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Urothelial bladder carcinoma (UBC) represents a significant health problem, as a consequence of 

its heterogeneous natural history and clinical behavior. Most morbidity and mortality associated with 

UBC is caused by the muscle-invasive (MI) form of the disease, which represents about 20-30% of all 

newly diagnosed cases. Moreover, an important proportion of high risk non-muscle invasive (NMI) 

tumours relapse after transurethral resection and progress to MI disease. Despite radical cystectomy, 

half of the patients with MI tumours develop metastases. Although perioperative and palliative systemic 

chemotherapy is recommended for locally-advanced or metastatic UBC, survival benefits are impaired 

in a significant proportion of patients due to inherent or acquired chemoresistance. Currently, 

prognostication of patients with MI-UBC is severely hampered by the insufficiency of standard 

clinicopathological risk factors in accurately predicting individual treatment outcomes. This major 

drawback can potentially be overcome if biomarkers of tumour aggressiveness and response to 

chemotherapy are routinely evaluated and included in the pathology reports. Current research efforts 

are directed into the elaboration of nomograms that can combine well-established clinicopathological 

parameters with novel putative biomarkers. In this line of investigation, we aimed to characterize a 

phenotype of bladder cancer aggressiveness in a human series of UBC by studying the clinical and 

prognostic significance of a panel of distinct biomarkers that, although poorly explored in UBC setting, 

were described as being involved in tumour angiogenesis and lymphangiogenesis, invasion and 

metastasis, energy metabolism reprogramming and tumour microenvironment. Moreover, we intended 

to validate potential therapeutic targets in in vitro assays. 

Angiogenesis, lymphangiogenesis and lymphovascular invasion (LI) occurrence was assessed with 

the use of immunohistochemical markers, namely the blood endothelial cell marker CD31, the 

lymphatic endothelial cell marker D2-40, the lymphangiogenic vascular endothelial growth factor 

(VEGF)-C and its receptor VEGFR-3. The specific staining of blood and lymphatic endothelium 

significantly contributed to an accurate evaluation of LI occurrence, and to a specific distinction between 

blood vessel invasion (BVI) and lymphatic vessel invasion (LVI). A correlation among high blood vessel 

density (BVD), high lymphatic vessel density (LVD), tumour progression and LI occurrence was found. 

BVI by malignant emboli assessed by CD31 staining, and LVI by isolated malignant cells assessed by 

D2-40 staining, significantly impaired overall survival, and BVI was identified as an independent 

prognostic factor. When included in a model of bladder cancer aggressiveness combining classical 

clinicopathological parameters with biomarkers, BVI and LVI contributed to separate between low and 

high aggressiveness groups. VEGF-C overexpression was correlated with an aggressive phenotype 

characterized by increased tumour stage, loss of differentiation, high BVD and LVD counts, and 
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occurrence of both BVI and LVI. All malignant cells expressed, monotonously, VEGFR-3. Our results 

endorse the need to establish a reproducible method of LI evaluation that can be incorporated into 

clinical practice, highlighting the potential role of this biological process in selecting patients who might 

benefit from adjuvant treatments. 

P-mTOR (phospho–mammalian target of rapamycin) levels, as well as their correlation with 

occurrence of angiogenesis and lymphangiogenesis, were also investigated, aiming to unveil mTOR 

pathway as a possible mediator of neovasculatization in bladder cancer setting. Tissue sections with 

tumour and non-tumour regions were selected for analysis. Immunoexpression was observed in 

umbrella cells from non-tumour urothelium, in all cell layers of malignant NMI urothelium (with a 

reinforcement in superficial cells), and in spots of cells from MI lesions. P-mTOR expression decreased 

with increasing stage, but the few pT3/pT4 positive cases had worse survival rates. Conversely, 

occurrence of angiogenesis was impaired in pT3/pT4 negative tumours. Additional studies directed to 

the upstream and downstream effectors of this pathway need to be addressed, in order to further 

explore and clarify our results. 

In the scenario of invasion and metastasis, we evaluated the immunoexpression of the 

endoglycosidase heparanase and of the metastasis suppressor RKIP (Raf kinase inhibitor protein). 

Heparanase was upregulated in the malignant urothelium, and exhibited a heterogeneous pattern, with 

the invasion front of the tumours being more intensely stained than the tumour’s core, supporting its 

role in the disassembly of the extracellular matrix as an invasion-promoter mechanism. An opposite 

pattern was found when evaluating RKIP immunoexpression. This metastasis-supressor biomarker was 

homogeneously expressed in normal urothelium and in tumour sections with a favourable clinico-

pathological profile. Heterogeneous expression, with the tumour centre being more intensely stained 

than the invasion front, associated with LI occurrence. Low RKIP expression significantly impaired 

prognosis, remaining as an independent prognostic factor for disease-free survival. Thus, RKIP loss 

emerges as a novel biomarker of UBC aggressiveness, and additional studies are necessary to validate 

our results and to further explore therapeutic strategies that can potentially restore RKIP functionality as 

a suppressor of bladder cancer metastases. 

Reprogramming cellular energetics and modeling the tumour microenvironment are inherent traits 

of malignancy. Among the plethora of biomarkers associated with this hallmark of cancer, we 

investigated the immunoexpression of CD147, monocarboxylate transporters (MCTs), CD44 and 

carbonic anhydrase (CA) IX. We observed that MCT1 and MCT4 were overexpressed in malignant 

urothelial cells, associating with an unfavourable clinicopathological profile. MCT1 expression correlated 
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with poor prognosis. Significant associations were found between the pattern of expression of CD147, 

MCT1 and MCT4, supporting the role of CD147 as a chaperone for MCTs. CD147 upregulation clearly 

associated with UBC aggressiveness and poor prognosis, lowering significantly disease-free and overall 

survival rates. When included in a scoring system of UBC aggressiveness, CD147 overexpression 

allowed an accurate discrimination of bladder cancer patients’ prognosis. There was a substantial 

concordance among CD44 and MCTs expressions, and CD44 and CD147, which suggests an 

interactive scenario where CD44, MCTs and CD147 cooperate in regulating the acidic 

microenvironment. Moreover, CD44 expression was also associated with UBC aggressiveness. CAIX 

exhibited a heterogeneous pattern of expression, being stronger at the hypoxic core of MI tumours or at 

the luminal face of papillary lesions, were its expression was predominant. CAIX expression correlated 

with MCT4, CD147 and CD44 expressions, supporting hypoxia as a trigger mechanism of the glycolytic 

phenotype. Importantly, the CD147/MCT1 double-positive profile associated with unfavourable clinico-

pathological parameters and poor prognosis, and discriminated a poor-prognosis group within patients 

who received platinum-based chemotherapy. These interesting results led us to further investigate 

CD147 as a potential biomarker of aggressiveness and cisplatin resistance in UBC cell lines. CD147 

specific downregulation was accompanied by a decrease in MCT1 and MCT4 expressions and, 

importantly, an increase in chemosensitivity to cisplatin. Our findings shed light into the putative role of 

CD147 and its interactions in determining progression and resistance to cisplatin-based chemotherapy 

in UBC setting, unraveling possibilities for target therapeutic intervention that urge to be investigated. 

 

In summary, the results herein reported represent our contribution to a better understanding on 

biological parameters that seem to influence bladder cancer aggressiveness and chemoresistance, and 

should be further explored as potential prognosis/theranostics biomarkers and/or therapeutic targets. 
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O carcinoma urotelial da bexiga (CUB) representa um importante problema de saúde pública, em 

resultado da heterogeneidade associada à sua histogénese e comportamento clínico. A morbilidade e 

mortalidade associadas ao CUB são principalmente causadas pela variante músculo-invasora (MI), que 

representa cerca de 20-30% de todos os casos diagnosticados. Adicionalmente, uma proporção 

significativa de tumores não-músculo invasivos (NMI) de alto risco recidiva após a ressecção 

transuretral e progride para formas invasoras. Apesar de submetidos a cistectomia radical, metade dos 

doentes com tumores MI desenvolvem metástases. Em casos de CUBs localmente avançados ou 

disseminados, são recomendados esquemas de quimioterapia sistémica peri-operatória e paliativa. No 

entanto, potenciais benefícios em termos de sobrevivência são francamente diminuídos numa 

proporção significativa de doentes que apresentam quimio-resistência intrínseca ou adquirida. 

Atualmente, o prognóstico de doentes com CUBs MI é gravemente prejudicado pela dificuldade que os 

fatores de risco clínico-patológicos clássicos apresentam em prever, com precisão e por indivíduo, 

resultados dos tratamentos. Este grande entrave poderá ser potencialmente superado se 

biomarcadores de agressividade tumoral e resposta à quimioterapia forem rotineiramente avaliados e 

incluídos nos relatórios de patologia. Os esforços de pesquisa atuais são, cada vez mais, direcionados 

para a elaboração de nomogramas que combinem parâmetros clínicos padrão com possíveis 

biomarcadores. Nesta linha de investigação, o projeto descrito nesta tese teve como objetivo principal 

caracterizar um fenótipo de agressividade do CUB numa série de tumores, estudando o significado 

clínico e prognóstico de um painel de biomarcadores distintos que, apesar de pouco explorados no 

âmbito dos CUBs, foram já descritos como mediadores da angiogénese e linfangiogénese tumorais, 

invasão e metastização, e remodelação do metabolismo energético e do microambiente tumoral. 

Adicionalmente, pretendeu-se validar potenciais alvos terapêuticos em ensaios in vitro. 

A ocorrência de angiogénese, linfangiogénese e invasão linfovascular (IL) foi avaliada através de 

marcação imuno-histoquímica, recorrendo a anticorpos anti- CD31 (marcador de células endoteliais 

sanguíneas), D2-40 (marcador de células endoteliais linfáticas), VEGF-C (fator linfangiogénico, vascular 

endotelial growth factor C) e VEGFR-3 (recetor de VEGF-C). A marcação específica dos endotélios 

sanguíneo e linfático contribuiu significativamente para uma avaliação precisa da ocorrência de IL, e 

para uma distinção específica entre invasão vascular sanguínea (IVS) e invasão vascular linfática (IVL). 

Foram encontradas correlações entre densidade vascular sanguínea (DVS) e densidade vascular 

linfática (DVL) elevadas, progressão tumoral e ocorrência de IL. A ocorrência de IVS por êmbolos de 

células malignas identificada pela marcação específica com CD31, assim como a ocorrência de IVL por 

células malignas isoladas identificada pela marcação específica com D2-40, diminuíram 
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significativamente a sobrevivência global. A ocorrência de IVS foi identificada como um fator 

independente de prognóstico. Quando incluídas num modelo de agressividade do CUB que combinou 

parâmetros clínico-patológicos clássicos com biomarcadores, a ocorrência de IVS e IVL contribuiu para 

a distinção entre grupos de baixa e elevada agressividade. O aumento de expressão de VEGF-C 

associou-se a um fenótipo de agressividade tumoral caracterizado pelo incremento do estádio 

patológico, perda de diferenciação, contagens de DVS e DVL elevadas, e ocorrência de IVS e IVL. O 

VEGFR-3 foi expresso, de forma monótona e consistente, pelo urotélio maligno. Tais resultados 

suportam a necessidade de estabelecer um método reprodutível de avaliação da ocorrência de IL que 

possa ser incorporado na prática clínica. Destaca-se o potencial papel deste processo biológico na 

seleção de doentes que poderão beneficiar de tratamentos adjuvantes. 

Os níveis de p-mTOR (phospho–mammalian target of rapamycin), bem como a possível 

associação com a ocorrência de angiogénese e linfangiogénese, foram igualmente estudados, na 

tentativa de clarificar o papel da via mTOR como mediadora de neovascularização no CUB. Foram 

selecionadas secções tumorais com representação de mucosa não-tumoral adjacente. Observou-se 

imunoexpressão nas células em guarda-chuva do urotélio não-tumoral, em todas as camadas celulares 

do urotélio de tumores NMI (de maior intensidade nas células superficiais), e em spots de células nas 

lesões MI. A expressão do p-mTOR diminuiu com o aumento do estádio tumoral, mas os poucos 

tumores pT3/pT4 positivos associaram-se a piores prognósticos. Por outro lado, a ocorrência de 

angiogénese ficou comprometida nos tumores pT3/pT4 negativos. Será necessário realizar estudos 

adicionais direcionados aos restantes membros desta via de sinalização, na tentativa de clarificar os 

resultados agora obtidos. 

Com o objetivo de explorar os fenómenos de invasão e metastização no CUB, avaliou-se a 

imunoexpressão da endoglicosidase heparanase e do supressor de metástases RKIP (Raf kinase 

inhibitor protein). Observaram-se níveis aumentados de heparanase no urotélio maligno, que exibiu um 

padrão heterogéneo, onde a frente de invasão tumoral se encontrava mais intensamente marcada do 

que o centro dos tumores, o que suporta o papel desta enzima na degradação da matriz extracelular, 

um mecanismo promotor de invasão. Em relação à proteína RKIP, foi encontrado um padrão de 

expressão oposto. Este biomarcador supressor de metástases foi homogeneamente expresso no 

urotélio normal e em secções tumorais caracterizadas por um perfil clínico-patológico favorável. Uma 

expressão heterogénea, com o centro do tumor mais intensamente marcado do que a frente de 

invasão, associou-se à ocorrência de IL. A diminuição da expressão de RKIP associou-se 

significativamente a um prognóstico desfavorável, mantendo-se como um fator independente de 
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prognóstico relativamente à sobrevivência livre de doença. Assim, a perda de expressão de RKIP surge 

como um novo biomarcador de agressividade do CUB. Estudos adicionais são necessários para validar 

os resultados aqui apresentados e explorar estratégias terapêuticas que possam potencialmente 

restaurar a funcionalidade desta proteína como um supressor de metástases no carcinoma da bexiga. 

A reprogramação do metabolismo energético e a modelação do microambiente tumoral são 

características inerentes ao fenótipo de malignidade. Entre a diversidade de biomarcadores associados 

a tais fenómenos, foi estudada a imunoexpressão de CD147, de transportadores de monocarboxilatos 

(monocarboxylate transporters, MCTs), de CD44 e de anidrase carbónica (carbonic anhydrase, CA) IX. 

Verificou-se o aumento da expressão de MCT1 e MCT4 nas células uroteliais malignas. Os tumores 

negativos apresentaram perfis clínico-patológicos favoráveis. A expressão de MCT1 associou-se a um 

prognóstico desfavorável. Foram encontradas associações significativas entre o padrão de expressão de 

CD147, MCT1 e MCT4, o que fundamenta o papel da proteína CD147 como chaperone dos MCTs. O 

aumento da expressão de CD147 associou-se claramente a um fenótipo de agressividade tumoral e a 

um prognóstico adverso, reduzindo significativamente as taxas de sobrevivência livre de doença e 

sobrevivência global. Quando incluída num sistema de discriminação de agressividade tumoral, a 

expressão de CD147 permitiu distinguir, com rigor, o prognóstico dos doentes com CUB. Verificou-se 

uma concordância significativa entre a expressão de CD44 e MCTs, e entre a expressão de CD44 e 

CD147, o que sugere um cenário interativo onde CD44, MCTs e CD147 cooperaram na regulação do 

microambiente tumoral. Além disso, a expressão de CD44 associou-se igualmente com a agressividade 

do CUB. A enzima CAIX exibiu um padrão de expressão heterogénea, sendo a marcação mais forte no 

centro hipóxico dos tumores MI ou na face luminal das lesões papilares, onde a sua expressão se 

revelou predominante. A expressão de CAIX associou-se com a expressão de MCT4, CD147 e CD44, o 

que sugere a ocorrência de hipoxia como um mecanismo promotor do fenótipo glicolítico. De salientar 

que o perfil duplamente-positivo CD147/MCT1 associou-se a parâmetros clínico-patológicos 

desfavoráveis e a um pior prognóstico, e discriminou um subgrupo de doentes com prognóstico 

adverso entre um grupo tratado com quimioterapia à base de compostos de platina. Tais resultados 

encorajaram à realização de estudos adicionais em linhas celulares de CUB, na tentativa de clarificar a 

função da proteína CD147 como um potencial biomarcador de agressividade tumoral e resistência à 

cisplatina. O silenciamento específico da CD147 foi acompanhado por uma diminuição da expressão 

de MCT1 e MCT4 e, notoriamente, por um aumento na quimio-sensibilidade à cisplatina. Estes estudos 

demonstram o papel provável da CD147 e suas interações na determinação da progressão tumoral e 

resistência à quimioterapia baseada em cisplatina em doentes com CUB, revelando possibilidades de 
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intervenção terapêutica dirigida que devem ser exploradas num futuro próximo. 

 

Em resumo, os resultados descritos nesta tese representam o tributo para uma melhor 

compreensão sobre parâmetros biológicos que parecem influenciar a agressividade do carcinoma 

urothelial da bexiga, bem como a resistência à quimioterapia, e que devem ser investigados como 

potenciais biomarcadores de prognóstico e previsão de resposta à terapêutica, bem como alvos 

terapêuticos. 
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This thesis is organized into eight chapters and one appendix section. 

 

CHAPTER 1 presents a general introduction divided into two major parts. In the first part, an 

overview about the current knowledge on urothelial bladder cancer is provided, summarizing the 

epidemiological and etiological aspects of the disease, its histology, and its natural history and 

molecular pathogenesis. The management and prognosis of urothelial bladder cancer patients are also 

addressed, in an attempt to direct the reader’s attention into the major drawbacks and concerns in the 

care of these patients, which will substantiate the translational research reported throughout this thesis. 

In the second part of the introduction, we review the state of the art about the three cancer hallmarks 

that were explored in the context of bladder malignancies during the development of the PhD project: 

tumour angiogenesis and lymphangiogenesis, invasion and metastasis, and energy metabolism 

reprogramming and the tumour microenvironment. Special emphasis is given to the molecular 

mechanisms that characterize each of the hallmarks, as well as their contribution to the malignant 

phenotype, aiming to unveil potential targets that, although poorly explored in bladder cancer setting, 

may represent promising therapeutic strategies. 

 

CHAPTER 2 presents the rationale of the research that was developed, justifying the need to 

characterize a phenotype of urothelial bladder cancer aggressiveness, as well as the specific aims that 

were projected during the PhD time course. 

 

In chapters three to seven we provide our contribution to a better understanding on the clinical, 

prognostic and/or therapeutic impact of some biological parameters inherent to the three previously 

mentioned hallmarks of cancer, and that seem to be associated with urothelial bladder cancer 

progression, metastasis and/or chemoresistance. Therefore: 

 

CHAPTER 3 reports the contribution of molecular markers of blood vessels (like CD31) and 

lymphatic vessels (like D2-40) to accurately assess the occurrence of blood vessel invasion and/or 

lymphatic vessel invasion (LVI), also demonstrating the prognostic value of these two parameters. 

 

CHAPTER 4 presents our attempt to further characterize the pattern of expression, the clinical and 

prognostic significance of phospho-mTOR levels of expression, and its contribution to angiogenesis and 

lymphangiogenesis occurrence. 
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CHAPTER 5 demonstrates the significant impact of the loss of expression of RKIP (Raf kinase 

inhibitor protein) on the aggressive behaviour of the tumours and on patients’ outcome. 

 

CHAPTER 6 reports the development of a tumour aggressiveness scoring system where we 

combined classical clinicopathological parameters, like stage and grade, with biological parameters, like 

lymphovascular invasion occurrence (specifically highlighted by endothelial markers), as well as CD147 

overexpression. CD147 overexpression allowed an accurate discrimination of bladder cancer patients’ 

prognosis. 

 

CHAPTER 7 presents our research on additional microenvironment-related molecules, such as 

monocarboxylate transporters, CD44 and carbonic anhydrase (CA) IX, that seem to cooperate with 

CD147 in the establishment of a hyper-glycolytic, acid-resistant phenotype associated with invasion and 

chemoresistance. We assessed the clinical and prognostic significance of these biomarkers, and further 

validated the impact of CD147 on chemoresistance in bladder cancer cell lines. 

 

CHAPTER 8 aims to summarize and discuss our main findings on the basis of other relevant 

published data. We additionally acknowledge some limitations of our studies, and suggest future 

directions in order to complement the research. Brief concluding remarks are also presented. 

  

The appendix section encloses the book chapter – Angiogenesis, Lymphangiogenesis and 

Lymphovascular Invasion: Prognostic Impact for Bladder Cancer Patients – published during the 

research on bladder tumour angiogenesis and lymphangiogenesis, as our contribution to the state of 

the art on this subject. 
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1.1. UROTHELIAL BLADDER CANCER – AN OVERVIEW 

 

 

 The epithelial lining of the urinary tract, named urothelium, extends from the renal pelvis to the 

proximal urethra [1]. Because it constitutes a strategic permeability barrier between urine and blood, 

the urothelium is constantly exposed to a variety of potential carcinogens. The bladder is a particularly 

high risk organ for cancer development, since the carcinogens stagnate in the urine and interact with 

the urothelium for a few hours before urination [2]. Therefore, it is not surprising that bladder cancer 

represents a significant epidemiological problem, with an estimated 386,300 new cases and 150,200 

deaths occurring in 2008 worldwide [3], and that more than 90% of all bladder cancers are urothelial 

tumours [4].  

 Of all newly diagnosed cases of urothelial bladder carcinoma (UBC), 70%-80% are non-muscle 

invasive (NMI). Even though without aggressive histopathological features, the NMI tumours, particularly 

high grade lesions, frequently recur and progress to invasive forms. To predict whose tumours will recur 

and progress remains a challenge.  On the other hand, 20%-30% of tumours present as muscle-invasive 

(MI) disease, for which radical cystectomy (RC) with bilateral pelvic and iliac lymphadenectomy is the 

gold standard of treatment [4]. The dissemination risk for these neoplasms is high, underlying the need 

of associating neoadjuvant and adjuvant therapies. However, heterogeneity in treatment response and 

patient fragility are major problems in the management of MI-UBC patients, and the 5-year overall-

survival rate varies from 36% to 48% [5]. Although the formulae based on clinical staging and 

histopathological parameters are classically used as diagnostic and prognostic tools, they have proven 

insufficient to characterize the individual biological features and clinical behaviour of the tumours. 

Understanding the pathobiology of the disease can add important information to these classical criteria, 

and contribute to accurately predict outcome and individualize therapy for UBC patients. 

 

1.1.1. ANATOMY AND HISTOLOGY OF THE URINARY BLADDER 

 

 The urinary bladder constitutes the extraperitoneal muscular urine reservoir that sits on the pelvic 

floor, behind the pubic symphysis. Urine enters the bladder through the ureters and exits through the 

urethra. The organ is partly covered on its outside by peritoneal serosa and partly by fascia. Its 

morphofunctional basis is the detrusor muscle, a muscular wall formed by smooth muscle fibers 
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arranged in three differently orientated layers (outer and inner layers: longitudinal orientation; middle 

layer: circular orientation). Internally, a mucous membrane composed of lamina propria and urothelium 

protects the muscular coat from contacting urine [1, 6-7] (Figure 1, A). 

 The urothelium, from all the urothelial tumours originate, is a specialized stratified epithelium, 

comprising a single-cell type with three degrees of cellular differentiation that contribute to phenotypic 

differences between them [1, 8-12] (Figure 1, B):  

- the small cubic/cylindrical basal cells (10 m in diameter) forming a single layer containing the 

proliferative compartment and stem cells, that contacts the underlying connective tissue and 

capillary bed of the lamina propria. Their mitotic-index is very low, which contributes to the stability 

of the urothelium; 

- the intermediate cells (10-25 m in diameter) of pyriform shape forming one to five layers thick, 

depending on the state of bladder filling (one layer in distended bladder to five layers in voided 

bladder). This seems to result from cell sliding during filling; 

- the large polyhedral umbrella cells (25-250 m in diameter), often bi-nucleated, forming a 

permeability barrier that accommodates alterations in urine volume while preventing the 

unregulated exchange between urine and blood. Specializations like high-resistance tight junctions, 

surface uroplakins (asymmetric unit membrane – AUM) and dynamic apical membrane 

exocytosis/endocytosis modulate the barrier function of the urothelium.  

 

  

Figure 1 | Histology of the normal urinary bladder. A, a microscopic low-magnification of  the bladder wall; B, a 

microscopic high-magnification of the mucous layer (adapted from [1]). 

Abbreviations: B: basal cells; C: capillaries; I: intermediate cells; IL: inner longitudinal; LP: lamina propria; MC: middle 

circular; OL: outer longitudinal; U: umbrella cells. 
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 The specialized composition of the urothelium makes it a physiologically effective and mechanically 

flexible barrier. By being one of the slowest cycling epithelia in the human body [9, 12], the urothelium 

constitutes a unique biological context for carcinogenesis to occur. 

 

1.1.2. EPIDEMIOLOGY AND ETIOLOGY 

 

 Urothelial bladder cancer is the second most common malignancy of the genitourinary tract, 

following prostate cancer [4]. It affects mainly the elderly, peaking between age 50 and 70 years; men 

are 3-4 times more likely to develop bladder cancer than women, although women present with more 

aggressive disease and have worse survival rates [4, 13-14]. This gender disparity seems to be the 

result of the different exposure to carcinogens, also reflecting genetic, anatomic, physiological, 

environmental and societal factors [14-16] .  

  

 An estimated 386,300 new 

cases and 150,200 deaths from 

bladder cancer occurred in 2008 

worldwide. It was the seventh most 

common cancer type in men and the 

eighteenth in women. The highest 

incidence rates were found in 

developed countries in Europe, 

Northern America and Northern Africa 

[3, 17] (Figure 2). 

 

 

 

Figure 2 | Age-standardized urinary bladder 

cancer incidence rates by sex and world area 

in 2008 (adapted from [3]). 

  

 In Portugal, it is estimated that 1935 new cases of bladder cancer occurred in 2008, and that 721 

patients died as a consequence of this disease. It was the fifth most common cancer type in men and 

the thirteenth in women [18] (Figure 3). 
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Figure 3 | Age-standardized urinary bladder cancer incidence and mortality rates by sex in Portugal, 2008 (ASR: age 

standardized rate) (adapted from [18]). 

 

 The risk factors for the development of bladder cancer include lifestyle choices, occupations, 

dietary factors, drugs, urologic pathologies, family histories and genetic polymorphisms. Table 1 

summarizes their mechanisms of carcinogenesis induction, the primary cellular processes altered, and 

the strength of association [13, 19-21].  

 The most well established risk factor for bladder carcinogenesis is cigarette smoking: it seems to 

be responsible for 50% of the UBCs [22]. Tobacco smoke is rich in aromatic amines and hydrocarbons 

that can form highly reactive species and DNA adducts. Differences in the metabolism of these 

smoking-related carcinogens may modify the risk of smoking-related bladder cancer [23]. 

 Following smoking, occupational exposure is the second most important risk factor for bladder 

cancer. Workers in industrial areas processing paint, dye, metal and petroleum products are constantly 

exposed to a variety of aromatic amines, polycyclic aromatic hydrocarbons and chlorinated 

hydrocarbons. Roughly 20% of all UBCs have been suggested as being related to such exposure, 

although this percentage tends to decrease with the implementation of safety measures [13, 20-21].  

 Nutritional factors, particularly those related with fluid intake, have also been attributed to UBC 

risk. Albeit an adequate fluid intake may reduce exposure to carcinogens by diluting urine and 

increasing the frequency of micturition, the long-term consumption of water containing arsenic and/or 

chlorination by-products can increase the risk for bladder cancer [24-25]. 
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Table 1 | Risk factors for bladder cancer development (adapted from [20]). 

 

Abbreviations: GSTM1, glutathione S-transferase mu 1; NAT, N-acetyltransferase. 
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 The medical history may also predispose to bladder carcinogenesis, although the cancer type 

manly associated with the chronic irritation of the urothelium is squamous cell carcinoma. 

Schistosomiasis (bladder infection caused by the parasite Schistosoma haematobium, endemic in some 

parts of Northern Africa) or recurrent urinary tract infections have direct causative roles on 

tumourigenesis, while pelvic irradiation and pharmaceutical agents predispose to bladder cancer as a 

side effect of treatment [13, 20-21, 26]. 

 Variants within genes encoding metabolic enzymes have been associated with susceptibility to 

bladder cancer, with particular highlight for NAT2 (N-acetyltransferase 2) slow acetylator and GSTM1 

(glutathione S-transferase mu 1) null genotypes. While these null genotypes may confer an additional 

risk to exposure of carcinogens present in tobacco products [23, 27], increasing evidences suggest an 

intrinsic role of genetic predisposition in bladder cancer incidence [13]. Additionally, there is a two-fold 

higher risk of bladder cancer in first-degree relatives of UBC patients [28]. 

 

1.1.3. PATHOLOGICAL SUBTYPES, STAGING AND GRADING 

 

 Urothelial carcinoma is the most common histological subtype of bladder cancer in developed 

countries, being responsible for about 90% of all cases. However, UBC has a propensity for divergent 

differentiation, and it is frequent to observe urothelial variants accompanying, in variable proportions, 

the typical urothelial carcinoma. Divergent differentiation generally implicates aggressive, high stage or 

high grade bladder cancer, which portends an unfavorable prognosis. The most common variants are 

squamous and glandular. Pure squamous cell carcinomas and glandular adenocarcinomas represent 

5% and 2% of the bladder cancer cases, respectively, and other rare subtypes comprise the remainder 

of bladder cancers [4, 29-30] (Figure 4). 

 

 Histological staging of UBC is generally performed according to the guidelines of the tumour-node-

metastases (TNM) system (Table 2). The latest American Joint Committee on Cancer’s (AJCC) Cancer 

Staging Manual [31] introduced minor alterations to the previous version [32]. Under this staging 

system, T stage of the primary tumour is based on the extent of invasion into the bladder wall. The non-

muscle invasive (NMI) tumours include papillary (Ta) or flat (Tis, in situ) carcinomas confined to the 

urothelium, and lesions infiltrating the lamina propria (T1). When the tumour invades the muscularis 

propria, it can be staged according to the depth of muscle infiltration (T2a, T2b). If extension to the 

surrounding connective tissue occurs, the tumour is staged as T3 (T3a, T3b). T4 tumours (T4a, T4b) 
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invade adjacent structures to the bladder  [31] (Table 2). 

 It is estimated that approximately 70-80% of the patients with newly diagnosed bladder cancer 

present with non-muscle invasive disease, while the remaining 20-30% UBCs are muscle invasive or 

have metastasized at the time of diagnosis. 50-70% of the NMI lesions will recur, and 10-20% will 

progress to MI tumours [2, 4, 13, 30]. 

 

 

Figure 4 | World Health Organization (WHO) histological classification of tumours of the urinary tract (adapted from [30]). 

 

Histological grade is a critical risk factor for progression of NMI disease [33-34]. This variable 

depends upon the pattern of urothelial cytological alterations, namely the degree of nuclear anaplasia, 

and some architectural abnormalities [21, 30]. The historical 1973 WHO grading system [35]  included 

urothelial papilloma and grades of well (G1), moderately (G2) or poorly differentiated (G3) carcinomas. 

