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Abstract 

This paper describes a new approach to improve on modelling the bending behaviour of plain-woven fabric. 
The four-node flat shell element is developed by incorporating a strain smoothing technique, six degrees of 
freedom at each node. The material laws for in-plane and out-of-plane behaviors are expressed in terms of 
orthotropic elastic material. The physical and mechanical parameters of fabric samples are measured using 
Kawabata Evaluating System for Fabric (KES-F). An improved numerical model with a strain smoothing 
operation for modelling the bending behaviour of plain-woven fabric is then carried out. The bending 
behavior of a rectangular plain-woven fabric sheet with clamped edges is simulated. 
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INTRODUCTION 

The bending properties of fabrics govern many aspects of fabric performance, especially for drape and hand 
[1]. It is an essential component of the fabric complex deformation analysis and simulation [2]. Modelling the 
bending behavior of woven fabrics [2,3,4], therefore, has received considerable attention in textile 
engineering and computer graphics communities. The modelling of the bending (moment–curvature) curve of 
woven fabrics introduced in the work of Peirce [5], who was one of the first initiated research in the bending 
behavior of fabric and the measurement of its material properties in 1930s, developed the cantilever method 
to measure fabric bending properties and then used the two dimensional bending characteristic as a 
measure of fabric drape [4,6]. Commercially, the Shirley Stiffness Tester [7] based upon the cantilever 
principle was marketed as the initial instrument to measure bending properties, contributing with mechanical 
parameters for cloth modeling and simulation. In the frame work of finite element method, shell elements are 
being used extensively in practical engineering applications with both shells and folded plate structures due 
to computational cost and their flexibility and effectiveness. In textile engineering, typically in the works of 
Chen and Govindaraj [8], they used a shear flexible shell theory to predict fabric drape. Gan et al. [9] applied 
geometric nonlinear finite elements, associated with a shell element to model large fabric deformation. 
Jeffrey et al. [10] used nonlinear shell theory to model and to control flexible fabric. 

In this work, the four-node flat shell element is formulated for modelling the bending behaviour of plain-
woven fabric. The flat shell element is a combination of the plate bending and membrane elements [11,12], 
being plate bending based on Mindlin/Reissner plate theory [11]. A strain smoothing operation [13], which is 
proposed recently as a Cell-based Smoothed Finite Element Method (CS-FEM) [14], is applied to improve 
formulation of a locking-free quadrilateral flat shell element with six degrees of freedom per node, and able to 
reduce the mesh distortion sensitivity and enhance the coarse mesh accuracy. CS-FEM also improves shear 
locking phenomenon in the development of shell elements based on shear deformation theories. In this finite 
element formulation, the plain-woven fabric is assumed as orthotropic elastic material, and its physical and 
mechanical parameters are measured using Kawabata Evaluating System for Fabric (KES-F) [2,6,7]. The 
numerical result is subjected to evaluate and investigate the applicability of a cell-based smoothed finite 
element to textile problems, such as bending deformation, which is play a significant role in modelling and 
simulation of the draping behavior of fabrics. 

MODELLING THE BENDING BEHAVIOUR OF PLAIN-WOVEN FABRICS 

1. Sample preparation and instrumentation 

Fabric sample preparation and instrumentation conforms to the KES-F. The subscripts      and      
denote warp and weft direction in the fabric samples corresponding to   and   direction, see Figure 1. Elastic 
modulus   and shear modulus   are measured using the KES-FB1 Tensile-Shear tester, bending rigidities   
measured using the KES-FB2 Pure Bending tester, and the fabric weight per unit area   and fabric thickness 
  are measured using the KES-FB3 Compression tester. Poisson’s ratio   is estimated as      for both warp 
and weft direction. 

