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Abstract. The standard SPARK deductive verification tools, based on
contracts, are not practical in early stages when the idea is only bug
catching. We discuss the implementation of a bounded model checker for
SPARK, focusing on specific challenges of this language. Our tool is fully
automatic, complementing the existing tools for SPARK.

1 Introduction

Program verification techniques can be grouped in two main families. While
deductive verification based on the use of a program logic and the design-by-
contract principle gives full guarantees and allows for expressing properties us-
ing a rich behavior specification language, it is not automatic: it is the user’s
responsibility to provide contracts and other information required for verification
to proceed, such as loop invariants. Such information requires a lot of effort from
the user since it is often difficult to write. The second family of techniques is
based on model checking, more precisely model checking of software, which typ-
ically allows only for simpler properties, expressed as assertions in the code, but
is fully automated. The fundamental idea is to create a model from the source
program, and then, given a property, check if it holds in that model. However,
such an approach has a main downside: state space explosion. This problem is
common to all applications of model checking, but the presence of data makes
it worse in the case of software.

Bounded Model Checking (BMC) [1] is an approach that can be used to
overcome this limitation by only checking execution paths with size up to a
fixed (user-provided) bound, sacrificing soundness. The general idea is that only
a partial exploration of the state space is performed. Even so, BMC is useful as
long as it finds bugs that would otherwise be missed.

SPARK is a programming language and tool set designed for the develop-
ment of high-assurance software [2]. The SPARK language is a subset of Ada,
complemented by an expressive system of contracts (inserted as Ada comments)
to describe the specification and design of programs. The existing tools1 for ver-
ification of SPARK programs are mainly based on deductive verification, which
implies that someone has to write the contracts and loop invariants that will be
used to generate verification conditions, which is in general far from straightfor-
ward. To fill this gap, we propose here an automated verification tool for SPARK

1 Mainly commercialized by Altan Praxis, http://www.altran-praxis.com



code: a bounded model checker inspired by the success of the CBMC tool for
bounded model checking of C programs [3].

2 Background

BMC of software. The key idea of BMC of software is to encode bounded
behaviors of the program that enjoy some given property as a logical formula
whose models, if any, describe execution paths leading to a violation of the
property. The properties to be established are assertions on the program state,
included in the program through the use of assert statements. For every execution
of the program, whenever a statement assert φ is met, the assertion φ must
be satisfied by the current state, otherwise we say that the state violates the
assertion φ. The verification technique assumes that a satisfiability-based tool is
used to find models corresponding to property violations.

At the heart of a BMC tool stands an algorithm that extracts a logical for-
mula directly from the source code (including properties expressed as assertions),
without user intervention. The algorithm begins with some preliminary simpli-
fication steps that may include the removal of side effects, or normalization into
a subset of the target programming language. The next step is where informa-
tion is lost, in the sense that only bounded behaviors are preserved. Given an
entry-point provided by the user, the program is expanded by unwinding loops
a fixed number of times, and inlining routine calls (in the presence of recursion,
a bound is also applied on the length of this expansion). A program consisting of
multiple routines is thus transformed into a monolithic program, which is both
recursion-free and iteration-free. To enforce soundness of BMC, an unwinding
assertion can be placed at the end of each expanded segment of code. If the
unwinding assertion (negating the condition of the loop) is not violated by any
execution, then checking the transformed (bounded) code is sound. Unwinding
assertions can be omitted, in which case one must always bear in mind the un-
soundness of the approach. In this case the unwinding assert φ statement is
replaced by assume φ, to ignore execution paths requiring more iterations.

In order to extract a logical formula from this monolithic program, we have
to transform it into a form in which the values of the variables do not change
once they have been used (so that they can be seen as logical variables). This
is done by converting the program into a single-assignment (SA) form in which
multiple indexed versions of each variable are used – a new version is introduced
for each assignment to the original variable, so that in every execution path, once
a variable has been read or assigned it will not be assigned again. The next step
is to normalize this program into conditional normal form (CNF): a sequence
of single-branch conditional statements of the form if b then S, where S is an
atomic statement, i.e. either an assignment, assert, or assume instruction. The
idea is to flatten the branching structure of the program, so that every atomic
statement is guarded by the path condition leading to it.

