
Boilerplates for reconfigurable systems:
a language and its semantics

Alexandre Madeira1,2,3, Manuel A. Martins2, Lúıs S. Barbosa2

1 HASLab - INESC TEC and Universidade do Minho, Portugal
2 CIDMA-Dep. of Mathematics, Universidade de Aveiro, Portugal

3 Critical Software S.A., Portugal

Abstract. Boilerplates are simplified, normative English texts, intended
to capture software requirements in a controlled way. This paper proposes
a pallet of boilerplates as a requirements modelling language for recon-
figurable systems, i.e., systems structured in different modes of execution
among which they can dynamically commute. The language semantics is
given as an hybrid logic, in an institutional setting. The mild use made of
the theory of institutions, which, to a large extent, may be hidden from
the working software engineer, not only provides a rigorous and generic
semantics, but also paves the way to tool-supported validation.

1 Motivation and overview

Requirements Engineering [9] is the branch of software engineering concerned
with the precise identification of goals and constraints of the services provided
by systems. Typically, this involves understanding, modelling and documenting
not only the needs of potential users or customers, but also the deployment
contexts in which such systems under development will be used. The deliverable
of this stage in the software development process must be expressed in a form
that is amenable to analysis, communication, and subsequent implementation.

In practice requirements engineers start with ill-defined, often conflicting,
ideas of what the new system is expected to do. They are supposed to make
progress towards a detailed, technical specification of the system. This entails
the need for suitable support methodologies to record and structure the relevant
information, as well as to express it in a clear, easy to understand notation.

The notion of a boilerplate, first introduced in [9], is a step in this direction:
for each class of requirements, within a specific domain, a generic template is de-
fined so that capturing requirements amounts to instantiated well-characterized
textual schemes written in simplified, normative English. Informally, a boiler-
plate is a standardized scheme that can be reused over and over again, and is
amenable to some form of computer-based simulation. The term derives from
steel manufacturing, where it refers to steel rolled into large plates for use in
steam boilers. The intuition is that a boilerplate has been time-tested and is
‘strong as steel’ suitable for repeated reuse. The use of ‘controlled natural lan-
guage’ for requirements elicitation is a successful practice in industry and, despite

of its informal character, does provide an interesting starting point towards more
formal approaches.

Boilerplates are usually developed for specific business areas, classes of sys-
tems or typical design stages.This paper focus in reconfigurable systems. Those
are systems whose form (i.e. resources involved, network topology, etc) changes
along the computational process in response to varying context conditions.

The behavior of this kind of systems is indexed to a set of different run-time
configurations between which the system commutes dynamically. Therefore, a
specification takes the form of a structured transition system: transitions capture
the evolution from one configuration to another, whereas each state corresponds
to the full specification of data and services available at a particular configura-
tion. Such local configurations can be described in different languages, ranging
from, equational to first order logic or even to less conventional formalisms, e.g.,
fuzzy or multivalued logics. In the sequel we will refer to the logic used at the
local level of configurations as the base logic.

If the base logic provides a language to express requirements relative to each
configuration of the system, describing the reconfiguration dynamics itself re-
quires a modal logic to express transition and change. Actually, we adopt an
extension of ordinary modal logic in which dedicated propositional symbols,
called nominals, each being true at exactly one possible state, are used to name
states, i.e., the system’s individual configurations. This extension is known as
hybrid logic, whose roots go back Arthur N. Prior’s work in the 1960s; see [1] for
a detailed account and historic perspective. Along with nominals, it also intro-
duces satisfaction operators @iφ, which formalise a statement φ being true at a
specific configuration named i.

In such a context, the paper’s contribution is twofold:

– first it introduces a collection of boilerplates for capturing typical require-
ments of reconfigurable systems;

– then, it takes seriously the challenge of providing a proper, unambiguous
semantics for them.

Our perspective is that the methodological advantages of boilerplates, i.e. their
conciseness and genericity, depends on the existence of a rigorous formal seman-
tics for them, amenable to formal transformation and verification. On the other
hand, the distinguishing feature of our approach is that boilerplates are paramet-
ric on whatever (base) logic is chosen for specifying the system’s configurations.

The methodology proposed proceeds as follows: first a suitable base logic to
express the properties of (local) configurations is chosen. Then, the requirements
are collected into specific boilerplates which structure information on the rele-
vant vocabulary, available configurations, events triggering reconfiguration and
both local and global properties. Once instantiated, boilerplates are translated
into specifications in (a suitable version of) hybrid logic (e.g. [2]) providing a
formal description of requirements amenable to tool-supported validation. By
the expression ’(suitable version of) hybrid logic’ we mean a language with
enriches the base logic specific to each application with modalities and hybrid
features to express reconfiguration and evolution. Such a language is derived in

a formal and systematic way — the so-called hybridisation process whose theory
was developed by the authors in [13,4].