In 2004, the WHO [30] adopted the 1998 WHO/ ISUP (International Society of Urological Pathology) 

revised scheme [36] for urothelial carcinoma, in order to establish a universally acceptable 
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classification system for bladder 

neoplasias that could be used, with 

high reproducibility, by pathologists, 

urologists and oncologists, also 

stratifying the tumours into 

prognostically significant categories 

[21, 29, 37]. This classification 

system organizes urothelial tumours 

into infiltrating carcinomas and non-

invasive urothelial neoplasias; these 

last are restricted to the urothelium, 

and include urothelial carcinoma in 

situ (CIS), and papillary lesions like 

urothelial papilloma, papillary uro-

thelial neoplasm of low malignant 

potential (PUNLMP), low-grade and 

high grade UBC [30] (Figures 4 and 

5). Infiltrating urothelial carcinomas 

invade beyond the basement 

membrane of the urothelium. Their 

histology is variable: most of the 

NMI tumours (pathological T stage 

pT1) are papillary, low or high 

grade, whereas most pT2-T4 

carcinomas (MI tumours) are non-

papillary and high grade [30-31]. 

 

 

 

 

 

 
 

Table 2 | TNM classification of carcinomas of the urinary bladder 

(adapted from [31]) 
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Figure 5 | Features of non-invasive urothelial neoplasias, according to the guidelines of the WHO 

histological classification ([21, 26, 29-30, 38-43];  microscopic magnifications adapted from [21]). 

  

 There is still some debate about the grading system to be used [44-48]. Some have recommended 

using only the WHO 2004 system [21]; others  believe that WHO 1973 and 2004 classifications are 

complementary and that it is beneficial for clinicians to receive information based on both classifications 

[49-50]. The European Association of Urology (EAU) advocates the simultaneous use of both systems 

Papillary Urothelial Neoplasm of Low 
Malignant Potential (PUNLMP) 

 Papillary urothelial lesion. 
 Resembles the exophytic urothelial papilloma 
(normal-appearing urothelium lines papillary 
fronds), but shows increased cellular proliferation. 
 Minimal to absent cytological atypia. 
 Very low risk of progression. 
 Although not labeled as “cancer”, it is not an 
entirely benign lesion. 

Papillary Urothelial Carcinoma,  
Low Grade 
 Papillary urothelial lesion. 
 Exhibits an overall orderly appearance but has 
easily recognizable variations in architecture and 
cytological features: uniformly enlarged nuclei, 
infrequent mitoses (may occur at any level but are 
more frequent basally).  
 Recurrence is common; progression is rare. 

Papillary Urothelial Carcinoma, 
High Grade 

 Papillary urothelial lesion. 
 Exhibits a disorderly appearance (papillae are 
frequently fused and branching) with marked 
architectural and cytological abnormalities: 
pleomorphic nuclei, prominent nucleoli, frequent 
and atypical mitoses (may occur at any level). 
 High risk of recurrence and progression. 

Urothelial Carcinoma In Situ (CIS) 
 Flat urothelial lesion. 
 Primary CIS is rare; concomitant CIS is common, 
being considered as a precursor lesion for MI-UBC. 
 Nuclear anaplasia identical to high grade 
tumours: enlarged, pleomorphic, hyperchromatic 
nuclei, with condensed chromatin distribution and 
large nucleoli; atypical mitoses and loss of cell 
polarity. 
 Commonly multifocal; may be diffuse.  
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for NMI disease until the 2004 grading system is validated in more clinical trials [51]. Importantly, 

urologists should interact with their pathologists to determine which grading system they are using [52]. 

Additionally, the risk tables from the European Organization for Research and Treatment of Cancer 

(EORTC), combining data on previous tumour recurrence rate, number of tumours, tumour diameter, T 

stage and WHO grade, and the presence or absence of concomitant CIS, are considered reliable tools 

for estimating recurrence and/or progression of NMI-UBC [33, 53-56]. 

 

1.1.4. NATURAL HISTORY AND MOLECULAR PATHOGENESIS 

 

 The natural history of bladder cancer encompasses two main phenotypic variants characterized by 

distinct histopathological and behavioral profiles (Figure 6). The low-grade tumours, always of papillary 

morphology and usually non-muscle invasive, account for about 80% of UBCs. These tumours are often 

multifocal and recurrent, but infrequently progress to MI disease. Urothelial hyperplasia (markedly 

thickened mucosa without cytological atypia) is thought to be a precursor lesion for this variant. 

Conversely, 20% of UBCs present as 

high grade cancers, frequently non-

papillary and muscle-infiltrating. This 

variant seems to arise de novo or 

derive from pre-existing CIS, which is, 

in turn, preceded by urothelial 

dysplasia (low-grade intraurothelial 

neoplasia with marked atypia). 

Additionally, some patients who 

originally present with low grade 

superficial papillary tumours may 

eventually develop CIS in the adjacent 

mucosa and progress to invasive 

cancer [2, 21, 26, 29-30, 57-60]. 

 

 Numerous studies concerning 

pathogenetic pathways, natural history 

and bladder tumour biology have been 

Figure 6 | Natural history of urothelial bladder cancer (the thickness 

of arrows represents the relative frequency of occurrence) (adapted 

from [59]; microscopic magnifications adapted from [64]). 
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reported, and UBC is a relatively well understood type of cancer. Bladder carcinogenesis, like other 

carcinogenesis processes, arises due to alterations that disrupt molecular pathways normally 

responsible for the maintenance of cellular homeostasis. These alterations may occur by numerical 

and/or structural anomalies of chromosomes, by DNA-sequence or epigenetic modifications, by 

modulation at the posttranscriptional level or by up- or downregulated protein expression. The disrupted 

pathways may considerably overlap and include mainly cell cycle regulators and cell growth promoters, 

cell death modulators, signal transduction factors, gene expression and angiogenesis regulators and 

invasion modulators [20, 61-63] (Table 3).  

 

 The less aggressive and more prevalent phenotypic variant of UBC is characterized by the 

constitutive activation of the receptor tyrosine kinase (RTK)-Ras cell cycle regulation pathway, exhibiting 

activating mutations in the oncogenes HRAS (Harvey rat sarcoma viral oncogene homolog)  and FGFR3 

(fibroblast growth factor receptor 3) [2, 20, 26, 57, 60, 62]. Point mutations on FGFR3 are the most 

common genetic alteration identified in bladder cancer, occurring in up to 80% of low-grade pTa 

tumours, compared with 10% to 20% in invasive tumours. This suggests that FGFR3 mutation is one of 

the key events for the genesis of low-grade non-invasive pappilary tumours [64-68] (Figure 7). The 

overall frequency of HRAS mutations is 15%, and these show no association with tumour grade or stage 

[69]. HRAS seems to be mainly overexpressed in pTa tumours that are not likely to progress [70]. 

However, activation of FGFR3 may induce signalling via the Ras pathway, and the finding that FGFR3 

and HRAS mutations are mutually exclusive in UBC probably reflects activation of the same pathway by 

either event [69] (Figure 7). 

 The deletion of chromosome 9 is a common and early event in bladder carcinogenesis, being 

described as the only alteration in some near-diploid tumours [71]. Additionally, more than half of all 

bladder cancers harbour chromosome 9 anomalies, independently of stage and grade [72-73]. 9q loss 

of heterozygozity (LOH) seems to be more frequent in low grade and stage lesions [74], whereas 9p 

LOH is prevalent in high grade and stage tumours [75]. Efforts have been made to identify possible 

tumour suppressor genes that drive this common loss. For instance, deletions on the CDKN2A (cyclin-

dependent kinase inhibitor 2A) locus have been found on 9p; this locus encodes p16 and p14ARF, which 

are tumour suppressor proteins that induce cell-cycle arrest through the Rb (retinoblastoma) and p53 

pathways [76-77]. The homozygous deletion of the p16INK4a gene has been found in high grade pTa 

tumours [78], although p16 alterations have also been observed in invasive lesions [79] (Figure 7). 

 CIS and muscle-invasive tumours exhibit a wide range of genomic alterations. The tumour 
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suppressor genes RB1 and TP53 (tumour protein p53) are altered in the vast majority of these lesions 

[2, 20, 57, 62] (Figure 7). Their proteins are closely associated with the apoptotic, signal transduction 

and gene regulation processes [20, 80-81]. 

 

Table 3 | Molecules and processes that contribute to urothelial carcinogenesis (adapted from [20]). 

(continued) 
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a Altered, b underexpressed/lost, c overexpressed, d lost/hyperphosphorylated, e overactivated, f overexpressed in membrane,             
g polymorphic insertion/deletion in promoter region, h lost/overexpressed, i uncertain. 
Abbreviations: aFGF, acidic fibroblast growth factor; bFGF, basic fibroblast growth factor; CDK, cyclin-dependent kinase; 

EGFR, epidermal growth factor receptor; FGFR3, fibroblast growth factor receptor 3; HIF, hypoxia-inducible factor; HRAS, 

protein of the Harvey rat sarcoma viral oncogene homolog gene; JAK, Janus kinase; MAPK, mitogen-activated protein kinase; 

MMP, matrix metalloproteinase; NF-κB, nuclear factor–kappa B; PI3K, phosphatidylinositol 3-kinase; PIP3, 

phosphatidylinositol trisphosphate; PKC, protein kinase C; PLC, phospholipase C; PTEN, phosphatase and tensin homolog 

deleted on chromosome 10; Rb, retinoblastoma protein; SF, scatter factor; STAT, signal transducer and activator of 

transcription; TIMP-2, tissue inhibitor of metalloproteinase 2; TP, thymidine phosphorylase; TSP-1, thrombospondin-1; uPA, 

urokinase-type plasminogen activator; VEGF, vascular endothelial growth factor; VEGFR2, VEGF receptor 2. 

 

 The p53 protein inhibits cell-cycle progression at the G1-S transition and mediates its control 

through the transcriptional activation of p21WAF1/CIP1, which encodes for the CDK (cyclin dependent kinase) 

inhibitor p21. By being the “guardian of the genome”, TP53 is the most commonly mutated gene in 

human cancer [82]. In UBC, TP53 mutations are strongly associated with high-grade CIS or MI disease 

(Figure 7), and predict recurrence and progression for NMI-UBC patients [83-86]. Consistent with this, 

p21 expression is downregulated in the majority of urothelial cancers that harbour TP53 mutations 

[87].   

 The Rb protein interacts with multiple regulatory proteins involved in the G1-S transition. In its non-

phosphorylated active form, Rb sequesters and inhibits the transcription factor E2F. CDKs 

phosphorylate Rb, which causes E2F release that, in turn, is able to induce gene transcription for DNA 

replication [88]. Inactivation mutations in the RB1 gene have been found in all tumour stages and 
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grades of UBC [89] (Figure 7). However, UBC patients with pRb-expressing tumours have poorer 

outcomes than patients demonstrating inactivating mutations [90]. This seems to be the consequence 

of pRb hyperphosphorylation due to the loss of the CDK inhibitor p16 and/or cyclinD1 overexpression 

[91]. Alterations in the Rb pathway, either alone or in combination with altered p53 pathway, have high 

prognostic value for bladder cancer patients [92-94]. 

 

 

Figure 7 | Model for urothelial carcinogenesis and progression, characterizing distinct molecular alterations in non-invasive 

and invasive tumours (locations of the molecules indicate characteristic alterations that pose a risk for progression of a 

particular phenotype; the thickness of the arrows is approximately proportionate to the relative frequency of occurrence) 

(adapted from [20]). 

Abbreviations: ECM, extracellular matrix; FGFR3, fibroblast growth factor receptor 3; HG, high-grade; HRAS, Harvey rat 

sarcoma viral oncogene homolog; LG, low-grade; Rb, retinoblastoma protein. 

 

 The ability of MI bladder tumours to infiltrate the muscular wall and the surrounding connective 

tissues, to invade adjacent organs and to metastasize, depends not only on the intrinsic genetic factors 

of the malignant cells, but also on the tumour microenvironment. Therefore, the most aggressive UBC 

phenotype is accomplished by angiogenesis occurrence, loss of intercellular adhesion and remodelling 

of the extracellular matrix by matrix metalloproteinases (MMPs), among others [2, 20, 59, 61-62]. 



  CHAPTER 1 | General Introduction | 17 

Increased VEGF (vascular endothelial growth factor) expression and microvessel density [95-99], 

decreased E-cadherin and increased N-cadherin expression [100-102], and increased MMPs activity 

[103-105] are commonly observed in bladder lesions, and associate with recurrence, progression and 

poor prognosis in UBC patients. 

 

1.1.5. DIAGNOSIS, MANAGEMENT AND PROGNOSIS 

 

 The most common presenting symptom of bladder cancer is painless haematuria. Additionally, 

urinary frequency and urgency, irritative voiding and/or dysuria should alert the clinician to a possible 

diagnosis of a malignant tumour. Symptoms of advanced disease, like flank pain, lower extremity 

edema, palpable pelvic mass, weight loss and bone pain, almost never occur without a previous history 

of haematuria. If a tumour is suspected, the initial assessment includes voided urine cytology and 

cystoscopy, as well as imagiological examination [4, 21, 106] (Figure 8). Cytology is the standard non-

invasive test for detecting UBC, but has a poor sensitivity, especially for screening low-grade tumours. A 

number of soluble and cell based markers have been developed for diagnosing and monitoring UBC 

patients, some of which are approved by the Food and Drug Administration (FDA) [20, 107-108]. 

 After the first diagnosis, transurethral resection (TUR) is performed. This surgical procedure 

provides diagnostic information, by allowing local staging and grading, and often achieves therapeutic 

benefit, by resecting or fulgurating all grossly visible tumours without affecting bladder’s function. As the 

resection should include muscularis propria, especially if the tumour infiltrates the lamina propria, pTa 

and pT1 tumours are generally treated by TUR [4, 21, 109]. However, TUR should be repeated in high 

grade and/or pT1 lesions, due to risk of upstaging or presence of residual tumours [110-114]. 

Moreover, the elevated rate of recurrence and progression after TUR advocates the use of adjuvant 

intravesical treatments, particularly in those patients harbouring pathological risk factors – tumour 

grade and stage, multifocality, tumour size and presence of associated pTis [50, 115-116]. The 

immunomodulator BCG (Bacillus Calmette-Guerin), and chemotherapeutics such as mitomycin C 

(MMC) and epirubicin, are common agents used for intravesical instillations [4, 109, 116]. A single 

postoperative instillation of chemotherapy within 24 hours of TUR is currently recommended for all 

newly diagnosed bladder tumours [51] (Figure 8).  

 Only a very thin line separates NMI from MI disease, but the management and clinical outcomes 

for MI disease are completely different (Figure 8). First, MI tumours must be re-staged with cross-

sectional imaging of the bladder and sites of possible metastases (frequently in pelvic and non-regional  
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Figure 8 | Presenting symptoms, diagnosis and management of bladder cancer (red boxes represent areas of ongoing 

investigation and clinical trials) (adapted from [117]). 

Abbreviations: BCG, Bacillus Calmette-Guerin; CIS, carcinoma in situ; CT, computed tomography; CTU, computed 

tomography urography; MRI, magnetic resonance imaging; TURBT, transurethral resection of bladder tumour. 

 

lymph nodes, liver and lungs) by abdominal and chest computed tomography (CT) and pelvic magnetic 

resonance imaging (MRI) [4, 49-50]. More sensitive techniques in detecting lymph node metastasis or 

micrometastasis, like MR lymphangiography [118-119] and (18) F-fluorodeoxyglucose positron emission 

tomography (FDG-PET) [120-122], have recently been introduced. Second, radical cystectomy (RC) is 

the standard of treatment in the setting of muscularis propria invasive disease. Additionally, in pTis and 

pT1 tumours that are refractory to BCG instillations, in high grade recurrent pT1 tumours, or in high-

volume tumours that cannot be managed by TUR, cystectomy should also be considered [51, 116]. In 

fact, delaying cystectomy in these patients may lead to decreased disease-specific survival [123]. The 

standard surgical approach in men is radical cistoprostatectomy, and in women is anterior exenteration, 
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coupled in both cases with pelvic lymphadenectomy and some form of urinary diversion in either a non-

continent or continent-way [4, 50, 124-125]. The boundaries of the lymphadenectomy have been widely 

discussed, and there is increasing evidence that an extended lymphadenectomy with the cephalad 

limits of dissection extending up to the aortic bifurcation and including caudally the presacral nodes 

provide additional data for tumour staging as well as survival improvements [126-129]. Because RC is 

quite an invasive procedure and exhibits significant complications, optimal methods of urinary diversion 

and the use of robot-assisted laparoscopic cystectomy are evolving, although requiring further study 

[116, 130-134]. Alternatively to RC, multimodality bladder-sparing approaches involving chemoradiation 

may be considered as therapeutic options for eligible patients - patients with small tumours, stage pT2, 

with visibly and microscopically complete TURs, who have no associated CIS or hydronephrosis, and 

who are medically fit to receive chemotherapy, and patients who present with severe medical co-

morbidities for whom RC represents a too high risk [50, 116, 135-138]. 

 Neoadjuvant, adjuvant and palliative systemic chemotherapy has been explored in patients with 

MI, locally-advanced or metastatic UBC. Platinum-based compounds are established standards for fit 

patients, namely MVAC (methotrexate, vinblastine, adriamycin and cisplatin) and GC (gemcitabine and 

cisplatin) combinations [4, 50, 125, 139-142]. The doublet regimen is becoming preferred over MVAC, 

due to a comparable survival benefit, coupled with a better safety profile [139, 142-145]. Patients unfit 

for platinum-based chemotherapy may be palliated with carboplatin-based regimens or single-agent 

taxane or gemcitabine [50, 139, 144]. The third-generation vinca alkaloid vinflunine is an option for 

second-line chemotherapy in metastatic patients progressing after first line platinum-based 

chemotherapy [146-147]. 

  

 The outcome for bladder cancer 

patients is very heterogeneous (Figure 9). It 

is mandatory that risk-stratification tools are 

developed, in order to accurately classify 

patients with similar risks of recurrence and 

progression, and to determine the 

appropriate treatment modalities for each 

risk group. The combined analysis of the six 

risk factors identified by the EORTC allowed 

to develop risk scores and to classify pTa and pT1 patients into low-, intermediate- and high-risk groups 

 

Figure 9 | Recurrence, progression and mortality probabilities 

for urothelial bladder cancer patients according to tumour stage 

(adapted from [20]). 
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for recurrence and progression; these vary from 

31% to 78% and from 0.8% to 45% at five years, 

respectively [33] (Table 4). The main limitation of 

the EORTC tables is that the risk groups were 

based on patients who did not have a second TUR 

or receive maintenance chemo- or immuno-

therapy. The Club Urológico Español de 

Tratamiento Oncológico (CUETO) has recently 

developed a scoring model for BCG-treated 

patients that predicts the short- and long-term 

risks of recurrence and progression. Using these 

tables, the calculated risk of recurrence is lower 

than that obtained by the EORTC tables, but the 

risk of progression is lower only in high-risk 

patients [148]. A single chemotherapy instillation 

24h within TUR reduces the risk of recurrence by 

39% [149]. 

 Carcinoma in situ is a high risk of 

progression lesion. In high grade pT1 tumours, 

the most important prognostic factor is the 

presence of concomitant CIS [33]. Without any 

treatment, approximately 54% of patients with CIS progress to MI disease [150]. The EAU recommends 

at least one year of intravesical BCG for patients with CIS and/or high risk of progression tumours. If 

BCG therapy fails, RC should be considered [51]. 

 For those patients who progress from NMI to MI disease, or initially present with MI tumours, the 

prognosis is significantly worse than for NMI disease (Figure 9). The timely performance of RC – within 

90 days since diagnosis [151-152]– and the delivery of neoadjuvant and/or adjuvant radiation or 

chemotherapy provides a cure for most patients with organ-confined tumours or with extravesical 

tumours that are completely resected: in a large cohort, the disease-free survival (DFS) at 5 years was 

89%, 87%, 62% and 50% for pT2, pT3a, pT3b and pT4 lymph node negative disease, respectively. When 

lymph node involvement occurred, the 5-year DFS lowered to 35% [153]. The presence of visceral 

metastasis is also a poor prognosis factor: in a randomized trial comparing long-term survival in 

 

Table 4 | EORTC risk factors used to calculate the 

recurrence and progression scores, and probability of 

recurrence and progression according to total score 

(adapted from [33]). 
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patients with locally advanced or metastatic UBC treated with GC or MVAC, the 5-year overall survival 

rates for patients with and without visceral metastases were 6.8% and 20.9%, respectively; the treated 

patients achieved a median survival of up to 14-15 months, similar in GC and MVAC arms [154]. 

 

1.1.6. MAJOR DRAWBACKS AND CONCERNS 

 

 Urothelial bladder cancer is a complex disease with variable natural history and clinical behaviour, 

representing an important cause of morbidity and mortality worldwide. The vast majority of the patients 

present with pTa tumours that, although rarely progress, have high recurrence rates. This demands for 

long-term follow-up and repeated interventions, making UBC the most expensive cancer to treat [155]. 

Additionally, the risk of progression to muscle-invasive disease is an important threat for pT1 and pTis 

patients. MI tumours carry a significant metastatic potential and, despite advances in surgical 

techniques and perioperative chemotherapy, up to 50% of MI-UBC patients experience recurrence 

and/or progression and eventually die from the disease [156]. Although cisplatin-containing 

combinations are the standard of care for UBC patients, no method yet exists that can predict the 

individual response to the treatment. As a consequence, the non-responder patients will not achieve any 

survival benefit and will suffer from the typical adverse effects that can limit the application of a second-

line scheme [157].  

 The relapsing and progressive nature of bladder tumours, and the heterogeneity in treatment 

response, are the major drawbacks and concerns in the care of UBC patients. The conventional clinical 

and pathological parameters have undeniable diagnostic and prognostic value [51, 158]. However, 

although several risk-stratification algorithms have been developed [33, 148], they are not sufficient to 

individually characterize a patients’ tumour. This crucial goal may only be accomplished when 

biomarkers of tumour aggressiveness and response to chemotherapy are routinely evaluated in 

pathological specimens. 

 UBC is one of the best understood types of cancer, with relatively well-defined pathogenetic 

pathways and tumour biology [2, 4, 20]. Moreover, traditional approaches of profiling single molecules 

or pathways are currently being replaced by medium- to high-throughput gene-expression profiling 

technologies that perform a multiplexed assessment of molecular alterations responsible by 

carcinogenesis and tumour progression. The wide range of bladder cancer biomarkers that have been 

reported may prove valuable in several areas, including molecular diagnostics, prediction of tumour 

recurrence, detection of lymph node metastasis and detection of circulating malignant cells, 
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identification of therapeutic targets and individualization of treatment [61-62].  

 Therefore, it is urgent to bridge the gap between the lab bench and the clinical practice, so that 

bladder cancer patients can rapidly benefit from the use of molecular tests that may diagnose the 

disease, predict individual prognosis, and suggest the application of targeted therapies. 
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Figure 10 | Capabilities acquired by the malignant cells neces-

sary for tumour growth and progression (adapted from [160]). 

 

1.2. UROTHELIAL BLADDER CANCER – TRANSLATING BIOLOGY INTO 

CLINICAL PRACTICE 

 

 

 Thirteen years ago, Hanahan and 

Weinberg suggested that, although encom-

passing variable mechanistic strategies, 

cancers in general acquire a set of functional 

biological capabilities during their multistep 

development. These include sustaining 

proliferative signaling, evading growth 

suppressors, resisting cell death, enabling 

replicative immortality, inducing angiogenesis, 

and activating invasion and metastasis [159]. 

In their recent review, the authors added to 

their previous model two enabling 

characteristics and two emerging hallmarks 

(Figure 10). They considered that genome instability generates the genetic diversity underlying the 

acquisition of all hallmarks, and that inflammation promotes multiple hallmark functions. Additionally, 

the establishment of a tumour microenvironment by the malignant cells but also by recruited normal 

cells importantly contributes to energy metabolism reprogramming and immune destruction evasion in 

order to effectively support neoplastic proliferation [160]. This molecular knowledge is already being 

applied into clinical practice, with targeted therapies that interfere with each of the hallmarks being 

developed and entering in clinical trial phase or, in some cases, being approved for clinical use in 

treating certain forms of human cancer [161-162].  

 In bladder cancer setting, although a reasonable number of biomarkers seem to be prognostically 

relevant (Table 3), there is a substantial delay in the translation into the clinics, and clinical trials with 

molecularly targeted agents have been few in number and largely unsuccessful. This is probably due to 

the unique complexity involved in the dual-track pathway of bladder carcinogenesis, which postulates 

that UBC develops via two distinct but somewhat overlapping pathways, resulting in the two main 

phenotypic variants with different biological behaviours and prognoses [163]. Because bladder 

carcinogenesis involves several genetic and epigenetic alterations, multiple biomarkers must be 
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integrated into a molecular signature that can accurately predict prognosis and may be suitable for 

targeted therapy. Inducing angiogenesis (and lymphangiogenesis), activating invasion and metastasis 

and reprogramming cellular energetics and the tumour microenvironment are considerably overlapping 

hallmarks that certainly contribute to the acquisition of the ultimate malignant phenotype responsible 

for the majority of bladder cancer deaths. 

 

1.2.1. TUMOUR ANGIOGENESIS AND LYMPHANGIOGENESIS 

 

 The dissemination of malignant cells to distant organs from the primary tumour is the leading 

cause of mortality from cancer and, with few exceptions, all cancers can metastasize [164-165]. 

Although metastasis can occur by local tissue invasion and direct seeding of body cavities, the main 

routes of dissemination are the hematogenous and lymphogenous spread. Preclinical and clinical 

studies suggest that the lymphatic vascular system is preferred over the blood vascular system, and 

occurrence of lymph node metastasis is an important factor for patients’ prognosis and treatment 

decision-making [166-168]. The malignant cells exploit both vascular systems by expressing growth 

factors that alter the normal pattern of blood and lymphatic vessel growth, creating conduits for 

metastasis to occur by tumour-induced angiogenesis and lymphangiogenesis [169-171]. 

 

1.2.1.1. OVERVIEW OF THE VASCULAR SYSTEMS 

 

 The blood vascular system is the first organic system to 

develop and reach a functional state in the embryo. In a circular 

way, it allows that blood leaves the heart, runs through the 

arteries, arterioles, capillary plexus, venules, and veins, and 

returns to the heart (Figure 11). This closed circulation is 

responsible for the cellular inflow of nutrients, outflow of waste 

products and gas exchanges in most tissues and organs, and 

also provides gateways for patrolling immune cells [172-173] 

(Table 5). 

 
 
Figure 11 | Macroscopic view of the blood and lymphatic vascular systems 

(adapted from [172]). 
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 When the cardiovascular system is already functioning, a second vascular network of low-pressure 

lymphatic vessels and lymphoid organs like lymph nodes develops in order to collect extravasated fluid 

and macromolecules from tissues and return them to the blood flow via the thoracic duct at the junction 

of the jugular and subclavian veins (Figure 11). Besides having this essential role in maintaining tissue 

homeostasis, the lymphatic system also participates in immune surveillance by carrying antigens and 

antigen-presenting cells from the interstitium to be displayed for B and T cells in the lymph nodes. 

Moreover, the intestinal villous lacteal lymphatics absorb and transport triglycerides and fat-soluble 

vitamins [174-176] (Table 5).  

 

Table 5 | Features of blood and lymphatic vascular systems (adapted from [172]). 

 
Abbreviations: BEC, blood endothelial cells; LEC, lymphatic endothelial cells; LYVE-1, lymphatic vessel hyaluran 

receptor-1; Prox-1, prospero related homeobox gene-1; VEGFR, vascular endothelial growth factor receptor. 

 

 Unlike blood flow, the lymph is not guided by a central pump and flows unidirectionally, initiating in 

blind-ended lymphatic capillaries. Blood endothelial cells (BEC) are covered by a complete basement 
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membrane and then encircled by pericytes or smooth muscle cells, which form one or multiple layers 

increasing in thickness with vessel size, whereas lymphatic capillaries are lined with a single layer of 

partly overlapping lymphatic endothelial cells (LEC) with a discontinuous basement membrane, and 

lack vascular mural cells. This structure forms valve-like openings connected to the extracellular matrix 

by elastic fibers known as anchoring filaments, responsible for maintaining lumen patency during 

increased interstitial pressure. The collected fluid then drains to precollecting and collecting lymphatics 

and will eventually be filtered through a series of lymph nodes before re-entering the blood circulation. 

The lymphatic vessels contain a complete basement membrane, are covered by smooth muscle cells, 

and form one-way valves (Figure 12). Since the lymphatic network lacks a central driving force, these 

valves, together with the contractile activity of the vessels’ muscular wall, skeletal muscle and 

respiratory movements, avoid lymph backflow and provide a slow transport under minimal shear stress. 

Therefore, cell survival conditions inside the lymphatic network are optimal [168, 172, 174, 176-180]. 

 

 

Figure 12 | Structure of blood and lymphatic vessels (adapted from [174]). 



  CHAPTER 1 | General Introduction | 27 

1.2.1.2. FROM ANGIOGENESIS TO LYMPHANGIOGENESIS 

 

 During embryonic development and organogenesis, the formation of the blood vascular system 

initiates by vasculogenesis: haemangioblast progenitors proliferate, migrate and differentiate into 

endothelial cells, which in turn will organize a primitive vascular plexus. The plexus serves as a scaffold 

for angiogenesis, by which sprouting, growth, splitting and pruning remodels the primitive vessels into a 

hierarchical network of arterial, venous and capillary structures closely interconnecting in a branching 

pattern.  Arteriogenesis forms mature quiescent vessels with the recruitment of mural cells that stabilize 

the endothelium and control perfusion [173, 181-183] (Figure 13). 

 

 

Figure 13 | Overview of vasculogenesis, angiogenesis and arteriogenesis (adapted from [184]). 

Abbreviations: CL, collagen; EL, elastin; Fib, fibrillin; SMC, smooth muscle cells. 

 

 In the vessel-branching model described above, the sprouting activity of the primitive plexus is 

initiated by endothelial tip cells. These cells do not proliferate, but are highly polarized and motile, 

extending filopodia that, in response to an angiogenic stimulus, guide the sprouting at the forefront. 

Following the tip cells, proliferative endothelial stalk cells elongate a new branch and create a lumen. 

The fusion between different tip cells connects the branches for initiation of blood flow. Endothelial 

phalanx cells resume a stable quiescent phenotype, sensing and regulating perfusion in the persistent 

sprout, and the nascent plexus is then stabilized by arteriogenesis [173, 185-186] (Figure 14). 
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Figure 14 | Formation of novel blood vessel branches by the vessel-branching model (adapted from [185]). 

 

 The lymphatic vascular system arises after the cardiovascular system is established and functional. 

The most widely accepted theory regarding its origin postulates that early in fetal development, a 

distinct subpopulation of endothelial cells on one side of the anterior cardinal vein responds to 

lymphatic-inducing signals and commits to the lymphatic lineage, sprouting from the venous 

endothelium and migrating to form primitive lymph sacs in the jugular region. After several lymph sacs 

form close to major veins in different regions, centrifugal sprouting of lymphatic vessels from the lymph 

sacs occurs; these will merge and assemble into separate lymphatic capillary networks that will undergo 

further remodelling and maturation [172, 174, 178, 180, 187-190] (Figure 15). 

 

 

Figure 15 | Development of the lymphatic vasculature during embryogenesis (adapted from [189]). 