At this point, two sets C and P can be extracted from the program: C includes
a formula b→ x = e for every statement if b then x := e and a formula b→ θ



� �
package Marray i s

Array S ize : constant :=10;
subtype I nd i c e s i s I n t eg e r range 1 . . Array S ize ;
type VArray i s array ( I nd i c e s ) of I n t eg e r ;

procedure MaxArray (V: in VArray ; M: out I nd i c e s ) ;
−−# de r i v e s M from V;
−−# post ( f o r a l l I in I nd i c e s => (V( I ) <= V(M) ) ) ;

end Marray ;� �� �
package body Marray i s

procedure MaxArray (V: in VArray ; M: out I nd i c e s )
i s

I : I n t eg e r ;
Max : I nd i c e s ;

begin
Max := Ind ice s ’ F i r s t ;
I := Ind i ce s ’ F i r s t +1;
loop
−−# as s e r t ( f o r a l l J in Ind i c e s range Ind i ce s ’ F i r s t . . ( I−1)
−−# => (V(J ) <= V(Max ) ) ) ;
−−# as s e r t ( I >= Ind ice s ’ F i r s t ) and ( I <= Ind ice s ’ Last + 1 ) ;
exit when I > Ind i ce s ’ Last ;
i f V( I ) > V(Max) then

Max := I ;
end i f ;
I := I + 1 ;

end loop ;
M := Max;

end MaxArray ;
end MArray ;� �
Fig. 1. SPARK program specification and body: the procedure receives an array of
integer values and returns the index of the maximum element.

for every statement if b then assume θ; P includes a formula b→ φ for every
statement if b then assert φ. C captures logically the operational contents
of the program, and P contains the properties to be established.

If no assert statement fails in any execution of the program one has that
∧
P

is a logical consequence of C. This can be determined by checking the satisfia-
bility of the set of formulas C ∪ {¬

∧
P}. Any model found for it corresponds to

an execution path that leads to an assertion violation. Of course, satisfiability
checking is restricted to models that capture the properties of the data structures
manipulated by the program, and that are specified by some background theory
T (usually a combination of several theories). Therefore ‘satisfiability’ should in
fact be understood as T -satisfiability. It can be checked by a Satisfiability (SAT)
or an Satisfiability Modulo Theory (SMT) solver: the main difference is the way
numeric values and arrays are modelled.

SPARK. Although SPARK [2] is based on a heavily restricted subset of Ada
together with a set of annotations, it should be considered in its own right as a full
language for the development of annotated high-assurance software. Annotations
in SPARK code (lines starting with --#) must be written as comments, ignored
by compilers but not by the SPARK verification tools.



A SPARK program is composed by one or more units. There exist two dif-
ferent kinds of program units: packages and subprograms. Subprograms define
computations, which may have parameters with mode in, out or in out and are
divided into functions and procedures. Functions are routines with only mode
in parameters, that may not have side effects, and always return a value. Each
function must have exactly one return statement (the last statement in the
function). Function calls occur inside expressions, while procedure calls occur as
standalone statements (procedure may not contain return statements). Package,
is used as a way of grouping related entities (e.g. data types and objects, subpro-
grams or even nested packages). All program units are generally divided in two
parts: specification (the program unit’s interface) and body (the implementation
details). Fig. 1 contains the package Marray’s specification and body.

Many features of Ada are not present in SPARK because they are considered
‘dangerous’ or difficult to verify in the development of safety-critical systems.
Some of these exclusions facilitate our work in the development of a BMC for
SPARK, for instance there is no need to limit the number of times a function is
inlined (recursion is not allowed); the same applies to pointer validity checks.

SPARK is not just a language, but also a set of tools to check if a program
respects all the restrictions imposed on valid SPARK programs, and also for
program verification. The Examiner is a tool responsible for performing syntactic
and static semantic analyses for checking the validity of SPARK programs, as
well as generating verification conditions. The reader is referred to [2] for a full
description of the SPARK tools, as well as SPARK restrictions.