Going generic entails a price to pay: to seek for a suitably generic notion
of logical system encompassing syntax, semantics and satisfaction. Fortunately
the concept is already well-established in the so-called theory of institutions of
Goguen and Burstall [6,3]. At expenses of some extra (and a bit heavy) notation,
institutions offer an abstract representation of a logic, and their theory provides
modular structuring and parameterization mechanisms which are defined ‘once
and for all’, abstracting from the concrete particularities of the each specification
logic [5]. The formal semantics for boilerplates proposed in this paper is framed
in this setting: each logic (base and hybridised) is regarded as an institution.

Another advantage of the institutional framework is its ability to relate logics
and transport results from one to another [14], which means that a theorem
prover for the latter can be used to reason about specifications written in the
former. Our approach takes advantage of this to provide ‘for free’ suitable tool
support through a translation of collections of boilerplates to first-order logic
and their validation in the Hets [16] tool.

The paper is organized as follows: Section 2 introduces a pallet of boilerplates
for reconfigurable systems and illustrates their use through a small example. A
formal semantics for this pallet of boilerplates is addressed in Section 3. Finally,
Section 4 proposes a methodology for engineering requirements of reconfigurable
systems, from their elicitation and expression in boilerplates until their validation
and prototyping within the Hets framework.

The semantic framework used in the sequel is based on the theory of institu-
tions and a method to generate hybrid from arbitrary logics. Part of it, namely
the background formalism and notation, can be skipped at first reading without
compromising a broader understanding of the paper’s ideas. For the interested
reader, details and examples are given in the Appendix.

2 A language of boilerplates for reconfigurability

As sketched in the previous section, requirements for reconfigurable systems are
captured in a collection of boilerplates which, taken jointly, specify a structured
transition system. Its states, corresponding to different configurations, or modes
of execution, are endowed with a specific description of the functionality available
locally. The boilerplates proposed below define globally the relevant modes of
execution and the transition structure, as well as, at the local level of each mode,
the interface of services available and their properties.

Basic boilerplates

Five classes of boilerplates are introduced to register requirements, structur-
ing them as a (structured) transition system. The choice of the base logic I
is made within the boilerplates concerned with the system’s interface. A con-
crete instantiation of these boilerplates requires such a choice: notation BP (I)

stands therefore, for the set of boilerplates in which the requirements for local
configurations are given in I. The basic boilerplates proposed are as follows:

1. Identification of the relevant configurations:

System plays the configurations <set of configurations>
<Mode> is a execution mode

2. Definition of event sets able to trigger a mode transition, i.e., a system’s
reconfiguration:

System has events <set of Event>
<Event> is an event

3. Definition of the basic transition structure:

System changes from <Mode> to <Mode> through the event <Event>
System may change from <Mode> to <Mode> through the event <Event>

4. Definition of the system’s interface:

System interface is defined by <InterfaceExp>

5. Local specification, i.e., relative to the system’s functionality at each config-
uration (stated in the chosen base logic):

Property <Prop> holds in all modes
Property <Prop> holds in <Mode>

6. Definition of possible transitions (i.e., reconfigurations) emerging from local
properties (e.g., a certain limit value for a parameter is achieved).

<Event> changes modes satisfying <Prop> into modes satisfying <Prop>
<Event> changes <Mode> to modes satisfying <Prop>

An example

For example let us consider a small, self-contained example. Other examples
appeared in the first author’s PhD thesis [10]. For the moment, consider the
following requirements for a quite peculiar, ‘plastic’ buffering structure:

A ‘plastic’ buffer is a versatile data structure with two distinct modes
of execution: in one of them it behaves as a stack; in the other as a queue.
The reconfiguration is triggered by by an external event ‘shift’.

We start fixing the transition structure between the buffer’s (two) modes of
execution.

Modes and events:

– fifo is a mode
– lifo is a mode
– Shift is an event

Transition structure:

System changes from <lifo> to <fifo> through the event <shift>
System changes from <fifo> to <lifo> through the event <shift>

For the specification of each execution mode, or configuration, one may resort
to propositional logic PL, the buffer requirements are expressed in BP (PL).
The following boilerplate fixes the local behaviour: the proposition stack bh is
to hold in configurations in which the buffer behaves like a stack; proposition
queu bh when it behaves as a queue.

System interface is defined by <{stack bh,queu bh}>

Hence,

– Property queu bh holds in fifo
– Property stack bh holds in lifo

In practice, however, the propositional setting may not be enough: most
properties are better expressed in equational logic EQ. Thus, one my state

System interface is defined by < ΣPbuffer >

where ΣPbuffer is the classical first-order signature of a stack/queue data type
with write, read and del operations together with a constant new to denote the
empty buffer. Hence, local properties are expressed by

– Property read(write(m, e)) = e holds in lifo
– Property m = new ⇒ read(write(m, e)) = e holds in fifo
– Property ¬(m = new)⇒ read(write(m, e)) = read(m) holds in fifo
– Property del(write(m, e)) = m holds in lifo
– Property ¬(m = new)⇒ del(write(m, e)) = write(del(m), e) holds in fifo
– Property m = new ⇒ del(write(m, e)) = new holds in lifo, fifo

A precise semantics for this sort of boilerplates is given in the following section
by their transformation into a proper formal specifications in suitable hybrid
logics.