Abbreviations: SMC, smooth muscle cells. 
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 Angiogenesis and lymphangiogenesis are dynamic processes during embryonic development, but 

are largely absent in the post-natal period, under normal physiological conditions. In a healthy adult, 

endothelial cells are quiescent and have long half-lives, although remaining competent to respond to 

several stimuli in order to maintain or restore tissue integrity, namely during wound healing and the 

ovarian cycle [170, 173-174, 191]. Once blood and lymphatic vessels nourish and sustain nearly every 

organ of the body, alterations to the standard pattern of vascular development contribute to numerous 

diseases. Stroke, myocardial infarction, ulcerative disorders and neurodegeneration may occur as a 

consequence of insufficient blood vessel growth, and abnormal growth or remodelling of the blood 

vasculature occurs in inflammatory disorders, pulmonary hypertension and macular degeneration [173, 

182, 192]. Congenital or acquired dysfunctions of the lymphatic system result in primary or secondary 

lymphedema, which impairs fluid balance and immune function [172, 174-175, 178, 193]. 

Additionally, tumour-induced angiogenesis is critical to the growth and survival of a primary malignant 

neoplasm by forming a nutrient capillary network, and both vascular systems are exploited by the 

malignant cells to disseminate and kill patients with cancer. Therefore, the molecular factors involved in 

the formation of blood and lymphatic vessels during embryogenesis are newly recruited by the growing 

tumour [170-171]. 

 

1.2.1.3. MOLECULAR BASIS OF ANGIOGENESIS AND LYMPHANGIOGENESIS 

 

 Cooperative signalling pathways control the proliferation, sprouting and migration of endothelial 

cells that occur during physiological and pathological blood and lymphatic neovascularization. The main 

players of this signalling network are vascular endothelial growth factors (VEGFs) and their receptors 

(VEGFRs) [169-170, 180, 194-196]. 

 The VEGF family includes five members in mammals: VEGF (or VEGF-A), VEGF-B, VEGF-C, VEGF-D 

and placenta growth factor (PlGF). Moreover, two VEGF homologs, VEGF-E and VEGF-F, have been 

identified in the genome of the Orf virus, and isolated from snake venom, respectively. All seven VEGFs 

belong to the platelet-derived growth factor (PDGF)/VEGF supergene family of secreted dimeric 

glycoprotein growth factors, having a homodimer cysteine knot motif structure with eight conserved 

cysteine residues in a monomer peptide. The existence of different alternatively spliced isoforms of 

VEGF-A, VEGF-B and PlGF, and proteolytic processing of VEGF-C and VEGF-D, contribute to further 

increase the complexity of the VEGF family. Splicing and processing activities regulate the ability of the 

ligands to bind to specific endothelial transmembrane tyrosine kinase receptors, VEGFR-1/fms-like 
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tyrosine kinase 1 (Flt1), VEGFR-2/human kinase insert domain receptor (KDR)/mouse foetal liver 

kinase 1 (Flk1) and VEGFR-3/fms-like tyrosine kinase 4 (Flt4). VEGFRs have a series of 

immunoglobulin-like domains in the extracellular region, and a conserved intracellular tyrosine kinase 

domain. In addition, neuropilin-1 (NRP-1) and NRP-2, a few integrins and extracellular matrix 

components like heparan sulphate function as co-receptors for some members of the VEGF family [169-

170, 194, 197-203] (Figure 16).  

 

 

 

 

 

 

 

 

Figure 16 | Structure and 

interactions of VEGFs, 

VEGFRs and their NRP co-

receptors. (adapted from 

[170]). 
Abbreviations: NRP, neu-

ropilin; VEGF, vascular en-

dothelial growth factor; 

VEGFR, VEGF receptor. 

 

 VEGFR-2 is the earliest marker for BEC development [204]. VEGF signalling through VEGFR-2 

(Figure 16) is the major mediator of both vasculogenesis and angiogenesis, inducing the proliferation, 

survival, sprouting and migration of BEC, and also increasing endothelial permeability (VEGF was 

originally described as vascular permeability factor, VPF [205]). VEGF or VEGFR-2 loss aborts vascular 

development in the embryo [204, 206]. In response to a VEGF gradient, a quiescent vessel dilates and 

a tip cell, abundantly expressing VEGFR-2 in filopodia, is selected to sprout. The transmembrane ligand 

delta-like-4 (DLL4) and its receptor NOTCH are also implicated in the vessel branching model: the tip 

cell up-regulates DLL4 expression, and the stalk cells up-regulate the expression of the NOTCH receptor 

and down-regulate VEGFR-2 expression. This renders stalk cells less responsive to VEGF, and warrants 

that the tip cell takes the lead in the branch formation [170, 173, 185, 195, 207]. Additionally, in order 

to tip guidance and stalk elongation occur, the basement membrane of the activated endothelium must 

be degraded and pericytes must detach. These events are mainly guided by the angiopoietin (ANG) and 

tyrosine kinase with immunoglobulin and EGF homology domains (TIE) family, particularly the ligands 
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ANG-1 and ANG-2, and the receptor TIE-2. ANG-1 and ANG-2 are expressed by perycites and BECs, 

respectively. ANG-1/TIE-2 signalling maintains cell quiescence, and stimulates perycite coverage and 

the deposition of the basement 

membrane. In the presence of an 

angiogenic stimulus, sprouting BECs 

release ANG-2, which antagonizes 

ANG-1/TIE-2 signalling to enhance 

perycite detachment, vascular 

permeability and BEC sprouting [170, 

173, 208] (Figure 17). 

 

Figure 17 | Molecular basis of the vessel 

branching model (adapted from [173]). 

Abbreviations: ANG, angiopoietin; DLL4, delta-

like-4; EGFL7, EGF-like domain 7; FGF, 

fibroblast growth factor; HIF, hypoxia-

inducible factor; MMP, matrix metalloprotei-

nase; MT, membrane-type; NRARP, Notch-

regulated ankyrin repeat protein; NRP, 

neuropilin; PAI, plasminogen activator 

inhibitor-1; PDGF, platelet-derived growth 

factor; PDGFR, PDGF receptor; PGC, peroxi-

some proliferator-activated receptor gamma 

coactivator; PHD, prolyl hydroxylase domain 

protein; PlGF, placenta growth factor; SDF, 

stromal cell-derived factor; TGF, transforming 

growth factor; TIE, tyrosine kinase with 

immunoglobulin and EGF homology domains; 

TIMP, tissue inhibitors of metalloproteinase; 

VE-cadherin, vascular endothelial cadherin; 

VEGF, vascular endotelial growth factor; 

VEGFR, VEGF receptor.  

  

 After embryogenesis, VEGF/VEGFR-2 axis is downregulated. However, in settings of physiological 

and pathological angiogenesis, both ligand and receptor become again upregulated. Moreover, although 

VEGF-B, PlGF and VEGFR-1 do not activate angiogenesis during embryonic development, they have 

demonstrated angiogenic activity in pathological conditions like ischaemia, inflammation, wound healing 

and tumour growth [170, 209-210].  

 In addition to VEGF/VEGFR-2 signalling, other biological factors are involved in the formation of 
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new blood vessels. Events like remodelling of the extracellular matrix, stalk elongation, tip-cells’ 

guidance and fusion, and quiescent phalanx resolution, are regulated by a crosstalk of several 

molecular actors, which denotes the complexity of the angiogenic process [170, 173, 185, 195] (Figure 

17). 

 

 Following the formation of the blood vascular system in the embryo, certain BEC become 

responsive to lymphatic inducing-signals. The first marker of lymphatic endothelial commitment is the 

lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), a CD44 homologous transmembrane 

protein. Initially, LYVE-1 is evenly expressed by the blood endothelium of the cardinal vein [211]. Then, 

the prospero related homeobox gene-1 (Prox-1), activated by the transcription factor Sox18 [SRY (sex 

determining region Y) box 18], is selectively expressed in a subpopulation of BEC, which determines the 

establishment of the lymphatic competence and initiates the formation of the lymphatic vascular system 

[212-214]. Later, Prox1/LYVE-1–positive cells sprout and migrate dorsolaterally from the cardinal vein, 

forming the first lymphatic structures in regions where surrounding mesenchymal cells express the 

lymphangiogenic growth factor VEGF-C [215]. The matrix-interacting protein collagen and calcium-

binding EGF domains 1 (CCBE1) strongly enhances the pro-lymphangiogenic activity of VEGF-C [216-

217] (Figure 18). 

 VEGF-C signalling through VEGFR-3 and its nonsignalling transmembrane co-receptor neuropilin 2 

is required for the proliferation, migration, and survival of LEC until the postnatal maturation of the 

lymphatic vasculature occurs [215, 218] (Figure 16). In the absence of VEGF-C, the development of the 

lymphatic system is blocked [215]. VEGF-D, another known ligand for VEGFR-3, seems to be largely 

dispensable for the embryogenesis of lymph vessels [219]. VEGFR-3 is evenly expressed by all 

endothelial cells during initial stages of development. In fact, Vegfr3 deletion leads to defective 

development of the cardiovascular system and embryonic death at mid-gestation, which postulates an 

early blood vascular function [220]. As the lymphatic vascular system begins to develop, its expression 

becomes restricted to LEC, with the exception of the fenestrated blood vessels present in some 

endocrine organs (thyroid, adrenal glands and pancreas) [221-222]. VEGFR-3 inhibition during later 

embryonic and early postnatal stages leads to regression of developing lymphatic vessels [223-224]. 

 The specific biologic effects of VEGF-C interaction with VEGFR-3 are critically dependent on the 

proteolytic processing of the ligand. Upon proteolytic cleavage, VEGF-C affinity toward its receptor 

increases, and the fully processed forms of VEGF-C/VEGF-D also activate VEGFR-2 and can induce 

blood vessel growth [225-228]. Additionally, VEGFR-3 can heterodimerize with VEGFR-2, and it has 
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been suggested that, in adult lymphangio-

genesis, VEGFR-2 and VEGFR-3 signalling 

have cooperative and redundant roles [229] 

(Figure 16). 

 

 

 

 

 

Figure 18 | Molecular basis of the lymphatic 

vasculature development. A, arterial-venous specifica-

tion; B, lymphatic competence; C, lymphatic commi-

tment; D, budding, migration, and proliferation of 

lymphatic endothelial cells; E, separation of blood 

and lymphatic vasculature; F, centrifugal growth of 

the lymphatic vessel network; G, remodeling and 

maturation of the lymphatic vasculature (adapted 

from [230]). 

Abbreviations: Ang2, angiopoietin 2; Angptl4, angio-

poietin-like protein 4; AV, arterial-venous; FNEIIIA, 

fibronectin EIIIA; Foxc2, forkhead box C2; LYVE-1, 

lymphatic vessel endothelial hyaluronan receptor-1; 

NFAT1c, nuclear factor of activated T-cells, cyto-

plasmic 1; Prox-1, prospero related homeobox gene-

1; SLP-76, SH2 domain-containing leucocyte protein, 

76-kDa; Sox18, SRY (sex determining region Y) box 

18; Spred,  sprouty-related, EVH1 domain-containing 

protein; Syk, protein-tyrosine kinase SYK; Vegfc, 

vascular endothelial growth factor c; Vegfr3, vascular 

endothelial receptor 3. 

 

 After LEC commitment and establishment of the primary lymph sacs, the critical process of 

separation of the lymphatic vessels from the blood vessels must occur in order to ensure the proper 

function of the two vascular systems. Expression of the tyrosine kinase SYK and its adaptor protein SLP-

76 (SH2 domain-containing leucocyte protein, 76-kDa) by circulating lymphatic endothelial precursors, 

and platelet activation by podoplanin, seem to be essential for the blood/lymphatic disconnection [231-

233]. The sustained VEGF-C/VEGFR-3 signalling assures the centrifugal growth of the lymphatic vessel 

network, and additional molecular players promote the remodelling and maturation of the final 

lymphatic vasculature [172, 174, 176, 178-179, 230] (Figure 18). 
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1.2.1.4.  ANGIOGENIC AND LYMPHANGIOGENIC SWITCH IN TUMOURS 

 

 More than forty years ago, Judah Folkman articulated the theory that tumour growth depends on 

the recruitment of new blood vessels, anticipating possible therapeutic implications from this biological 

event [234]. Later, the term “angiogenic switch” has emerged to describe the transition phase where a 

pre-vascular hyperplasia evolves to highly vascularised and progressively outgrowing tumours [235]. In 

fact, once a primary tumour mass reaches a critical size, its growth is impaired by the lack of an 

appropriate supply of oxygen and nutrients. However, the malignant cells rapidly overcome this growth 

inhibition and gain additional capabilities of progression and dissemination by inducing the formation of 

new blood vessels from pre-existing ones [236]. The angiogenic switch is a discrete step in tumour 

development that can occur at different stages in the progression pathway, depending on the nature of 

the tumour and its microenvironment [237]. 

 In adult normal tissues, the levels of pro- and anti-angiogenic signals, regulated at the level of gene 

expression, secretion and proteolytic activation, dictate whether an endothelial cell will be in a quiescent 

or an angiogenic state (Figure 19). During 

the angiogenic switch in tumours, the 

dynamic balance between positive and 

negative controllers, derived from tumour 

cells themselves and from tumour-

infiltrating stromal cells (pericytes, cancer-

associated fibroblasts and cells of the 

immune system) is lost [235-237] (Figure 

20). Overexpression of pro-angiogenic 

factors is induced by environmental 

stresses like hypoxia [238-239], nutrient 

deprivation [240-241], formation of reactive 

oxygen species (ROS) [242], cellular 

acidosis [243] or iron deficiency [244], by activation of oncogenes [245] or by loss of function of 

tumour suppressor genes [246]. Recent evidences highlight the importance of the epigenetic control of 

angiogenesis, particularly by non-coding microRNAs (miRNAs) that are expressed by BEC in response to 

hypoxia or VEGF levels [247-249]. 

Figure 19 | The angiogenic balance (adapted from [237]). 

Abbreviations: EGF, epidermal growth factor; FGF, fibroblast 

growth factor; LPA, lysophosphatic acid; PDGF, platelet-derived 

growth factor; VEGF, vascular endothelial growth factor. 
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Figure 20 | Molecular and cel-

lular players underlying the angio-

genic switch in tumours (green 

box, pro-angiogenic factors and 

proteases secreted by the tumor 

cells; pink box, pro-angiogenic 

factors and proteases secreted by 

cells of the immune system 

recruited to the tumor site; blue 

box, pro-angiogenic factors secre-

ted by the tumor cells to recruit 

inflammatory cells) (adapted from 

[236]). 

Abbreviations: BMCD, bone mar-

row-derived cell; Bv8, Bombina variagata peptide 8; FGF, fibroblast growth factor; IL, interleukin; MCP-1, monocyte 

chemoattractant protein-1; MMP, matrix metalloproteinase; PDGF, platelet-derived growth factor; PlGF, placenta growth 

factor; VEGF, vascular endothelial growth factor. 

 

 VEGF signalling through VEGFR-2 in the hypoxic microenvironment of the avascular primary 

tumour seems to be the most ubiquitous molecular mechanism underlying the angiogenic switch. Vegf 

gene expression is upregulated in hypoxia via the oxygen sensor hypoxia-inducible factor (HIF)-1. 

Under normoxic conditions, HIF-1α is hydroxylated by the oxygen sensing enzymes prolyl hydroxylases 

(PHDs) expressed by BEC, and targeted for proteasomal degradation. However, under hypoxic 

conditions, PHDs become inactivated, and HIF-1α initiates transcriptional responses to increase oxygen 

supply by angiogenesis, namely by upregulating VEGF expression [239, 250-251]. Tumour, myeloid or 

other stromal cells release paracrine VEGF, which increases vessel branching and contributes to vessel 

abnormalization [252]. Additionally, paracrine VEGF induces the expression of plasminogen activators 

and matrix metalloproteinases, indirectly mediating the degradation of the basement membrane [253]. 

Autocrine VEGF released by BEC maintains vascular homeostasis [254]. 

 The mechanisms implicated in the embryonic development of the cardiovascular system – 

vasculogenesis and sprouting angiogenesis – are newly recruited during the formation of the tumour’s 

blood supply. Moreover, the malignant cells can use other modes of vessel formation, namely 

intussusception (process of vessel splitting that also occurs in normal tissues), vessel co-option (process 

in which tumour cells hijack the existing vasculature), vascular mimicry (process in which tumour cells 

line vessels) or differentiation of putative cancer stem cells into BEC [173, 195, 255] (Figure 21). Both 

tumour and endothelial cells can present distinct phenotypes in particular organs, tumour types and 

subtypes [256]. 
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Figure 21 | Possible mechanisms of blood 

vessel formation in tumours (adapted from 

[173]). 
Abbreviations: EC, endothelial cell; EPC, endo-

thelial progenitor cell. 

 

 Although the concept of the 

“angiogenic switch” is clearly defined, 

the mechanisms that trigger tumour 

lymphangiogenesis are not fully under-

stood. Experimental evidence to support 

a “lymphangiogenic switch” is still 

lacking. However, as for tumour angio-

genesis, it seems probable that the 

acquisition of new lymphatic vessels is 

elicited at some point during tumour 

development. The high interstitial pressure generated inside the tumors due to the excessive production 

of interstitial fluid has been proposed as a putative trigger mechanism. In fact, a tumour-associated 

lymphatic neovasculature can potentially collect the interstitial fluid leaked from blood vessels, also 

establishing the route for lymphatic vessel invasion, lymph node involvement and distant metastasis 

[167]. Moreover, inflammation seems to promote lymphatic neovascularization: VEGF can indirectly 

support inflammatory lymphangiogenesis by attracting VEGFR-1 expressing macrophages; these secrete 

lymphangiogenic growth factors, namely VEGF-C and VEGF-D [257-258]. Interleukins 6 and 17 equally 

seem to mediate VEGF-C upregulation in some tumours [259-260]. Extracellular matrix signalling can 

also mediate tumour lymphangiogenesis. Tumour-derived hyaluronan may directly interact with cell 

surface receptors in LEC, namely LYVE-1, and accelerate tumor lymphangiogenesis [261]. The 

induction of integrin 91 expression by Prox1 on LEC stimulates migration of these cells towards 

VEGF-C and VEGF-D gradients [203, 262]. The matrix cell-adhesive glycoprotein fibronection and the 

endoglycosidase heparanase, important players of the metastatic cascade, have shown to induce VEGF-

C secretion by malignant cells [263-264].  

 VEGF-C and VEGF-D signalling through VEGFR-3 is the key molecular pathway underlying tumour 

lymphatic neovascularization. Furthermore, proteolytic processed forms of the ligands may be 

generated in some tumours, which target VEGFR-2 homodimers or VEGFR-2/VEGFR-3 heterodimers, 

thus contributing to tumour angiogenesis [167, 193, 230, 257, 265]. Conversely, in order to prepare a 
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pre-metastatic niche and eventually sculpt an immune response permissive to malignant cells’ survival, 

VEGF interaction with VEGFR-2 may also promote distal lymphangiogenesis inside the sentinel lymph 

nodes before lymph node metastasis occurrence [266]. The molecular properties of the VEGF family of 

ligands and receptors link blood and lymphatic neovascularization in tumours, and it seems that the 

ultra-structure of these tumor-associated vessels largely contributes to the success of malignant 

dissemination [267].  

 

1.2.1.5.  STRUCTURE OF TUMOUR NEOVASCULATURE 

 

 During embryonic development and post-natal physiological events that require a new blood and 

lymphatic supply, angiogenesis and lymphangiogenesis occur under highly coordinated molecular 

signalling cascades in order to form structured and functional vasculatures. On the other hand, during 

tumour development, the excessive and disorganized production of angiogenic and lymphangiogenic 

factors, coupled with an imbalance in the growth of both vascular systems, renders tumour neovessels 

hyperactive and abnormal in almost all aspects of their structure and function [267]. 

 Tumour blood vessels are tortuous, following a serpentine course and branching irregularly, and 

have uneven lumens. Heterogeneity is also evident: the vasculature is shaped by different vessel 

subtypes, including large and hyperpermeable “mother” vessels, capillaries, glomeruloid microvascular 

proliferations and vascular malformations. BEC express an aberrant molecular signature and may, in 

some cases, switch their phenotype. These cells lose their polarized alignment, detach from the 

basement membrane and stack upon each other, forming pseudostratified layers that obstruct the 

lumen with filipodia-like protrusions, and intercellular gaps that constitute gateways for the entry of 

tumour cells. In addition, the basement membrane is discontinuous or absent, and the mural pericytes 

have an abnormal shape, loosely associating with BEC and extending their membrane processes into 

the surrounding stroma [173, 185, 192, 267-271] (Figure 22). As a consequence of these aberrant 

features, tumour blood vessels are leaky, which substantially increases interstitial tumour pressure, and 

blood flow is chaotic and variable, impairing the functional delivery of oxygen, nutrients, immune cells 

and drugs. A very hostile microenvironment is generated, characterized by hypoxia, low pH and high 

interstitial pressure. In response, the malignant cells overexpress pro-angiogenic factors as an attempt 

to overcome oxygen shortage, which produces a vicious cycle of abnormal blood vessels and hypoxia 

and selects resistant clones of malignant cells, facilitating their escape through the leaky vasculature. 

Hypoxia also reduces the efficacy of radiation therapy and many chemotherapeutics that rely on the 
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formation of ROS to eliminate malignant cells [173, 192, 267, 272]. 

 

 
Figure 22 | Structure of blood vessels in normal tissues and in tumours (adapted from [192]). 
Abbreviations: BM, basement membrane; EC, endothelial cell; IFP, interstitial fluid pressure. 

 

 The intratumoural edema generated by the leaky blood vessels is pernicious to the tumour mass. 

The formation of a lymphatic neovasculature could potentially drain the excessive amount of fluids, and 

the pressure gradient, together with the specific structure of the lymphatic capillaries (the lymphatic 

endothelium has a loose and overlapping structure, Figure 12), facilitates tumour cells’ entry into the 

lymphatic vasculature. Opposing to the bloodstream, where intravased malignant cells or emboli 

experience serum toxicity, high shear stress and mechanical deformation, the lymph flow is ideal for the 

survival and dissemination of malignant cells. Lymph has a composition similar to interstitial fluid, and 

flows slowly, encountering stagnation areas in the lymph nodes that represent optimal “incubators” for 

the growth of tumour cells. Here, these cells can exit through the efferent channels or high endothelial 

venules, or can remain entrapped, originating micrometastases [168, 258, 265, 273] (Figure 23). 

 Tumour-associated lymphatic vessels are, in general, morphologically similar to normal vessels, 

but display different molecular profiles, thus contributing to the active role of the endothelium in 
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mediating progression and metastasis of the primary neoplasm, even in an organ-specific context [274-

275]. LEC extend long filopodia towards malignant cells secreting VEGF-C/D, which results in the 

enlargement of the lumen from lymphatic capillaries and collecting vessels, facilitating the 

transendothelial migration of the malignant cells and the transit of cellular emboli [276] (Figure 23). 

Chemokines, that under physiological conditions are critical to the homing of hematopoietic cells to 

specific locations, seem to be involved in the chemotactic migration of tumour cells into the lymphatic 

vessels [277]. For instance, tumour-associated LEC, but not normal LEC, highly express CXCL12 

(chemokine, CXC motif, ligand 12). On the other hand, the receptor CXCR4 (chemokine, CXC motif, 

receptor 4) is abundantly expressed by numerous types of malignant cells (like breast, prostate or 

ovarian epithelia), being largely absent in their normal counterparts. Interestingly, isolated LEC and 

lymphatic endothelium from vessels present at preferential sites of metastasis, such as lung, liver and 

bone, also express CXCL12. Lymph nodes equally display high concentrations of CXCL12. Therefore, 

CXCR4-expressing tumour cells disseminate specifically into tissues that express the ligand [168, 278-

280]. Moreover, VEGF-C or VEGF-mediated lymph node lymphangiogenesis (Figure 23), occurring prior 

to the arrival of malignant cells, seems to facilitate the subsequent metastatic spread throughout the 

lymphatic vasculature [266, 281]. The selective expression of tumour cell adhesion mediators in the 

lymph node sinus can also contribute to further direct metastasis [282]. 

 Lymphangiogenesis can occur both in peritumoural and intratumoural regions (Figure 23). 

However, the functionality of intratumoural lymphatic vessels has been highly debated [275, 283]. 

These vessels are small and often collapsed by the high interstitial pressure or occluded by infiltrating 

malignant cells, and the new lymphatic vessels that sprout from pre-existing ones at the tumour margin 

may be more important for malignant dissemination [284-288]. However, other studies have 

demonstrated that intratumoural lymphatics are vital to the success of lymphatic metastasis in several 

types of tumours [289-296]. Probably, organ-specific determinants mediate the occurrence of 

peritumoural and/or intratumoural lymphangiogenesis, as well as the function of the newly formed 

vessels. Additionally, the specific features of the tumour-associated lymphatics, together with the 

structure and physiology of the lymphatic system, makes them the preferential routes for malignant 

cells’ intravasion and dissemination: follow-up data have shown that only 20% of the tumours use the 

blood vascular system to metastasize to distant organs; 80% of the tumors, particularly those of 

epithelial origin, follow an orderly pattern of dissemination via the lymphatic network [257, 297]. 
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Figure 23 | Pathways for malignant cells’ dissemination (adapted from [168]). 
Abbreviations: VEGF, vascular endothelial growth factor. 

 

1.2.1.6.  TUMOUR NEOVASCULARIZATION – IMPACT ON CANCER PATIENTS 

 

 The overexpression of angiogenic and lymphangiogenic growth factors in tumours significantly 

increases blood vessel density (BVD) and lymphatic vessel density (LVD), and establishes the routes for 

blood vessel invasion (BVI) and lymphatic vessel invasion (LVI) by malignant cells. A significant number 

of retrospective studies have primarily investigated the influence of these parameters on patients’ 

prognosis via immunohistochemical analysis, using specific antibodies that highlight the expression of 

the growth factors or the expression of specific markers of BEC and LEC. The results generally point out 

for a significant association between the occurrence of angiogenesis and BVI, lymphangiogenesis and 

LVI, and the risk of tumour recurrence, progression, lymph node metastasis, distant metastasis and 

death for patients with non-small cell lung cancer [298-302], breast [303-307] and ovarian [307-309] 

carcinomas, head and neck cancers [308-313], gastrointestinal tract malignancies [288, 314-321], 

urological cancers [95-96, 322-327], among others. In accordance with those results, blocking the 

expression of angiogenic and lymphangiogenic growth factors in preclinical models has inhibited tumour 

growth and expansion of the tumour-associated vasculature, and reduced malignant spread [328-334]. 
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Therefore, it is not surprising that novel anti-angiogenic/lymphangiogenic agents and combinations 

including chemotherapeutic drugs, as well as targeted inhibitors, are currently under clinical trial phase 

or have already obtained the FDA approval for treating cancer patients. 

 Two types of tumour-associated neovasculature inhibitors have been described. Direct inhibitors 

are molecules or compounds that block a common pathway of vessel development by acting directly on 

endothelial cells; indirect inhibitors, being preferred over the direct ones due to their mode of action, are 

antibodies, soluble receptors or small chemical compounds that target different levels of the growth-

factor receptor-activated signalling pathways, from the ligands, their receptors or downstream signalling 

components [258, 335]. The therapeutic interference with VEGFs/VEGFRs signalling has been the 

focus of the vast majority of the trials, by testing monoclonal antibodies and soluble versions of 

receptors that neutralize the ligand-receptor interaction, or molecule tyrosine kinase inhibitors (TKIs) 

that inhibit the kinase activity of multiple receptors [271, 336]. This last strategy has the advantage of 

targeting both angiogenic and lymphangiogenic cascades, which might compromise the success of both 

haematogenous and lymphogenous spread (Figure 24). Regarding specific anti-lymphangiogenic 

compounds, there is some delay with the translation into the clinics, although several possibilities have 

been tested in the pre-clinical scenario [337]. 

 

 

Figure 24 | Inhibitors and targets of vascular endothelial growth factors and receptors (adapted from [200]). 
Abbreviations: PlGF, placenta growth factor; VEGF, vascular endothelial growth factor; VEGFR, vascular 

endothelial growth factor receptor. 

 

 In 2004, the VEGF-neutralizing antibody bevacizumab (Avastin®), used in combination with 
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traditional chemotherapy, became the first anti-angiogenic therapy for cancer [338] (Figure 24). So far, 

The FDA has approved its use for metastatic colorectal cancer (with chemotherapy), metastatic non-

squamous non-small-cell lung cancer (with chemotherapy), metastatic breast cancer (with 

chemotherapy), recurrent glioblastoma multiform (in monotherapy) and metastatic renal cell carcinoma 

(with interferon-) [173]. In addition, several multi-targeted TKIs have also obtained FDA approval, 

namely sorafenib (Nexavar®, for metastatic renal cell carcinoma and hepatocellular carcinoma) [339-

340], sunitinib (Sutent®, for metastatic renal cell carcinoma, pancreatic neuroendocrine tumors and 

gastrointestinal stromal tumors) [341-343], pazopanib (Votrient®, for metastatic renal cell carcinoma 

and soft tissue sarcoma) [344-345] and vandetanib (ZactimaTM, for unresectable or metastatic medullary 

thyroid cancer) [346]. 

 The strategy to arrest tumour neovascularization – originally proposed by Judah Folkman [234] – 

has been challenging. The treatment with VEGFs/VEGFRs signalling blockers generally prolongs the 

survival of responsive cancer patients only a few months, coupled with a plethora of serious side effects 

(hemorrhage and arterial thromboembolic events, surgery and wound healing complications, 

gastrointestinal perforation, among others) [347]. Bevacizumab, being a specific anti-VEGF antibody, 

generally allows survival benefits only when administered in combination with cytotoxic or cytokine 

drugs [348]. Although multi-targeted TKIs are effective as monotherapy in certain types of cancer, fail in 

other types or are toxic when combined with chemotherapy. Importantly, a substantial part of the 

patients with advanced disease do not respond to neovascularization inhibitors, and even develop 

resistance. Currently, there are no validated predictive biomarkers to appropriately select cancer 

patients for anti-neovascularization therapy; only a few candidates have been identified, although 

emerging from small studies and requiring prospective validation [349-350]. There is the need to 

modify the initial theory of radically starving the tumour by abrogating the blood supply, because 

aggressive neovascularization inhibition may intensify tumour metabolism and promote malignant 

dissemination [351]. 

 Several mechanisms have been proposed to explain refractoriness to VEGFs/VEGFRs signalling 

blockade in advanced malignancies. First, the vicious cycle of hypoxia and upregulation of the 

production of neovascularization factors may facilitate further tumour progression from hypoxia tolerant 

cells. Second, the alternative mechanisms of vessel formation beyond angiogenesis (Figure 21) may 

originate vessels that are less sensitive to VEGF blockade. Third, mural cells may also contribute for the 

insensitivity to inhibition strategies. Fourth, non-tumoural cells, like bone marrow-derived cells, 

macrophages and fibroblasts may also produce pro-angiogenic factors and rescue tumour 
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neovascularization. Importantly, pro-

angiogenic and lymphangiogenic mole-

cules alterative to the VEGFs/ VEGFRs 

signalling may be produced by tumour 

or stromal cells, namely PlGF, PDGFs, 

FGFs, chemokines and ephrins, turning 

neovascularization into a VEGF-inde-

pendent phenomenon [173, 349-350] 

(Figure 25). 

 

Figure 25 | Potential mechanisms of resis-

tance to targeted VEGF therapy (adapted from 

[173]). 
Abbreviations: BMDC, bone marrow-derived 

cells; CAF, cancer-associated fibroblasts; CSCs, 

cancer-stem cells; ECs, endothelial cells. 