Types are organized into categories [2]. For instance, the discrete type hierar-
chy is devided into integer types and enumerations. Moreover, integer types are
devided into signed and modular types. Operations over the former may result
in overflow (which raise runtime exceptions), whereas operations over the later
have wraparound semantics. A modular type is defined by giving a power of two
integer N ; its values range from 0 to N −1. In the example, T is a modular type.� �
type T i s mod 4 ;
type Nat i s range 0 . . Integer ’ Last ;
type Day i s (Mon, Tue ,Wed, Thur , Fri , Sat , Sun ) ;
subtype Counter i s Nat range 1 . . 10 ;
subtype Weekday i s Day range Day ’ F i r s t . . Fr i ;� �
The range of the predefined integer type is defined in a default SPARK package,
but it can also be given in a configuration file. It is also possible to define new in-
teger types, with range given by two static expressions (lower and upper bound),
as for example as Nat shown above. Note the use of the expression Integer’Last

which makes use of an attribute over the integer type. An enumeration is defined
using a list of identifiers (enumeration literals). In SPARK, as opposed to Ada,
enumeration literals cannot be overloaded. Type Day is an example of a declared
enumeration type. Comparison operators may be applied to enumeration types,
except for type Boolean, where the only operators are equality and inequality.

A subtype of a certain type is defined by giving a lower and upper bound
over the base type. One can define subtypes of both enumeration types and



integer types, but not of modular types. For instance, Counter and Weekday are
examples of subtypes of the types Nat and Day respectively.

In addition to discrete types there exist also composite types, divided into
records and arrays. A record is a structure consisting of named components. As
in many other languages, an array consists of an indexed list of elements of the
same type. The index must be a discrete type and may possibly be constrained.
Tuple in the example below, is an unconstrained array (note the use of <>) while
WorkHours is a constrained array. Objects of an array type must always have a
static bound, therefore the types Tuple and Matrix cannot be used directly to
create new objects, since they have unconstrained indexes.� �
type Tuple i s array ( In t eg e r range <>) of Day ;
type WorkHours i s array (Weekday) of Nat ;
type Matrix i s array ( Counter , I n t eg e r range <>) of Ci r c l e ;� �

Turning now to SPARK statements, the most primitive form of iteration is
implemented by an infinite loop control structure and an explicit abrupt exit

command which should always occur under an if statement without else branch,
or alternatively within a when clause. An exit statement always refers to the
innermost loop. Every while or for loop can be converted into a primitive loop.

3 SPARK-BMC

SPARK-BMC is a prototype bounded model checker for SPARK programs,
that follows closely the BMC algorithm described before. The tool checks valid
SPARK programs for property violations as will be explained below. It as-
sumes, without checking, that the input program passes the Examiner validity
checks. The tool is being developed in Haskell and uses as backend the SMT-
solver Z3 [4]. SPARK-BMC is open source; it is available from the repository
https://bitbucket.org/vhaslab/spark-src.

The tool parses the SPARK program and creates an Abstract Syntax Tree
(AST) with the program representation. The program is then transformed, sim-
plified, and normalized (by multiple traversals of the AST) and two sets of logical
formulas are extracted, describing logically the operational contents of the pro-
gram, and the properties to be established. Finally, the SMT solver is used to
check if there exists a property violation; if so, a counter-example is shown.

The tool checks for properties annotated in the code which are inserted as
comments beginning with --%, distinct from SPARK annotations. A program
annotated for SPARK-BMC is still a valid SPARK program that can be checked
by the usual SPARK toolset. Our tool works with the following annotations:� �
−−% as s e r t C;� �� �

−−% assume C;� �� �
−−% notOverf low (op , type , e1 , e2 ) ;� �

The two basic annotations assert C and assume C, with C a quantifier-free
formula, are similar to those used in CBMC: assert C means that the assertion
C must be satisfied by the current state, and assume C means that all paths
violating the property are ignored. The notOverflow is used to check if overflow



occurs and is translated into an assert with a formula that depends on the model
used for numeric values (bit-vectors or unbounded integers).