2. Finite element formulation with strain smoothing technique 
 

2.1. A formulation for four-node quadrilateral shell element 



Let   denote the domain of a plain-woven fabric sheet,   the boundary,   the fabric thickness,   the fabric 
mass density. The mid-plane of the fabric sheet is taken as the reference plane, as Figure 1. Based on the 

first order shear deformation theory, the basic assumption for displacement point [15]             in   are: 
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where       are displacement components in the global coordinate          axis, respectively.           

are the rotations of the fabric in the warp and weft direction with respect to the  - and  - axes,    
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Figure 1. A four-node-node quadrilateral shell element 

The membrane strain   , the bending strain (curvature)   , and the transverse shear strain     can be written 
in terms of the reference plane deformations as: 
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In case of ignoring the transverse shear energy, the transverse shear strain       (see Kirchhoff-Love type 
[12,16]). 

The constitutive relationships can be expressed as: 

                          (3) 
 

where               is the membrane force;               and            are the 
bending moment and the transverse shear force.  

The plain-woven fabric samples is assumed to be orthotropic elastic material and agreed with the Hooke’s 
law. Thus, the stiffness constitutive coefficients for membrane   , bending   , and transverse shear    are 
defined as: 
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in which        are the fabric thickness, the transverse shear correction factor, and transverse shear 
modulus [17].   is the torsional rigidity, as shown in [18]. In case of assuming that the fabric does not 
undergo twist deformation, then the torsional rigidity can be neglected. 

According to the spatial discretization procedure in FEM, the bounded domain   of reference plane is 
discretized into    subdomains,    finite elements, then the nodal displacements and rotations at any point in 
an element is defined as: 
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where    
                     is the generalized nodal displacement at node  , and    is the linear 

shape functions of a four-node quadrilateral element associated to node  ,   is given as in [12,19] . 

The discrete strain fields of the membrane   , the bending   , and the transverse shear    can be obtained 
by substituting Eq. (7) into Eq. (2) as follows: 

       

 

   

           

 

   

          

 

   

   (8) 

where the approximation of strains are given as: 
 

     

         

         

            
       

         

         

            
       

          

          
  (9) 

Through the direct application of the total potential energy [20,21] of membrane element and plate element 
for in-plane stress and strain, and variational principles [22,23], the element stiffness matrix for membrane 
  , bending   , and transverse shear   , and the vector of nodal forces   is can be obtained as follows: 
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and the shell element mass matrix [12] is: 
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The nodal stiffness matrix is expressed as: 
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where     is chosen to be      times of the largest diagonal term of the shell element stiffness [24]. 

A classical reduced integration and mixed interpolation of tensorial components (MITC) approaches 
proposed by Bathe and Dvorkin [11] is used to eliminate the shear locking of shell models. In this approach, 
the approximation of the shear strains   , as in Eq. 2, are interpolated in the natural coordinates system as 
follows: 
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where  
       

       
 is the Jacobian transformation matrix, and the mid-side nodes         are shown in Figure 1. 

Expressing   
    

  and   
    

  in terms of the discretized fields  , the shear part of the stiffness matrix is then 

rewritten as: 
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where 
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The coordinates of the unit square are                                  , and the allocation of the mid-
side nodes to the corner nodes are given as                                               . By using Eq. 

(15), the shear part of the stiffness matrix    can be computed using full integration (      Gauss 
Quadrature). This element is referred as MITC. 

2.2. A strain smoothing operation for four-node flat shell element 

The strain smoothing method was proposed by Chen et al. [13] in the context of meshfree methods [25], and 
developed by Nguyen-Xuan et al. [14,26,27,28,29] in a finite element framework, named Smooth Finite 
Element Method (S-FEM) [14]. A strain smoothing stabilization is proposed to compute the nodal strain as 
the divergence of a spatial average of the compatible strain field. It is an attractive option to obtain increased 
accuracy at a lower computational cost, avoids evaluating derivatives of mesh-free shape functions at nodes 
and thus eliminates defective modes, solved mesh distortion, and avoid shear locking, among other 
advantages. 

 

 
Figure 2. Illustration of subdivision of an element into          smoothing subcells    and  

values of bilinear shape functions along the boundaries of cells    

The idea of strain smoothing technique is to split the element into    non-over-lapping smoothing cells with 
subdomain   , and values of bilinear shape functions are indicated at the comer nodes               (see 

Figure 2). The gradient operator at an arbitrary point    over the domain   is defined as: 
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where,   is a smoothing function which satisfies the following properties: 
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and   is chosen as a piecewise constant function: 
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where       
   

 is the area of a smoothing cell   . 