  

 Although the original therapeutic goal of traditional anti-angiogenic agents was to inhibit 

neovascularization and/or to eliminate existing vessels, conflicting clinical evidences have confirmed the 

occurrence of vessel normalization in cancer patients receiving those agents [270]. Importantly, in pre-

clinical models, vessel normalization does not have an effect on the growth of the primary tumour, but 

improves perfusion and oxygenation, reduces interstitial fluid pressure and, more importantly, 

decreases BVI and metastasis, and increases the efficacy of cytotoxic drugs during the transient window 

of normalization [352-354]. Therefore, vessel normalization is emerging as a promising target to 

complement current anti-angiogenic strategies. However, many challenges remain to be solved until 

those insights can be translated into daily clinical practice. Moreover, predictive biomarkers are 

desperately needed [173, 192, 349, 355]. 

 

 An alternative approach to inhibit tumour neovascularization and metastasis is to target VEGFs’ 

upstream signalling pathways that indirectly promote angiogenesis and/or lymphangiogenesis in 

physiological and malignant scenarios. The mammalian target of rapamycin (mTOR) intracellular 

pathway (Figure 26) represents a potential target. It is a family of large proteins ( 290 kDa) that share 

40%–60% identity, belonging to the phosphoinositide-3-kinase-related kinase family, which controls 

signal transduction from several growth factors and upstream proteins to the level of mRNA and 
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ribosome, lying at the interface of two major signalling pathways. One is initiated by phosphatidylinositol 

3-kinase (PI3K), and its accumulation is antagonized by the lipid phosphatase PTEN (phosphatase and 

tensin homolog deleted on chromosome 10). The other is initiated by an energy-sensing pathway that 

involves LKB1 (liver kinase B1) [356-357].  

 

 
Figure 26 | Schematic representation of the mTOR-signalling pathway. Arrows represent activation, and bars represent 

inhibition (adapted from [358]).  
Abbreviations: AKT, protein kinase B; AMPK, AMP-activated protein kinase; 4E-BP1, eukaryotic initiation factor 4E-binding 

protein 1; eIF4E, eukaryotic initiation factor 4E; ERK, extracellular-signal-regulated kinase; GL, G protein beta subunit like 

protein; LKB1, liver kinase B1; mTOR, mammalian target of rapamycin; p70S6K, ribosomal p70 S6 kinase; PHLPP, PH 

domain and leucine rich repeat protein phosphatases; PDK, phosphoinositide dependent kinase; PI3K, phosphatidylinositol 

3-kinase; PIP2, phosphatidylinositol (3,4)-bisphosphate; PIP3, phosphatidylinositol (3,4,5)-trisphosphate; PKC, protein kinase 

C; PTEN, phosphatase and tensin homolog deleted on chromosome 10; raptor, regulatory-associated protein of mTOR; rheb, 

Ras homologue enriched in brain; rictor, rapamycin-insensitive companion of mTOR; Ser, serine; Thr, threonine; TSC, 

tuberous sclerosis complex. 

 

 

 Although a single mTOR gene exists in mammals (mTOR, located at the 1p36.2 chromosomal 

position), its product functions as the catalytic subunit of two distinct complexes, mTORC1 and 

mTORC2, composed by accessory proteins that function as scaffolds for assembling the complexes and 

for binding substrates and regulators. Regulatory-associated protein of mTOR (RAPTOR), and 

rapamycin-insensitive companion of mTOR (RICTOR) define mTORC1 and mTORC2, respectively (Figure 
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26). mTOR pathway is activated by nutrients, mitogens, growth factors and other extracellular 

molecules, being centrally involved in protein synthesis, cell cycle regulation, cellular proliferation and 

cancer cell metabolism. Additionally, mTOR plays important roles in interplays between tumour and 

stromal cells, including endothelial cells, and is also an important signalling mediator in hypoxia-

induced angiogenesis [359-365].  

  The major substrates of the mTORC1 known so far are 4EBP1 (initiation factor 4E-binding 

protein 1) and p70S6K (ribosomal p70S6 kinase, S6K). Through its interactions with the partners 

RAPTOR and GβL (G protein beta subunit like protein), mTOR regulates protein translation and cell 

cycle progression, by phosphorylation of 4EBP1 and S6K, and by the subsequent phosphorylation of 

the downstream molecule 40S ribosomal protein S6. mTORC1 responds to mitogen, energy and 

nutrient signals in part through the upstream regulators tuberous sclerosis complex 1/2 (TSC1/2) and 

Rheb. mTORC2, although less explored than mTORC1, seems to promote actin cytoskeleton 

organization, cell migration and survival via the phosphorylation of PKC (protein kinase C), activation of 

Rho GTPases and phosphorylation of AKT. The regulation of mTORC2 is beginning to be unravelled, but 

evidences point out that only growth factors directly regulate this complex [360, 366-368] (Figure 26). 

 The signalling network upstream of mTORC1 comprises numerous oncogenes and tumour 

suppressor genes that frequently underlie tumourigenesis and tumour progression. Therefore, 

increased mTORC1 activity (generally detected by phosphorylation at S2448), as well as the 

phosphorylation levels of its downstream targets, have been detected in a considerable percentage of 

human tumours [359, 361, 369-370] (Table 6). 

 

Table 6 | Studies reporting activation of mTORC1 signalling in malignancies (adapted from [370]). 

 

 

 

 

 

 

 

 

Abbreviations: 4E-

BP1, eukaryotic ini-

tiation factor 4E-

binding protein 1; 

mTOR, mammalian 

target of rapamycin; 

p, phosphorylated; 

S6K, S6 kinase. 
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 Rapamycin (sirolimus) is a classical immunosuppressant drug used to prevent rejection in organ 

transplantation, and a known inhibitor of the mTOR signalling, particularly mTORC1 [371]. Recent data 

suggested that prolonged treatment with rapamycin may also affect the mTORC2 assembly and AKT 

mediated-signalling [372]. Sirolimus and derivative compounds (everolimus and tensirolimus, among 

others) have demonstrated potent anti-tumour effects by targeting mTOR signalling in endothelial cells, 

inhibiting their proliferation and migration, inducing apoptosis, and impairing angiogenesis, 

lymphangiogenesis and lymphatic metastasis [363, 373-375]. Some of these compounds have already 

obtained the FDA approval for the treatment of human malignancies [376]. 

 

1.2.1.7.  NEOVASCULARIZATION IN UROTHELIAL BLADDER CANCER 

 

 Urothelial bladder carcinoma, similarly to the majority of tumours with epithelial origin, 

disseminates preferentially through the lymphatic vasculature, and the occurrence of regional lymph 

node metastasis is an early event in progression. The extensive lymphatic drainage network of the 

urinary bladder clearly contributes to that preference. It is accomplished by a system of lymphatic 

channels and lymph nodes (LNs) separated into six distinct areas: (1) a visceral lymphatic plexus within 

the submucosa and extending into the muscular layer of the bladder wall; (2) juxtavesical LNs located 

within the perivesical fat (anterior, lateral, and posterior groups); (3) pelvic collecting trunks, (4) regional 

pelvic LNs (external iliac, hypogastric, and presacral groups); (5) lymphatic trunks leading from the 

regional pelvic LNs; (6) common iliac LNs on the common iliac vessels.  The primary drainage initiates 

at the external iliac, hypogastric and obturator regions; secondary drainage is from the common iliac 

regions; tertiary drainage occurs from the trigone and posterior bladder wall into the presacral LNs 

[126-128] (Figure 27).  

 

 

 

 

 

 

 

 

Figure 27 | Anatomy of the lymphatic 

drainage of the bladder (adapted from 

[377]). 
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 In muscle-invasive disease setting, the gold standard of treatment is radical cystectomy with pelvic 

lymph node dissection (PLND) [116, 158, 378]. PLND has irrefutable diagnostic and prognostic value, 

but its optimal boundaries remain a highly controversial issue, mainly because of the lack of prospective 

trials and the limitations of the retrospective mapping studies performed so far (for instance, inter-

institutional comparisons are difficult due to overlap between the various PLND areas). The idea of 

defining a minimum number of LNs required to be removed during the course of PLND is also a 

debated question [126-128, 379-380]. Nevertheless, increasing evidences suggest that an extended 

lymphadenectomy, with an increased number of LNs removed, improves survival in patients with both 

node-positive and node-negative UBC, when compared with limited approaches. The procedure 

potentially guarantees a complete removal of the primary, secondary, and tertiary lymph node drainage, 

and provides accurate staging. Although it increases the surgery time, it does not alter overall morbidity. 

Importantly, the removal of LNs with undetected micrometastases (the “false” LN-negative cases) 

clearly decreases the likelihood of leaving residual cancer, and thus affects outcome [381-388].  

 Lymph node density – the ratio of the number of positive LNs to the total number of LNs removed 

– can be considered a simple measure of the efficacy of the lymphadenectomy. This concept has been 

identified as a significant prognostic factor in several cystectomy series [377, 389-393]. Some authors 

suggested that it is superior to the TNM staging system in predicting disease-specific survival, namely in 

node-positive patients treated with adjuvant chemotherapy [394-396]. In the future, when a validated 

model for PLND is defined, lymph node density could be used as a criterion to treat patients with 

adjuvant therapy. In addition, assessment of lymphovascular invasion (LI) – defined as the presence of 

malignant cells in an endothelium-lined space – in the primary tumour has also been proposed as 

critical for stratification of risk groups, namely in identifying patients with occult micrometastases that 

might benefit from adjuvant treatment [382, 397-401]. In this context, angiogenesis and 

lymphangiogenesis occurrence should be considered when exploring biomarkers that predict 

extravesical dissemination. As in other types of malignancies, tumour neovascularization is implicated in 

bladder cancer progression, lymphovascular invasion, lymph node metastasis and visceral metastasis, 

representing a potential diagnostic and prognostic factor, and a target for guided therapy [95-99]. 

 

 Angiogenesis occurrence in UBC seems to have an impact in both non-muscle invasive and 

muscle-invasive disease. High levels of VEGF have been found in tumour tissue [402-404] and in urine 

[405-407] of patients with NMI carcinomas. These results were significantly associated with the 

occurrence of recurrence and progression. Similar associations were found in the case of high BVD 
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counts in this group of tumours [99, 408-410].  

 In the subset of MI tumours, overexpression of VEGF [411-412] correlates with high BVD [95], and 

both parameters have been identified as predictors of progression and lymph node metastasis, 

significantly impairing prognosis [98-99, 413-415]. A large-scale approach on angiogenic pathways in 

UBC, studying the expression levels of 40 genes involved in angiogenesis, identified VEGF as a major 

independent prognostic marker [416]. A distinct large-scale evaluation of single nucleotide 

polymorphisms in candidate genes for cancer identified several VEGF polymorphisms that could be 

associated with bladder cancer risk [417]. VEGF urinary levels have been proposed as a potential 

biomarker in the non-invasive evaluation of UBC patients [418-419]. Moreover, other proangiogenic 

(matrix metalloproteinases, fibroblast growth factors, platelet derived-growth factors, integrins, 

angiopoietins, Notch signalling) and antiangiogenic (thrombospondin-1, angiostatin-endostatin) factors 

alternative to the VEGF signalling have also been implicated in the angiogenic cascade in UBC, 

associating with tumour recurrence, progression, metastasis and overall outcome [96-97, 420-423]. 

These important findings, together with promising results obtained from pre-clinical in vitro [424-429] 

and in vivo [430-433] bladder tumour models, make UBC angiogenesis a suitable therapeutic target. 

  

 Studies reporting lymphangiogenesis occurrence in UBC, as well as its relevance for the outcome 

of bladder cancer patients, are fewer in number when compared with angiogenesis. In a UBC 

transgenic mouse model, a significant increase in LVD was found concomitantly with bladder cancer 

progression, and the labelling of the tissue sections with specific antibodies for proliferating LEC 

indicated cancer-induced lymphangiogenesis [434]. The results obtained with patients point out for a 

significant impact of lymphangiogenesis occurrence on lymph node metastasis, recurrence and poor 

prognosis [95, 435-438]. VEGF-C and VEGF-D expressions associate with high LVD, both peritumourally 

and intratumourally [95, 438-439], and VEGF-C seems to be an important predictor of lymph node 

metastasis [435-436]. VEGF-C overexpression also promotes angiogenesis, probably by interacting with 

the fully processed form of VEGFR-2 [95]. In an in vitro study, RNA interference-mediated VEGF-C 

reduction suppressed malignant progression and enhanced mitomycin C sensitivity of bladder cancer 

cells [440]. Moreover, in an orthotopic urinary bladder cancer model, tumour lymphangiogenesis 

occurrence was accompanied by a massive infiltration of VEGF-C/D expressing tumour-associated 

macrophages (TAM) in the primary tumor and in lymphatic metastasis in LNs. These TAM were flocking 

near lymphatic vessels, possibly assisting lymphangiogenesis in the bladder tumour by paracrine 

signalling. A soluble VEGFR-3 blocked VEGF-C/D and markedly inhibited lymphangiogenesis and 
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lymphatic metastasis. TAM depletion exerted similar effects [441]. 

 

 As already mentioned, the malignant cells explore the unique physiological and structural features 

of the tumour neovasculature in order to intravasate and disseminate through the blood and lymphatic 

flows. In UBC setting, lymphovascular invasion has been identified as an independent prognostic factor 

for recurrence and survival by several authors [400, 442-445]. It was demonstrated that LI 

independently associates with poor outcome for patients with MI tumours that were treated with 

bladder-conserving therapies [446]. There is significant agreement of the LI status at transurethral 

bladder tumor resection and at subsequent cystectomy [447-448]. Importantly, LI helps to stratify N0 

UBC patients who are at increased risk of bladder cancer recurrence and death, both in the case of 

NMI [399, 449] and MI disease [397, 400, 442, 444, 450]. The expectable association between LI and 

lymph node occult micrometastasis advocates the application of adjuvant treatments in those patients.  

 Although LI seems to be a significant prognostic factor for UBC patients, it is not routinely 

described on the pathology reports. Diagnosis reproducibility has not been achieved yet, mostly due to 

two reasons: first, it is difficult to distinguish between LI and peritumoural stromal retraction, a common 

finding in hematoxylin and eosin (H&E) stained sections; second, it is difficult to differentiate BEC and 

LEC, which compromises the separation between BVI and LVI [451-452]. In fact, the vast majority of 

the aforementioned studies did not distinguish between blood and lymphatic vessels invasion in the 

H&E slides. Some authors endorsed that BVI and LVI should be commented on separately in the 

pathology report, and attempts were made by considering BVI occurrence when tumour cells were 

present in vessels with a thick vascular wall and blood cells within the lumen [453-455]. The role of 

immunohistochemical markers of BEC and LEC in the differentiation of BVI, LVI and retraction artifacts, 

in UBC setting, remains to be defined. In other cancer types, it has been demonstrated that 

immunohistochemical staining allows proving blood and/or lymphatic vessels invasion, increasing its 

detection rate and avoiding false-positive reports due to the common stromal retraction artifacts [456-

460]. It is urgent to establish a consensus on strict diagnostic criteria, so that LVI evaluation can be 

rapidly incorporated into the clinical care of UBC patients [451]. 

 

 Anti-neovascularization target therapies in UBC setting are still in a very preliminary phase of 

clinical research (Table 7) [96, 461-463]. Bevacizumab, the first anti-angiogenic to obtain FDA approval 

[338], has entered in a phase II clinical trial in combination with cisplatin and gemcitabine for 

metastatic UBC. The overall response rate was 72%, and the median overall survival was 19.1 months 
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[464]. A phase III trial (NCT00942331) is currently recruiting participants to further investigate these 

important results [461-462]. Bevacizumab is also under phase II testing in the neoadjuvant scenario 

(NCT00506155 and NCT00268450) [96]. Importantly, in a pre-clinical in vitro study, it was 

demonstrated that, at clinical bevacizumab concentrations, the malignant cells compensate the VEGF-A 

blockade, by improving the expression of VEGF and related genes. This highlights the need to follow the 

patient's adaptation response to bevacizumab treatment [465]. Regarding multi-targeted TKIs, several 

compounds are under evaluation in phase II clinical trials [96, 461-462, 466]. In a trial with sunitinib 

use as a single agent as first-line treatment in cisplatin ineligible patients, a clinical benefit of 58% was 

obtained, with median overall survival of 8.1 months [467]. In another trial combining sunitinib with 

gemcitabine and cisplatin in the first-line setting for patients with metastatic disease and as neoadjuvant 

therapy for patients with MI disease, the delivery of the treatment was hampered by severe toxicity 

[468]. Two sorafenib trials completed so far did not show sufficient activity of this agent [469-470]. 

Pazopanib was studied as a single agent in advanced and platinum-resistant UBC patients, and 

demonstrated a 17% response rate [471]. 

 

Table 7 | Preliminary/final results from clinical trials exploring anti-neovascularization therapies in urothelial bladder 

carcinoma (adapted from [462]). 

 

Abreviattions: CBP, carboplatin; Gem, gemcitabine. GC, gemcitabine and cisplatin; mOS, median overall survival; mPFS, 

median progression-free survival; mUCC, metastatic urothelial cell carcinoma; N, number of patients; N.R., not reported; RR, 

response rate; VEGF, vascular endothelial growth factor. 

* These clinical trials reported Time to Treatment Progression. 

 

 The mTOR pathway also seems to be a potential therapeutic target in bladder tumours [358]. In 

fact, mutations in the members of the signalling cascade, like PI3K and PTEN, are relatively frequent in 

MI disease [358, 472-473]. However, the levels of mTORC1 activation in tumour tissue have been 
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poorly explored. A few studies reported the increased expression of p-mTOR in muscle-invasive and 

metastatic UBC [474-475]. Despite this, promising results have been obtained with mTOR inhibitors in 

preclinical trials [475-480], and several clinical trials are ongoing [462]. Interestingly, in an in vitro 

study, rapamycin decreased hypoxia-induced synthesis of VEGF [476]. In a phase II study of everolimus 

in patients with locally advanced or metastatic UBC, clinical activity was demonstrated, and the profile 

of plasma angiogenesis-related proteins suggested a possible role of everolimus antiangiogenic 

properties in the control of the disease [481]. 

 

 While anti-neovascularization agents are currently approved for the treatment of several solid 

malignancies, having significantly changed the outcome of numerous cancer patients, in UBC setting 

there is a substantial delay in the translation into the clinics. The majority of the current clinical 

investigation in MI and metastatic UBC corresponds to small phase II nonrandomized trials involving 

one to three institutions [482]. It is urgent to promote cooperation among the bladder cancer 

community, in order to facilitate the design and conduct of trials capable of expedite the translation of 

important pre-clinical results achieved so far into the care of bladder cancer patients.  

 

1.2.2. INVASION AND METASTASIS 

 

 Tumour metastasis, the most fearsome aspect of cancer, is a multistage process during which 

malignant cells separate from the primary tumour and invade discontiguous organs. Angiogenesis and 

lymphangiogenesis, as already mentioned, are essential for invasion and metastasis to occur, but 

numerous additional events are also necessary for the success of the metastatic spread. In fact, a long 

series of sequential, rate limiting, interrelated steps must occur, and the final result depends not only 

on the intrinsic properties of the tumour cells, but also on the host responses [165, 483]. 

 The succession of biological alterations that characterizes invasion and metastasis can be 

summarized into two main phases: in the first one, the physical translocation of a malignant cell to a 

distant organ occurs; the second one involves the ability of that cell to develop into a metastatic lesion 

at the distant site [484]. The multistep process has been schematized in the “invasion-metastasis 

cascade” (Figure 28). After the initial transforming event, the continuous growth of the primary tumour 

relies on the establishment of a neovasculature that supports its metabolic demands. Local invasion 

then begins, which requires that the malignant cells breach the basement membrane and infiltrate 

locally into the surrounding extracellular matrix (ECM). They can migrate collectively, or individually in a 
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mesenchymal or in an amoeboid type of movement, and then intravasate the blood or lymphatic 

vasculature. The thin-walled tumour-associated blood and lymphatic capillaries offer little resistance to 

the entry of malignant cells. The intravasated cells must resist to the rigors of the subsequent transport, 

especially in the blood flow. The formation of large emboli via interactions with blood platelets allows 

tumour cells to protect themselves from shear forces and to evade immune surveillance. In order to 

colonize a secondary organ, the tumour cells first arrest in a capillary bed and then extravasate into the 

new host tissue. Once there, and so that survival and proliferation in the foreign microenvironment can 

be assured, the malignant cells reactivate their proliferative and defensive programs, initially originating 

pre-angiogenic micrometastasis that will further develop a new blood supply. This will allow the growth 

of a macroscopic, clinically detectable tumour. Metastasis of metastases may then occur [160, 164-

165, 483, 485-487]. 

 

 

Figure 28 | The invasion-metastasis cascade (adapted from [165]). 

 

1.2.2.1. HEPARANASE - A MOLECULAR PLAYER OF INVASION AND METASTASIS 

 

 The migratory and invasive skills of the malignant cells are the critical parameters of the metastatic 

cascade, being strongly dependent on the permissive action of the microenvironment [487-488].  The 
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production of proteolytic enzymes involved in the degradation and remodelling of the ECM is a crucial 

event, and classically involves the activity of the large family of matrix metalloproteinases (MMPs). In 

fact, MMPs’ expression is upregulated in almost every type of malignancies, associating with promotion 

of cell proliferation and migration, angiogenesis and metastasis occurrence, and poor outcome. Tumour 

cells, tip cells of collective cell clusters, fibroblasts and immune cells secret MMPs. These act manly on 

cleaving cell adhesion molecules, degrading ECM proteins, and processing and activating cytokines and 

growth factors. Moreover, they co-regulate inflammation and contribute to the generation of the 

metastatic niche [489-493]. 

 Although MMPs have attracted most of the attention on the “local invasion” scenario, many other 

proteases can be found in the ECM. An additional large family consists of lysosomal cysteine proteases 

named cathepsins. This family includes endo- and exopeptidases synthesized as inactive precursors, 

and sharing a conserved active site formed by cysteine and histidine residues. Besides being capable of 

cleaving a wide variety of substrates in the lysosome, some cathepsins also act at distinct locations, 

namely the nucleus, the cytosol, the cell membrane and the ECM; in these last two locations, 

cathepsins breakdown important constituents of the ECM and the basement membrane, namely 

laminin, fibronectin, and type IV collagen, thus mediating local invasion [494-496]. Moreover, cathepsin 

L is responsible for processing and activating heparanase [497], the only functional endo--glycosidase 

capable of cleaving heparan sulfate (HS) side chains of heparan sulfate proteoglycans (HSPG) in 

mammals [498].  

 

 HSPG are ubiquitous macromolecules consisting of protein cores to which several linear HS chains 

(units of N-acetylglucosamide and glucuronic/iduronic acid) are covalently O-linked. HS clusters provide 

numerous docking sites for a variety of protein ligands, establishing an interface for cytokines, growth 

factors, enzymes, protease inhibitors and ECM proteins to bind the cell surface and the ECM, thereby 

acting in the control of several physiological and pathological processes. The enzymatic degradation of 

HS chains leads to disassembly of the ECM, being involved in biological processes associated with 

tissue remodelling and cell migration, namely inflammation, angiogenesis and metastasis [499-501]. 

 The heparanase gene (HRP1) is located on chromosome 4q.21, being expressed as 5 kb and 1.7 

kb mRNA species that are generated by alternative splicing. The two mRNA transcripts have the same 

open reading frame and encode the same polypeptide of 543 amino acids with a molecular weight of 

61.2 kDa [502-503]. Transcriptional activation of the heparanase promoter is stimulated by 

demethylation, early growth response 1 (EGR1) transcription factor, estrogen, inflammatory cytokines 



 

54 | General Introduction | CHAPTER 1 

and p53 inactivation. The 61.2 kDa pro-enzyme is post-translationally cleaved by cathepsin L, in late 

endosomes/lysosomes, into 8 and 50 kDa subunits that non-covalently associate to form the active 

heparanase. Normally, its expression is restricted to platelets, mast cells, placental trophoblasts, 

keratinocytes and leukocytes, with little or no expression in connective tissue cells and normal epithelia. 

Conversely, heparanase is preferentially overexpressed in malignant tumours [504-506]. 

 Heparanase activity in malignancies was first investigated in B16 melanoma [507] and T-

lymphoma [508] cells that demonstrated great metastatic potential. A succession of overexpression and 

silencing studies provided important insights regarding the pro-metastatic and pro-angiogenic abilities of 

heparanase [501]. In fact, besides the direct involvement in basement membrane and ECM 

degradation, heparanase activity releases HS-bound angiogenic growth factors such as VEGF and FGF-2 

[509] (Figure 29). Its enzymatically inactive form phosphorylates signalling molecules such as AKT and 

Src. AKT mediates invasion and migration of primary endothelial cells [510], and Src up-regulates VEGF 

expression [511]. Heparanase is also involved in lymphangiogenesis, stimulating VEGF-C expression 

and facilitating the formation of lymphatic vessels [264]. Heparanase released from activated platelets 

and cells of the immune system mediates extravasation of inflammatory and tumor cells [512]. 

 

 

Figure 29 | Heparanase enhancement of tumor metastasis by degradation of the extracellular matrix and 

release of pro-angiogenic factors (adapted from [513]). 

Abbreviations: BM, basement membrane; ECM, extracellular matrix; FGF, fibroblast growth factor; FGF-R, FGF 

receptor; HS, heparan sulfate; HSPGs, heparan sulfate proteoglycans; VEGF, vascular endothelial growth factor; 

VEGF-R, VEGF receptor. 
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 The impact of heparanase expression on cancer patients was revealed from its systematic 

evaluation in primary human tumours. It was demonstrated that heparanase is up-regulated in 

carcinomas, sarcomas and hematological malignancies, associating with high blood vessel density 

counts, occurrence of metastasis and adverse prognosis [504-505, 514] (Table 8). These results 

encourage the development of heparanase inhibitors to target malignant tumours [513, 515-517]. In 

fact, and due to its pleiotropic effects, targeting heparanase may potentially impair multiple signalling 

pathways involved in progression, invasion and metastasis. Some phase I and phase II clinical trials 

have already been developed, and evidence of anti-tumour efficacy supports further evaluation [518-

522]. 

 

Table 8 | Correlation between heparanase expression and clinical parameters in malignancy (adapted from [504]). 

 

Abbreviations: MVD, microvessel density. 

 

 The potential role of heparanase on UBC biological behaviour is still poorly understood. A few 

studies evaluated its expression on primary tumours, and found that heparanase overexpression 

associates with tumour progression, high BVD, invasion and metastasis, and is an independent 

prognostic factor for disease-free and overall survival [523-525]. Urine heparanase levels are also 
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elevated during bladder cancer progression [525-526]. The increased heparanase expression during 

UBC pathogenesis seems to be mediated by promoter hypomethylation and by the transcription factor 

EGR1 [527]. In two in vitro studies, heparanase gene silencing significantly suppressed tumor growth, 

angiogenesis, invasion and metastasis of bladder cancer cells [528-529]. Additional studies are 

necessary to further explore the potential impact of heparanase as a diagnostic and prognostic marker, 

and as a therapeutic target in bladder tumours.  

 

1.2.2.2. RAF KINASE INHIBITOR PROTEIN – A METASTASIS SUPPRESSOR 

 

 Oncogenes and tumour suppressor genes have been classically implicated in malignant 

transformation and tumour formation, positively or negatively regulating the multistep process of 

carcinogenesis [159-160]. Additionally, and in order to similarly control the development of secondary 

tumours, molecular promoters and suppressors of metastasis have also been described. Genes that 

inhibit metastasis without blocking the ability of the transformed cells to develop a primary tumour are 

included in the group of metastasis suppressors [530-534]. 

 Metastasis is an extremely inefficient process, with only small fractions of cells from a primary 

tumour mass actually overcoming the many hurdles to grow at a distant site. In fact, it was 

demonstrated that 24 hours after entry into the circulation, less than 0.1% of the migrating malignant 

cells are still viable, and less than 0.01% will survive to produce metastases [483]. A malignant cell 

must express particular genetic programs that enable it to interact with distinct microenvironments, in 

order to metastatic colonization at the second tissue site may successfully occur. Understanding those 

genetic programs is critical to unravel the complex process of metastasis. Obviously, loss of expression 

of metastasis suppressor genes is part of the metastatic genetic program, and a mandatory requisite for 

the success of the cascade. This loss occurs during cancer progression, and not during transformation 

[532, 534].  

 The hypothesis for the existence of metastasis suppressors was first described in 1988, with the 

discovery of the gene Nm23 [535]. Although initially received with scepticism, this finding was followed 

by multiple investigations, using variable model systems that demonstrated the existence of more than 

thirty protein coding/noncoding genes that significantly reduce the onset of metastasis without affecting 

the formation of the primary tumor. It seems that metastasis suppressors can be found within cells and 

in the extracellular space, acting through diverse mechanisms, and regulating diverse steps of the 

metastatic cascade [532-534] (Table 9). 



  CHAPTER 1 | General Introduction | 57 

Table 9 | Metastasis suppressor proteins (adapted from [534]). 

 

Abbreviations: BRMS1, breast cancer metastasis-suppressor 1; C, cytoplasmic; DARC, detection of apoptosing retinal cells; 

DCC, deleted in colorectal carcinoma; DLC1, deleted in liver cancer 1; DRG1, developmentally-regulated GTP-binding protein 

1; EMT, epithelial-mesenchymal transition; FAK, focal adhesion kinase; GAS1, growth arrest-specific gene 1; GPCR, G 

protein coupled receptors; HUNK, hormonally up-regulated Neu-associated kinase; KISS1R, KISS1 receptor; KLF17, 

krueppel-like factor 17; KSR, kinase suppressor of ras; LSD1, lysine-specific demethylase 1; M, membrane; MAPK, mitogen-

activated protein kinase; MKK4, mitogen-activated protein kinase kinase; N, nuclear; Nm23, nucleoside diphosphate kinase 

(NDPK); OGR1, ovarian cancer G protein-coupled receptor 1; PK, protein kinase; PtdIns(4,5)P2, phosphatidylinositol 4,5-
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bisphosphate; PTEN, phosphatase and tensin homolog deleted on chromosome 10; RhoGDI2, RhoGTPase dissociation 

inhibitor 2; RKIP, raf kinase inhibitor protein; RRM1, ribonucleotide reductase M1; S, secreted; SIN3:HDAC, Sin 3-histone 

deacetylase; SSeCKs, Src-suppressed C kinase substrate; TIMPs, tissue inhibitor of metalloproteinases; VEGF, vascular 

endothelial growth factor. 

 

 The impact of the loss of metastasis suppressors in the success of the metastatic cascade 

highlights the potential benefits of functionally reconstituting these proteins. Several strategies have 

been proposed, including the re-expression of the gene by induction of the endogenous locus or by 

exogenous gene therapy, the direct administration of the protein itself, or by targeting critical 

downstream pathways that are concomitantly induced when metastasis suppressor losses occur [532]. 