� �
−−% notOverf low (+ ,ITER, INDICES ’FIRST , 1 ) ;
I := Ind i ce s ’ F i r s t +1;
. . .
−−% as s e r t ( I >= VARRAY’FIRST(1 ) ) and ( I <= VARRAY’LAST( 1 ) ) ;
−−% as s e r t (MAX >= VARRAY’FIRST(1 ) ) and (MAX <= VARRAY’LAST( 1 ) ) ;
i f (V( I ) > V(MAX)) then
. . .
−−% notOverf low (+ ,ITER, I , 1 ) ;
I := I + 1 ;� �

Fig. 2. Annotated program

Similarly to CBMC, these annotations can be inserted by the user to express
properties that should hold (very helpful for instance for debugging purposes),
or else added automatically by an instrumentation tool that analyses the pro-
gram and inserts ‘obvious’ annotations. In SPARK code it is particularly useful
to check statically for runtime exceptions; the SPARK Examiner certainly does
this, but it requires annotating loop invariants in the code. These properties (in
particular overflow, array out of bound access and division by zero) can be in-
strumented automatically, and with SPARK-BMC they can be checked without
requiring invariants, as will be illustrated later in the paper. For overflow, the
instrumentation inserts a notOverflow annotation for each arithmetic opera-
tion that can possibly cause overflow; for division by zero it inserts an assert

to check that the denominator is different from zero; for array out of bounds
access, it inserts an assert to check the validity of each index. Fig. 2 shows
some properties that may be automatically inserted in the example of Fig. 1.

The rest of this section presents the details of the several transformation
steps on the original program, and the interaction with the SMT solver.

Simplification. The first step is to rewrite the input program into an equivalent
one that uses only a restricted set of statements, namely, loop, exit, if-then,
if-then-else and assignment. case statements are translated into if state-
ments. exit-when statements are rewritten using if and exit statements. Also
if statements using the elsif keyword are translated into nested ifs. while
and for loops are rewritten as discussed using loop, if and exit statements.

Subprogram inlining. The inlining of routine calls consists of taking the en-
try point provided by the user and recursively remove subprogram calls. For
subprograms used as standalone statements, this is done by simply replacing
the subprogram call by the respective body. For function calls occurring as part
of expressions, the function body is inserted exactly before the statement which
contains the call, and an auxiliary variable is used to propagate the return value.
Auxiliary variables are also used to propagate the values of parameters inside
the callee and back to the caller subprogram, taking into account their modes



(in, out or in out). Since different contexts are being merged, identifiers are
renamed to avoid conflicts, by adding as prefix the package and subprogram
name (this is also useful to keep information about the identifier’s context). The
result of this transformation step is a monolithic program with no calls.

Eliminating attributes and enumeration literals. SPARK attributes ap-
ply to types and subtypes. Since we assume that the program being verified is
always a valid SPARK program, it is known beforehand that the enumeration
literals are being used correctly. Moreover, SPARK forbids the overloading of
enumeration literals. With this in mind and the information about declarations
obtained in the last step, we translate enumeration literals into integer values
(the respective position in the enumeration) and get rid of attributes, replacing
them by equivalent expressions. The only exception is for literals of Boolean
type, since they can be used as conditions and the Boolean type is not ordered.

Loop unwinding. Loops can in general be seen as blocks of code containing
backward-goto and forward-goto statements. Since the iteration schemes have
been removed, only primitive loops are present at this stage, and the only way
of exiting such a loop is through an explicit exit, equivalent to a forward-goto
statement. On the other hand, reaching the end of a loop block produces a
backward-goto to the beginning of the loop.

In the present step, in order to produce a bounded model, each loop gets
unwound a fixed number of times K. Loop headers are removed, and loop bodies
are replicated K times. However, exit statements complicate this picture: the
statements belonging to the loop body following a reached exit statement do not
get executed. This is done by introducing an artificial loop unwind wrapper for
the code standing between the exit statement and end of the unwound loop code.
With this wrapper, reaching an exit statement means that none of the following
statements inside the wrapper should get executed. Such wrappers have other
uses as will be seen below, but will be removed in the final normalization step.
An unwinding assertion or assumption (depending on the user choice) is placed
at the end of the expanded code to produce the effect explained in Section 2.

Single-assignment transformation. A crucial step towards the normalization
of the program is its transformation into an SA form. In this transformation,
multiple indexed versions of each variable are used – a new version is introduced
for each assignment to the original variable, so that in every execution path,
once a variable has been read or assigned it will not be assigned again.