Applying the strain smoothing operation for each of subcells with subdomain   , the smoothed membrane 
strains and smoothed bending strain at an arbitrary point   , respectively, can be obtained as follows: 
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where   is the unit outward vector normal to the boundary    of the smoothing cell   ,       
 .  

Using Eq. (7), (20) and (21), and integrating Gauss points    for each segment of the boundary     of the 
smoothing domain    . The equations (9) then express in algebraic form as: 
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where    the length of the boundary   ,    and the total number of edges of each smoothing cell, 
respectively. 

Hence, the smoothed element stiffness matrix has form: 
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For modelling the bending behavior of plain-woven fabric, the discretized governing equation of motion 
before time discretization (see [12,30]) is expressed as: 

             (25) 

where  ,     ,  , and   are the assembled global system matrix of mass, damping, stiffness, body force 
vector, and nodal displacement vector, respectively. The Newmark’s method [12,30] is a method of 
numerical integration used to solve for Eq. (25) by time discretization. The numerical results of this paper is 
subjected to static models and time independent, the global mass matrix and damping matrix is then 
assumed to be zero. 

NUMERICAL RESULTS 

Numerical result introduced displacement models of a square fabric sample, under uniform pressure, simply-
supported (SSSS) and clamped (CCCC) boundary conditions. The formulation was programmed with 
symbolic expressions in MATLAB [20,21], which provides functions for solving and manipulating symbolic 
math expressions and performing variable-precision arithmetic. Symbolic numbers allow exact 
representations of fractions, intended to help avoid rounding errors and representation errors. The four-node 
flat shell elements, which was integrated CS-FEM, do not exhibit shear locking in the thin shell limit, and 
pass the patch test, easy implement, low computational cost, flexibility and effectiveness (see [26,27,28]). 

 

 

 
Figure 3. Displacement models of bending stress, square mesh of 40x40 elements,        



CONCLUSION 

The aim of this paper is to evaluate and investigate the applicability of a cell-based smoothed finite element 
to textile problems, especially with a cell-based smoothed finite element method was developed for 
modelling the bending behavior of plain-woven fabric, and a further being developed for modelling and 
simulation the draping behavior of woven fabric. The numerical results show that the strain smoothing 
operation for four-node flat shell element are in good agreement with the analytical solution, numerical 
reference solutions and experimental solutions. 

The authors wish to express their acknowledgment to FCT and FEDER-COMPETE funding, under the 
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REFERENCES 

[1]  H.M. Behery: Effect of mechanical and physical properties on fabric hand, Woodhead Publishing 
Limited North America by CRC Press LLC, (2005). 

[2]  J. Hu, and I. Textile: Structure and mechanics of woven fabrics, Woodhead Pub., Cambridge, (2004). 
[3]  N. Magnenat-Thalmann: Modeling and Simulating Bodies and Garments, Springer-Verlag London 

Limited, (2010). 
[4]  J. Fan, W. Yu, and L. Hunter: Clothing appearance and fit: Science and technology (Woodhead 

Publishing in Textiles), CRC, (2004). 
[5]  F.T. Peirce: The Handle of Cloth as a Measurable Quantity. Journal of the Textile Institute 21. (1930), 

pp. 377-416. 
[6]  J. Hu: Fabric Testing, Woodhead Publishing Ltd., (2008). 
[7]  B.P. Saville: Physical testing of textiles, Woodhead Publishing Ltd., (1999). 
[8]  B. Chen, and M. Govindaraj: A physically based model of fabric drape using flexible shell theory. 

Textile Res J 65. (1995), pp. 324-330. 
[9]  L. Gan, N.G. Ly, and G.P. Steven: A study of fabric deformation using nonlinear finite elements. 