 

 Raf kinase inhibitor protein (RKIP), a described metastasis suppressor, was originally characterized 

as a phospholipid binding protein in bovine brain, and named as PEBP1 (phosphatidylethanolamine-

binding protein 1) [536]. Later, RKIP was identified by a yeast two-hybrid screen for proteins that bind 

the RAF-1 kinase domain; this revealed its function in the competitive inhibition of RAF1-MEK interaction 

and downstream signalling, being then coined as raf kinase inhibitor protein [537]. However, both 

names are insufficient to fully characterize the plethora of functions and interactions that can be 

attributed to this protein, implicating it in neurodegenerative processes, emotions, reproduction and the 

suppression of metastasis [538-541]. Table 10 summarizes the genetic and protein information for 

RKIP.  

 RKIP is a widely expressed and highly conserved protein that does not share any significant 

homology with any known protein family; being a member of the PEBP family, it has two critical 

features that enable it as a regulator of cell homeostasis: a ligand binding pocket, and a compact 

globular structure that provides ample surface area for interaction with other proteins [542].  

 The landmark study elucidating a role for RKIP in a pivotal cellular signalling cascade 

demonstrated its involvement in the MAPK (mitogen-activated protein kinase) pathway (or RAF-MEK-ERK 

cascade) [537]. MAP kinase is a highly preserved signalling pathway that can influence cell growth, 

differentiation, migration and apoptosis in response to extracellular stimuli, being frequently activated in 

cancer. Structurally, it is a three component kinase module comprising a MAP kinase kinase kinase 

(MKKK), a MAP kinase kinase (MKK) and a MAP kinase (MAPK). The RAF kinases (A-RAF, B-RAF and 

RAF-1) belong to the family of MKKK [543]. RAF has the ability to interact with a large number of 

proteins, but RKIP, in its non-phosphorylated form, is the only known inhibitor of the MAPK pathway. 

RKIP also binds, although with weaker affinity, to MEK and ERK, interfering with downstream 

phosphorylation steps [537]. Besides inhibiting the MAPK pathway, phosphorylated RKIP inhibits NF-B 
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(nuclear factor Kappa B) by negatively regulating IKK (IkB kinase), an activator of NF-B transcription, 

and therefore abrogates the antiapoptotic properties of this signalling pathway [544-545]. Moreover, 

RKIP controls GPCRs (G-protein coupled receptors) by inhibiting GRK2 (G-protein coupled receptor 

kinase-2), thereby influencing neurotransmission, inflammation, and regulation of blood pressure [546]. 

RKIP also binds to centrosomal and kinetochore regions of prometaphase chromosomes, possibly 

influencing the Aurora B kinase and spindle checkpoint proteins, and thus regulates the progression of 

the cell cycle [547]. Conversely, besides acting as an inhibitor, blocking the access of kinases to their 

substrates, RKIP binds and maintains GSK3β (glycogen synthase kinase 3) levels, and prevents its 

inhibitory p38-mediated phosphorylation [548], avoiding the stabilization of cyclin D1 and the 

subsequent expression of β-catenin, SNAIL and SLUG, important mediators of epithelial-mesenchymal 

transition (EMT) and invasion [549]. Altogether, the multiple RKIP interactions implicate this protein in 

cell differentiation, cell cycle kinetics, apoptosis, EMT and cell migration [538-539, 541] (Figure 30).  

 
Table 10 | Genetic and protein information for RKIP (adapted from [541]). 

Abbreviations: a.a., amino acid; ARE, Androgen Response Elements; bp, base pairs; EZH2, enhancer of zeste homolog 2; 

GPCR, G-protein coupled receptor; GRK2, G-protein coupled receptor kinase-2; GSK3β, glycogen synthase kinase 3; IKK, IkB 

kinase; kDa, kilodalton; KEAP1, Kelch like-ECH-associated protein 1; MAPK, mitogen-activated protein kinase; NFκB, nuclear 

factor Kappa B; NIK, NF-κB inducing kinase; NRF2, NF-E2 related factor-2; TAK1, TGF-beta activated kinase 1. 
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Figure 30 | RKIP inter-

actions with signalling 

pathways (red colored lines 

and arrows denote functi-

ons under basal conditions;  

green triangles, broken 

green lines and arrows 

denote RKIP phosphoryla-

tion or loss/diminution of 

function, resulting in patho-

logical processes) (adapted 

from [541]). 
Abbreviations: EMT, epithe-

lial-mesenchymal transition; 

ERK, extracellular signal-

regulated kinases; EZH2, 

enhancer of zeste homolog 

2; GPCR, G-protein coupled 

receptor; GRK2, G-protein coupled receptor kinase-2; GSK3β, glycogen synthase kinase 3; NFκB, nuclear factor Kappa B; 

NIK, NF-κB inducing kinase; PKC, protein kinase C. 

 

 The role of RKIP in the suppression of the metastasic cascade seems to arise from several 

mechanisms. It has been suggested that RKIP expression inhibits metastasis by decreasing 

angiogenesis and lymphovascular invasion [550-551]. By influencing MAPK and NF-B signalling 

pathways, RKIP may potentiate apoptosis induced by chemotherapeutic agents [552]. The role of RKIP 

in preventing chromosomal abnormalities could contribute to its function as a metastasis suppressor 

[547], and the absence of RKIP may increase the rate of cell division [553], accelerating DNA synthesis 

and downregulating cell cycle checkpoints [549]. Recent reports have proposed that RKIP inhibits the 

migration and invasion abilities of the malignant cells by negatively regulating the expression of specific 

matrix metalloproteinases [554]. RKIP expression inversely correlates with the expression of SNAIL, a 

key modulator of normal and neoplastic epithelial-mesenchymal transition program [555]. 

 

 Given its multifaceted abilities in maintaining cellular homeostasis, it is expected that RKIP 

downregulation favours metastasis. This was first demonstrated in a metastatic prostate cancer cell line 

expressing low RKIP mRNA and protein levels [550]. Since then, increasing evidences with multiple 

types of solid tumours point out an important biological role of this molecule in preventing malignant 

dissemination. Several authors demonstrated that RKIP depletion associates with metastatic events in 

prostate [550], breast [556] and colorectal [557] cancers, as well as in melanoma [558], insulinoma 

[559], ovarian [560], gastric [561], hepatocellular [553], cervical [562] and thyroid [563] carcinomas, 



  CHAPTER 1 | General Introduction | 61 

among others. Moreover, RKIP expression status was identified as an independent prognostic marker in 

colorectal [557], prostate [564] and gastric [565] carcinomas, glioma [566], carcinoma of the ampulla 

of Vatter [567], esophageal carcinoma [568], pancreatic ductal adenocarcinoma [569], gallbladder, 

nasopharyngeal [570] and renal cell [571] carcinomas. These promising results are the gateway for 

exploring therapeutic strategies that can potentially restore RKIP functionality as a metastasis 

suppressor. Moreover, those strategies could also re-sensitise the malignant cells to chemotherapy and 

radiotherapy, since RKIP ablation seems to be associated with drug resistance [552, 562, 570, 572].  

 

 RKIP function in UBC has been preliminarily investigated. Only one study examined PEBP1 mRNA 

levels, revealing a significant reduction in NMI tumours, when compared with normal urothelium [573]. 

It is urgent to perform tumour tissue immunostaining to validate these results. 

 

1.2.3. ENERGY METABOLISM REPROGRAMMING AND THE  
TUMOUR MICROENVIRONMENT 

 

 The performance of cellular functions relies primarily on energy production, and our cells are 

equipped with a pair of engines that act in tandem to generate the energy necessary to metabolic 

reactions. Under aerobic conditions, normal differentiated cells metabolize glucose to pyruvate via 

glycolysis in the cytosol; glycolytic pyruvate is then oxidized to carbon dioxide in the mitochondria 

through the tricarboxylic acid (TCA) cycle, which generates NADH [nicotinamide adenine dinucleotide 

(NAD+), reduced] molecules that will fuel oxydative phosphorylation (OXPHOSP). This is an efficient 

process of energy production, generating more adenosine triphosphate (ATP) than glycolysis. It is only 

under anaerobic conditions that differentiated cells favour glycolysis, producing large amounts of lactate 

that allows glycolysis to persist (by cycling NADH back to NAD+), although generating much less ATP 

molecules than OXPHOSP [574-575]. Conversely, the uncontrolled cell proliferation inherent to the 

malignant phenotype necessarily involves adjustments of energy metabolism. Otto Warburg first 

observed that tumour cells reprogram their glucose metabolism by producing large amounts of lactate, 

even under aerobic conditions [576]. This metabolic switch was termed “aerobic glycolysis” or “the 

Warburg effect”. By being a less efficient process of ATP production, aerobic glycolysis demands that 

tumour cells avidly uptake glucose to maintain bioenergetics, biosynthesis and redox status [577-580] 

(Figure 31). Although not applicable to all malignant tumours, this enhanced glucose uptake is 

sufficiently prevalent and allowed the widespread clinical application of the imaging technique positron 
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emission tomography (PET) using the glucose analogue 18fluorodeoxyglucose (FdG). FdG-PET, combined 

with computed tomography, has a specificity and sensitivity of near 90% to identify primary and metas-

tatic lesions of most 

epithelial malignan-

cies [581]. 

 

 
 
Figure 31 | Schematic 

representation of the dif-

ferences between oxida-

tive phosphorylation, ana-

erobic glycolysis, and ae-

robic glycolysis (adapted 

from [541]). 

Abbreviations: ATP, ade-

nosine triphosphate. 

 

 

1.2.3.1. AEROBIC GLYCOLYSIS IN TUMOURS – HOW AND WHY? 

 

 Warburg originally hypothesised that aerobic glycolysis occurs in tumours due to primary injuries in 

mitochondrial OXPHOS [576]. However, his theory has been challenged by studies indicating that most 

of the malignant cells do not harbour mitochondrial defects, retaining the capacity for OXPHOS and 

consuming oxygen at similar rates to those observed in normal tissues [582-583]. Additionally, although 

aerobic glycolysis has been recently proposed as a hallmark of cancer, it does not seem to be a 

hallmark of all cancer cells, since some tumours do not reprogram energy metabolism, obtaining their 

ATP mainly by OXPHOS [584]; other tumours, depending on the environmental conditions, can 

reversibly switch from aerobic glycolysis to OXPHOS [585]. Interestingly, the existence of a “metabolic 

symbiosis” through lactate shuttling between populations of hypoxic and aerobic cells within the tumour 

has been proposed [586]. These evidences point out that the metabolic plasticity inherent to malignant 

cells is more an effect than a cause. In spite of some uncertainties remaining, the considerable efforts 

to elucidate the mechanisms responsible for the Warburg effect have allowed substantial progress in 

the field. A recent review summarizes eight possible trigger events: i) HIF-1 activation and stabilization 

during hypoxic stress; ii) oncogene activation (e.g. AKT), and loss of tumor suppressor genes (e.g. p53); 

iii) mitochondrial dysfunction in malignant cells; iv) nuclear DNA mutations in genes that encode 
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mitochondrial proteins; v) epigenetic deregulation of enzymatic activities during glycolysis; vi) miRNAs 

targeting genes directly involved in aerobic glycolysis and regulating oncogenes and tumor suppressor 

genes indirectly involved in modulating glucose metabolism; vii) glutaminolysis and truncated citric acid 

cycle occurrence in glucose-deprived conditions; viii) post-translational modifications of metabolic 

proteins linked to the Warburg effect [580]. 

 Whatever is the mechanism (or the combination of mechanisms) triggering the glycolytic 

phenotype in tumours, it is currently accepted that the enhanced glucose uptake for glycolytic ATP 

generation confers an advantage to tumour growth during the somatic evolution of cancer. At first 

glance, this proliferative advantage is not clear, because aerobic glycolysis is far less efficient than 

OXPHOS in generating ATP molecules, and the metabolic products of glycolysis cause a consistent 

acidification of the extracellular milieu, which might result in serious toxicity [587]. However, what 

seems to be a harmful trait represents, in fact, a selective advantage for tumours, with several reasons 

supporting this theory. First, the high proliferative rate of the tumour cells advocates not only energy 

demands, but also metabolic intermediates for the biosynthesis of macromolecules, such as nucleic 

acids, lipids and proteins, that can be obtained from the glycolytic pathway [588]. Second, the high 

concentration of ATP generated by mitochondrial OXPHOS could exert a negative feedback effect in 

glycolysis, which is unfavourable for tumour proliferation. In fact, not only tumour cells but also normal 

proliferative cells rely on aerobic glycolysis for energy production (Figure 31), because ATP molecules, 

although less in number, are generated at a higher rate than in OXPHOS [589]. Additionally, OXPHOS 

would generate reactive oxygen species, potentially deleterious for tumour cells [590]. Third, glucose 

can be metabolized through the pentose phosphate pathway, generating nicotinamide adenine 

dinucleotide phosphate (NADPH) that ensures an antioxidant defense against a hostile 

microenvironment and chemotherapeutic drugs, and can also contribute to fatty acid synthesis [577]. 

Fourth, glycolytic tumour cells are able to survive in a microenvironment where oxygen tension is 

variable [591]. Fifth, aerobic glycolysis produces lactate which is released in the extracellular space, 

creating an acidic microenvironment that favours tumour growth, invasion and metastasis [587, 592-

593], and suppresses host immune response [594].  Stromal cells can collect the extracellular lactate 

to regenerate pyruvate that can be used again by glycolytic tumour cells, thus contributing to sustain 

tumour survival and growth [595]. Therefore, persistent aerobic glycolysis alters the local 

microenvironment in a way that is harmless to itself, but severely harmful to the competing populations 

of unadapted normal and tumour cells.  
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1.2.3.2. TUMOUR METABOLISM – ROLE OF THE HYPOXIC MICROENVIRONMENT 

 

 Hypoxia is considered to be one of the most important mechanisms leading to the acquisition of 

the glycolytic phenotype in tumours. In fact, hypoxia is present since pre-malignancy, when proliferating 

epithelial layers with intact basement membranes become thickened and develop hypoxic regions near 

the oxygen diffusion limit. Oxygen seems to be the first limiting substrate for cell growth. In this 

scenario, microenvironnmental forces arise to select cell populations that adapt to hypoxia by switching 

their metabolism to aerobic glycolysis, competing for nutrient resources and resisting acid-induced 

toxicity. Therefore, tumours seem to acquire the glycolytic phenotype as an adaptation to local hypoxia 

(Figure 32). As tumour growth proceeds, persistent or cyclical hypoxia continues to exert a selective 

pressure that will eventually lead to the constitutive upregulation of glycolysis, even in the presence of 

oxygen [587, 596-597]. 

 

 

Figure 32 | Model for cell-environment interactions in carcinogenesis [cell colours represent different cell types (grey, 

normal epithelial cells; pink, hyperproliferative cells; blue, hypoxic cells; green, cells adapted to the glycolytic phenotype; 

blebbing green, apoptotic cells; yellow, motile cells); altered nuclei represent mutations (light orange, one mutation; dark 

orange, more than one mutation)] (adapted from [587]). 

Abbreviations: HIF1α, hypoxia-inducible factor-1α; VEGF, vascular endothelial growth factor. 

 

 Tumour cells adapt to the hypoxic microenvironment via the ubiquitously expressed hypoxia-

inducible factor (HIF)-1. As already mentioned, under hypoxic stress (but also under oncogenic, 
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inflammatory, metabolic and oxidative stress), HIF-1α is not targeted for proteasomal degradation and 

becomes stabilized [239, 250-251]. Once activated, HIF-1α amplifies the transcription of genes 

encoding glucose transporters (GLUTs), glycolytic enzymes (e.g. hexokinases, HK1 and HK2) and 

lactate dehydrogenase A (LDHA), stimulating the conversion of glucose to pyruvate and lactate [598]. 

Moreover, HIF-1α activates the pyruvate dehydrogenase kinases (PDKs), which inactivate the 

mitochondrial pyruvate dehydrogenase (PDH) complex, decreasing the conversion of pyruvate to acetyl-

CoA, therefore compromising OXPHOS [599-600]. To ensure intracellular pH homeostasis, HIF-1α 

induces the expression of pH regulators, such as the hypoxia-inducible carbonic anhydrase IX (CAIX) 

and the lactate-extruders monocarboxylate transporters (MCTs), which will further contribute to the 

acidification of the microenvironment [601-602] (Figure 33). 

 

 

Figure 33 | Metabolic reprogramming in malignant cells – Contribution of hypoxia-inducible factor (HIF)-1 (small arrows 

pointing up or down indicate cancer-associated upregulation/activation or downregulation/inhibition of enzymes, 

respectively; alterations indicated in red can be caused by HIF-1 activation) (adapted from [583] ). 

Abbreviations: ACL, ATP citrate lyase; ADP, adenosine diphosphate; ATP, adenosine triphosphate; CA9 and CA12, carbonic 

anhydrases 9 and 12; CPT, carnitine palmitoyltransferase; FADH2, flavin fdenine dinucleotide; FASN, fatty acid synthase; 

G6P, glucose 6-phosphate; GLUT, glucose transporter; GSH, glutathione; HK, hexokinase; LAT1, L-type amino acid 

transporter 1; LDH-A, lactate dehydrogenase A; MCT, monocarboxylate transporter; NAD+, nicotinamide adenine 

dinucleotide; NADH, NAD+ reduced; NADPH, nicotinamide adenine dinucleotide phosphate; NHE, Na+/H+ exchange; OAA, 

oxaloacetate; OXPHOS, oxidative phosphorylation; PDH, pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase; 

PFK, phosphofructokinase; PGM, phosphoglycerate mutase; PKM2, pyruvate kinase isoform M2; PPP, pentose phosphate 

pathway; TLK, transketolase; VDAC, voltage-dependent anion channel. 
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 Carbonic anhydrases (CA) are a group of ubiquitously expressed metalloenzymes. There are at 

least five distinct CA families, but only the α-CAs are found in humans. α-CAs comprise 16 isoforms, 

which differ in their subcellular localization (cytosolic, membrane-bound, mitochondrial and secreted) 

catalytic activity, and susceptibility to different classes of inhibitors [603]. CAIX (CA9 chromosomal 

location, 9p13.3), a target for HIF-1α, is a multidomain protein containing a short intracytosolic tail, one 

transmembrane segment, an extracellular CA domain, and a unique proteoglycan (PG)-like domain 

composed of 68 amino acid residues [604]. Like other α-CAs, CAIX is a catalyst involved in the 

hydration of cell-generated carbon dioxide to bicarbonate and protons (CO2 + H2O ↔ HCO3
- + H+). This 

activity promotes the extracellular trapping of acid, which will favor the malignant phenotype [593, 

605]. Interestingly, CAIX only controls acidification of the tumoural extracellular pH under hypoxic 

conditions, and its expression dramatically increases by a direct HIF-1-mediated transcriptional 

activation of the CA9 gene [606-607]. Therefore, overexpression of this hypoxic marker is a frequent 

trait of malignancies, and has been correlated with tumour progression, invasion, metastasis and poor 

prognosis in a considerable number of tumours [603, 608-612]. This consistent upregulation has 

implicated CAIX as a target for tumor therapy with respect to pH disruption. Numerous inhibitors are 

being tested in vitro and in vivo, in pursuit of designing high-affinity compounds that specifically bind to 

CAIX and other isoforms, reducing side effects caused by off-target binding [610, 613].  

 

 CAIX expression has been reported in bladder cancer [614-622], being identified as an 

independent prognostic factor for recurrence-free and overall survival [614, 617]. This surrogate marker 

of hypoxia is predominant on the luminal surface of the tumours, and surrounding areas of necrosis 

[620-621]. Interestingly, several authors reported a higher expression in NMI than in MI tumours [617, 

619-620], ant it has been suggested that CAIX urinary levels might complement cytology as a 

noninvasive marker to monitor for UBC, because it seems to be able to differentiate between normal 

urothelial cells and low-grade tumours [618], and may also be useful for the early detection of relapse 

in patients following transurethral resection [622]. These intriguing results demand for further 

investigation. 

 

1.2.3.3. MICROENVIRONMENTAL ACIDOSIS – CONTRIBUTION OF LACTATE AND 

MONOCARBOXYLATE TRANSPORTERS 

 

 Monocarboxylic acids, namelly lactate, play a key role in maintaining metabolic homeostasis in the 
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majority of cells [623]. Some glycolytic cells, such as white skeletal muscle fibers, erythrocytes and 

many malignant cells, rely on glycolysis for rapid ATP generation, and the end product – lactate – must 

be effectively exported so that glycolysis may proceed. Conversely, in other tissues, lactate must enter 

the cells, being oxidized to become a respiratory fuel (in brain, heart and red skeletal muscle) or the 

dominant gluconeogenic substrate in the Cori cycle (in liver) [624-626]. 

 Lactate is the main source of tumour microenvironmental acidosis, thus contributing to the acid-

resistant phenotype. Extracellular acidity supports increased migration and invasion abilities of cancer 

cells, favouring the metastatic cascade. This is thought to occur through pH-dependent activation of 

matrix metalloproteinases and/or cathepsins, loss of the adhesion mediator E-cadherin and 

upregulation of hyaluronan, an important structural component of the extracellular matrix, and its 

receptor CD44 [587, 592, 596, 627]. Moreover, VEGF overexpression promotes angiogenesis, which 

further contributes to tumour dissemination [628]. Conversely, immune defences are impaired, 

whereas infiltrating inflammatory cells, like tumour-associated macrophages, enhance the aggressive 

behaviour of the growing tumour [594, 629]. Acidosis itself can be mutagenic or clastogenic, can 

promote radioresistance and resistance to anthracyclines, and can induce apoptosis in cells that lack 

acidosis-adapting mechanisms [587]. Altogether, the pleiotropic effects of increased lactate 

concentrations contribute to the success of tumour progression and dissemination, impairing 

therapeutic response and overall prognosis in cancer patients [630]. 

 

 Lactate export to the tumour microenvironment is mediated by the membrane-bound proton-

coupled monocarboxylate transporters (MCTs). MCTs belong to the SLC16 (solute carrier 16) gene 

family, comprising fourteen members that share the same basic structure: twelve transmembrane 

helices, intracellular C and N termini and a large cytosolic loop between transmembrane domains 6 

and 7 [623, 631]. Table 11 summarises the proposed function (when known), alternative names, tissue 

distribution, gene location and potential involvement in disease of the SLC16 family members [632]. Of 

the fourteen MCTs, only MCT1, MCT2, MCT3 and MCT4 – the proton-linked MCTs – transport 

monocarboxylates [633]. Lactate is not the only monocarboxylate to be transported – pyruvate, 

oxoacids, ketone bodies transport is also mediated by MCTs, which denotes their important role in 

cellular metabolism [623, 634]. MCTs facilitate unidirectional proton-linked transport of 

monocarboxylates across the plasma membrane, mediating either influx or efflux, depending of the 

prevailing substrate and pH gradients [631, 633]. 
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Table 11 | Features of the monocarboxylate transporter family (adapted from [632]). 

 
Abbreviations: C, cotransporter; E, exchanger; F, facilitated transporter; MCT/MOT, monocarboxylate transporter; O, orphan 

transporter. 

 

 MCT1 and MCT4 are the best characterized MCTs in human tissue. MCT1 has the most 

ubiquitous tissue expression (Table 11), with no evidence for splice variants. It seems to function mainly 

in the uptake or efflux of monocarboxylates across the plasma membrane, depending on the metabolic 

demands of the cell, having a high affinity for L-lactate, propionate, D,L--hydroxybutirate and 
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Figure 34 | MCT1 and CD147 proposed typology and intera-

ction (adapted from [633]). 

acetoacetate. MCT1 preferentially exports lactate when anaerobic glycolysis occurs. Conversely, it 

primarily mediates lactate and ketone bodies uptake in heart and red skeletal muscle, where these 

molecules are important respiratory substrates. MCT4 seems to be the dominant lactate exporter under 

conditions of aerobic glycolysis, being highly expressed by lymphocytes, astrocytes, white muscle fibres 

and malignant cells [633, 635-636]. Interestingly, MCT1 and MCT4 also facilitate the shuttling of 

lactate between cells that produce it and those that use it within the same tissue. This occurs, for 

instance, in skeletal muscle (between red and white fibers) and in brain (between astrocytes and 

neurons) [635, 637]. MCT1 has also been reported to mediate the transport of some drugs [633]. 

 The functions of MCT1 and MCT4 are 

dependent upon interaction with other 

proteins, namely the chaperone CD147 

(EMMPRIN) (Figure 34), to ensure the 

correct expression of the transporters at the 

plasma membrane and to maintain their 

activity. In the absence of the mature, 

glycosylated form of CD147, MCT1 and 

MCT4 fail to reach the plasma membrane 

and are accumulated in the Golgi apparatus 

[638-639]. CD44 also seems to contribute to the localization and function of MCT1 and MCT4 at the 

plasma membrane [640].  

 Besides MCTs regulation by chaperone proteins at the transporter activity level, numerous factors 

regulate protein amounts at the transcriptional and post-transcriptional levels, conditioning their 

expression in different physiological and pathological conditions. The regulatory mechanisms vary 

among the MCT isoforms, denoting the cell’s abilities to adapt to special energy demands [632, 636, 

641] (Figure 35).  

 

 As already mentioned, high lactate levels are a common trait of malignant tumours, and its 

dependence on MCTs for the transport across the plasma membrane directly implicates MCTs on 

tumour behavior. The pioneering studies on MCT expression in human tumour samples reported a 

decrease on MCT1 levels in the colonic transition from normality to malignancy [642-643]. These 

intriguing results were later contradicted by evidences indicating increased MCT1 levels in colon 

adenocarcinoma, when compared to normal colonic samples [595, 644]. Moreover, MCT1 plasma 
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membrane expression was associated with lymphovascular invasion, highlighting its important role in 

the transport of lactate, the most important player of microenvironmental acidosis, an angiogenesis-

promoting condition [644]. For other malignant tumours, although some controversial results are 

reported in the literature, the main observed tendency is a general upregulation of MCTs, particularly 

MCT1 [641, 645] (Table 12). Additional studies, with standardized immunohistochemistry protocols 

and evaluation methods, are necessary to further elucidate the role and impact of monocarboxylate 

transporters in cancer patients.  On the other hand, inhibition of MCTs would necessarily have a major 

effect on lactate transport, pH balance and tumour homeostasis, by compromising aerobic glycolysis 

and microenvironmental acidosis, and the cell-cell lactate shuttle between aerobic and hypoxic cell 

populations, with these last undergoing hypoxic cell death (Figure 36). The invasive abilities of the 

tumour mass could potentially be decreased, host immune response could potentially be reactivated, 

and response to therapy could potentially be enhanced [586]. This appealing scenario has already been 

demonstrated in vitro and in vivo, using different approaches to disrupt MCTs, namely the inhibitors 

CHC (α-cyano-4-hydroxycinnamate) and lonidamine, and specific small-interfering RNAs (siRNAs) [243, 

586, 646-652]. Efforts are being taken to find adequate compounds for clinical use. Numerous agents 

targeting metabolic pathways are currently under clinical trial phase for several human malignancies 

[653-655], but MCTs are not yet included in the list of metabolic targets. 

 

 
Figure 35 | Regulation of monocarboxylate transporters 1 and 4 at the transcriptional and translational levels (blue boxes, 

factors that induce upregulation; green boxes, factors that induce downregulation (adapted from [641]). 

Abbreviations: HIF, hypoxia-inducible transcription factor; MCT, monocarboxylate transporter; NO, Nitric oxide. 
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Table 12 | Overview on MCT1 and MCT4 expression and impact on prognosis in different tumour types (adapted from 

[645]). 

 

 downregulation;  upregulation; (+) positive expression; (-) negative expression. 
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Figure 36 | Model for 

therapeutic targeting of 

lactate-based metabolic 

symbiosis in tumors 

(adapted from [586]). 

Abbreviations: ATP, a-

denosine triphosphate; 

GLUT, glucose trans-

porter; LDH, lactate 

dehydrogenase; MCT, 

monocarboxylate trans-

porter.  

 

 The biological role of MCTs in UBC is largely unknown. In a study investigating the hypoxia 

transcriptome in primary UBC, 32 of 6000 genes were hypoxia-inducible. Among them, MCT4 was up-

regulated in tumour cell lines and in tumour tissue [656]. In another study trying to establish a method 

for predicting response to MVAC therapy using a cDNA microarray consisting of 27,648 genes, 

SLC16A3 gene was found to be upregulated in non-responder patients. The authors suggested that 

MCT4 upregulation might influence resistance to MVAC neoadjuvant chemotherapy via its association 

with CD147 [157]. This important finding highlights the need to investigate, in UBC setting, not only 

MCTs, but also their cooperation with CD147 and other chaperones, in an attempt to further elucidate 

the biological mechanisms of the life-threatening chemotherapy resistance. 

 

1.2.3.4. CD147 AND CD44 – CHAPERONES FOR MCTS 

 

 As already mentioned, CD147 is necessary for the expression of MCTs at the plasma membrane. 

However, the functions of this immunoglobulin superfamily member extend far beyond its role as a 

chaperone, being involved in fetal, neuronal, lymphocyte and extracellular matrix development, and in 

pathological conditions like heart disease, Alzheimer’s disease, stroke and cancer [657-659]. 

 CD147 (or EMMPRIN, extracellular matrix metalloproteinase inducer) was initially described as an 

inducer of MMPs production and expression [660]. The gene name for CD147/EMMPRIN is basigin 
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(BSG, chromosomal location at 19p13.3), consisting of seven exons and six introns spanning 7.5 kb 

[661-662]. BSG encodes a 29 kDa protein, but the mature, glycosylated form of CD147 ranges 

between 25 and 65 kDa, depending on the degree of glycosylation, which is necessary for its MMP 

stimulating activity. CD147 is a transmembrane glycoprotein composed of two immunoglobulin-like 

extracellular domains (where three glycosylation sites have been identified), a single transmembrane 

domain and a short cytoplasmic tail (Figure 34). The transmembrane and cytoplasmic domains are 

critical for protein-protein interactions within the plasma membrane. Besides interacting with MCT1 and 

MCT4, CD147 also appears to interact with integrin, caveolin-1 and cyclophilins [638, 657-658, 663]. 

Interestingly, while proton-coupled MCTs (MCT1, MCT3 and MCT4) depend on the association with the 

glycosylated form of CD147 to be expressed and functional on either plasma or mitochondrial 

membranes, it appears that CD147 maturation is affected by MCT expression [664]. 

 CD147 is ubiquitously expressed on hematopoietic and non-hematopoietic cells such as 

monocytes, granulocytes, activated T lymphocytes, epithelial and endothelial cells [659]. Moreover, 

increased CD147 expression occurs in several types of malignancies [641, 645, 658]. Together with its 

ability to induce MMPs expression in adjacent stromal cells (e.g. fibroblasts and endothelial cells) [665], 

this evidence suggests that CD147 must be connected with one or more signalling pathways, being a 

key regulator of tumourigenesis and tumour progression. In fact, a link to the MAPK cascade has been 

demonstrated, with CD147 expression strongly correlating with activated ERK concomitantly with 

increased MMP-2 production [666]. CD147 stimulates its own expression through a positive feedback 

mechanism and induces the production of a soluble form, enhancing the potential for MMP stimulation 

from neighboring stromal cells to distant sites [667]. CD147 is also able to upregulate VEGF production 

via the PI3K/AKT pathway [668]. It associates with the laminin-interacting 31 and 61 integrins, 

major receptors for the cellular anchoring to the ECM [669], and stimulates hyaluronan production 

[670], co-localizing with the hyaluronan receptor CD44 [640]. Constitutive interactions between 

hyaluronan, CD44, and CD147 contribute to the regulation of MCT localization and function in the 

plasma membrane, and ultimately affect lactate transport [640]. Altogether, the pleiotropic effects of 

CD147 promote tumour growth, ECM degradation, angiogenesis, migration and invasion, enhancing the 

metastatic potential of CD147-expressing tumour cells [657-658, 665]. Importantly, CD147, through 

hyaluronan-CD44 interaction, crosstalks with various multidrug transporters of the ABC (ATP-binding 

cassette) family classically associated with anti-apoptotic signalling and chemotherapy resistance [671] 

(Figure 37). 
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Figure 37 | CD147 signal-

ling and interactions (black 

arrows, stimulation/ activati-

on; gray arrows, asso-ciated 

molecules and their additional 

signalling or au-gmentation of 

effect) (adapted from [641]). 