While the transformation of straight-line code is quite straightforward, code
with multiple branches poses some challenges. The only statement left with mul-
tiple branches at this stage of the transformation workflow is the if statement
(exit statements inside loop wrappers will be discussed later). The two final ver-
sions of each variable (one from each branch) must be merged; this is achieved
by inserting, immediately after the conditional, an assignment to each modified
variable, making use of conditional expressions, as used in C.



Our conversion algorithm traverses the AST and appends an appropriate
index to each variable occurrence. To deal with multiple branch statements, the
algorithm makes use of two counters for each variable; one family of counters (R)
keeps the index that should be used when a variable is read, the other (W) keeps
the last index of the variables that have been used for writing. Both R(v) and
W(v) are incremented when variable v is assigned. However, when entering an else
branch R(v) must be reset to the value it had immediately before the entering
of the if conditional. At the merge point, the values of W at the end of both
branches are used for inserting an assignment with the appropriate conditional
expression. Consider the example� �

−− R = {(X, 2 ) , (Y, 4 ) } ; W = {(X, 3 ) , (Y, 4 )}
i f (X#2 = Y#4) then

X#4 := X#2 + Y#4; −− R = {(X, 4 ) , (Y, 4 ) } ; W = {(X, 4 ) , (Y, 4 )}
else

X#5 := X#2 + 5 ; −− R = {(X, 5 ) , (Y, 4 ) } ; W = {(X, 5 ) , (Y, 4 )}
end i f ;
X#6 := (X#2 = Y#4) ? X#4 : X#5;

−− R = {(X, 6 ) , (Y, 4 ) } ; W = {(X, 6 ) , (Y, 4 )}� �
The fact that R(X) and W(X) are different indicates that this is part of some else
branch. Observe how the value of R(X) before entering the conditional is used
in both branches when X is read. Special attention must be given to assignments
involving arrays. For the purpose of obtaining a logical encoding, arrays are
seen as aplicative: each array correspond to a single variable, updated through a
store function. So an assignment of the form A(X) := Y is first transformed into
A := store(A,X,Y), and conversion to SA form then produces the instruction
A2 := store(A1,X’,Y’), where X’ and Y’ correspond to X and Y with possible
renaming of variables due to transformation to SA form. Fig. 3 presents the
state of our running example after conversion to SA form. Note in particular
that MAX#7 is not assigned in this iteration because its valued depends on the
reached exit statement. Such assignments are added in the next iteration when
removing exit statements.

CNF normalization. The program is normalized into a sequence of statements
of the form if b then S, where S must be an assignment, assert or assume
instruction. To reach such form, exit statements must be removed. This step
is divided in two parts: first, the program is normalized in the form described
above, allowing S to be an exit statement; later this statement is removed.

For the first part, if statements with else branch are rewritten into a se-
quence of two if statements with mutually exclusive conditions. This transfor-
mation is correct since in SA form the value of the Boolean expression cannot
possibly be modified by subsequent instructions. Nested if statements are then
pushed up in the AST, by traversing it and collecting the necessary path condi-
tions for reaching each assignment, exit, assert or assume instruction, and then
creating an if statement with the conjunction of the collected conditions.

For the exit statements removal, recall that when such a statement is reached,
none of the following instructions in the loop wrapper should be reached. More-
over, the values of the variables after the wrapper must be in accordance with the



� �
ARRAY SIZE#1 := 10 ;
MAX#2 := 1 ;
−−% notOverf low (+ ,INTEGER, 1 , 1 ) ;
I#2 := (1 + 1 ) ;
LOOPWRAPPER

i f ( I#2 > ARRAY SIZE#1) then
exit ; −− [ ( I , 2 ) , (M, 1 ) , (MAX, 2 ) , (V, 1 ) ]

end i f ;
−−% as s e r t ( I#2 >= 1) and ( I#2 <= ARRAY SIZE#1);
−−% as s e r t (MAX#2 >= 1) and (MAX#2 <= ARRAY SIZE#1);
i f (V#1( I#2) > V#1(MAX#2)) then
MAX#3 := I#2;

end i f ;
MAX#4 := (V#1( I#2) > V#1(MAX#2)) ? MAX#3 : MAX#2;
−−% notOverf low (+ ,INTEGER, I #2 ,1);
I#3 := ( I#2 + 1 ) ;
i f ( I#3 > ARRAY SIZE#1) then

