row is inactive if it has slack or is of the form “0=0”. If that happens for more than 

ParConvMaxInactivity consecutive iterations, that row is removed (if ParConvRemove is set to 

1). Possible values: any positive integer. Default: 10.  

int ParIterConvInsert 

Frequency of violated convexity rows test. Only has effect if ParDynConv is set to “true”. 

Possible values: any positive integer. Default: 1. 

Linking rows management 

bool ParDynLink 

Same as ParDynConv (see above) but for linking constraints. Possible values: “true” and 

“false”. Default: “false”. 

int ParLinkRemove 

Same as ParConvRemove (see above) but for linking constraints. Possible values: 0, no 

linking rows removal is performed; 1, all linking rows that were inactive for the last 

ParLinkMaxInactivity (see below) iterations. Possible values: any nonnegative integer. Default: 

0. 

int ParIterLinkRemove 

Same as ParIterConvRemove (see above) but for linking constraints. Possible values: any 

positive integer. Default: 5. 

int ParLinkMaxInactivity 

Same as ParConvMaxInactivity (see above) but for linking constraints. Possible values: 

any positive integer. Default: 10. 

int ParIterLinkInsert 

Same as ParIterConvInsert (see above) but for linking constraints. Possible values: any 

positive integer. Default: 1000. 

Subproblem 

int ParSolveSPHeur 

The subproblem can be solved heuristically in all iterations. Whenever no attractive 

columns are generated, then an exact solver is used to check for optimality. This parameter tells 

which heuristic should be used in order to solve the subproblem heuristically. Possible values: 
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−1, do not solve the subproblem heuristically; n, use the n-th heuristic. Default: −1. 

char* ParExtraHeurSols 

In some iterations (see below, ParITerExtraHeurSols), heuristics for the subproblem can 

be used to obtain extra columns. This parameter defines which heuristics should be used. 

Possible values: "-", do not use heuristics; any binary string (for example, “01010” means that 

the second and fourth heuristics will be used to heuristically generate extra columns). Default: 

"01". 

int ParIterExtraHeurSols 

Frequency of extra columns generation through heuristics. It may be irrelevant depending 

on ParExtraHeurSols. Possible values: any integer (a negative value means extra heuristic 

columns will not be generated). Default: −1. 

int ParNumSPSolsAsked 

The subproblem class (in fact, currently only a derived class, MySubproblem) may be 

able to generate the second best, the third best, and so on, subproblem optimal solutions. This 

parameter controls the number of times the subproblem is asked to provide those sub-optimal 

solutions, as long as their columns are attractive. Possible values: any integer ≥0. Default: 0. 

Lifted cover inequalities (LCIs) 

The next parameters should not be used. The inclusion of LCIs cuts is still at an 

experimental phase. 

int ParTypeLCICuts 

Type of LCI cuts to be used. Possible values: −1, do not use LCIs; 0, generate general 

LCIs as described in Gu, Nemhauser and Savelsbergh (1998); generate simple LCIs as 

described in Gu, Nemhauser and Savelsbergh (1998). Default: −1.  

The LCI cuts will be used in the nodes of the search tree according to the next three 

parameters, which are cummulative. 

int ParDepthLCICuts 

Possible values: −1, do not use this parameter; 0, only in the root; n (positive integer): in 

nodes with depth ≤n. Default: −1. 

int ParFirstLCICuts 

Possible values: −1, do not use this parameter; n (positive integer): first n optimised 

nodes. Default: −1. 

int ParFreqLCICuts 

Possible values: −1, do not use this parameter; n (positive integer): every n-th optimised 
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node. Default: −1. 

double ParCutTail 

If the percentage improvement is not higher than this parameter, no more cuts are 

generated in the iteration. Possible values: any nonnegative fractional. Default: 0.001. 