3 A formal semantics for BP (I)

If the collection of boilerplates proposed here for reconfigurable systems leads
naturally to models based on structured transition systems, the choice of (a vari-
ant of) hybrid logic for their semantics comes as no surprise. Reactive systems
are classically expressed in modal languages; on the other hand, a naming mech-
anism for states makes easier to distinguish between properties valid in some,
but not all, configurations.

The semantic framework is as follows: Once the system’s requirements are
captured in a collection BP (I) of boilerplates instantiated over a base logic I,
its semantics is given by a systematic translation to a hybrid logic over I. I.e,
a logic whose language extends that of I with a set Λ of modalities, the corre-
sponding eventually (〈λ〉) and henceforth ([λ]) operators, for each λ ∈ Λ, a set
Nom of nominals to name configurations, and, for each i ∈ Nom a satisfaction
operator @i enforcing the validity of its argument in configuration i. Formally,
the collection of boilerplates gives rise to a proper specification in the hybrid

logic HI corresponding to I. The generation of HI from I, i.e., the hybridisa-
tion of I, is also a systematic process whose technical details are summarised in
the Appendix.

For the moment we shall concentrate in the process of generating a HI-
specification from a collection of boilerplates. Note the introduction of nominals
to refer to local configurations and of modalities to state properties of the overall
transition structure. This is better illustrated through an example. Let us, thus,
revisit the buffer example.

In Section 2 two collections of boilerplates were considered for this example.
The first one resorted to propositional logic PL. Its semantics is, therefore, a
generated specification in hybrid propositional logic HPL:

spec ReconfBuffer1 =
nominal fifo, lifo
modalities shift
propositions stack bh,queue bh
• @fifostack bh
• @lifoqueue bh
• @lifo< shift > fifo
• @fifo< shift > lifo

The models M for this specification are standard Kripke structures. For in-
stance, the structure defined over a set of two states {slifo, sfifo} and whose ac-
cessibility relation is Wshift = {(slifo, sfifo), (sfifo, slifo)}. The value of propo-
sitions stack bh and queue bh is each state is as follows: Mslifo

(stack bh) =
Msfifo

(queue bh) = > and Mslifo
(queue bh) = Msfifo

(stack bh) = ⊥.

The second, richer set of boilerplates resorted to equational logic EQ to cap-
ture local requirements equationally. The resulting specification is now expressed
in hybrid equational logic HEQ, as follows.

spec ReconfBuffer2 =
nominal fifo, lifo
modalities shift
sorts mem, item
op new : mem; write : mem × item → mem; del : mem → mem;read : mem → item
∀ m : mem; e : item;
• read(write(new, e)) = e
• del(write(new, e)) = new
• @liforead(write(m, e)) = e
• @fifo(m=new) ⇒ read(write(m, e)) = e
• @fifo¬ (m=new) ⇒ read(write(m, e)) = read(m)
• @lifodel(write(m, e)) = m
• @fifo(m=new) ⇒ del(write(m, e)) = new
• @fifo¬ (m=new) ⇒ del(write(m, e)) = write(del(m), e)
• @lifo< shift > fifo
• @fifo< shift > lifo

A model M for this second specification is given by a Kripke structure as
above but realising, in each state, Mslifo

and Msfifo
as the classical (initial)

models for the stack and queue data types, respectively.

Boilerplates for LTS components specification:

•System has modes <set of Mode> • Nom := Nom] set of Mode

•<Mode> is a mode • Nom := Nom] {Mode}

•System has events <set of Event> • Λ := Λ] set of Event

•<Event> is an event • Λ := Λ] {Event}

• System’s interface is defined by<InterfaceExp> • Σ := InterfaceExp

Boilerplates for simple transitions:

•System changes from <Mode1> to <Mode2> through event
<Event>

• @Mode1〈Event〉Mode2

• System may change from <Mode1> to <Mode2> through
event <Event>

• @Mode1[Event]Mode2

• <Event> changes system to <Mode> • [Event]Mode

•There are no transitions into <Mode> through <Event> • ¬〈Event〉Mode

Boilerplates for transitions tagged by properties:

• <Event> changes modes satisfying <Prop1> into modes sat-
isfying <Prop2>

• Prop1 ⇒ [Event]Prop2

• <Event> changes <Mode> to modes satisfying <Prop> • Mode ⇒ [Event]Prop

• <Event>changes modes satisfying <Prop> to mode <Mode> • Prop ⇒ [Event] Mode

Boilerplates for properties:

• Property <Prop> holds in all modes • Prop

• Property <Prop> holds in <Mode> • @ModeProp

• There is no mode satisfying <Prop> • ¬ Prop

• There is at least one mode satisfying <Prop> • Ew Prop

• There is exactly one mode satisfying <Prop> • ∀w, v ∈ W [@vProp∧@wProp]
⇒ v = w

4 The specification process

We have seen how to go from a collection of boilerplates to a formal specification
in a suitable hybrid logic. The latter not only provides a precise semantics to
the requirements gathered, but also paves the way to their validation. Actually,
a central ingredient for the successful integration of a formal methodology in the
industrial practice is the existence of effective tool support.