exit ; −− [ ( I , 3 ) , (M, 1 ) , (MAX, 4 ) , (V, 1 ) ]
end i f ;
−−% as s e r t ( I#3 >= 1) and ( I#3 <= ARRAY SIZE#1);
−−% as s e r t (MAX#4 >= 1) and (MAX#4 <= ARRAY SIZE#1);
i f (V#1( I#3) > V#1(MAX#4)) then
MAX#5 := I#3;

end i f ;
MAX#6 := (V#1( I#3) > V#1(MAX#4)) ? MAX#5 : MAX#4;
−−% notOverf low (+ ,INTEGER, I #3 ,1);
I#4 := ( I#3 + 1 ) ;
−−% as s e r t Fa l se ;

END LOOPWRAPPER; −− [ ( I , 5 ) , (MAX, 7 ) ]
M#2 := MAX#7;� �

Fig. 3. Single-assignment program representation

first exit statement reached. If no exit statement is reached then an assert or an
assume annotation must be reached. The preparation for this step starts when
the code is converted into SA form: for each exit statement, the current version
of each variable at that point is kept, and at the end of each loop wrapper, a
new version for each modified variable is reserved. This version is the one that
is used immediately after the loop wrapper: its value reflects the exit statement
that has been reached. This information is displayed as comments in Fig. 3.

At this stage each exit statement is guarded by a condition C; the statement is
reached if and only if C evaluates to true. To ensure that none of the subsequent
statements (including other exits) are reached after an exit statement is, one has
to ensure that none of the subsequent guards evaluate to true, by propagating the
condition not C through them. In order for variables to hold the correct values
after the wrapper, assignments to the reserved variables are inserted using the
current variables that were kept together with the exit statement. The guard for
these assignments is the exit guard. Loop wrappers may now be removed. Fig. 4
shows the CNF representation of our running example.

Creating the logical encoding. There are no language-specific aspects in the
next step. After all the previous transformations, the program is now a sequence
of statements of the form if C then S, where S may only be an assignment or
an instruction derived from an annotation (assert, notOverflow, or assume).
As described in Section 2, one now has to extract two sets of formulas C and



� �
−− . . .
True => NExit#1 := not ( ( I#2 > ARRAY SIZE#1));
( I#2 > ARRAY SIZE#1) => MAX#7 := MAX#2;
( I#2 > ARRAY SIZE#1) => I#5 := I#2;
NExit#1 => −−% as s e r t ( I#2 >= 1) and ( I#2 <= ARRAY SIZE#1);
NExit#1 => −−% as s e r t (MAX#2 >= 1) and (MAX#2 <= ARRAY SIZE#1);
NExit#1 and (V#1( I#2) > V#1(MAX#2)) => MAX#3 := I#2;
NExit#1 => MAX#4 := (V#1( I#2) > V#1(MAX#2)) ? MAX#3 : MAX#2;
NExit#1 => −−% notOverf low (+ ,INTEGER, I #2 ,1);
NExit#1 => I#3 := ( I#2 + 1 ) ;

True => NExit#2 := not ( ( I#3 > ARRAY SIZE#1)) and NExit#1;
NExit#1 and ( I#3 > ARRAY SIZE#1) => MAX#7 := MAX#4;
NExit#1 and ( I#3 > ARRAY SIZE#1) => I#5 := I#3;
NExit#2 => −−% as s e r t ( I#3 >= 1) and ( I#3 <= ARRAY SIZE#1);
NExit#2 => −−% as s e r t (MAX#4 >= 1) and (MAX#4 <= ARRAY SIZE#1);
NExit#2 and (V#1( I#3) > V#1(MAX#4)) => MAX#5 := I#3;
NExit#2 => MAX#6 := (V#1( I#3) > V#1(MAX#4)) ? MAX#5 : MAX#4;
NExit#2 => −−% notOverf low (+ ,INTEGER, I #3 ,1);
NExit#2 => I#4 := ( I#3 + 1 ) ;
NExit#2 => −−% as s e r t Fa l se ;

True => M#2 := MAX#7;� �
Fig. 4. CNF normalization (auxiliary variable _NExit may be propagated)

P. This is straightforward, by traversing the list of statements, transforming if

statements into implications and assignments into equalities. The formulas with
assert statements are collected in P, and the remaining implications in C.