Tolerances 

double ParTolVar 

Used for checking infeasibily (if the total value of artificial variables in an optimal RMP 

exceeds ParTolVar, then the node is unfeasible) and the integrality of the variables (a variable 

with a value with a fractional part smaller than ParTolVar or larger than 1−ParTolVar is 

considered as integer). Default: 1e−5. 

double ParTolObj 

Tolerance for the attractiveness of a column. Default: 1e−5. 
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Results 

The output of ADDing includes a file with results. In Figure A.2 an example of such a file 

is given.  

 Model info 

320 NumSPs 

192 NumVars 

192 NumArts 

0 NumExtraVars 

0 NumLinVars 

192 NumBinVars 

0 NumIntVars 

320 NumConv 

6144 NumOrig 

 

 General 

2797.75 TimeBPC 

2797.531 TimeBPCOpt 

0 StatusBPC 

 

 Tree 

0.079 TimeTree  

15 NumOpt 

3 NumPrunedAfterOpt 

3 NumIncumbentUpdates 

4 NumPrunedWithoutOpt 

9 NumParents 

0 NumPrunedDuringOpt 

0 NumUnfeasible 

4 NodeFirstIncumbent 

3134980 FirstIncumbentValue 

6 MaxQueueSize 

3132695 ValueIncumbent 

 

 Column generation 

0.156 TimeCGRMPFirst 

2229.047 TimeCGOptRoot 

2025.23 TimeCGRMPOptRoot 

40.364 TimeCGSPOptRoot 

567.656 TimeCGOptNode 

461.212 TimeCGRMPOptNode 

28.371 TimeCGSPOptNode 

2527 NumIterRoot 

1227 NumIterNode 

808640 NumCGSPsSolvedRoot 

27175 NumCGSPsPointRayRoot 

392640 NumCGSPsSolvedNode 

3135 NumCGSPsPointRayNode 

81631 NumCGRMPLargestColsRoot 

3286 NumCGRMPLargestRowsRoot 

84766 NumCGRMPLargestColsNode 

3437 NumCGRMPLargestRowsNode 

0 NumExtremeRays 

619325 ValueCGRMPFirst 

 

 Node solver 

0 LCICutGenRoot 

0 LCICutGenNode 

0 NumIterCutRoot 

0 NumIterCutNode 

0 NumLCICutRoot 

0 NumLCICutNode 

3132002.5 ValueRoot 

Figure A.2 Example of a results file. 
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Deriving the MySubproblem class 

Member data to be used by the derived class 

double** ModCosts 

Double array of modified costs: ModCosts[k][j] contains the objective function 

coefficient of the (j+1)-th variable of the (k+1)-th subproblem. The user does not need to worry 

about memory allocations and deallocations. 

int NumHeurs 

In the constructor of MySubproblem, NumHeurs should be set to the number of heuristics 

the class implements. 

bool *IsAggregated 

In the constructor of MySubproblem, this array should be allocated with size NumHeurs. 

The entry with index j should be true if the (j+1)-th heuristic is an aggregated one, and false, 

otherwise. In an aggregated heuristic the solution of one subproblem influences the others. In an 

disaggregated heuristic each subproblem is solved independently. We note that the extreme 

points will always be inserted in the RMP in a disaggregated manner. Currently ADDing does 

not support aggregated columns (that is, one column being related with more than one 

subproblem). 

ParTypeBranch 

This copy of the input parameter allows the user to define more than one branching rule. 

 

Member virtual functions related with implementing a specific subproblem solver 

Only the two first member functions (SetSP(...) and Optimise(...)) must be implemented 

in order to have a specific subproblem solver. All the others are optional. 

virtual void SetSP (int k, double *Costs) 

Prepare the (k+1)-th subproblem to be solved by setting the modified costs of all its 

variables. Those values should be written in ModCosts. 

virtual int Optimise(int k, pointray *PointRay, double &Value) 

Optimises the (k+1)-th subproblem. 