In order to prototype requirements captured by a collection of boilerplates
or to validate their internal consistency, the hybrid specifications are translated
into first-order logic (FOL), so that the software engineer can take advantage
of several provers already available for FOL.

The institution-based framework underlying the hybridisation process, which
provides a whole pallet of (hybrid) logics for translating requirements, also of-

fers for free the conceptual machinery for this translation to FOL, whenever
it exists. Then, the prover toolset Hets [16], a framework specifically designed
to support specifications expressed in different institutions, offers suitable tool
support. Using a metaphor of [15], Hets may be seen as a “motherboard” where
different “expansion cards” can be plugged. These pieces are individual logics
(with their particular analysers and proof tools) as well as logic translations,
suitably encoded in the theory of institutions.

Hets already integrates parsers, static analyzers and provers for a wide set
of individual logics and manages heterogeneous proofs resorting to the so-called
graphs of logics, i.e., graphs whose nodes are logics and, whose edges, are comor-
phisms between them. Note that hybrid logic, namely its propositional variant,
has already a number of implementations (see e.g. HTab [8], HyLoTab [19]
and Spartacus [7]). Our approach, however, provides a uniform first order log-
ical framework for analysis and verification supporting the whole methodology.
Moreover, to the best of our knowledge, richer versions of hybrid logic do lack
effective tool support, which makes our approach by translation the only option
available.

We can now explain, step-by-step, the overall methodology for requirements
elicitation and validation, as depicted in Fig. 1.

HI
spec FOL

spec

Consistency
Check

Prop. analysis
 by

Thm Proving

Executable
Requirements

Prototyping

Requirements
in

 -Boilerplates
(f)

(g)

(h)

Req. Formalisation HETS support

choose a
 logic for

 configurations

syntactical
support

Natural
Language

Spec

Req. Elicitation

(a)
(b)

when
possible

(c)

Proof support

(d)

I

BP (I)

(e)

Fig. 1. Tool support

(a),(b) As usual, requirements start from a set of basic facts about what is
perceived as the system’s goals and constraints. Typically, this determines
the choice of a base logic I for expressing properties of local configurations.
Examples in propositional and equational logic were discussed above. Often,
however, more complex languages are required. One can, for example, spec-
ify configurations as multialgebras to cope with non determinism, in which

case a multi-valued logic would be the obvious choice. Another possibility to
explore is resorts to partial equational logic to deal with exceptions, or obser-
vational logics to specify systems whose configurations encapsulate hidden
state-spaces. Finally, if each configuration is itself presented as a transition
system, one may choose a modal logic as a base, ending up with a (global)
modal language to express evolution of modal (local) specifications. This
freedom of choosing a base logic for each application is in line with a ba-
sic engineering concern which recommends that the choice of a specification
framework depends on the nature of the requirements one has to deal with.

Once I is fixed, the systems requirements are captured in BP (I) instanti-
ation of boilerplates. Note that the set of boilerplates proposed enforces a
specification organised in terms of a structured transition system.

(c),(d) The next stage is the translation of the collection of boilerplates BP (I)
into a specification in the corresponding hybrid logic HI according to Boil-
erplates Table. This specification can be recognized as a Hets specification
using the HCASL package recently introduced by the authors in [17].

(e) The existence of a suitable translation, technically a comorphism [3], from
HI to FOL gives, for free, access to a number of provers integrated in
Hets in which requirements can be validated. Such a translation, as no-
ticed above, is not available for all logics. References [13,4], however, do
provide a roadmap for addressing this issue: [13] shows that the hybridis-
ation of an institution with a comorphism to FOL also has a comorphism
to FOL. Then reference [4] extends this result and characterizes conserva-
tivity of those translations to define in which cases it is possible to borrow,
in an effective way, proof support from FOL. Note that the proof of this
result is is constructive, offering a method to implement such translations. In
practice, this is a very general, broadly applicable result since several speci-
fication logics do have a comorphism to FOL. Such is the case, for example,
of propositional, equational, first-order, modal or even hybrid logic among
many others.

Once framed in Hets, the requirement specifications can be validated re-
sorting to several provers for FOL already “plugged” into Hets [15], e.g.,
SoftFOL, Spass and MathServe Broker, among others. Additionally,
one may also to take advantage of a number of other provers borrowed from
other institutions through comorphisms with source in FOL.