Abbreviations: ECM, extracel-

lular matrix; EMT, epithelial-

mesenchymal transition; MCT, 

monocarboxylate transporter; 

MMP, matrix metalloproteina-

se; VEGF, vascular endothelial 

growth factor. 

  

 CD44 is a ubiquitous single chain transmembrane glycoprotein involved in cell-cell interactions, 

cell adhesion and migration. It is encoded by a single gene (CD44, 11p13, twenty exons), but their 

transcripts undergo complex alternative splicing that, together with variations in N-glycosylation, O-

glycosylation, and glycosaminoglycanation (by heparan sulfate or chondroitin sulfate), generate multiple 

isoforms of different molecular sizes (85-230 kDa) [672]. Normal cells (and also malignant cells) 

abundantly express the smallest, standard CD44 (CD44s, 85-95 kDa) isoform (lacks variant exons). The 

variant CD44 (CD44v) isoforms contain a variable number of exon insertions (v1–v10) and are 

expressed predominantly by malignant cells. All forms of CD44 include an N-terminal, membrane-distal, 

hyaluronan-binding domain, and hyaluronan is its principal ligand (among other partner proteins like 

osteopontin, fibronectin, collagens, and MMPs). The glycosaminoglycanation pattern of the CD44 

ectodomain enables it to additionally bind to growth factors (e.g. VEGF, FGF). The short cytoplasmic tail 

mediates interactions with the cytoskeleton. This protein participates in a wide range of cellular 

functions, namely lymphocyte activation, recirculation and homing, hematopoiesis, and tumour 

dissemination. Most of the multiple cellular functions of CD44 rely on its association with hyaluronan 

[673-676]. 

 Hyaluronan (also hyaluronic acid or hyaluronate) is a very large, linear, negatively charged 

glycosaminoglycan composed of 2,000–25,000 disaccharides of glucuronic acid and N-

acetylglucosamine, with molecular weights ranging from 105 to 107 Da. It is produced by three integral 

plasma membrane hyaluronan synthases (Has1/Has2/Has3), being extruded as it is elongated, and 

then targeted to the cell surface or to pericellular and extracellular matrices [674, 677]. Hyaluronan is 

distributed ubiquitously and, in addition to its structural role, strongly dependent on its remarkable 

hydrodynamic characteristics and its interactions with other ECM components, has an instructive role in 
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signalling via binding to specific cell-surface receptors. CD44 is its major cell-surface receptor, and it is 

clear that the effects of the hyaluronan-CD44 interactions are activated during the dynamic cell 

processes involved in tumourigenesis and tumour progression [674, 676, 678]. CD147 stimulates 

hyaluronan production and many of its signalling actions [670]. 

 Hyaluronan-CD44 interactions in malignant cells promote resistance to growth arrest and 

apoptosis under anchorage-independent growth [679]. The adherence of malignant cells on capillary 

beds prior to extravasion into metastatic sites seems to involve the pericellular hyaluronan that 

surrounds the metastatic cells; this adherence probably involves CD44 expression by endothelial cells 

[680]. By forming highly hydrated, malleable matrices, by regulating the production and presentation of 

proteases, and by inducing cytoskeletal rearrangements, hyaluronan also mediates invasion [681]. Its 

breakdown products seem to be angiogenesis promoters, possibly by interacting with CD44-expressing 

endothelial cells [682]. Hyaluronan-CD44 binding influences the activity of several downstream 

signalling pathways, namely the anti-apoptotic MAPK and PI3K-AKT pathways, consequently promoting 

tumour cell proliferation, survival, motility, invasiveness, and chemoresistance [676, 683]. In fact, in 

addition to its pro-malignant and anti-apoptotic properties, these pathways seem to mediate the 

increased expression of multidrug membrane efflux pumps of the ABC family, such as MDR1 (multidrug 

resistance protein 1), MRP-1 (multi-drug resistance-associated protein-1) and BCRP (breast cancer 

resistance protein) [684-686]. Hyaluronan-CD44 interaction regulates MDR-1 and BCRP in malignant 

cells, possibly due to the stabilization of the transporter at the plasma membrane through the co-

localization with CD44 [685, 687-688]. Once CD147 induces hyaluronan production, its enhanced 

expression probably mediates increased drug-resistance in a hyaluronan-dependent manner [689]. 

Moreover, this also indicates a possible association of hyaluronan to the hyper-glycolytic phenotype. 

Hyaluronan synthesis and expression of CD44v in tumour and tumour-associated stromal cells is also 

stimulated by lactate [627, 690]. CD44 co-localizes with MCT1 and MCT4 at the plasma membrane of 

breast cancer cells, and has been proposed as an additional chaperone for MCTs. Disruption of 

hyaluronan-CD44 signalling led to MCTs internalization and attenuation of their function [640]. These 

evidences point out for a probable partnership between hyaluronan, CD44 and CD147 in regulating the 

hyper-glycolytic and acid-resistant phenotype, and also chemotherapy resistance. Moreover, expression 

levels of CD147, CD44 and hyaluronan are consistently increased in tumour tissues, correlating with 

cancer progression, invasion, metastasis and recurrence [641, 645, 658-659, 691]. Therefore, 

antagonists of these molecules are promising candidates for targeted therapy. Several hyaluronan-CD44 

signalling disrupting methods have been tested in vitro and in vivo, namely the use of small hyaluronan 
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oligosacharides that compete with the endogenous hyaluronan polymer, soluble CD44, blocking 

antibodies against the hyaluronan binding site of CD44 and CD44 siRNAs [675-676]. Interestingly, 

hyaluronan has the potential to be used as a drug transport vehicle. Since activated CD44 is 

overexpressed in solid tumors but not on their normal counterparts, and since CD44 can internalize 

hyaluronan, hyaluronan-drug conjugates are internalized via CD44, and the drug is released inside the 

malignant cells [692-694]. Monoclonal antibodies and siRNAs directed against CD147 have also been 

developed [659]. However, these strategies are still in a very preliminary phase of basic and 

translational research.  

 

 The initial studies investigating CD147 in bladder cancer patients reported its possible usefulness 

as a sensitive urinary marker [695-696]. Positive CD147 staining in UBC tissue sections was 

significantly associated with TNM stage, grade and histological subtype, and with poor prognosis [697-

701], being identified as an independent prognostic factor for disease-free and overall survival [698-

699, 702]. Importantly, CD147 positivity was able to predict response and survival following cisplatin-

containing chemotherapy in patients with advanced UBC [702]. In UBC cell lines, CD147 

downregulation with siRNA significantly decreased proliferation, migration and invasion, and also 

reduced secretion of MMP-2 and MMP-9, and expression of VEGF [697, 699]. Cisplatin response was 

not investigated. 

 Hyaluronan levels are increased in tissue and urine from UBC patients, and seem to be an 

accurate diagnostic marker [703-706]. Moreover, hydrosoluble drug-hyaluronan bioconjugates are being 

tested as a strategy of efficient drug delivery [707-709]. In accordance, a few studies reported CD44 

overexpression in tissue samples [703, 710-712]. In an in vitro study, Has-1 expression regulated 

bladder cancer growth, invasion and angiogenesis through CD44 [713]. However, the complexity of 

hyaluronan-CD44 interactions, as well as their impact for UBC patients, are far from being clarified. 

Associations among CD44, MCTs and CD147, in an attempt to unravel a possible crosstalk between 

these molecules in mediating the hyper-glycolytic phenotype, were also not investigated. 
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Urothelial bladder cancer (UBC) represents an important epidemiological problem mostly due to its 

heterogeneous, relapsing and progressive nature. Although the majority of the tumours present as non-

muscle invasive, in a significant proportion of patients the disease recurs and develops progression, 

underlying the need of radical surgical approaches and chemotherapy treatments. Half of the muscle-

invasive tumour patients face the fearsome drawback of inherent or acquired chemoresistance. To 

predict whose tumours will recur, progress and/or develop resistance to chemotherapy is a major 

challenge, and the conventional clinical and pathological parameters, although representing pivotal 

diagnostic and prognostic tools, are far from being sufficient to individually differentiate UBCs. Research 

efforts need to be urgently directed into the molecular characterization of biological phenotypes of 

bladder cancer aggressiveness, in an attempt to find biomarkers that might allow more detailed 

prognostication and optimization of the treatments, with the main goal of improving patient outcome 

and quality of life. Therefore, based on the question “Is it possible to predict the prognosis and to 

personalize the treatment for UBC patients?”, the central aim of this thesis was to characterize a 

phenotype of UBC aggressiveness in order to unveil potential prognostic and predictive biomarkers. The 

laboratory work was planned with the initial study on the clinical and prognostic significance of several 

biomarkers encompassing three hallmarks of cancer – tumour angiogenesis and lymphangiogenesis, 

invasion and metastasis, and energy metabolism reprogramming and the tumour microenvironment – 

in a population of UBC patients with known clinicopathological parameters and follow-up data. 

Subsequently, we intended to validate potential therapeutic targets in in vitro assays. In the pursuit of 

these general achievements, specific objectives were addressed regarding each of the explored 

hallmarks of cancer, as follows. 

 

(i) To characterize the clinical and prognostic impact of angiogenesis, lymphangiogenesis and 

lymphovascular invasion occurrence in UBC patients. 

Aiming to address the need of using specific antibodies in the establishment of a consensus 

concerning lymphovascular invasion detection, applicable to routine pathological evaluation, 

immunohistochemical biomarkers of blood (CD31) and lymphatic (D2-40) endothelial cells were used to 

quantify blood and lymphatic vessels density, both in peritumoural and intratumoural regions, and to 

assess the occurrence of blood and lymphatic vessels invasion. Different evaluation methods were 

performed and compared (classical hematoxylin and eosin staining versus specific highlighting of 

endothelial cells). The immunoexpression of the lymphangiogenic vascular endothelial growth factor 

(VEGF)-C and its receptor VEGFR-3 were also assessed. 
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As a secondary objective, we also aimed to evaluate the levels of expression of the mammalian 

target of rapamycin (mTOR), and to assess its contribution on the promotion of angiogenesis and 

lymphangiogenesis in the malignant context. 

 

(ii) To characterize the clinical and prognostic impact of the expression of biomarkers of invasion and 

metastasis in UBC patients. 

To achieve this objective, we evaluated the immunoexpression of the endo--glycosidase 

heparanase and of the metastasis suppressor RKIP (Raf kinase inhibitor protein). 

 

(iii) To characterize the clinical and prognostic impact of the expression of microenvironment-related 

biomarkers in UBC patients. 

In order to shed some light on the contribution of the tumour microenvironment and the inherent 

metabolic reprogramming of the malignant cells for the phenotype of UBC aggressiveness, we 

performed immunohistochemistry studies to assess the expression of CD147, monocarboxylate 

transporters (MCTs) 1 and 4, CD44 and carbonic anhydrase (CA) IX. Due to the apparent role of 

CD147 as a chemoresistance mediator, we also aimed to evaluate the discriminatory value of this 

biomarker when included in a tumour aggressiveness scoring system. 

 

(iv) To assess the therapeutic impact of downregulation of a microenvironment-related biomarker, 

CD147, in vitro. 

To further explore the preponderance of CD147 in mediating chemoresistance in bladder tumours, 

we intended to characterize the chemosensitivity of parental and CD147-silenced UBC cell lines to 

cisplatin. 
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The results presented in this chapter were: 

 

(i) Published as an original article in an international peer reviewed journal 

Afonso J, Santos LL, Amaro T, Lobo F, Longatto-Filho A: The aggressiveness of urothelial 

carcinoma depends to a large extent on lymphovascular invasion – the prognostic 

contribution of related molecular markers. Histopathology 2009; 55(5): 514-524. 

 

(ii) Discussed in an indexed book chapter edited by an international open access publisher  

(in APPENDIX) 

Afonso J, Santos LL, Longatto-Filho A: Angiogenesis, Lymphangiogenesis and Lymphovascular 

Invasion: Prognostic Impact for Bladder Cancer Patients, In: Bladder Cancer – From Basic 

Science to Robotic Surgery, Abdullah Canda. Croatia: INTECH Open Access Publisher, ISBN 978-953-

307-839-7; 2012. 

 

(iii) Selected for publication as an abstract in an international scientific website on Urology 

Afonso J, Santos LL, Amaro T, Lobo F, Longatto-Filho A: The aggressiveness of urothelial 

carcinoma depends to a large extent on lymphovascular invasion – the prognostic 

contribution of related molecular markers. UroToday.com Bladder Cancer Session, ISSN 1939-

4810; 2009. 
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The results presented in this chapter were: 

 

(i) Submitted for publication as an original article in an international peer reviewed journal 

Afonso J, Longatto-Filho A, Moreira da Silva V, Amaro T & Santos LL: Phospho-mTOR in Non-

tumour and Tumour Bladder Urothelium: Pattern of expression and Impact on Urothelial 

Bladder Cancer Patients.  2013. 
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BACKGROUNG: Urothelial bladder carcinoma (UBC) represents a significant health problem, due to its heterogeneous 
natural history and clinical behavior. Evaluation on biomarkers of aggressiveness and response to treatment needs to be 
added to classical diagnostic and prognostic tools, in an attempt to personalize management, improving survival and quality 
of life. We aimed to evaluate the pattern of expression, and the clinical and prognostic significance of phospho-mammalian 
target of rapamycin (p-mTOR) in UBC patients. 
METHODS: UBC sections with tumour and non-tumour representative areas from 76 patients were stained by 
immunohistochemistry for detection of p-mTOR (Ser2448), CD31 (blood vessels identification) and D2-40 (lymphatic vessels 
indentification). Immunohistochemical reactions were statistically correlated with the clinicopathological and the outcome 
parameters. 5-year disease-free survival (DFS) and overall survival (OS) rates were estimated using the Kaplan-Meier 
method. p values < 0.05 were considered significant. 
RESULTS: 36% of the non-tumour sections and 20% of the tumour sections were scored positive for p-mTOR expression. 
Immunoexpression was observed in umbrella cells from non-tumour urothelium, in all urothelial cell layers from non-muscle 
invasive (NMI) tumours (with a reinforcement in superficial cells), and in spots of cells from muscle invasive (MI) tumours. 
Positive expression decreased from non-tumour to tumour urothelium, and from pT1/pTis to pT3/pT4 tumours, but the few 
pT3/pT4 positive cases had worse survival rates, with 5-year DFS being significantly lower (p=0.004). Angiogenesis 
occurrence was impaired in pT3/pT4 tumours that did not express p-mTOR.  
CONCLUSIONS: p-mTOR expression in non-tumour umbrella cells probably reflects their metabolic plasticity, and 
extension of expression to the inner layers of the urothelium in NMI tumours is consistent with an enhanced malignant 
potential. Expression in cell spots in a few MI tumours, and absence of expression in the remaining, is intriguing and 
demands further research. Additional studies directed to the upstream and downstream effectors of the mTOR pathway need 
to be addressed. 
 
KEYWORDS: P-mTOR, urothelial bladder cancer, pattern of expression, umbrella cells. 
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INTRODUCTION 
 
Bladder cancer, the second most common urological 
malignancy, represents a significant epidemiological 
problem. An estimated 386,300 new cases and 
150,200 deaths occurred in 2008 worldwide [1]. 
Urothelial carcinoma is the most common 
histological subtype in developed countries [2]. The 
majority of the patients present with non-muscle 
invasive (NMI) tumours that, although without 
aggressive histopathological features, frequently 
recur, which demands for long-term follow-up and 

repeated interventions. High grade NMI lesions 
harbor an enhanced risk of progression to muscle-
invasive (MI) disease. MI tumours carry a significant 
metastatic potential [3]. Radical cystectomy (RC) 
with bilateral pelvic and iliac lymphadenectomy is 
the gold standard of treatment for MI disease [4-5], 
and provides a cure for most of the patients with 
organ-confined lesions [6]. However, regional lymph 
node and visceral metastasis are common findings, 
advocating the association of neoadjuvant and 
adjuvant therapies. Cisplatin-containing combinati-
ons are the standard of care for UBC patients, but 
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heterogeneity in the response to the treatment and 
patient fragility significantly impair survival benefits 
[7]. Up to 50% of MI-UBC patients will eventually die 
from metastatic disease [6].  
Current investigational strategies have turned 
attention into the molecular pathogenesis of bladder 
tumours, trying to find biomarkers of aggressiveness 
and response to chemotherapy, and potential 
therapeutic targets. The mammalian target of 
rapamycin (mTOR) intracellular pathway represents 
a potential target. mTOR belongs to the 
phosphoinositide-3-kinase-related kinase family, 
being centrally involved in the transduction of prolife-
rative factors induced by the phosphatidylinositol 3-
kinase/ protein kinase B (PI3K/Akt) signalling path-
way, to the level of mRNA and ribosome [8-11]. The 
mTOR gene encodes a protein product that functions 
as a component of two complexes, mTOR complex 1 
(mTORC1) and mTOR complex 2 (mTORC2) [10]. 
The main players downstream of mTORC1 are 
4EBP1 (eucaryotic initiation factor 4E binding 
protein-1) and p70S6K (ribosomal p70S6 kinase, 
S6K). 4EBP1 negatively regulates eIF4E (eucaryotic 
initiation factor 4E), but phosphorylation of 4EBP1 by 
mTORC1 leads to its dissociation from eIF4E, 
allowing the assembly of the initiation complex of 
translation at the 5′ terminal of mRNAs. On the other 

hand, mTORC1 activates p70S6K, which in turn 
phosphorylates the ribosomal protein S6, promoting 
translation initiation and elongation [12]. Regarding 
mTORC2, its best characterized substrate is Akt. Akt 
is phosphorylated on its hydrophobic motif (Ser473) 
by mTORC2, and this is required to its fully 
activation. The ultimate result of Akt activation is the 
phosphorylation and upregulation of mTORC1 [13]. 
Through its interactions with Raptor (regulatory-
associated protein of mTOR, contained in mTORC1) 
and Rictor (rapamycin-insensitive companion of 
mTOR, contained in mTORC2) proteins, activated 
mTOR regulates protein translation, cell cycle 
progression, actin cytoskeleton organization, cell 
migration and survival [8-11]. Moreover, mTOR 
signalling can increase vascular endothelial growth 
factor (VEGF) secretion, thus mediating angiogenesis 
and lymphangiogenesis. It also seems to play an 
important role in the crosstalk between tumour and 
endothelial cells [14-16]. Increased mTOR activity, 
as well as increased phosphorylation levels of its 
downstream targets, 4EBP1 and p70S6K, have been 
detected in a significant percentage of human 
tumours [17-24]. Rapamycin (sirolimus) and 
rapamycin analogs (e.g. temsirolimus, everolimus) 

selectively inhibit the mTOR pathway, and have 
demonstrated potent anti-tumour effects both in vitro 
and in vivo [25-28]. Some of these compounds have 
already obtained the FDA approval for the treatment 
of human malignancies [29], and numerous clinical 
trials are ongoing [30-31], including trials with UBC 
patients [32]. However, the levels of mTOR activation 
in bladder tumour tissue have been poorly explored, 
and the existing results are inconsistent. For 
instance, Hansel et al. reported the expression of 
phosphorylated mTOR (p-mTOR) in 74% (90/121) MI 
UBCs, and a significant association with increased 
pathological stage and reduced disease-specific 
survival was noted [33]. In the study by Makhlin et 
al., p-mTOR expression was increased in malignant 
versus normal urothelium in only 32.0% (65/203) of 
tumours, and no association with clinicopathological 
and outcome parameters was found [34]. 
In the present study, we aimed to evaluate, in 76 
patients with high risk of progression UBC, the 
pattern of expression, and the clinical and prognostic 
significance of p-mTOR, assessed by immunohisto-
chemistry. Angiogenesis and lymphangiogenesis 
occurrence was also evaluated by immunohisto-
chemistry, in order to correlate blood vessel density 
(BVD) and lymphatic vessel density (LVD), with p-
mTOR expression. 

 
METHODS 
 
- Patients and Tumour Samples 
We retrospectively reviewed the records from 
patients who were clinically diagnosed with high risk 
of progression UBC (high grade NMI and MI 
tumours) and treated by RC and limited 
lymphadenectomy at the Portuguese Institute of 
Oncology, Porto, from January 1996 to December 
2005. Prior approval was obtained from the Ethics 
Committee of the institution. During this period, 223 
RCs were performed. After considering some 
exclusion criteria, namely the diagnosis of urothelial 
carcinomas with variant histology, squamous cell or 
adenocarcinomas, prior radiation, neoadjuvant or 
adjuvant chemotherapy treatments, insufficient 
follow-up time and/or tumour samples inadequate 
for further study (e.g. samples without adjacent non-
tumour urothelium), a final cohort of 76 patients 
were eligible for the study. Each cystectomy 
specimen was examined following the guidelines of 
the College of American Pathologists [35]. Two 
independent pathologists reviewed hematoxylin-eosin 
(H&E)-stained sections according to standard histo-
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pathological examination, considering the American 
Joint Committee on Cancer [36] and the World 
Health Organization – WHO (WHO 1999 and WHO 
2004) [37-38] classification systems. Table 1 
summarizes the clinicopathological parameters. 
Sixty-one patients had RC as their first treatment, 
while the NMI tumours (15, 20%) had had previous 
therapeutic transurethral resection and BCG instilla-
tion; when disease recurrence occurred, or when 
multiple carcinoma in situ (CIS) lesions were 
observed in the surgical specimen, these patients 
were then treated by RC. Mean and median follow-up 
were 35 and 20 months (range 1–132), respectively. 
Recurrence, disease-free survival (DFS) and overall 
survival (OS) rates were defined as the reappearance 
of UBC (loco-regional metastasis or distant metasta-
sis) more than 3 months after RC, the time from RC 
until recurrence, and the time from RC until death by 
cancer or the last clinical assessment, respectively. 
 
- Immunohistochemistry and Evaluation of Staining 
Immunohistochemical staining to detect p-mTOR 
was performed on paraffin-embedded 4 m UBC 

tissue sections according to the two-step peroxidase 
conjugated polymer technique (EnVisionTM+ System, 
HRP, Dako), following the manufacturer’s instru-
ctions. The primary antibody [phospho-mTOR 
(Ser2448), Cell Signalling Technology] was used in  

a 1:500 dilution, and incubated on the sections 
overnight at 4ºC. Negative controls were carried out 
by omitting the primary antibody. A breast tumour 
with known immunorreactivity for p-mTOR was used 
as a positive control. Blood and lymphatic endo-
thelial cells were immunohistochemically stained by 
anti-CD31 and anti-D2-40 (Dakocytomation) antibo-
dies, as previously described [39]. 
The immunostained sections were examined by light 
microscopy by two independent observers who had 
no knowledge of the clinical status; discordant cases 
were discussed together in a double-headed micros-
cope. p-mTOR expression was semiquantitatively 
assessed at x200 magnification, considering the 
cytoplasmic staining of tumour and adjacent, non-
tumour urothelial cells. The following grading system 
was used: negative (-), expression in less than 10% 
of cells; and positive (+) expression in over 10% of 
cells. CD31 and D2-40 immunohistochemical 
positive reactions were assessed as previously 
described, in order to quantify overall BVD and LVD 
(peritumoural and intratumoural) [39]. 
 
 
 

Table 1. Clinicopathological parameters 
 
 

 
 
- Statistical Analysis 
Data were analysed using the Statistical Package for 
Social Sciences (SPSS) software for Windows, 
version 20.0. Associations between p-mTOR expres-
sion and the clinicopathological parameters were 
examined for statistical significance using Pearson’s 
chi-square (2) test and Fisher’s exact test (when 

n<5). For BVD and LVD analysis, data were 
expressed as the median, and this value was used 
as a cut-off point for statistical analysis. Five-year 
DFS and OS rates were evaluated using Kaplan-
Meier curves, and differences were analysed by Log-
Rank or Breslow tests. p values < 0.05 were 
considered significant.  
 
RESULTS 
 
- Prognostic Significance of the Clinicopathological 
Parameters 
The 5-year DFS and OS rates were significantly lower 
in patients with tumours invading beyond the 
muscular layer, with grade III tumours, with 
occurrence of lymphovascular invasion or with the 
presence of regional metastases (Table 2). High 
vascular density did not have an impact on outcome. 
However, high LVD was predominant in pT3/pT4 
(81%, 33/41, p=0.006), grade III (85%, 35/41, 
p=0.034) or muscle-invasive (37/41, 90%, p=0.033) 
tumours (data not shown).  
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- Immunoexpression Pattern of p-mTOR 
A total of 76 UBC samples with representative 
tumour and non-tumour (normal-like or hyperplasic 

urothelium) sections were evaluated for p-mTOR 
immunoexpression. 20% (15/76) of the tumour 
sections were scored positive. Regarding NMI 

Figure 1: Immunohistochemical positive reactions for p-mTOR, showing different expression patterns in urothelial cells. 
Non-muscle invasive papillary tumours (x200 amplification) expressing cytoplasmic p-mTOR in near homogeneous (A) and 
heterogeneous (B) patterns, with the luminal and intermediate cell layers being more intensely stained than the layer of 
basal cells. Normal (x400 amplification) (C) and hyperplasic (x200 amplification) (D) urothelium exhibiting cytoplasmic p-
mTOR immunoexpression restricted to the superficial layers. 
 

Table 2. Correlation between 
5-year disease-free survival and 
overall survival rates, and 
clinicopathological variables 
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papillary lesions, p-mTOR expression was 
frequently evenly distributed in the seve-
ral layers of urothelial cells, although a 
more intense staining was noted in the 
superficial layers (Figure 1A). In some 
NMI cases, this superficial preponderan-
ce of p-mTOR was more evident (Figure 
1B).  MI positive cases were rare, and p-
mTOR was only expressed in a few spots 
of cells. When non-tumour urothelium 
[with apparent normal histology (Figure 
1C) or hyperplasic (Figure 1D)] samples 
were scored positive (36%, 27/76), p-
mTOR expression was completely restri-
cted to the superficial cell layers, namely 
the umbrella cells.  
 
- Clinical and Prognostic Significance of p-
mTOR Immunoexpression 
P-mTOR expression decreased with 
increasing stage:  40% (6/15) of pT1 and 
pTis tumours were positively stained, 
while only 14.3% (7/49) of pT3/pT4 
expressed p-mTOR (p=0.087) (Table 3). 
Similar correlations were found when 
considering the morphological type of 
lesion (p=0.075) (Table 3). When compa-
ring positive tumour and non-tumour 
sections, concordance among p-mTOR 
expression was lost with enhanced 
tumour aggressiveness: 17 pT3/pT4 cases presen-
ted positive normal-like mucous regions adjacent to 
the tumour sections, but p-mTOR expression was 
only observed in 6 (35.3%) of those cases (p=0.005, 
data not shown). Angiogenesis and lymphangiogene-
sis occurrence did not correlate with overall p-mTOR 
expression results. Even so, in the group of low 
blood vessel density count, 65% (26/40) of the 
cases did not express p-mTOR both in the tumour 
and non-tumour sections (p=0.003, data not shown). 
No significant associations were found regarding p-
mTOR status and survival rates. However, when 
selecting the group of patients with pT3/pT4 
tumours, those with negative expression had a 
median 5-year OS of 15.7 months (95% CI 6.757-
24.643), which was reduced to 3.5 months (95% CI 
1.000-8.514) if the tumours were p-mTOR positive, 
although the differences were not statistically 
significant (Figure 2A). Accordingly, 5-year DFS was 
reduced from 8.7 months (95% CI 3.974-13.359) in 
the negative cases to 1.8 months (95% CI 1.030-
2.570) in the positive cases (p=0.004, Figure 2B). 
 

