sor or manager enters the key information as well as uploading any pertinent documentation, and when submitted, an email notification is sent to the person who has been assigned accountability for that particular area. The recipient can access the information from any remote computer or mobile device and has the option of starting an immediate investigation, entering a resolution, or assigning it to another person. Results: Prior to implementation, 35% of operational issues reported would not be resolved within a 21-day period. Following implementation, this has been reduced to 15%. Additionally, the average resolution time per occurrence has been reduced by 29% from 17 days to 12 days. The use of this system has also enhanced management’s ability to track and identify issues. Recently, this system was used to identify that over 25% of issues reported were supply/packing based. This precipitated a change in warehouse operations to improve efficiency and accuracy when packaging supplies for blood drive events. Conclusion: Utilizing a web-based managed system can increase collaboration between management and departments when identifying, reporting, and resolving issues. Additionally, by assigning direct accountability and creating visibility of issues, it can reduce the time that resolutions are concluded, thereby increasing operational efficiency and improving internal and external customer service.

Disclosure of Commercial Conflict of Interest
W. E. Hackley: Nothing to disclose

Disclosure of Grants Conflict of Interest
W. E. Hackley: Nothing to disclose

AP51
A Visual Tool for Blood Bank Management – from Planning a Collection Session to Distribution, in a Single Flowchart
A Ramoa Rodrigues1 (auaugust@mail.com), A Lourenço2, S Maia3, P D’Orey1
1Centro Regional de Sangue do Porto, Instituto Portugues do Sangue, Porto, Portugal; 2Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Guimarães, Portugal

Background: At present day, blood banks face different challenges that put pressure in the overall chain. The management of a blood bank should constantly evaluate the profitability without jeopardizing quality and safety. Thus, it is important to monitor all together the indicators of each process related to the blood bank activity. The Porto Regional Blood Centre (CRSP), one of the three centers of the National Blood Institute in Portugal, developed a computational tool to automatically generate a flowchart containing the data of these indicators in a single screen. Study: CRSP uses flowcharts for process characterization since 2002. They were available in a paper report that was presented to the CRSP Directors. In 2008, as an effort to diminish paper reports, and make these data available to all our costumers, CRSP started publishing the flowcharts in a Web page – www.pslcrsp.org. Currently, the flowchart screen is embedded in a software suite developed by CRSP – SAD_BaSe (Software for Blood Bank Data Analysis) to manage the collection, processing and distribution of blood components. The data presented in the flowcharts covers among others, the following indicators:
- Predicted number of donors for all collection sessions;
- Losses by absent donors, suspended and deferred donors, discards related to collection, component processing, serological markers, immunohematology problems and expired components;
- Components available for distribution;
- Components issued to the transfusion services.

All results are shown in absolute number and percentage. Conclusion: As an institution that faces constant threats and demands in all its processes, it has become critical to the CRSP the development of a strategic management plan that is capable to turn over threats into opportunities. Through the visualization of all processes in a single flowchart, we can rapidly characterize all processes related to the produced components with significant detail. Thus, it becomes easy to identify the outcome of each step of our process to the most important components produced by our blood bank. This global vision changes in detail and concrete data enhances decision making.

Disclosure of Commercial Conflict of Interest
P. D’Orey: Nothing to disclose; A. Lourenço: Nothing to disclose; S. Maia: Nothing to disclose; A. Ramoa Rodrigues: Nothing to disclose

Disclosure of Grants Conflict of Interest
P. D’Orey: Nothing to disclose; A. Lourenço: Nothing to disclose; S. Maia: Nothing to disclose; A. Ramoa Rodrigues: Nothing to disclose

AP52
Telemedicine in a Blood Transfusion Service
L Raffaele1 (l.raffaele@ospedale.lecco.it), B Foglieni1, M Spreafico1, I Guarnori1, E Serratoni1, C Battista1, M Longhi2, D Prati1, B Alessandra1
1Transfusion Medicine, H Alessandro Manzoni, Lecco, Italy; 2DialMed Italiana, Vedano al Lambro, Italy