Solver interaction. Now that we have C and P the satisfiability of C∪{¬
∧
P}

modulo a background theory has to be checked. The simultaneous presence in
the language of discrete types with modular semantics and of signed integers for
which runtime overflow exceptions are raised led us to elect fixed-size bit-vectors
for our primary encoding of discrete types: the modular semantics is directly
captured by bit-vectors, and for signed integers, since overflow is protected by
instrumented notOverflow annotations, it is indifferent to use bit-vectors or
an unbounded integers encoding. Our choice was to use Z3 [4] as proof tool.
Z3 is a high-performance SMT solver being developed at Microsoft Research.
Open source bindings2 are available for Haskell, which allow for the use of some
convenient features, as well as a direct interaction with the solver.

The first task is to create the adequate Z3 sorts for each SPARK predefined
or user-defined type. A relation between these two classes must be kept for
building Z3 expressions. One may then create one Z3 constant for each program
variable. Since Z3 does not support multiple-index arrays, SPARK arrays with
multiple indexes are represented using nested arrays in Z3. Formulas from C are
interpreted and sent to the solver one by one, while formulas from P are used to
build the expression ¬

∧
P which is then also sent to Z3. The interpretation of

SPARK expressions and creation of Z3 formulas is programmatic, using functions
available in the Z3 bindings. The Z3 bindings also provide a function for checking
satisfiability, and in the SAT case produces a model to be used as counter-
example.

2 http://hackage.haskell.org/package/z3



4 Conclusion

Although the development of SPARK-BMC is still in progress (some features
of SPARK are not yet covered), the tool’s workflow is entirely implemented,
and we are able to successfully check programs manipulating arrays and discrete
types. Our preliminary results are satisfactory, and sufficient to illustrate the
advantages of automatic verification. Let us turn back to the example in Fig. 1 to
show how the tool can discover subtle bugs without the need for user annotations.
One common error would be to write the exit condition as follows:� �
exit when I > Ind i ce s ’ Last + 1 ;� �
It is easy to see that this alternative condition would cause an array out of bounds
exception in the array access contained in the expression V(I) > V(MAX), but
such a bug can be easily missed. Our tool detects it automatically.

The SPARK tools (based on deductive verification) would generate a verifi-
cation condition (labelled as assert) stating that the loop invariant is preserved
by iterations of the loop, and another VC (labelled as rtc check) to enforce
that whenever V(I) > V(MAX) is evaluated the value of I lies within the range
of the array. For the code of Fig. 1 both VCs are successfully discharged: no out-
of-bounds access takes place. But if the exit condition is modified to the above,
then the invariant preservation condition can no longer be proved (it fails in
the last iteration). The rtc check is still proved, because it is a consequence of
the invariant. If the invariant is corrected to I <= Indices’Last + 2, then the
invariant preservation VC is discharged, but not the rtc check – the invariant
is now correct, but it does not prevent the out-of-bounds access. This example
illustrates that with deductive verification it can be hard to detect exactly what
went wrong – is the program unsafe, or is the user-provided invariant wrong?

To use SPARK-BMC, the program is first automatically instrumented as
discussed in Section 3. Depending on the bound K provided by the user, SPARK-
BMC will either indicate that the unwinding assertion fails, or else (for K >
10) that an assert violation occurs. In this case the tool displays the violated
assertion, as well as the current values of the variables occurring in them. Safety
violations like overflow and division by zero would also be detected if present.

Even though not particularly optimized at the present stage, the tool seems
to scale reasonably well (the array size in the example may well be increased
up to thousands). Our current work focuses on covering aspects of SPARK that
are still not handled, including support for floating and fixed point types and
respective properties. In the near future we will work on optimizing the gener-
ation of Z3 expressions for scalability. At a later stage we intend to (i) extend
the tool to handle concurrent programs, more precisely programs written in the
RavenSPARK profile, by employing context-bounded analysis; and (ii) investi-
gate how the tool can be used for coverage analysis of SPARK code, following
work in this direction (for C code) using CBMC [5].
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