THE USE OF HOT WIRE TECHNIQUES IN FOULING TESTS
A WORD OF AWARENESS

J.D. Pinheiro, L.F. Melo and R.T. Oliveira

Centro de Química Pura e Aplicada, University of Minho, 4700 Braga, Portugal

ABSTRACT

Hot metal wires have been used in fouling tests, mainly when corrosion or chemical reaction is present. Most authors who have reported data obtained with hot wire techniques make no reference about the phenomenon related to the increase in surface area due to the accumulation of fouling layers. Yet this can cause problems of reverse insulation (critical radius), affecting the conclusions taken directly from the readouts. The aim of this paper is to discuss this problem and show through a few selected cases the importance of this aspect in fouling resistance determinations using hot wire techniques.

INTRODUCTION

It is often impractical and even impossible to use field equipment for systematic fouling studies. Hence, some laboratory techniques were developed in order to evaluate the effect of pertinent parameters, on heat exchanger fouling, within appreciable ranges. One of them is the hot wire probe test (HWP), which consists essentially of electrically heating a metal wire in contact with a fluid stream [1]. Heat transfer coefficients and thermal resistances can be calculated knowing the heat flux, as well as the fluid and wire temperatures.

The wire temperature is a function of its electrical resistance, the latter being measured during the fouling tests.

Some improvements have been made in this technique; one, the U.O.P. Monirex Fouling Test (Figure 1) was designed by Universal Oil Products Co. to be commercially available for use in the laboratory as well as on a side stream of a particular process [2].

Figure 1 - Hot wire probe

The importance of this technique is due to some advantages:

- It is sensitive;
- by adjusting the operating conditions it can measure fouling in hours rather than months;
- It operates with small amounts of feedstock;
- It gives readouts in terms of heat-transfer coefficient;
- It eases the control of different parameters such as:
temperature of the stream;
- temperature of the hot wire;
- flow rate of the stream;
- composition of the fluid.

The HWP has been used mainly when corrosion or chemical reaction is present and due to its particular features, is a practical mean for studying the dependence of fouling rate on wall temperature - an important parameter in many types of fouling.

In fact, despite the existence of a great number of listed fouling factors, published by T.E.M.A. - Tubular Exchanger Manufacturers Association - for a broad number of defined equipment and heat duties, they do not sufficiently account for the dependence of fouling on temperature, also making no allowance for its time dependence.

THE CRITICAL RADIUS

Fouling usually acts as an additional resistance to heat transfer; but in thin wires, and in some circumstances, this may not be true.

Assuming the wire as cylindrical, see Figure 2, the heat transfer rate from it can be calculated by:

\[
q = \frac{(T_w - T_b)}{R} \cdot 2\pi r_w
\]

Where:
- \(q \) - heat transfer rate
- \(T_w \) - temperature of the wall (wire)
- \(T_b \) - bulk fluid temperature
- \(l \) - wire length
- \(r_w \) - wire radius
- \(R \) - total thermal Resistance = \(R' + R_f \)

and:

\[
R' = \frac{r_w}{h_f}
\]

\(R' \) - thermal resistance of the fluid

\[
R_f = \frac{r_w}{k_f} \ln \frac{r}{r_w}
\]

\(R_f \) - thermal resistance of fouling layer

\(r \) - effective radius = \(r_w + r_f \)

\(r_f \) - fouling layer thickness

\(h \) - convective heat transfer coefficient

\(k_f \) - thermal conductivity of the deposit

and so

\[
q = \frac{2\pi l (T_w - T_b)}{\frac{1}{h_f} + \frac{1}{k_f} \ln \frac{r}{r_w}}
\]

If the wire is very thin phenomena similar to reverse insulation \(|3| \) can be present. In fact, the accumulation of successive cylindrical layers of deposit results in a continuous increase in the surface area contacting the fluid; thus the total heat transferred may also increase if the area increases more rapidly than the thermal resistance.

A critical radius for the fouled wire can be determined knowing that for a maximum heat transferred the total thermal resistance is a minimum. The resistance is a minimum when the derivative of the sum of the resistances \(R' \) and \(R_f \) with respect to the radius \(r \) is set equal to zero:

\[
\frac{dR}{dr} = \frac{r_w d}{k_f r_w} \ln \frac{r}{r_w} + \frac{r_w d}{R} \frac{d}{r} = \frac{r_w}{k_f r} \frac{r_w}{h r^2}
\]
for a minimum thermal resistance \(\frac{dR}{dr} = 0 \) and
\[
r = \frac{k_f}{h} = r_c
\]
\(r_c \) being known as the critical radius.
An increase in heat transfer will be observed with increasing fouling thickness in the zone characterized by \(r_w < r < r_c \), as can be seen from Figure 3.
Only at \(r = r' \) will the heat transfer rate again equal the heat transfer from the initially unfouled wire.