DISCUSSION 
 
The interplay between both mTOR complexes and 
the PI3K/Akt signalling pathway justifies the 
consistent upregulation of the mTOR network in 
cancer. Activating mutations in the mTOR gene have 
been identified in a few malignancies, although not 
clearly linked to tumour development [40]. 
Conversely, upstream components of the mTOR 
pathway are frequently altered in human tumours [8, 
17], and UBC is not an exception, with reported 
mutations of PIK3CA (phosphatidylinositol-4,5-
bisphosphate 3-kinase, catalytic subunit alpha), 
AKT1 and TSC1 (tuberous sclerosis protein 1, 
hamartin), and loss of heterozygosity, homozygous 
deletion and inactivating mutations of PTEN 
(phosphatase and tensin homolog deleted on 
chromosome 10) [41-42]. These observations 
strongly suggest that mTOR signalling may be 
activated in bladder tumours. In accordance with this 
hypothesis, mTOR inhibition via rapamycin or 
rapamycin analogs reduced proliferation in in vitro 
and in vivo UBC models, with correspondent 

Table 3. Correlation between p-mTOR expression status in tumour 
sections and clinicopathological variables 
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diminished p-S6 levels [33-34, 43]. Importantly, 
treatment with mTOR inhibitors enhanced the 
therapeutic efficacy of cisplatin and gemcitabine in 
bladder cancer cell lines [34, 44-45], and impaired 
tumour progression when administered intravesically 
in a bladder cancer mouse model [46]. In a phase II 
study of everolimus in patients with locally advanced 
or metastatic UBC, clinical activity was demons-
trated, and the profile of plasma angiogenesis-related 
proteins suggested that everolimus exhibits antian-
giogenic properties that play a significant role in 
disease control [47]. In spite of these promising 
results, little is known about the prevalence and 
clinical relevance of p-mTOR expression in UBC 
tissue. A better understanding on this subject could 
be important to appropriately identify UBC patients 
that can achieve benefits from the molecularly 
targeted therapies.  
Phosphorylation of mTOR at Ser2448 is often used 
as indicative of its activity [17, 48]. In three studies 
using the same p-mTOR antibody (with slightly 
different protocols and quantification methods), the 
percentage of bladder tumour samples with activated 
mTOR ranged from 32% to 88% [33-34, 49]. While 
some authors identified p-mTOR upregulation as an 
important prognostic factor [33, 50], others found an 
overall downregulation of the mTOR pathway in UBC 
[51]. Comprehensive immunohistochemical and 
molecular approaches encompassing several mTOR 
upstream and downstream players are better suited 
for investigating the potential impact of this pathway 
in UBC patients. Even so, inconsistent results have 
been described. For instance, reports on p-Akt [49-

50] and p-S6K/p-S6 [33, 49-50] upregulation in 
tumour versus non-tumour urothelium contradict 
those reporting p-Akt [51] and p-S6 [51-52] 
downregulation. A few studies demonstrated positive 
associations between mTOR pathway activation and 
the clinicopathological parameters of bladder tu-
mours [50, 52], while others failed to do so [34] or 
even reported inverse associations [51]. One can 
argue that heterogeneity among patient selection 
criteria and relative proportions of differently staged 
and graded tumours, immunohistochemistry proto-
cols or evaluation of staining methods may 
significantly contribute to the conflicting results 
described so far. However, the unique biological 
features that define bladder tumourigenesis and 
tumour progression, together with the intrinsic 
complexity of the PI3K/Akt/mTOR pathway, are 
probably the main actors of this puzzling scenario. 
In our study, we only evaluated p-mTOR expression 
in a cohort of 76 urothelial bladder tumours, which 
constitutes a limitation, but together with markers of 
blood and lymphatic endothelium. Only 20% of the 
tumour samples were scored positive for p-mTOR 
expression; the adjacent non-tumour urothelium 
(apparently normal or hyperplasic) was immuno-
stained in 36% of the tissue sections, although only 
the superficial layers, including umbrella cells, were 
stained. Regarding the malignant urothelium of NMI 
lesions, an evenly distributed pattern of expression 
was frequently observed, but the stronger intensity of 
staining at the superficial layers was maintained. P-
mTOR expression decreased with increasing stage, 
and MI tumours were mainly negative; when 

Figure 2: Kaplan-Meier curves demonstrating 5-year overall survival (A) (p>0.05) and 5-year disease-free survival (B) 
(p=0.004) based on p-mTOR immunoexpression status in pT3/pT4 urothelial bladder tumour sections (n=49). 
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positive, only small clusters of cells were stained. 
Interestingly, normal-like mucosa of MI lesions 
preserved p-mTOR expression in a significant 
proportion of cases that had lost it in the tumour 
sections. No significant association was found 
between p-mTOR positivity and neovascularization. 
Nevertheless, when tumour and non-tumour sections 
were simultaneously negative, angiogenesis occur-
rence seemed to be compromised. In the group of 
pT3/pT4 tumours, p-mTOR expression associated 
with worse survival rates, although the differences 
were only significant for 5-year disease-free survival. 
The pattern of p-mTOR immunoexpression that was 
observed in our UBC series has been similarly 
described in other studies [34, 50]. We may 
speculate that the restriction of p-mTOR expression 
to the superficial layers of the normal-like urothelium 
reflects the biological plasticity inherent to the 
epithelial cells, namely the umbrella cells. These 
cells exhibit unique structural and biochemical 
features that enable them to form an effective 
permeability barrier while supporting mechanical 
deformation due to bladder filling [53-54]. Probably, 
mTOR constitutive expression is necessary as a part 
of their normal metabolic activities. In fact, it has 
been described that mTORC1, besides being a 
master regulator of cell growth and proliferation in 
non-tumour and tumour conditions, additionally 
controls specific aspects of cellular metabolism 
through the induction of metabolic gene expression 
[55-57]. Moreover, and accordingly to our results, 
NMI tumours may extend and upregulate mTOR 
expression up to the basal urothelial layer, which is 
consistent with an enhanced malignant potential that 
will guide growth and progression of the primary 
tumour. Fahmy et al. have recently reported that 
activation of the mTOR pathway might be used as a 
predictor of recurrence among patients with high-risk 
NMI [58]. Interestingly, Pinto-Leite et al. [45], when 
studying the effect of everolimus, alone or in 
combination with gemcitabine treatment, in bladder 
cancer cell lines, observed a significant antiprolife-
rative effect for everolimus in a NMI cell line, while a 
MI cell line demonstrated marked resistance. These 
results, together with the results from our study, 
suggest that interfering with the mTOR pathway may 
represent an appealing approach for therapeutic 
intervention in patients with non-muscle invasive 
tumours. 
In the group of muscle-invasive tumours, occurrence 
of two p-mTOR phenotypes is intriguing. On one 
hand, positive pT3/pT4 tumours had worse 
outcome, which is in accordance with findings from 

several authors that reported mTOR pathway 
upregulation as an important prognostic factor [33, 
50]. On the other hand, p-mTOR positivity was rare 
and restricted to cell spots, and in the majority of MI 
tumour sections, immunoexpression was lost in a de 
novo fashion, as supported by the maintenance of p-
mTOR expression in the normal-like adjacent 
mucosa. Probably, unknown biological determinants 
are acting in the promotion of this unique malignant 
scenario. Schultz et al. [51] reported the apparent 
downregulation of the mTOR pathway, as demons-
trated by the low expression levels of p-Akt and p-S6 
in invasive UBC, when compared to benign 
urothelium, hypothesizing that the downregulation of 
p-S6 in MI-UBC could be related to the HIF-1α 

(hypoxia-inducible factor)-activating hypoxia-resistant 
microenvironment. Müller et al. [59], when compa-
ring between normal and tumour prostate tissues, 
also found that p-mTOR expression was reduced in 
the tumour, correlating with adverse clinicopatholo-
gical features. These and our results may reflect the 
occurrence of alternative mTOR signalling mecha-
nisms that lie behind the classical PI3K/Akt 
activation pathway. Additional studies with larger and 
more comprehensive UBC series and panels of 
mTOR upstream and downstream effectors, together 
with reproducible immunohistochemical and mole-
cular approaches, and with in vivo and in vitro 
bladder tumour models, are urgently needed to 
clarify the backstage of the mTOR pathway in human 
urothelial bladder cancer, in order to expedite the 
research on potential target therapeutic approaches. 
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BACKGROUNG: The relapsing and progressive nature of bladder tumours, and the heterogeneity in the response to 
cisplatin-containing regimens, are the major concerns in the care of urothelial bladder cancer (UBC) patients. Biomarkers of 
tumour aggressiveness and response to treatment are urgently needed. The metabolic adaptations that alter the tumour 
microenvironment and thus contribute to chemoresistance have been poorly explored in UBC setting. We aimed to evaluate 
the clinical and prognostic significance of the microenvironment-related molecules CD147, monocarboxylate transporters 
(MCTs) 1 and 4, CD44 and CAIX expression in UBC patients, and to assess the therapeutic impact of CD147 
downregulation in vitro.  
METHODS: UBC sections from 114 patients were stained by immunohistochemistry for detection of the biomarkers. The 
immunohistochemical reactions were statistically correlated with the clinicopathological and the outcome parameters. Four 
UBC cell lines were assessed for cisplatin sensitivity. The RNA interference approach (siRNA) was used to silence CD147 
expression in HT1376 cell line, in order to determine the effect of CD147 downregulation on MCTs expression and 
chemosensitivity to cisplatin.  
RESULTS: Significant associations were found between the expressions of the biomarkers. CD44 expression was correlated 
with tumour progression. CAIX positivity was predominant in high grade papillary lesions. The presence of MCT1 and/or 
MCT4 expressions was significantly associated with unfavorable clinicopathological parameters. The incidence of CD147 
positive staining significantly increased with advancing stage, grade and type of lesion, and occurrence of lymphovascular 
invasion. Similar associations were observed when considering the concurrent expression of CD147 and MCT1. This 
expression profile lowered significantly the 5-year DFS and OS rates. Moreover, when selecting patients who received 
platinum-based chemotherapy, the prognosis was significantly worse for those with MCT1 and CD147 positive tumours. On 
multivariate analysis, only stage remained as an independent prognostic factor. In the in vitro study, CD147 specific 
downregulation was accompanied by a decrease in MCT1 and MCT4 expressions and, importantly, an increase in 
chemosensitivity to cisplatin. 
CONCLUSIONS: Our results provide novel insights for the involvement of CD147 and MCTs in bladder cancer progression 
and resistance to cisplatin-based chemotherapy. We consider that the possible cooperative role of CD147 and MCT1 in 
determining cisplatin resistance should be further explored as a potential theranostics biomarker. 
 
KEYWORDS: CAIX, CD147, CD44, cisplatin, glycolytic metabolism, microenvironment, monocarboxylate transporters, 
urothelial bladder cancer, chemoresistance. 
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INTRODUCTION 
 
Urothelial bladder carcinoma (UBC), the most fre-
quent type (90%) of bladder cancer and the second 
most common malignancy of the urogenital region, 
is a complex disease with variable natural history 
and clinical behaviour, representing an important 

cause of morbidity and mortality worldwide [1]. The 
natural history of UBC encompasses two main 
phenotypic variants: the majority of the tumours are 
non-muscle invasive (NMI) low-grade papillary lesions 
characterized by frequent recurrences; the remaining 
display a phenotype of muscle-invasive (MI) tumours. 
An intermediate sub-variant of high grade NMI 
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tumours harbours an enhanced risk of progression 
to MI disease [2-3]. Due to the high propensity of 
dissemination, MI tumours are generally treated by 
radical cystectomy (RC), pelvic lymphadenectomy 
and/or perioperative cisplatin-containing chemothe-
rapy [4-5]. However, chemotherapy responses are 
very heterogeneous and frequently impaired by resis-
tance [6]. To predict whose tumours will develop 
resistance remains a challenge that can only be 
overcome when biomarkers of tumour aggressive-
ness and response to chemotherapy are routinely 
evaluated in pathological specimens. 
CD147 (or EMMPRIN, extracellular matrix metallo-
proteinase inducer) is a highly glycosylated trans-
membrane protein member of the immunoglobulin 
superfamily of receptors [7]. Originally identified as a 
matrix metalloproteinase (MMP) inducer [8], CD147 
is also able to upregulate vascular endothelial growth 
factor (VEGF) [9], to associate with the laminin-
interacting 31 and 61 integrins [10], and to 

stimulate hyaluronan production [11], co-localizing 
with the hyaluronan receptor CD44 [12]. Thus, this 
glycoprotein promotes extracellular matrix degra-
dation, angiogenesis, migration and invasion, enhan-
cing the metastatic potential of CD147-expressing 
tumour cells [7, 13]. Importantly, CD147, through 
hyaluronan-CD44 interaction, crosstalks with various 
multidrug transporters of the ABC (ATP-binding 
cassette) family classically associated with anti-
apoptotic signalling and chemotherapy resistance 
[14]. Moreover, these constitutive interactions 
between hyaluronan, CD44, and CD147 contribute 
to the regulation of monocarboxylate transporter 
localization and function at the plasma membrane 
[12, 15].  
Monocarboxylate transporters (MCTs) comprise 
fourteen members that share the same basic stru-
cture, although only the membrane-bound proton-
coupled isoforms – MCT1, MCT2, MCT3 and MCT4 
– transport monocarboxylates, namely lactate, 
through the plasma membrane [16]. The efflux of 
lactate from the malignant cells to the tumour 
microenvironment is crucial to maintain metabolic 
homeostasis. In fact, the malignant cells usually 
display high glycolytic rates even under aerobic 
conditions, a phenomenon known as the “Warburg 
effect” [17-18]. Hypoxia, a constitutive trait of 
tumours, is considered to be a trigger mechanism of 
the glycolytic phenotype [19]. Under hypoxic stress, 
hypoxia-inducible factor (HIF)-1 amplifies an ada-
ptive response that promotes glycolysis and, impor-
tantly, induces the expression of pH regulators, such 

as carbonic anhydrase IX (CAIX) and MCTs, to 
assure intracellular pH balance. The high amounts of 
lactate extruded from the malignant cells, mainly 
through MCT1 and MCT4, contribute to acidification 
of the tumour microenvironment, which supports 
increased migration and invasion abilities of the 
primary tumour [20-21]. 
The preponderance of the tumour microenvironment 
in UBC setting has been poorly explored. A few 
studies have reported upregulation of microenvi-
ronment-related molecules, namely CD147 [22-25], 
CD44 [26-27], CAIX [28-29] and MCT4 [30], and 
their significant impact on the prognosis of the 
patients. In the study by Als et al. [24], CD147 
positivity was able to predict response and survival 
following cisplatin-containing chemotherapy in 
patients with advanced UBC. Its downregulation 
signifycantly decreased proliferation, migration and 
invasion in UBC cell lines [23, 31]. However, the 
influence of CD147 downregulation on the response 
to cisplatin was not investigated. In other types of 
malignancies, increasing evidence suggest that 
upregulation of the aforementioned molecules stron-
gly contributes to a hyper-glycolytic acid-resistant 
microenvironment that favours tumour growth, 
invasion and metastasis, suppresses host immune 
defenses, and impairs chemotherapy response [13, 
32-36]. 
In order to elucidate the role of microenvironment-
related molecules in UBC, namely their impact on 
chemoresistance, we aimed to assess, in 114 UBC 
patients, the clinical and prognostic significance of 
MCT1, MCT4, CD147, CD44 and CAIX expressions. 
Additionally, we intended to characterize the chemo-
sensitivity of parental and CD147-silenced UBC cell 
lines to cisplatin. 

 
MATERIALS AND METHODS 
 
- Patients and Tissue Samples 
Representative formalin-fixed paraffin-embedded sur-
gical specimens were obtained from 114 patients 
with urothelial bladder carcinomas who underwent 
transurethral resection (TUR) and/or radical cyste-
ctomy (RC) at the Portuguese Institute of Oncology, 
Porto, from January 1996 to May 2006. In our 
cohort, we did not include patients diagnosed with 
urothelial carcinomas with variant histology, squa-
mous cell or adenocarcinomas, patients who had an 
insufficient follow-up time and/or patients whose 
tumour samples were inadequate for further study. 
Prior approval was obtained from the Ethics Co-
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mmittee of the Portuguese Institute of Oncology.  
The median age of the patients was 70 years (range 
41-86); ninety-four (82.5%) were male and twenty 
(17.5%) were female.  Additionally, tissue sections 
were obtained from normal-like areas of the urinary 
bladder of 6 autopsy patients without history of 
bladder cancer. 
Each surgical product was examined according to 
the guidelines of the College of American Patholo-
gists [37]. Hematoxylin-eosin (H&E)-stained sections 
were reviewed according to standard histopatholo-
gical examination by two independent pathologists. 
Lesions were classified according to the American 
Joint Committee on Cancer [38] and to the World 
Health Organization 2004 [39] classification sys-
tems. For statistical analysis, tumours were divided 
into three groups based on T stage: group 1 (pTa, 
pT1 and pTis), group 2 (pT2 a and b) and group 3 
(pT3 and pT4). Occurrence of lymphovascular 
invasion (LVI) was identified in 39 (34.2%) UBC 
samples (Table 1). 
Forty-two (36.8%) patients underwent TUR with 
curative intention; 22 of these patients were treated 
by RC following disease recurrence and progression 
or when multiple CIS lesions were observed in the 
pathological specimen. Seventy-two (63.2%) patients 
had RC as their first treatment. Platinum-based 
chemotherapy regimens were administered to 31 
(27.2%) patients (neoadjuvant: 6 patients, adjuvant: 
9 patients, palliative: 16 patients). Twenty-seven 
(23.7%) patients presented loco-regional metastases 
at the time of RC. Mean and median follow-up were 
38.2 and 37.0 months (range 1-132), respectively. 
Recurrence was defined as the reappearance of UBC 
(loco-regional dissemination or distant metastasis) 
more than 3 months after TUR/RC, occurring in 
seventy-four (64.9%) patients. Disease-free survival 
(DFS) was defined as the time from the TUR/RC 
until recurrence. Overall-survival (OS) was defined as 
the time from the TUR/RC until death by bladder 
cancer or the last clinical assessment.  
 
- Cell Lines and General Cell Culture Procedures 
In the present study, four urothelial bladder carci-
noma cell lines were used: the 5637 NMI-UBC cell 
line and three MI-UBC cell lines (T24, MCR and 
HT1376). T24 was obtained from Leibniz Institute 
DSMZ – German Collection of Microorganisms and 
Cell Cultures; 5637, MCR and HT1376 were kindly 
provided by Professor Paula Videira, Universidade 
Nova de Lisboa, Lisboa, Portugal. The cell lines were 
cultured as a monolayer in RPMI Medium 1640 

(Gibco) supplemented with antibiotics (1% 

penicillin/streptomycin solution, Gibco) and 10% 

fetal bovine serum (FBS, Gibco). Cells were 
incubated in a humidified atmosphere at 37ºC and 
5% CO2, and were routinely subcultured by trypsini-
zation. 
 
- Immunohistochemistry and Immunocytochemistry 
Representative 4μm-thick UBC sections were stained 

by immunohistochemistry, according to the strepta-
vidin-biotin-peroxidase complex technique (Ultravi-
sion Detection System Anti-polyvalent, HRP, Lab 
Vision Corporation) for MCT4, CD147, CD44 and 
CAIX detection, and to the avidin-biotin-peroxidase 
complex assay (VECTASTAIN Elite ABC Reagent, 
RTU, Vector Laboratories) for MCT1 detection, as 
previously described [25, 40-41]. The primary 
antibodies were obtained from Chemicon (MCT1, 
AB3538P), Santa Cruz Biotechnology (MCT4, H-
90, sc-50329), Zymed (CD147, 18-7344), AbD 

Serotec (CD44, MCA2726) and AbCam (CAIX, 
ab15086). These antibodies were used in 1:200 
dilution (MCT1), 1:500 dilution (MCT4 and CD147), 
1:1000 dilution (CD44) and 1:2000 dilution (CAIX), 
and incubated on the sections for 2 hours (MCT4, 
CD147, CD44, CAIX) or overnight (MCT1), at room 
temperature. Negative controls were carried out by 
replacing the primary antibodies with a universal 
negative control antibody (N1699, Dako). Colon 
carcinoma and gastric carcinoma sections were used 
as positive controls for MCT1, MCT4, CD147 and 
CD44 detection, and for CAIX detection, respectively. 
The immunocytochemistry procedure for detecting 
MCT1, MCT4 and CD147 expression in the UBC cell 
lines was performed in 4µm-thick cytoblock sections, 
following the protocol mentioned for UBC sections, 
as described above. The paraffin cytoblocks were 
made from concentrated cell suspensions by 
centrifuging fresh cell suspensions at 1200 rpm for 
5 minutes. Cell pellets were incubated overnight with 
formaldehyde 3.7%, re-centrifuged, processed in an 
automatic tissue processor (TP1020, Leica), and 
then included into paraffin (block-forming unit 
EG1140H, Leica).  
 
- Evaluation of Immunohistochemistry and Immuno-
cytochemistry Results 
The immunostained tissue sections were evaluated 
by light microscopy for cytoplasmic and/or plasma 
membrane staining by two independent observers. 
Discordant cases were re-evaluated and classified by 
consensus. The grading system used was semi-
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quantitative [25, 40-41], considering the sum of the 
percentage of immunoreactive cells (0, 0% of positive 
cells; 1, < 5% of positive cells; 2, 5-50% positive 
cells; score 3, >50% of positive cells) and the inten-
sity of staining (0, negative; 1, weak; 2, intermediate; 
3, strong); final scores 4 were considered positive 

for all of the biomarkers studied. Finally, the plasma 
membrane positive cases were analyzed separately. 
The expression of the biomarkers on the cytoblocks 
sections was also assessed, distinguishing between 
cytoplasmic and plasma membrane staining. 
 
- Downregulation of CD147 expression  
Downregulation of CD147 expression in MCR and 
HT1376 cell lines was accomplished by reverse 
transfection of 50nM siRNA (siRNA for CD147, 
SASI_Hs01_ 00156882, Sigma-Aldrich; control 
scramble siRNA, 4390843, Ambion); lipofectami-

ne (13778-075, InvitrogenTM) was used as 
permeabilization agent, following the manufacturer’s 
instructions. Cells were transfected once and 
collected on days 5 and 8 after transfection. Specific 
silencing of the targeted gene was confirmed by 
Western blotting analysis. 
 
- Western blotting  
Parental UBC cell lines grown to 80% confluence, 
and siRNA cells grown until days 5 and 8 after 
transfection, were scraped in cold PBS and then 
homogenized in lysis buffer (supplemented with 
protease inhibitors) for 10 minutes. Cell lysates were 
collected after centrifugation at 13,000 rpm, 15 
minutes at 4ºC. The Bio-Rad Dc Protein Assay (500-
0113, Bio-Rad) was used for protein quantification. 
Equal amounts (20 g) of total protein were 

separated on 10% polyacrylamide gel by SDS-PAGE 
and transblotted onto nitrocellulose membranes 
(Amersham Biosciences) in 25 mM Tris-base/glycine 
buffer. MCT1, MCT4, CD147, CD44 and CAIX 
expressions were evaluated by incubating the 
membranes overnight at 4ºC with specific primary 
polyclonal antibodies against MCT1 (1:200 dilution, 
H-1, sc-365501, Santa Cruz Biotechnology), MCT4 

(1:2000 dilution, H-90, sc-50329, Santa Cruz 
Biotechnology), CD147 (1:200 dilution, sc-71038, 
Santa Cruz Biotechnology), CD44 (1:1000 dilution, 
MCA2726, AbD Serotec) and CAIX (1:2000 dilution, 
ab15086, AbCam). -Actin (1:300 dilution, I19, sc-
1616, Santa Cruz Biotechnology) was used as 

loading control. Blots were developed with enhanced 
chemiluminescence (Supersignal West Femto kit, 
34096, Pierce) using anti-mouse or anti-goat Ig 

secondary antibodies coupled to horseradish peroxi-
dase. Band densitometry analysis with the Image J 
software (version 1.41, National Institutes of Health) 
was performed for quantification of Western blot 
results. 
 
- Cell Viability Assay 
To assess the chemosensitivity of the UBC cell lines 
to cisplatin [CDDP, cis-diamminedichloroplatinum 
(II)], cells were seeded in triplicate into 48-well plates 
at different densities, based on the growth chara-
cteristics of each cell line (1.2x104 T24 and 5637 
cells per well, 1.5x104 HT1376 cells per well, 2x104 
MCR and siRNA-HT1376 cells per well and 3x104 
siRNA-MCR cells per well), and incubated for 2 (non-
siRNA cell lines) or 5 (siRNA cell lines) days. The 
medium was then removed and replaced with fresh 
medium containing CDDP with varying concentra-
tions (1-100 g/ml). Stock solutions of 1 mg/ml 

CDDP in 10% NaCl were kindly provided by the 
Pharmaceutical Services of the Portuguese Institute 
of Oncology, Porto, Portugal, from which the working 
solutions were prepared. The effect of the treatment 
with CDDP on cell viability was determined at 72 
hours by the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2-tetrazoli-
um)] assay (G3580, Promega) according to the 
manufacturer’s instructions. The IC50 values (CDDP 
concentration that corresponds to 50% of cell growth 
inhibition) were estimated from at least three 
independent experiments, using GraphPad Prism 5 
Software. 
 
- Cell Cycle Analysis 
For cell cycle distribution analysis, cells were seeded 
in 6-well plates at different densities (5x105 T24 and 
5637, 8x105 HT1376 and 1x106 MCR cells per well). 
After 42 hours of incubation, the cells were starved 
in FBS-free medium during 6 hours, and then treated 
with the specific CDDP IC50 dose during 72 hours. 
Cells were trypsinized and fixed in 70% ethanol (30 
minutes at 4ºC), followed by staining with propidium 
iodide (PI) solution [20 g/ml of PI (81845, Sigma) 
+ 250 g/ml of RNAse (12091-021, InvitrogenTM) 

diluted in 0.01% Triton X-100 in PBS] at 50ºC during 
50 minutes. PI stained cells were analyzed by flow 
cytometry (LSRII model, BD Biosciences), consi-
dering a total of 15.000 events, and the cell cycle 
distribution was determined with the FlowJo software 
(version 7.6, Tree Star, Inc). The assay was repeated 
at least three times. 
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- Cell Death Assay 
Cell death rate was determined by the Annexin-V-
FLOUS staining Kit (Roche Diagnostics), in order to 
assess apoptosis and/or necrosis occurrence 
induced by CDDP treatment in the parental UBC cell 
lines. Cells were seeded in 6-well plates at different 
densities (5x105 T24 and 5637, 8x105 HT1376 and 
1x106 MCR cells per well). After 48 hours of 
incubation, cells were treated with the specific CDDP 
IC50 dose during 72 hours, followed by collection and 
staining with annexin V/PI, according to the 
manufacturer’s instructions (15 minutes of incubi-
tion in the staining solutions, at room temperature). 
The percentage of cell death was assessed by flow 
cytometry (LSRII model, BD Biosciences), consi-
dering a total of 20,000 events, and the results were 
analyzed using the FlowJo software (version 7.6, 
Tree Star, Inc).  The assay was repeated at least 
three times. 
 
- Wound Healing Migration Assay 
Cells were seeded in 6-well plates at different 
densities (1x106 T24 and 5637, 1.4x106 HT1376 
and 2x106 MCR cells per well) and incubated for 24 
hours. The medium was then replaced by fresh FBS-
free medium containing the previously determined 
CDDP IC50 dose for each cell line, to assess the effect 
of the drug on the migration ability of the parental 
cell lines (CDDP-free control wells were also 
prepared); therefore, 48 hours after the beginning of 
the CDDP treatment, the cells were washed with 
PBS, and a scratch wound through the central axis 
of the wells was gently made using a plastic 200 l 

pipette tip; the cells were then incubated with fresh 
CDDP-containing medium. The “wound” areas were 
monitored and photographed by phase contrast 
microscopy at 0 and 24 hours. The relative migration 
distances were quantified by the ratio of gap 
distance between 24 and 0 hours. The experiment 
was repeated at least three times. 
 
- Invasion Assay 
Invasion assays were performed with the parental 
cell lines treated with CDDP IC50 dose. Twenty-four-
well BD MatrigelTM Invasion Chambers (354480, BD 
BioCoatTM, BD Biosciences) were used, according to 
the manufacturer’s instructions. After rehydrating the 
matrigel invasion chambers, cells were seeded at 
different densities (2x104 T24 and 5637, 3x104 
HT1376 and 4x104 MCR cells per chamber) and 
incubated with the specific CDDP IC50 dose during 24 
hours. Then, non-invading cells were swabbed and 

invading cells were fixed with methanol and stained 
with hematoxylin. Membranes were photographed at 
16x magnification under an Olympus SZX16 
stereomicroscope, and invading cells were counted 
using the Image J software (version 1.41, National 
Institutes of Health). Invasion was calculated as the 
percentage of cell invasion normalized for the control 
condition. Results were expressed as mean of 
triplicate experiments. 
 
- Statistical analysis 
The immunohistochemistry results were analyzed 
using the Statistical Package for Social Sciences 
(SPSS) software for Windows, version 18.0. 
Associations between the immunoexpression of the 
biomarkers and the clinicopathological parameters 
were examined for statistical significance using 
Pearson’s chi-square (2) test and Fisher’s exact test 

(when n<5). Five-year DFS and OS rates were 
evaluated using Kaplan-Meier curves and differences 
were analyzed by Log-Rank or Breslow tests. p 
values lower than 0.05 were considered significant. 
Variables that achieved statistical significance in the 
univariate analysis were entered in a multivariate 
analysis using Cox proportional hazards analysis. 
The hazard ratios (HR) were estimated with their 
95% confidence intervals (95% CI). 
The results of the in vitro studies were analyzed 
using the GraphPad Prism 5 software, with the 
Student’s t test, considering significant p values 
lower than 0.05. 
 
RESULTS 
 
Characterization of MCT1, MCT4, CD147, 
CD44 and CAIX Expressions in Urothelial 
Bladder Tumours 
 
- Prognostic Significance of the Clinicopathological 
Parameters 
The 5-year DFS and OS rates were significantly 
influenced by T3/T4 pathologic stage, infiltrating 
type of lesion, occurrence of lymphovascular inva-
sion and presence of loco-regional metastases. 
(Table 1). 
 
- Immunoexpression of the Biological Parameters 
A total of 114 UBC samples and 6 non-neoplastic 
bladder samples were analyzed for MCT1, MCT4, 
CD147, CD44 and CAIX expressions. After testing 
different grading systems considering the semi-
quantitative evaluation of extension and intensity of 
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staining (cytoplasmic expression, with or without 
plasma membrane staining), we adopted the final 
immunoreaction score 4 as the more suitable for 

explaining the results obtained with all of the studied 
biomarkers. Due to the membrane localization of the 
biomarkers, plasma membrane staining was additi-
onally assessed separately. 
Regarding MCT1 and MCT4 immunoexpressions 
(Figure 1A and 1B, respectively), 36 (31.6%) and 50 
(43.9%) UBC cases were scored positive, respecti-
vely; plasma membrane staining was observed in 44 
(38.6%) and 64 (56.1%) cases, respectively. Stromal 
and endothelial cells were negative for both biomar-
kers, and served as internal negative controls.  None 
of the normal bladder samples expressed MCT1; two 
non-neoplastic sections showed cytoplasmic staining 
for MCT4, but the plasma membrane was negative 
in the six observed sections. 
When considering the expression of the chaperones 
CD147 and CD44 (Figures 1C, 1D and 1E, respecti-
vely), the majority of the tumour tissues was positive 
both for global immunoreaction [CD147: 68 (59.6%); 
CD44: 57 (50.0%)] and plasma membrane staining 
[CD147: 70 (61.4%); CD44: 77 (67.5%)]. The stroma 
was negative for CD147 immunoreaction in all of the 
cases (Figure 1C); however, although CD44 positive 
tumours presented negative stromas (Figure 1D), 
CD44 negative tumours had their stromal cells 
stained (Figure 1E). Regarding the non-neoplastic 
bladder samples, the majority was negative for 
CD147 staining, while no difference was observed 
when evaluating CD44 expression. 
CAIX positive immunoexpression (Figure 1F) was 
observed in the vast majority of the UBC samples 
[global immunoreaction: 72 (63.2%); plasma 
membrane staining: 92 (80.7%)]; plasma membrane 

positive cases exhibited a heterogeneous pattern, 
with the luminal face of NMI papillary lesions and the 
centre of MI lesions presenting a strong intensity of 
staining (Figure 1F). This pattern of expression was 
significantly different from the pattern observed in 
the non-neoplastic tissues – none of the normal 
bladders expressed CAIX. 
 
- Associations among the Biological Parameters  
Significant associations were found between the 
expression of MTCs and their chaperone CD147 
(Tables 2 and 3) in the tumour samples. With regard 
to global immunoreaction, 91.7% MCT1 and 90.0% 
MCT4 immunoreactive cases were also CD147 
positive (p<0.001 in both associations); when consi-
dering plasma membrane staining separately, 77.3% 
MCT1 and 71.9% MCT4 positive sections also 
expressed CD147 (p=0.006 and p=0.012, respecti-
vely). A similar pattern was observed when evalua-
ting the correlation between MCTs and CD44 
immunoreactions (Tables 2 and 3): 69.4% MCT1 
and 66.0% MCT4 immunoreactive cases (global 
expression) were also positive for CD44 immunoex-
pression (p=0.008 and p=0.004, respectively). In 
accordance, and considering plasma membrane 
staining, 75.0% MCT1 and/or MCT4-expressing 
samples were also positive for CD44, although the 
differences were not significant due to the high 
number of cases that expressed CD44 but did not 
express MCTs. 
CD147 and CD44 immunoreactions were also 
correlated: 70.2% (40/57) and 67.5% (52/77) of the 
positive sections for CD44 (global expression and 
plasma membrane staining, respectively) expressed 
CD147 (p=0.035 and p=0.065, respectively; data 
not shown). Additionally, significant associations 

Table 1. Association be-
tween 5-year disease-free 
survival and overall survival 
rates, and clinicopatholo-
gical parameters 
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were found when comparing immunoreactive sam-
ples for MCT4 (92%, 46/50, p=0.007), CD147 
(86.9%, 59/68, p=0.046) and CD44 (89.5%, 51/57, 
p=0.018) with CAIX plasma membrane positive 
cases (data not shown). 
 