Background: First objective of telemedicine is patient safety; entire transfusion process needs a constant and precise control, assisted by computerized procedures. Integration of automation with computer technology is called Telemedicine, and give the specialist all necessary information for taking in remote a decision or action with the same tools as in laboratory. Methods: In 2007 our center implemented a remote control system of pretransfusion tests: to achieve this goal, it was necessary to get: a) an automated instrument to perform immunohematological tests; b) a database able to store tests images, patient data, tubes and operators identification; c) a software able to manage local validation of images and data as well as digital signature; d) a software able to connect to hospital server through internet technology. For these functions we recognized: a) DiaMed Techno and Wadiana instruments for Gel Test performance; b) DiaMed Maestro database; c) DiaMed software Jump3; d) a VPN client software. Interaction between these devices allows a safe remote reading, validation and results reporting. Every single step is tracked: reagents and tubes barcodes, test results as pictures, process operators, validations and digital signature. We retrospectively evaluated blood requests managed in remote during the period between June 2007 and January 2010, and analyzed any possible systems anomaly. Results: The system was used for 913 nights and holiday accesses, both for emergency and ordinary requests, where 3186 pre-transfusion tests were validated. During this period, no kind of malfunctioning was detected, nor any technical or medical mistake were reported. The average time for validation of pretransfusion tests was 6 minutes starting from the web connection. The remote access to pretransfusion tests also allowed the managing of critical situations such as positive tests in immunized patients. Conclusion: Remote validation of pre-transfusion tests is quite possible when supported by valid technologies assuring perfect quality of images and unequivocal information requirements: this way is possible to allow not only same quality and safety standards as computer based, but may improve organization since it allows management of remote transfusion services without limiting transport of biological samples and blood units.

Disclosure of Commercial Conflict of Interest
B. Alessandra: Nothing to disclose; C. Battista: Nothing to disclose; B. Foglieni: Nothing to disclose; I. Guarnori: Nothing to disclose; M. Longhi: Nothing to disclose; D. Prati: Nothing to disclose; L. Raffaele: Nothing to disclose; E. Serratoni: Nothing to disclose; M. Spreafico: Nothing to disclose

Disclosure of Grants Conflict of Interest
B. Alessandra: Nothing to disclose; C. Battista: Nothing to disclose; B. Foglieni: Nothing to disclose; I. Guarnori: Nothing to disclose; M. Longhi: Nothing to disclose; D. Prati: Nothing to disclose; L. Raffaele: Nothing to disclose; E. Serratoni: Nothing to disclose; M. Spreafico: Nothing to disclose

AP53
Aligning Mobile Collection Staff Schedule with Collection Strategy
N A Navarrete1 (nora.navarrete@bloodtissue.org), K Kobeck1, R L deJongh1, R Beddard1, 2Donor Services Mobile, South Texas Blood & Tissue Center, San Antonio, TX, United States; 3Blood Services Administration, South Texas Blood & Tissue Center, San Antonio, TX, United States

Background: More than any other employees at a blood bank, mobile technicians may experience a poor quality of life due to the instability of their weekly schedules. Technicians tend to be overworked, averaging 60 work hours per week, and may only be able to get two days off in a row on an infrequent basis. Technician call-ins (absenteism) at our center averaged 12.6% per week, causing drives to be cancelled or staffed, less than desirable customer service and declining technician morale. The goal of this initiative was to improve the productivity of mobiles and to create a collection staff schedule that would allow technicians to work 5 days in a row with 2 consecutive days off as well as alternate weekends free. Study: Prior to this initiative, a total of 112 full-time technicians were employed with 65 scheduled for each day of the week. Data was collected for the year 2009 and it was determined that the bulk of mobile drives occurred on Tuesday thru Friday, Saturday thru Monday drives were less productive or efficient. Starting February 1, 2010, a total of 110 full-time technicians were employed and...