Return values: 0, no relevant solution was found; 1, the optimal extreme point, or an 

extreme ray, was found, has value Value and is given in PointRay; 2, no feasible solution was 
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found. 

All the user must set inside this function related with the class pointray are the following 

two member functions:  

void pointray::SetType(int Type)  

Type should be 1 if it is an extreme point and 2 if it is an extreme ray; 

void pointray::AddVar(int IdxSP, int IdxVar, double ValVar) 

Adds a variable of the subproblem IdxSP with index IdxVar and value ValVar to the 

description of the extreme point or extreme ray. 

virtual int OptimiseNext(int k, pointray *PointRay, double &Value) 

This function is similar to Optimise(...). Its purpose is to return the second best solution, 

third best solution, and so on. If the input parameter ParNumSPSolsAsked is greater than zero, 

this function will be called after a call to Optimise(...) in order to include additional 

(sub)optimal extreme points (or extreme rays) in the RMP. 

virtual int SolveHeurDis (int k, pointray *PointRay, double &Value, int Heuristic) 

This member function is meant to solve the subproblem k with the (Heuristic+1)-th 

heuristic (which is a disaggregated one; for the difference regarding an aggregated one, see the 

member data IsAggregated, above). The meaning of the other arguments is the same as in 

Optimise(...). 

Return values: 0, no extreme point or ray was found; 1, one extreme point or ray was 

found. 

virtual int SolveHeurAgg (pointray **PointRay, double *Values, int Heuristic) 

Similar to SolveHeurDis(...) but for an aggregated heuristic: a set of extreme or rays may 

be obtained. 

Return value: number of extreme points and rays found. The double array PointRay 

should have one extreme point or ray in each entry. 

virtual int GetUpperNumExtreme () 

Returns an upper bound to the number of additional extreme points to be inserted in the 

first RMP.  

virtual int GetSetExtreme (pointray **PointRay) 

The argument should be fed with a set of points/rays to be inserted in the first RMP (an 

upper bound to their number given by the return value of GetUpperNumExtreme()). The return 

value is the effective number of extreme points and rays generated by the function. This 

implementation of GetUpperNumExtreme() and GetSetExtreme(...) avoids the need for memory 

allocations and deallocations by the user. 

Member virtual functions related with specific branching rules 
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virtual int GetNumBranches() 

Returns the number of branches that MySubproblem::GetBranches(...) generates. The 

base class implementation returns the value 2. 

virtual void GetBranches(constraint **BranchConstraint) 

This member function creates the branching constraints. Using ParTypeBranch, more 

than one branching rule can be implemented in it. 

The argument is an array of objects (in fact, pointers to objects) of class Constraint filled 

with the constraints. The relevant member functions of constraint are  

void SetSense (char Sense); 

void SetRhs (int Rhs); 

void AddVar(int IdxSP, int IdxVar, double Coef). 

As an example, if two branching constraints are created based on a single binary the 

instructions given in Figure A.3 should be included, where BranchSP is the index of the 

subproblem of the variable given by index BranchVar and that variable has coefficient 1 in both 

constraints. Branching on several variables can be done by several calls to AddVar(...).  

 

... 

rBranchConstraint[0]->AddVar(BranchSP,BranchVar,1); 

rBranchConstraint[0]->SetSense('L'); 

rBranchConstraint[0]->SetRhs(0); 

rBranchConstraint[1]->AddVar(BranchSP,BranchVar,1); 

rBranchConstraint[1]->SetSense('G'); 

rBranchConstraint[1]->SetRhs(1); 

... 

Figure A.3 Example of instructions to create two branching constraints. 

In order to specify the branching rule, the subproblem class has a pointer to an object 

representing the current (fractional) solution. The only member function of that class the user 

must be aware of is double originalsolution::GetVarValue(int k, int j), which returns the value 

of the variable indexed by j of the subproblem indexed by k. The base class already has a 

pointer to the object where the current solution is kept, with name OriginalSolution. 

 