(f),(g) Several other features of Hets can be explored in the context of the
methodology proposed here. For instance, the model finder of Darwin, which
is already integrated in the platform, may be used as a consistency checker
for specifications derived from requirements. On the other hand, encodings of
FOL into HasCASL[18], a specification language for functional programs,
open new perspectives for prototyping BP (I) generated specifications in a
standard programming language as Haskell.

5 Concluding

The paper proposes a pallet of boilerplates requirements elicitation of reconfig-
urable systems, as a first step to the definition of a domain specific language for
this domain of software technology. The pallet is, obviously, not closed, provided
that every extension comes equipped with a translation scheme. The combi-
nation of different sets of requirements expressed in hybridised versions HI of
different base logics I is also an interesting strategy to take.

The hybridisation method introduced in [13], which, underlies the construc-
tion of suitable specification languages is also able to cope with quantification
modalities (i.e., the system’s events), a feature which may lead to an enrichment
of the boilerplates pallet available at the time of writing. This may provide se-
mantics for boilerplates able to express deadlock situations or to specify more
than one-step (ir)-reversibility transition properties. Unfortunately the introduc-
tion of nominal quantification rules out the possibility of a suitable first order
encoding for the logic, thus reducing the method tool support. Encodings to
second-order-logic are, however, being developed.

A known limitation of the method proposed in this paper concerns interface
reconfiguration. Technically, service functionality and behaviour exhibited in all
system’s configurations need to be specified over a common first-order signature.
This difficulty was overcome, to a large extent, in a recent publication [12].

Acknowledgements. This work is funded by ERDF - European Regional De-
velopment Fund through the COMPETE Programme and by National Funds
through FCT, the Portuguese Foundation for Science and Technology, project
FCOMP-01- 0124-FEDER-028923.

References

1. P. Blackburn. Arthur Prior and hybrid logic. Synthese, 150(3):329–372, 2006.
2. T. Brauner. Hybrid Logic and its Proof-Theory. Applied Logic Series. Springer,

2010.
3. R. Diaconescu. Institution-independent Model Theory. Studies in Universal Logic.

Birkhäuser Basel, 2008.
4. R. Diaconescu and A. Madeira. Encoding hybridized institutions into first order

logic. (Submited), 2013.
5. R. Diaconescu and I. Tutu. On the algebra of structured specifications. Theor.

Comput. Sci., 412(28):3145–3174, 2011.
6. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for specifi-

cation and programming. J. ACM, 39(1):95–146, 1992.
7. D. Götzmann, M. Kaminski, and G. Smolka. Spartacus: A tableau prover for

hybrid logic. Electr. Notes Theor. Comput. Sci., 262:127–139, 2010.
8. G. Hoffmann and C. Areces. Htab: a terminating tableaux system for hybrid logic.

Electr. Notes Theor. Comput. Sci., 231:3–19, 2009.
9. M. E. C. Hull, K. Jackson, and J. Dick. Requirements engineering (2nd ed.).

Springer Verlag, 2005.
10. A. Madeira. Foundations and techniques for software reconfigurability. PhD thesis,

University of Minho, Portugal (Joint MAP-i Doctoral Program), 2013.

11. A. Madeira, J. M. Faria, M. A. Martins, and L. S. Barbosa. Hybrid specifica-
tion of reactive systems: An institutional approach. In G. Barthe, A. Pardo, and
G. Schneider, editors, Software Engineering and Formal Methods (SEFM 2011,
Montevideo, Uruguay, November 14-18, 2011), volume 7041 of Lecture Notes in
Computer Science, pages 269–285. Springer, 2011.

12. A. Madeira, R. Neves, M. A. Martins, and L. S. Barbosa. When even the interface
evolves ... In H. Wang and R. Banach, editors, Proceedings of TASE (7th IEEE
Symp. on Theoretical Aspects of Software Engineering, Birmingham, July, 2003.),
pages 79–82. IEEE Computer Society, 2013.

13. M. A. Martins, A. Madeira, R. Diaconescu, and L. S. Barbosa. Hybridization of in-
stitutions. In A. Corradini, B. Klin, and C. Ĉırstea, editors, Algebra and Coalgebra
in Computer Science (CALCO 2011, Winchester, UK, August 30 - September 2,
2011), volume 6859 of Lecture Notes in Computer Science, pages 283–297. Springer,
2011.

14. T. Mossakowski. Foundations of heterogeneous specification. In M. Wirsing,
D.Pattinson, and R. Hennicker, editors, Recent Trends in Algebraic Development
Techniques (Revised Selected Papers of WADT 2002, Frauenchiemsee, Germany,
September 24-27, 2002), volume 2755 of Lecture Notes in Computer Science, pages
359–375. Springer, 2003.

15. T. Mossakowski, C. Maeder, M. Codescu, and D. Lucke. HETS User Guide -
Version 0.99. Technical report, DFKI Lab Bremen, April 2013.

16. T. Mossakowski, C. Maeder, and K. Lüttich. The heterogeneous tool set, Hets. In
O. Grumberg and M. Huth, editors, Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2007 - Braga, Portugal, March 24 - April 1, 2007),
volume 4424 of Lecture Notes in Computer Science, pages 519–522. Springer, 2007.

