Prophylactic outcomes of Casbane Diterpene in Candida albicans and Candida glabrata biofilms

Mayron Alves de Vasconcelos1,2, Hélcio Silva dos Santos3, Paulo Nogueira Bandeira1, Maria Rose Jane Ribeiro Albuquerque2, Victor Alves Carneiro4, Benildo Sousa Cavada1, Edson Holanda Teixeira3, Ana Margarida Sousa2, Mariana Henriques2, Maria Olívia Pereira4

1 Biologically Active Molecules Laboratory (Biomol-Lab), Department of Biochemistry and Molecular Biology, Federal University of Ceará, CE, Brazil
2 IBB – Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
3 Center of the Exact Sciences and Technology, Acaraú Valley State University, CE, Brazil
4 Integrate Biomolecules Laboratory (LIBS), Faculty of Medicine of Sobral, Federal University of Ceará, Sobral, CE, Brazil

Biofilms are surface associated communities of microorganisms embedded within a self-produced extracellular matrix and adhered on inert and biotic surfaces. These biological consortia are considered the most prevalent growth form of microorganisms. Biofilm formation is a potent virulence factor for a number of Candida species, as it confers significant tolerance to antimicrobial therapy, primarily by limiting the penetration of substances through the biofilm matrix. Casbane Diterpenes (CD) belongs to the class of diterpenoids isolated from few species of plants from Euphorbiaceae family with important anticancer and antibacterial activities.

So, the goal of this study was to assess the antibiofilm effect of a Casbane Diterpene isolated from the stalks of Croton nepetaeolus against Candida albicans and Candida glabrata. Biofilms were developed within the 96-well microtiterplates in the presence of the CD. After 24 hours of growth, 100 μL of cells suspensions (1 x 10⁷ cells mL⁻¹ in Nutrient Broth) and 100 μL of solution of CD (500 - 31.5 μg/mL) were pipetted into each well and incubated for 24 h at 37°C in an orbital shaker at 120 rpm. Biofilms formation was characterized by total biomass, through crystal violet (CV), and number of viable cells, expressed as log CFU per cm².

CD showed to be able to reduce the formation of biofilms of C. albicans and C. glabrata. CD reduced C. albicans biomass in ~82, 64, 57 and 27 % at the concentrations of 500, 250, 125 and 62.5 μg/mL, respectively. C. glabrata biomass was reduced in ~68 and 26 % at 500 and 250 μg/mL. Regarding the number of viable cells embedded in the yeast biofilms, CD at 500 and 250 μg/mL reduced ~2 and ~1 log of C. albicans biofilm CFUs, and ~2.5 and ~1 log for C. glabrata, respectively. Regarding the high resistance and recalcitrance of Candida biofilms to the traditional therapies, CD emerges as a good prophylactic alternative to be used alone or in combination with other traditional drugs.

Keywords: Casbane diterpene, natural antimicrobial, Candida albicans, biofilm resistance, novel prophylactic strategies

Role of oxygen-restricted environments in biofilm growth and susceptibility profiles of traditional and atypical bacterial species in cystic fibrosis

S. P. Lopes1, N. F. Azevedo2, and M. O. Pereira1

1 IBB – Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
2 LEPAE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Farias, 4200-465 Porto, Portugal

It has been widely demonstrated that different predisposing “local environmental” conditions exist within the cystic fibrosis (CF) airways. Steep oxygen gradients are frequently detected in CF airways and may give rise to hypoxic or even anaerobic zones, providing nutritionally rich growth environments where bacteria may penetrate and accommodate, and being also responsible for the increase of antimicrobial resistance of most microorganisms. The aim of this study was to investigate the influence of aerobic, microaerophilic and anaerobic environments in biofilm growth and susceptibility patterns of the conventional CF-pathogen P. aeruginosa and other two atypical species related with CF.

Single biofilms formed by Pseudomonas aeruginosa, and two uncommon CF-related bacteria, Inquilinus limosus and Dolosigranulum pigrum, were formed in vitro under environments with distinct oxygen availability, and their biomass and respiratory activity were further evaluated. The planktonic and biofilm susceptibility patterns to eight clinically relevant antibiotics were also determined under the same oxygen conditions, by measuring the minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC), respectively.

The results obtained showed that both bacterial species, the traditional and unusual, were able to grow under the distinct environments, with D. pigrum demonstrating a great capability to develop biofilms with higher amount of biomass and higher respiratory activity, particularly when formed under microaerophilic atmospheres. Concerning the susceptibility profiles, all the planktonic cultures showed antibiotic tolerance under aerobic environments, decreasing their resistance under oxygen-restricted environments. As expected, biofilms were notoriously more difficult to eradicate than the same bacteria in the planktonic state (MBECs higher than MICs) which was independent of the oxygen availability within the surrounding environment. Furthermore, the biofilm consortia involving the atypical species were particularly more resistant to most antibiotics than the biofilms formed by the traditional pathogen P. aeruginosa, revealing the ineffectiveness of most antibiotics when applied to those atypical biofilms.

This study suggests that the environment where bacteria grow is of great importance, demonstrating that the biofilm formation of traditional and other non-conventional bacteria is favored by restricted-oxygen atmospheres, as occurs in CF airways, which also makes biofilms more resistance to antibiotics. The recognition of CF lung as an environmental habitat, comprising niches ranging from oxic to anoxic, that can be occupied and colonized by a set of different microbial species, could lead to a better understanding of the clinical repercussions that these CF-associated infections can originate and may assist improvements in the management of CF and eventually in the treatment of other pathologies.

Acknowledgments: The financial support from IBB-CEB and FCT and FEDER, through Program COMPETE, in the ambit of the project PTDC/SAU-SAP/113196/2009/ FCOMP-01-0124-FEDER-016012 and Ana Margarida Sousa PhD Grant (SFRH/BD/72551/2010) are gratefully acknowledged.

Keywords: cystic fibrosis, oxygen availability, traditional and unusual pathogens, biofilm, biofilm susceptibility profiles, biofilm resistance