Textile Res J 65. (1995), pp. 660-668. 
[10]  J. Eischen, S. Deng, and T. Clapp: Finite-element modeling and control of flexible fabric parts. IEEE 

Computer Graphics and Applications 16. (1996), pp. 71-80. 
[11]  K.-J. Bathe, and E.N. Dvorkin: A four-node plate bending element based on Mindlin/Reissner plate 

theory and a mixed interpolation. International Journal for Numerical Methods in Engineering 21. 
(1985), pp. 367-383. 

[12]  G.R. Liu, and S.S. Quek: The finite element method a practical course, Butterworth-Heinemann, 
Oxford, Boston, (2003). 

[13]  J.-S. Chen, C.-T. Wu, S. Yoon, and Y. You: A stabilized conforming nodal integration for Galerkin 
mesh-free methods. Int. J. Numer. Meth. Engng. International Journal for Numerical Methods in 
Engineering 50. (2001), pp. 435-466. 

[14]  G.-R. Liu, and T. Nguyen-Thoi: Smoothed finite element methods, CRC Press, Boca Raton, Fla. [u.a.], 
(2010). 

[15]  E. Hinton: Numerical methods and software for dynamic analysis of plates and shells, Pineridge Press, 
Swansea, U.K., (1988). 

[16]  D.L. Logan: A First Course in the Finite Element Method: SI Edition, Nelson Education Limited, (2011). 
[17]  M. Desbrun, P. Schröder, and A. Barr: Interactive animation of structured deformable objects, 

Proceedings of Graphics Interface, Canadian Computer-Human Communications Society, (1999), pp. 
1-8. 

[18]  W.F. Kilby: Planar Stress–Strain Relationships in Woven Fabrics. Journal of the Textile Institute 
Transactions 54. (1963), pp. 9-27. 

[19]  R.L.T. O. C. Zienkiewicz, J.Z. Zhu: The Finite Element Method: Its Basis and Fundamentals, 
Butterworth-Heinemann, (May 2, 2005). 

[20]  G.E. Fasshauer: Meshfree approximation methods with MATLAB, World Scientific, Singapore, 
Hackensack, N.J., (2007). 

[21]  S.R. Otto, and J.P. Denier: An introduction to programming and numerical methods in MATLAB, 
Springer, London, (2005). 

[22]  T.J.R. Hughes, and F. Brezzi: On drilling degrees of freedom. Comput. Methods Appl. Mech. Eng. 72. 
(1989), pp. 105-121. 

[23]  R.D. Cook: Concepts and applications of finite element analysis, Wiley & Sons, New York [etc.], 
(2002). 



[24]  T. O. C. Zienkiewicz, Robert L.: The finite element method. Volume 1, The basis, Butterworth-
Heinemann, Oxford, Boston, (2000). 

[25]  G.R. Liu, and Y.T. Gu: An introduction to meshfree methods and their programming, Springer, 
Dordrecht, New York, (2005). 

[26]  H. Nguyen-Xuan, T. Rabczuk, S. Bordas, and J.F. Debongnie: A smoothed finite element method for 
plate analysis. Computer Methods in Applied Mechanics and Engineering 197. (2008), pp. 1184-1203. 

[27]  N. Nguyen-Thanh, T. Rabczuk, H. Nguyen-Xuan, and S.P.A. Bordas: A smoothed finite element 
method for shell analysis. Computer Methods in Applied Mechanics and Engineering 198. (2008), pp. 
165-177. 

[28]  H. Nguyen-Van, N. Mai-Duy, W. Karunasena, and T. Tran-Cong: Buckling and vibration analysis of 
laminated composite plate/shell structures via a smoothed quadrilateral flat shell element with in-plane 
rotations. Computers & Structures 89. (2011), pp. 612-625. 

[29]  G. Liu, K. Dai, and T. Nguyen: A Smoothed Finite Element Method for Mechanics Problems. 
Computational Mechanics 39. (2007), pp. 859-877. 

[30]  N.C. Lind: Newmark's numerical method, University of Waterloo Press, Waterloo, Ont., (1975). 