17. R. Neves, A. Madeira, M. A. Martins, and L. S. Barbosa. Hybridisation at work.
In CALCO TOOLS, volume (to appear) of Lecture Notes in Computer Science.
Springer, 2013.

18. L. Schröder and T. Mossakowski. Hascasl: Towards integrated specification and
development of functional programs. In H. Kirchner and C. Ringeissen, edi-
tors, AMAST, volume 2422 of Lecture Notes in Computer Science, pages 99–116.
Springer, 2002.

19. J. van Eijck. Hylotab-tableau-based theorem proving for hybrid logics. Technical
report, CWI, Amsterdam, 2002.

Appendix: the hybridisation process

This appendix provides a brief overview of the hybridisation method which allows
for the systematic construction of hybrid languages from arbitrary logics. The
method is framed in the theory of institutions whose basic definitions are recalled.

Institutions

An institution is a category theoretic formalisation of a logical system, encom-
passing syntax, semantics and satisfaction. The concept was put forward by
Goguen and Burstall, in the end of the seventies, in order to “formalise the for-
mal notion of logical systems”, in response to the “population explosion among
the logical systems used in Computing Science” [6]. Formally,

I = (SignI ,SenI ,ModI , (|=IΣ)Σ∈|SignI |)

– a category SignI of signatures and signature morphisms,
– a functor SenI : SignI → Set giving for each signature a set whose elements

are called sentences over that signature,
– a functor ModI : (SignI)op → CAT , giving for each signature Σ a category

whose objects are called Σ-models, and whose arrows are called Σ-(model)
homomorphisms, and

– a relation |=IΣ⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SignI |, called the
satisfaction relation,

such that for each morphism ϕ : Σ → Σ′ ∈ SignI , the satisfaction condition

M ′ |=IΣ′ SenI(ϕ)(ρ) if and only if ModI(ϕ)(M ′) |=IΣ ρ (1)

holds for each M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ).

Example 1 (Propositional Logic).

A signature Prop ∈ |SignPL| is a set of propositional variables symbols and
a signature morphism is just a function ϕ : Prop → Prop′ Therefore, SignPL

coincides with the category Set.
Functor Mod maps each signature Prop to the category ModPL(Prop) and

each signature morphism ϕ to the reduct functor ModPL(ϕ). Objects of
ModPL(Prop) are functions M : Prop → {>,⊥} and, its morphisms, functions
h : Prop → Prop such that M(p) = M ′(h(p)). Given a signature morphism
ϕ : Prop → Prop′, the reduct of a model M ′ ∈ |ModPL(Prop′)|, say M =
ModPL(ϕ)(M ′) is defined, for each p ∈ Prop, as M(p) = M ′(ϕ(p)).

The sentences functor maps each signature Prop to the set of propositional
sentences SenPL(Prop) and each morphism ϕ : Prop→ Prop′ to the sentences’
translation SenPL(ϕ) : SenPL(Prop) → SenPL(Prop′). The set SenPL(Prop) is
the usual set of propositional formulae defined by the grammar

ρ ::= p | ρ ∨ ρ | ρ ∧ ρ | ρ⇒ ρ | ¬ρ

for p ∈ Prop. The translation of a sentence SenPL(ϕ)(ρ) is obtained by replacing
each proposition of ρ by the respective ϕ-image. Finally, for each Prop ∈ SenPL,
the satisfaction relation |=PL

Prop is defined as usual:

– M |=PL
Prop p iff M(p) = >, for any p ∈ Prop;

– M |=PL
Prop ρ ∨ ρ′ iff M |=PL

Prop ρ or M |=PL
Prop ρ

′,

and similarly for the other connectives.

Example 2 (Equational logic).

Signatures in the institution EQ of equational logic are pairs (S, F) where
S is a set of sort symbols and F = {Far→s | ar ∈ S∗, s ∈ S} is a family of sets
of operation symbols indexed by arities ar (for the arguments) and sorts s (for
the results). Signature morphisms map both components in a compatible way:
they consist of pairs ϕ = (ϕst, ϕop) : (S, F)→ (S′, F ′), where ϕst : S → S′ is a

function, and ϕop = {ϕop
ar→s : Far→s → F ′ϕst(ar)→ϕst(s) | ar ∈ S∗, s ∈ S} a family

of functions mapping operations symbols respecting arities.
A model M for a signature (S, F) is an algebra interpreting each sort symbol

s as a carrier set Ms and each operation symbol σ ∈ Far → s as a function
Mσ : Mar → Ms, where Mar is the product of the arguments’ carriers. Model
morphism are homomorphisms of algebras, i.e., S-indexed families of functions
{hs : Ms → M ′s | s ∈ S} such that for any m ∈ Mar, and for each σ ∈ Far→s,
hs(Mσ(m)) = M ′σ(har(m)). For each signature morphism ϕ, the reduct of a

model M ′, say M = ModEQ(ϕ)(M ′) is defined by (M)x = M ′ϕ(x) for each sort
and function symbol x from the domain signature of ϕ. The models functor maps
signatures to categories of algebras and signature morphisms to the respective
reduct functors.