Figure 3 - Heat transfer rate versus wire radius

As from equation (4) \(h = \frac{k_f}{r_c} \), equation (3) becomes

\[
q = \frac{2\pi l (T_w - T_b) \times k_f}{\ln \frac{r}{r_w} + \frac{r_c}{r}}
\]

EFFECTS OF THE CRITICAL RADIUS ON FOULING DATA

In the calculation of fouling resistances it is often assumed that no change in surface area occurs during fouling. However, this assumption is not valid for the HWP, where significant changes in the area can occur specially if the wire diameter is very small. For instances, if the wire radius is 0.1 mm, the increase in surface area caused by a fouling layer of 0.01 mm thickness is about 10%, but if the wire radius is 2 mm the same deposit produces an area increase of about 0.5%.

Experiments with the HWP under a constant heat flux are frequently carried out by simply controlling the voltage to the wire. In this case, the following conclusions emerge from Figure 4 and equation (5):

- if \(r < r_c \), increasing \(r \) decreases \(T_w \);
- if \(r > r_c \), increasing \(r \) increases \(T_w \).

Figure 4 - Effect of radius change on the denominator of equation (5)

The consequences of these changes in \(T_w \) for two different types of data collection will be discussed below.

Fouling Resistance Versus Time Data

Frequently, the build-up of deposits with time in industrial heat exchangers tends to a maximum steady (asymptotic) value and, sometimes, presents an initial induction period where no fouling is detected. The shape of the fouling resistance versus time curves and, of course, the quantitative assessment of the deposit can be severely affected by the critical radius effect, as illustrated in the following example.

Suppose that: the wire on a HWP is 10 cm long, with a radius of 1 mm; the thermal conductivity of the deposited substance is 0.8 w/m k; the fluid and the initially clean wire temperature are, respectively, 15°C and 60°C; and the heat transfer rate (which will be held constant throughout the test) is 15 w. As deposition proceeds, \(T_w \) will change and, assuming constant \(h \), the
correct values of \(R_f \) can be calculated with equations (3) and (2). This \(R_f \) versus time data is shown in Figure 5 - curve (a).

Most of the reports on the dependence of chemical reaction fouling on wall temperature refer a breakpoint temperature that is, a temperature above which fouling occurs at a significant rate.

The breakpoint temperature is characteristic for each sample under study and is a function of its chemical composition, oxygen concentration and other factors [4].

The results obtained with the WHP mainly appear in the form of curves, like curve (a) in Figure 6.

In these experiments the wire temperature is held constant, for a relatively long period, to check if for that temperature some deposit is formed. If the phenomenon of critical radius is present it is possible to operate the HWP at such temperatures that curves, like curve (b) or even curve (c) in Figure 5, may be obtained.

An erroneous interpretation of these curves can lead to the following:

- for the temperature at which curve (b) was obtained \(T_1 \), the induction period seems to be very long, and fouling relatively small;
- for the temperature at which curve (c) was obtained \(T_2 \) no significant fouling seems to occur.

Figure 5 - Fouling curves.
(a) with critical radius correction.
(b) and (c) without correction.

Figure 6 - Breakpoint temperature.
(a) with critical radius correction.
(b) without correction.
during the operating time. So, this temperature appears to be below the breakpoint temperature, despite the actual presence of fouling. Based on such an information, curve (a) in Figure 6 would appear displaced to the right (curve (b)) and the value of the breakpoint temperature would be misrepresented — T'_{w} instead of T_{w}.

CONCLUSIONS

Most authors who have reported data obtained with the HWP seem not to be concerned with the phenomenon of critical radius, since they make no reference on calculations carried out to check whether reverse-insulation effects are present. Nevertheless, to make a correct interpretation of experimental data, this effect must be checked out. If this effect is not taken into account, misleading results may be obtained, namely:

- values of thermal resistances of deposit lower than the real ones;
- induction periods and breakpoint temperatures greater than the actual ones.

Alternatively, when designing a HWP for a given duty the wire radius must be carefully chosen to avoid the undesirable phenomenon.

REFERENCES