Sentences are universal quantified equations (∀X)t = t′. Sentence trans-
lations along a signature morphism ϕ : (S, F) → (S′, F ′), i.e., SenEQ(ϕ) :
SenEQ(S, F) → SenEQ(S′, F ′), replace symbols of (S, F) by the respective ϕ-
images in (S′, F ′). The sentences functor maps each signature to the set of
first-order sentences and each signature morphism to the respective sentences
translation. The satisfaction relation is the usual Tarskian satisfaction defined
recursively on the structure of the sentences as follows:

– M |=(S,F) t = t′ when Mt = Mt′ , where Mt denotes the interpretation of the
(S, F)-term t in M defined recursively by Mσ(t1,...,tn) = Mσ(Mt1 , . . . ,Mtn).

– M |=(S,F) (∀X)ρ when M ′ |=(S,F+X) ρ for any (S, F +X)-expansion M ′ of
M .

The hybridisation method

Having recalled the notion of an institution, we shall now briefly review the core
of the hybridisation method proposed in [13,4]. For the sake of brevity, we shall
restrict ourselves to a simplified (quantifier-free and non-constrained) version of
the general method.

As explained in the paper, the method enriches a base (arbitrary) institu-
tion I = (SignI ,SenI ,ModI , (|=IΣ)Σ∈|SignI |) with hybrid logic features and the
corresponding Kripke semantics. The result is still an institution, HI, called the
hybridisation of I.

The category of HI-signatures. The base signature is enriched with nominals
and polyadic modalities. Therefore, the category of I-hybrid signatures, denoted
by SignHI , is defined as the direct (cartesian) product of categories:

SignHI = SignI × SignREL.

Thus, signatures are triples (Σ,Nom, Λ), where Σ ∈ |SignI | and, in the REL-
signature (Nom, Λ), Nom is a set of constants called nominals and Λ is a set
of relational symbols called modalities; Λn stands for the set of modalities of
arity n. Morphisms ϕ ∈ SignHI((Σ,Nom, Λ), (Σ′,Nom′, Λ′)) are triples ϕ =
(ϕSig, ϕNom, ϕMS) where ϕSig ∈ SignI(Σ,Σ′), ϕNom : Nom→ Nom′ is a function

and ϕMS = (ϕn : Λn → Λ′n)n∈N a N-family of functions mapping nominals and
n− ary-modality symbols, respectively.

HI-sentences functor. The second step is to enrich the base sentences accord-
ingly. The sentences of the base institution and the nominals are taken as atoms
and composed with the boolean connectives, modalities, and satisfaction opera-
tors as follows: SenHI(Σ,Nom, Λ) is the least set such that

– Nom ⊆ SenHI(∆);
– SenI(Σ) ⊆ SenHI(∆);
– ρ ? ρ′ ∈ SenHI(∆) for any ρ, ρ′ ∈ SenHI(∆) and any ? ∈ {∨,∧,⇒},
– ¬ρ ∈ SenHI(∆), for any ρ ∈ SenHI(∆),
– @iρ ∈ SenHI(∆) for any ρ ∈ SenHI(∆) and i ∈ Nom;
– [λ](ρ1, . . . , ρn), 〈λ〉(ρ1, . . . , ρn) ∈ SenHI(∆), for any λ ∈ Λn+1, ρi ∈ SenHI(∆),
i ∈ {1, . . . , n}.

Given a morphism ϕ = (ϕSig, ϕNom, ϕMS) : (Σ,Nom, Λ) → (Σ′,Nom′, Λ′), the

translation of sentences SenHI(ϕ) is defined as follows:

– SenHI(ϕ)(ρ) = SenI(ϕSig)(ρ) for any ρ ∈ SenI(Σ);
– SenHI(ϕ)(i) = ϕNom(i);
– SenHI(ϕ)(¬ρ) = ¬SenHI(ϕ)(ρ);
– SenHI(ϕ)(ρ ? ρ′) = SenHI(ϕ)(ρ) ? SenHI(ϕ)(ρ′), ? ∈ {∨,∧,⇒};
– SenHI(ϕ)(@iρ) = @ϕNom(i)SenHI(ρ);

– SenHI(ϕ)([λ](ρ1, . . . , ρn)) = [ϕMS(λ)](SenHI(ρ1), . . . ,SenHI(ρn));
– SenHI(ϕ)(〈λ〉(ρ1, . . . , ρn)) = 〈ϕMS(λ)〉(SenHI(ρ1), . . . ,SenHI(ρn)).

HI-models functor. Models of the hybridised logic HI can be regarded as
(Λ-)Kripke structures whose worlds are I-models. Formally (Σ,Nom, Λ)-models
are pairs (M,W) where

– W is a (Nom, Λ)-model in REL;
– M is a function |W | → |ModI(Σ)|.

In each world (M,W), {Wn | n ∈ Nom} provides interpretations for nominals
in Nom, whereas relations {Wλ | λ ∈ Λn, n ∈ ω} interprete modalities in Λ.
We denote M(w) simply by Mw. The reduct definition is lifted from the base
institution: the reduct of a ∆′-model (M ′,W ′) along a signature morphism ϕ =
(ϕSig, ϕNom, ϕMS) : ∆ → ∆′, denoted by ModHI(ϕ)(M ′,W ′), is the ∆-model
(M,W) such that

– W is the (ϕNom, ϕMS)-reduct of W ′; i.e.

• |W | = |W ′|;
• for any n ∈ Nom,Wn = W ′ϕNom(n);
• for any λ ∈ Λ, Wλ = W ′ϕMS(λ);

and
– for any w ∈ |W |, Mw = ModI(ϕSig)(M ′w).

Satisfaction. Let (Σ,Nom, Λ) ∈ |SignHI | and (M,W) ∈ |ModHI(Σ,Nom, Λ)|.
For any w ∈ |W | we define:

– (M,W) |=w ρ iff Mw |=I ρ; when ρ ∈ SenI(Σ),
– (M,W) |=w i iff Wi = w; when i ∈ Nom,
– (M,W) |=w ρ ∨ ρ′ iff (M,W) |=w ρ or (M,W) |=w ρ′,
– (M,W) |=w ρ ∧ ρ′ iff (M,W) |=w ρ and (M,W) |=w ρ′,
– (M,W) |=w ρ⇒ ρ′ iff (M,W) |=w ρ implies that (M,W) |=w ρ′,
– (M,W) |=w ¬ρ iff (M,W) 6 |=wρ,
– (M,W) |=w [λ](ξ1, . . . , ξn) iff for any (w,w1, . . . , wn) ∈ Wλ we have that

(M,W) |=wi ξi for some 1 ≤ i ≤ n.
– (M,W) |=w 〈λ〉(ξ1, . . . , ξn) iff there exists (w,w1, . . . , wn) ∈ Wλ such that

and (M,W) |=wi ξi for any 1 ≤ i ≤ n.
– (M,W) |=w @jρ iff (M,W) |=Wj ρ,

We write (M,W) |= ρ iff (M,W) |=w ρ for any w ∈ |W |.

Theorem 1 ([13]). Let ∆ = (Σ,Nom, Λ) and ∆′ = (Σ′,Nom′, Λ′) be two HI-
signatures and ϕ : ∆ → ∆′ a morphism of signatures. For any ρ ∈ SenHI(∆),
(M ′,W ′) ∈ |ModC(∆′)|, and w ∈ |W |,

ModHI(ϕ)(M ′,W ′) |=w ρ iff (M ′,W ′) |=w SenHI(ϕ)(ρ).

The method can be illustrated through its application to the two institutions
described above and used in the paper: those of propositional and equational
logics.

Example 3 (HPL). The hybridisation of the propositional logic institution PL
is an institution where signatures are triples (Prop,Nom, Λ) and sentences are
generated by

ρ ::= ρ0 | i | @iρ | ρ� ρ | ¬ρ | 〈λ〉(ρ, . . . , ρ) | [λ](ρ, . . . , ρ) (2)

where ρ0 ∈ SenPL(Prop), i ∈ Nom, λ ∈ Λn and � = {∨,∧,⇒}. Note there is
a double level of connectives in the sentences: the one coming from base PL-
sentences and another introduced by the hybridisation process. However, they
“semantically collapse” and, hence, no distinction between them needs to be
done (see [4] for details). A (Prop,Nom, Λ)-model is a pair (M,W), where W
is a transition structure with a set of worlds |W |. Constants Wi, i ∈ Nom stand
for the named worlds and (n+ 1)-ary relations Wλ, λ ∈ Λn are the accessibility
relations characterising the structure. For each world w ∈ |W |, M(w) is a (local)
PL-model, assigning propositions in Prop to the world w.

Restricting the signatures to those with just a single unary modality (i.e.,
where Λ1 = {λ} and Λn = ∅ for the remaining n 6= 1), results in the usual
institution for classical hybrid propositional logic [2].

Example 4 (HEQ). Signatures of HEQ are triples ((S, F),Nom, Λ) and the sen-
tences defined as in (2), but taking (S, F)-equations (∀X)t = t′ as atomic base
sentences. Models are Kripke structures with a (local)-(S, F)-algebra per state.
Distinct configurations are therefore modeled by distinct algebras and reconfig-
urations expressed by transitions over a graph of algebras (cf., [11,10]).

	Boilerplates for reconfigurable systems: a language and its semantics
	Alexandre Madeira1,2,3, Manuel A. Martins2, Luís S. Barbosa2