- Clinical and Prognostic Significance of the Biologi-
cal Parameters  
The presence of MCT1 and/or MCT4 immunoexpres-
sion was significantly associated with unfavourable 
clinicopathological parameters, such as increasing 
stage (MCT1, p<0.001; MCT4, p=0.022), infiltrating 
morphological type of lesion (MCT1, p<0.001; 

MCT4, p=0.021) and occurrence of lymphovascular 
invasion (MCT1, p=0.002; MCT4, p=0.028) (Table 
4). When considering plasma membrane staining 
separately (Table 5), this unfavourable phenotype 
was maintained for pT3/pT4 tumours (52.0%, 
p=0.003), for infiltrating tumours (51.5%, p=0.063) 
and for tumours with LVI occurrence (53.8%, 
p=0.025) that expressed MCT1. MCT1 expression 
(global immunoreaction) had a negative influence on 
5-year DFS (p=0.053) and OS (p=0.065) rates 
(Table 6). 
Regarding CD147 expression, 80.0% of pT3/pT4 
tumours (p<0.001), 64.4% of high grade tumours 

Figure 1. Immunohistochemical positive reactions for MCT1 (A, x200 amplification), MCT4 (B, x100 amplification), CD147 (C, x200 
amplification), CD44 (D, x100 amplification; E, x40 amplification) and CAIX (F, x100 amplification) in urothelial bladder carcinoma cells. 
A to D, muscle-invasive tumours exhibiting cytoplasmic and membrane immunoexpression of the selected biomarkers in the malignant 
urothelium, with negative stromas. E, a non-muscle invasive tumour showing an inverted CD44 staining pattern, with negative malignant 
cells and positive stroma. F, a muscle-invasive tumour stained for CAIX in the plasma membrane of the malignant urothelial cells, where 
the tumour core is significantly more intensely stained than the invasive front. 
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(p=0.001), 75.0% of infiltrating tumours (p<0.001) 
and 84.6% of the tumours with LVI occurrence 
(p<0.001) were positive for CD147 cytoplasmic 
staining (with or without plasma membrane immuno-
reactivity) (Table 4). This expression profile lowered 
significantly the 5-year DFS (p=0.027) and OS 
(p=0.018) rates (Table 6).  
In order to assess the clinical and prognostic 
significance of the combined analysis of MCT1 and 
CD147 immunoreaction, we considered two groups: 
group 1, including cases with 0 or 1 positive biomar-
kers, and group 2, including cases with two positive 
biomarkers. The concurrent immunoexpression of 
MCT1 and CD147 was associated with unfavourable 
clinicopathological parameters – 72.7% (24/33, 
p<0.001), 90.9% (30/33, p<0.001) and 60.6% 
(20/33, p<0.001) of the MCT1 and CD147 positive 
cases were pT3/pT4, infiltrating and with LVI 
occurrence tumours, respectively (data not shown) – 
and lowered significantly the 5-year DFS (p=0.033) 
and OS (p=0.037) rates (data not shown). Notably, 
when selecting patients who received platinum-based 
chemotherapy (n=31), the prognosis was significan-
tly worse for those with MCT1 and CD147 positive 
tumours (n=11) – patients with 0 or 1 positive bio-
markers had median DFS and OS times of 25.8 
(95% CI 20.4-31.2) and 42.2 (95% CI 33.9-50.4) 
months, respectively, which were reduced to 11.7 
(95% CI 6.7-16.2) and 12.4 (95% CI 1.0-32.5) 
months, respectively, if the tumours were MCT1 and 
CD147 positive (p=0.072 and p=0.026, respectively; 
data not shown).   
CD44 plasma membrane positivity was predominant 
in pT3/pT4 (82.0%, p=0.013) and infiltrating (76.5%, 

p=0.032) UBC samples (Table 5). Conversely, the 
majority of the high grade papillary lesions (93.8%, 
p<0.001) were CAIX positive (Table 5). Regarding 
the global immunoreaction for CAIX, 87.5% of high 
grade papillary tumours (p=0.001), 69.3% of the 
tumours without LVI occurrence (p=0.068) and 
67.8% of the cases without loco-regional metastasis 
(p=0.064) were scored CAIX positive (Table 4). 
The aforementioned associations were found when 
analyzing a series of 114 UBC patients, which 
includes six patients that received neoadjuvant 
platinum-based chemotherapy regimens. Since this 
could introduce a bias variable, the statistical 
analysis was also performed without those six cases, 
however no differences were observed, and we 
decided to include the cases in the final results.  
 
- Multivariate Analysis  
The parameters that significantly influenced the 5-
year DFS and OS rates, namely T3/T4 pathological 
stage, infiltrating type of lesion, occurrence of 
lymphovascular invasion and loco-regional dissemi-
nation, CD147 positive immunoreaction and the 
concomitant expression of MCT1 and CD147, were 
entered in the multivariate analysis model. None of 
the aforementioned variables was identified as an 
independent prognostic factor. 
 
Immunoexpression of MCT1, MCT4 and 
CD147 in Urothelial Bladder Cancer Cell 
Lines  
 
All UBC cell lines expressed MCT1, MCT4 and 
CD147, as detected by Western blot (Figure 2A) and 

Table 2. Association between MCTs, and CD147 and CD44 global immunoreaction (cytoplasmic expression, with or 
without plasma membrane staining) 

Table 3. Association between MCTs, and CD147 and CD44 plasma membrane immunoexpression 
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immunocytochemistry (Figure 2B). MCT4 and 
CD147 were expressed predominantly at the plasma 
membrane in the four cell lines. In T24 cell line, 
MCT1 expression was membranous, while in the 
remaining cell lines, both plasma membrane and 
cytoplasm were stained.  
 
In Vitro Effect of CDDP in Urothelial Bladder 
Cancer Cell Lines 
 
In order to characterize the response of four different 
parental UBC cell lines to CDDP, we started by 
measuring the effect of this drug on cell viability 
(Figure 3). For this, IC50 values were estimated after 

72 hours of treatment. Ten different CDDP concen-
trations were used, ranging from 1 to 100 g/ml. 

We observed that 5637 and T24 cell lines presented 
a gradual decrease in total biomass (MTS assay) in a 
CDDP dose-dependent manner; IC50 values were low: 
3.1 g/ml for 5637 and 3.5 g/ml for T24 cells. 

HT1376 and MCR cell lines were less sensitive to 
CDDP effect: at the initial concentrations, only a 
slight decrease on cell viability was noted; IC50 values 
were 5.5 g/ml for HT1376 and 8.8 g/ml for 

MCR. 
To further elucidate CDDP effect on cell cycle 
distribution (Figure 4A) and cell death (Figure 4B), 

Table 6. Association between 5-year disease-free 
survival and overall survival rates, and MCT1, 
MCT4, CD147, CD44 and CAIX global immuno-
reaction (cytoplasmic expression, with or without 
plasma membrane staining) 

 

Figure 2. CD147 and monocarboxylate transporters (MCT1 and MCT4) expressions in bladder cancer cell lines, as detected by Western 
blot (A; molecular weights: 50-60 kDa for the highly glycosylated and 42 kDa for low glycosylated form of CD147, 50 kDa for MCT1, and 
52 kDa for MCT4) and immunocytochemistry (B, x400 amplification). The biomarkers were expressed by the four UBC cell lines. The 
pattern of expression was predominantly membranous. 5637, HT1376 and MCR additionally exhibited a strong cytoplasmic 
immunoreaction for MCT1. 

A 
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the UBC cell lines were treated with 
the CDDP IC50 predetermined do-
ses. Comparing with the control 
condition, 5637, T24 and HT1376 
cell lines presented a decrease in 
G0/G1 phase, an increase in S 
phase (the majority of HT1376 cells 
were arrested in S phase) and an 
increase in subG1 phase cell 
populations, although the differen-
ces were only statistically significant 
for T24 and HT1376. The drug 
induced cell death in 5637 and T24 
cell lines: we observed a marked 
increase in late apoptotic/ necrotic 
cell populations (the differences 
were statistically significant for 
5637); no effect was noted for 
HT1376. Regarding the cell cycle 
distribution of MCR cell line, we 
observed a significant decrease in 
G0/G1 and an arrest in S + G2 
phase’s cell populations, without 
observing any effect on the cell population of subG1 
phase. We confirmed this cytostatic action of the 
drug in MCR cells through the cell death assay: no 
difference was found between control and treated 
cells. 
The effect of CDDP treatment on UBC cells’ migra-
tion and invasion capacities was studied by the 
wound healing migration (Figure 5A) assay and by 
the matrigel invasion assay (Figure 5B), respectively. 
The treatment significantly decreased T24 and 
HT1376 cells’ migration ability; no effect was 
observed in 5637 cell line; conversely, MCR treated 
cells migrated significantly more than control cells. 
Regarding invasion assays, we observed that CDDP 
treatment induced a significant increase in T24 cell’s 
invasion capacity, a decrease for 5637 and HT1376 
cells, and no effect for MCR cells.  
 
Effect of CD147 downregulation on Urothelial 
Bladder Cancer Cells’ Biology and Response 
to CDDP Treatment 
 
The characterization of the effect of CDDP treatment 
on cell viability, cell cycle distribution and cell death, 
as well as on the migration and invasion abilities of 
four parental UBC cell lines, allowed us to choose 
two of the cell lines for subsequent downregulation 
studies. HT1376 and MCR cells seemed to be less 
sensitive to CDDP effect. These cells showed the 
highest CDDP IC50 values, and the drug apparently 

exerted a cytostatic effect on them. Based on this, 
we used specific siRNA targeting CD147 mRNA to 
downregulate CD147. By Western blotting, we 
confirmed a marked decrease in CD147 expression 
in both cell lines, most notably following 6 and 10 
days after reverse transfection; the transfection with 
scramble siRNA did not alter protein expression, as 
expected. Once the protocol has been optimized, we 
proceeded with CDDP treatment in siRNA-HT1376 
and siRNA-MCR cells. Since we had previously 
determined CDDP IC50 values for the parental cell 
lines after 72h of exposure to the drug, we followed 
the same procedure with the siRNA cell lines, by 
treating the cells between days 5 and 8 after reverse 
transfection. Due to technical complications with 
MCR cell line (the cells did not tolerate CD147 
downregulation and CDDP treatment, and became 
unviable at the end of repeated assays), we were 
only able to continue the experiment with HT1376 
cell line. CD147 downregulation at days 5 and 8 
after transfection was confirmed by Western blot; the 
decrease in CD147 expression was accompanied by 
a decrease in MCT1 and MCT4 expressions (Figure 
6A). IC50 values were determined for siScramble-
HT1376 and siCD147-HT1376 cells (Figure 6B), 
which allowed us to conclude that siCD147-HT1376 
cells (CDDP IC50 = 7.4 g/ml) were more sensitive to 

CDDP treatment than siScramble-HT1376 cells 
(CDDP IC50= 24.1 g/ml) (the disparity between IC50  

Figure 3. Effect of CDDP on the viability of bladder cancer cell lines, as detected by 
the MTS assay after 72 hours of treatment. Results are expressed as the 
meanstandard deviation of at least 3 independent experiments, each one in 

triplicate. T24 and 5637 viability was inhibited in a dose-dependent manner; 
HT1376 and MCR were less sensitive to CDDP effect at the initial concentrations. 
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Figure 4. Cell cycle (A) and cell death (B) analysis of bladder cancer cell lines after 72 hours of treatment with IC50 values of CDDP, as 
detected by the propidium iodide (PI) and the Annexin V/PI assays, respectively (flow cytometry). Results are ex-pressed as the mean 

standard deviation of at least 3 independent experiments. *p < 0.05, compared IC50 CDDP with NaCl. Representative dotplots of cell 
population distribution stained for Annexin V and PI are shown (cell population in bottom/left (black dots) = viable cells; cell population in 
upper/right = death cells (red dots, late apoptosis; green dots, necrosis)]. CDDP exerted a cytotoxic effect on T24 and 5637 cell lines, as 
confirmed by an increase in subG1 phase cell populations, in the cell cycle analysis, and an increase in late apoptotic/necrotic cell 
populations, in the cell death analysis. HT1376 and MCR cells were arrested in S phase (cell cycle analysis), and no difference was 
observed between control and treated conditions in the cell death analysis, which denotes a cytostatic action of CDDP. 
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Figure 5. Wound-healing migration 
(A) and matrigel invasion (B) as-
says results for bladder cancer cell 
lines treated with IC50 CDDP for 72 
hours (A) and 24 hours (B). Results 
are expressed as the mean 

standard deviation of at least 3 
independent experiments. *p < 
0.05, compared IC50 CDDP with 
NaCl. Representative images of the 
migration assay at 0 and 24 hours 
after the scratch wound has been 
made (x40 amplification), and of 
the invasion assay at 24 hours 
(x100 amplification), are presented. 
CDDP significantly decreased and 
significantly increased the migration 
ability of T24 and HT1376, and 
MCR (respectively) cell lines. Con-
versely, a significant increase in the 
invasive potential of T24 cells was 
observed. 
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values for parental-HT1376 and siScramble-HT1376 
cells is due to the different number of cells plated 
per well). 
 
DISCUSSION  
 
Radical cystectomy with bilateral lymphadenectomy 
provides a cure for most of the UBC patients with 
muscle-invasive organ-confined lesions [6], but 

regional lymph node and visceral metastases are 
frequently found; in these cases, perioperative 
chemotherapy in fit patients is mandatory [5]. 
Multidrug platinum-based regimens provide the best 
response rates. Cisplatin is the main component of 
the MVAC (methotrexate, vinblastine, adriamycin and 
cisplatin) and GC (gemcitabine and cisplatin) 
combinations generally used to treat MI-UBC 
patients [42-44]. This alkylating agent has DNA as its 
primary cellular target. After entering the cell, 
cisplatin is activated by the replacement of its two 
chloride ligands with water molecules, being 
thereafter able to react with the N7-sites of purine 
bases in DNA, forming inter- and intra-strand 
crosslinks, and monofunctional adducts, which will 
eventually lead to apoptotic cell death [45-46]. 
Cisplatin exerts clinical activity against several solid 
malignancies, namely testicular, bladder, ovarian, 
colorectal, lung and head and neck cancers [47-49]. 
However, many patients are intrinsically resistant to 
cisplatin-based regimens, while others are initial 
responders but will eventually develop resistance 
[50-51]. Patient fragility is also an important 
limitation, due to the severe citotoxicity of cisplatin 
[52-54]. Still, intrinsic or acquired chemoresistance 
is the major drawback to its clinical usefulness, and 
UBC is not an exception [55-56]. 
Although poorly explored in UBC setting, the 
influence of the metabolic transformation events that 
alter the tumour microenvironment and thus mediate 
malignant progression and dissemination is gaining 
particular attention. In fact, solid malignancies are 
characterized by hypoxic regions and increased 
anaerobic and aerobic glycolysis, acidic-promoting 
conditions that facilitate metastasis and chemo-
resistance [18, 57-59]. In order to further unravel 
the role of microenvironment-related molecules in 
bladder cancer, we initiated our study by characteri-
zing the clinicopathological and prognostic signifi-
cance of MCT1, MCT4, CD147, CD44 and CAIX in a 
cohort of 114 UBC patients.  
To our knowledge, this is the first study evaluating 
MCTs expression in bladder tumour tissue. We found 
a considerable percentage of tumour sections 
positive for MCT1 and MCT4. The malignant cells 
were stained in the cytoplasm and/or in the plasma 
membrane. The biomarkers were largely absent in 
the non-neoplastic sections. Plasma membrane ex-
pression was only relevant for MCT1, which probably 
indicates that this isoform is essential for the 
transport of lactate from the malignant glycolytic 
cells to the extracellular milieu. Additionally, the cyto-
plasmic expression found for both biomarkers 

Figure 6. Effect of CD147 downregulation in HT1375 cell line 
on the expression of MCTs and on chemosensitivity to CDDP 
(treatment with CDDP between days 5 and 8 after reverse 
transfection). A, Western blot analysis of CD147, MCT1 and 
MCT4 expressions in control/scramble HT1376 cells and in 
siCD147 HT1376 cells showing that CD147 downregulation was 
accompanied by a decrease in MCT1 and MCT4 expressions 
(molecular weights: 50-60 kDa for the highly glycosylated and 
42 kDa for low glycosylated form of CD147, 50 kDa for MCT1, 
and 52 kDa for MCT4). B, effect of CDDP on the viability of 
scramble and siCD147-HT1376 cells, as detected by the MTS 
assay after 72 hours of treatment, showing that siCD147 cells 
were more sensitive to CDDP. Results are expressed as the 
meanstandard deviation of at least 3 independent experiments, 
each one in triplicate. 
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possible denotes their accessory role in the 
metabolism of UBC cells, by transporting mo-
nocarboxylates, namely lactate and pyruvate, across 
the membranes of cellular organelles. In fact, MCT1 
and MCT4 have also been localized in the 
mitochondrial membrane [60-62]. UBC patients with 
positive tumours, particularly for MCT1, displayed 
unfavourable clinicopathological profiles. A near 
significant association was found between MCT1 
expresion and poor prognosis. Therefore, it seems 
that MCT1 and MCT4 overexpression contributes to 
bladder cancer aggressiveness. In accordance, 
MCTs upregulation has also been observed in other 
malignant contexts, namely colorectal [40, 63-64], 
breast [40, 65], lung [40, 66] and prostate [67-68] 
carcinomas, glioblastomas [69-70] and ginecologic 
tract malignancies [40, 71-72]. 
In vivo and in vitro studies have described CD147 
has a chaperone for MCT1 and MCT4 [15, 73-75], 
which was similarly supported by immunoexpression 
studies with human tissues [40, 65, 68-69, 76-77]. 
In our UBC cohort, MCT1 and MCT4 expressions 
were also significantly correlated with CD147 
expression. Besides its function as a chaperone, 
CD147 directly promotes the malignant phenotype, 
being upregulated in several tumour types [40, 68-
69, 77-79]. We have previously demonstrated that 
CD147 overexpression, included in a model of UBC 
aggressiveness, facilitates the discrimination of 
bladder cancer patients’ prognosis [25]. In the 
current study, we evaluated CD147 expression in a 
larger and more comprehensive UBC series, which 
allowed us to further confirm our previous findings. 
In fact, CD147 was upregulated in bladder tumour 
tissue, significantly associating with tumour aggres-
siveness and lowering 5-year disease-free and overall 
survival rates. In accordance, a few studies have 
identified CD147 expression in UBC as an inde-
pendent prognostic factor [22-24], being able to 
predict response to cisplatin-containing regimens 
[24]. In our cohort, the concurrent expression of 
MCT1 and CD147 significantly associated with 
unfavourable clinicopathological parameters and 
poor prognosis. Other studies with distinct malignan-
cies have demonstrated that the prognostic value of 
CD147 is associated with its co-expression with 
MCT1 [65, 76]. MCTs seem to be necessary for 
proper membrane expression of CD147 [74, 80], 
and a cooperative role between the two types of 
biomarkers in determining chemotherapy resistance 
has been proposed [30, 72]. Importantly, the 
CD147/MCT1 double-positive profile discriminated, 
in our UBC cohort, a poor-prognosis group within 

patients who received platinum-based chemothe-
rapy. Thus, besides acting as lactate transporters 
and pH regulators [16, 60], MCTs may also play 
indirect roles in angiogenesis, invasion, malignant 
dissemination and chemoresistance, by regulating 
and interacting with CD147 [7, 14]. It has been 
described that CD147 enhances tumour growth and 
chemoresistance via the phosphatidylinositol 3-
kinase (PI3K)/Akt pathway in a hyaluronan-depen-
dent manner [81]. In fact, CD147 stimulates hyalu-
ronan production [11]. Besides its important structu-
ral function, this ubiquitous glycosaminoglycan plays 
also instructive roles in signalling via binding to 
specific cell-surface receptors, namely CD44 [82-
83]. CD44 is a multifunctional transmembrane 
glycoprotein involved in cell adhesion and migration 
[84]. In our study, we observed that the majority of 
the UBC samples expressed CD44, mainly at the 
plasma membrane, which was significantly corre-
lated with tumour progression. These results are in 
agreement with those obtained by other authors [26-
27, 85]. Moreover, there was a substantial concor-
dance between plasma membrane expression of 
MCTs and CD44, on one hand, and CD147 and 
CD44, on the other hand. It has been demonstrated 
that CD44 co-localizes with MCT1, MCT4 and 
CD147 at the plasma membrane of breast carci-
noma cells, and that constitutive interactions among 
hyaluronan, CD44, and CD147 contribute to regulate 
MCTs localization and function. In fact, disruption of 
hyaluronan-CD44 signalling led to MCTs internalize-
tion and attenuation of their function [12]. Our 
results seem to support that theory. We may 
hypothesise that this interactive profile points out for 
a probable partnership between CD44, MCTs and 
CD147 in regulating the hyper-glycolytic and acid-
resistant phenotype, and also chemotherapy 
resistance. CD147 stimulates hyaluronan production 
[11], but lactate – the end product of glycolysis 
extruded from the malignant cells through MCTs – 
also induces synthesis of hyaluronan and expression 
of CD44 variants in stromal [86] and tumour cells 
[87]. Moreover, hyaluronan-CD44 binding influences 
the activity of several downstream signalling path-
ways, namely the anti-apoptotic MAPK (mitogen-
activated protein kinase) and PI3K-Akt pathways, 
consequently promoting tumour cell proliferation, 
survival, motility, invasiveness, and chemoresistance 
[88-89]. A few studies have shown that hyaluronan-
CD44 signalling promotes cisplatin resistance in 
head and neck, and in lung cancers [90-93]. The 
aforementioned pathways seem to mediate the 
increased expression of multidrug membrane efflux 
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pumps of the ABC family, such as MDR1 (multidrug 
resistance protein 1) and MRP-1 (multidrug 
resistance-associated protein-1) [94-96]. However, 
MDR1 and MRP-1 do not seem to influence tumour 
response to cisplatin [97-98]. Other chemoresis-
tance-mediating hyaluronan-dependent mechanisms 
have been described, namely EGFR (epidermal 
growth factor receptor)-mediated oncogenic signal-
ling [90], or acquisition of cancer stem cell proper-
ties due to CD44 interaction with cancer stem cell 
markers and subsequent activation of microRNAs 
[93]. Additional studies are necessary to further 
clarify how cell surface interactions among hyalu-
ronan, CD44, CD147 and MCTs contribute to initiate 
molecular responses that impair chemotherapy – 
namely cisplatin – effects. 
In our immunohistochemistry study, we also evalua-
ted CAIX expression. This catalyst mediates the 
reversible hydration of cell-generated carbon dioxide 
to bicarbonate and protons, activity that promotes 
intracellular pH regulation and extracellular trapping 
of acid. Thus, CAIX clearly contributes to the genera-
tion of the acid-resistant phenotype under hypoxic 
conditions [99]. We did not observe CAIX expression 
in the non-neoplastic tissues, but the vast majority of 
the UBC samples expressed this biomarker, and a 
heterogeneous pattern was noted, with the luminal 
face of NMI papillary tumours and the core of MI 
tumours being intensely stained. CAIX positivity was 
predominant in high grade papillary lesions, and 
seemed to associate with a low aggressiveness 
profile. Several authors have also reported a higher 
expression of CAIX in NMI than in MI tumours [29, 
100-101], although their reports generally pointed 
out for an association between CAIX upregulation 
and occurrence of recurrence, progression and poor 
overall survival. In the study by Hussain et al. [100], 
there was a tendency towards longer survival for 
patients with tumours expressing CAIX strongly. 
Probably, in their study, as well as in our cohort, the 
high rate of CAIX expression in papillary lesions 
influenced the clinicopathological and survival data. 
Interestingly, significant associations were found 
when we compared immunoreactive samples for 
MCT4, CD147 and CD44 with CAIX plasma 
membrane positive cases. These results most likely 
reflect the adjustment to a hypoxia-mediated 
glycolytic metabolism that upregulates MCTs and 
their chaperones, and thus contributes to an acid-
resistant microenvironment that favours tumour 
dissemination and impairs chemotherapy response. 
Our important results on the prognostic and pla-
tinum-response discriminatory significance of CD147 

in UBC patients led us to further explore its biological 
role in an in vitro assay. We started by confirming 
the expression of CD147, MCT1 and MCT4 in four 
parental UBC cell lines. We then characterized the 
effect of cisplatin treatment on cell viability, cell cycle 
distribution and cell death, as well as on the 
migration and invasion abilities of the cell lines. 
Different and controversial responses were obtained, 
mostly in the migration and invasion assays, which 
probably reflect the natural heterogeneity in UBC 
pathology, biology and response to treatment. 
Overall, the NMI 5637 cell line and the MI T24 cell 
line were the most sensitive to cisplatin treatment, 
as observed by the effective decrease in cell viability, 
the increase in S and subG1 phase cell populations, 
and the higher apoptotic rate. Similar results were 
obtained by Pinto-Leite et al. [102]. The MI HT1376 
and MCR cell lines were less sensitive to cisplatin 
treatment, and the drug seemed to exert a cytostatic 
effect on these cells. Based on these observations, 
we downregulated CD147 expression on MCR and 
HT1376 cells using the RNA interference (siRNA) 
approach, although we were not able to conclude the 
assay with MCR cells, due to technical limitations. 
CD147 downregulation in HT1376 cells was accom-
panied by a marked decrease in MCT1 and MCT4 
expres-sions, confirming that MCTs rely on CD147 
for their proper expression and function. Moreover, 
CD147 downregulation clearly increased chemo-
sensitivity to cisplatin, which supports the hypothesis 
that this multifunctional protein mediates chemo-
resistance in UBC. In accordance, Wang et al. [103] 
and Zhu et al. [104] used a similar RNA interference 
approach in gastric and laryngeal cell lines, and also 
demonstrated that suppression of CD147 expression 
sensitizes cells to cisplatin. These results indicate 
that CD147 may be a promising therapeutic target 
for malignancies frequently hampered by cisplatin 
resistance, and additional in vitro and in vivo studies 
are demanded to clarify the molecular mechanisms 
involved in this biological scenario, namely the 
cooperation with MCTs. 
In summary, our findings indicate that microen-
vironment-related molecules, particularly CD147 and 
MCT1, are implicated in bladder cancer progression 
and resistance to cisplatin-based chemotherapy, 
unraveling new possibilities for target therapeutic 
intervention. CD147 and MCT1 should be further 
explored as potential theranostics biomarkers. 
 
REFERENCES 
 
1. Kaufman DS, Shipley WU, Feldman AS: Bladder cancer. 



 

  CHAPTER 7 | CD147 and MCT1 – Potential partners in bladder cancer aggressiveness and cisplatin resistance | 201 

Lancet 2009, 374(9685):239-249. 
2. Reuter VE: The pathology of bladder cancer. Urology 

2006, 67(3 Suppl 1):11-17; discussion 17-18. 
3. Colombel M, Soloway M, Akaza H, Bohle A, Palou J, 

Buckley R, Lammg D, Brausi M, Witjes JA, Persad R: 
Epidemiology, Staging, Grading, and Risk Stratification of 
Bladder Cancer. Eur Urol Suppl 2008, 7:618-626. 

4. Cheung G, Sahai A, Billia M, Dasgupta P, Khan MS: 
Recent advances in the diagnosis and treatment of 
bladder cancer. BMC Med 2013, 11:13. 

5. Bellmunt J, Orsola A, Wiegel T, Guix M, De Santis M, 
Kataja V: Bladder cancer: ESMO Clinical Practice 
Guidelines for diagnosis, treatment and follow-up. Ann 
Oncol 2011, 22 Suppl 6:vi45-49. 

6. Shariat SF, Karakiewicz PI, Palapattu GS, Lotan Y, Rogers 
CG, Amiel GE, Vazina A, Gupta A, Bastian PJ, Sagalowsky 
AI et al: Outcomes of radical cystectomy for transitional 
cell carcinoma of the bladder: a contemporary series from 
the Bladder Cancer Research Consortium. J Urol 2006, 
176(6 Pt 1):2414-2422; discussion 2422. 

7. Iacono KT, Brown AL, Greene MI, Saouaf SJ: CD147 
immunoglobulin superfamily receptor function and role in 
pathology. Exp Mol Pathol 2007, 83(3):283-295. 

8. Biswas C, Zhang Y, DeCastro R, Guo H, Nakamura T, 
Kataoka H, Nabeshima K: The human tumor cell-derived 
collagenase stimulatory factor (renamed EMMPRIN) is a 
member of the immunoglobulin superfamily. Cancer Res 
1995, 55(2):434-439. 

9. Tang Y, Nakada MT, Rafferty P, Laraio J, McCabe FL, 
Millar H, Cunningham M, Snyder LA, Bugelski P, Yan L: 
Regulation of vascular endothelial growth factor 
expression by EMMPRIN via the PI3K-Akt signaling 
pathway. Mol Cancer Res 2006, 4(6):371-377. 

10. Berditchevski F, Chang S, Bodorova J, Hemler ME: 
Generation of monoclonal antibodies to integrin-associated 
proteins. Evidence that alpha3beta1 complexes with 
EMMPRIN/basigin/OX47/M6. J Biol Chem 1997, 272 
(46):29174-29180. 

11. Marieb EA, Zoltan-Jones A, Li R, Misra S, Ghatak S, Cao J, 
Zucker S, Toole BP: Emmprin promotes anchorage-
independent growth in human mammary carcinoma cells 
by stimulating hyaluronan production. Cancer Res 2004, 
64(4):1229-1232. 

12. Slomiany MG, Grass GD, Robertson AD, Yang XY, Maria 
BL, Beeson C, Toole BP: Hyaluronan, CD44, and 
emmprin regulate lactate efflux and membrane 
localization of monocarboxylate transporters in human 
breast carcinoma cells. Cancer Res 2009, 69(4):1293-
1301. 

13. Weidle UH, Scheuer W, Eggle D, Klostermann S, 
Stockinger H: Cancer-related issues of CD147. Cancer 
Genomics Proteomics 2010, 7(3):157-169. 

14. Toole BP, Slomiany MG: Hyaluronan, CD44 and Emmprin: 
partners in cancer cell chemoresistance. Drug Resist 
Updat 2008, 11(3):110-121. 

15. Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN, 
Halestrap AP: CD147 is tightly associated with lactate 
transporters MCT1 and MCT4 and facilitates their cell 
surface expression. EMBO J 2000, 19(15):3896-3904. 

16. Halestrap AP: The SLC16 gene family - Structure, role and 
regulation in health and disease. Mol Aspects Med 2013, 
34(2-3):337-349. 

17. Upadhyay M, Samal J, Kandpal M, Singh OV, 
Vivekanandan P: The Warburg effect: insights from the 

past decade. Pharmacol Ther 2013, 137(3):318-330. 
18. Munoz-Pinedo C, El Mjiyad N, Ricci JE: Cancer 

metabolism: current perspectives and future directions. 
Cell Death Dis 2012, 3:e248. 

19. Gillies RJ, Gatenby RA: Adaptive landscapes and emergent 
phenotypes: why do cancers have high glycolysis? J 
Bioenerg Biomembr 2007, 39(3):251-257. 

20. Chiche J, Brahimi-Horn MC, Pouyssegur J: Tumour 
hypoxia induces a metabolic shift causing acidosis: a 
common feature in cancer. J Cell Mol Med 2010, 
14(4):771-794. 

21. Brahimi-Horn MC, Bellot G, Pouyssegur J: Hypoxia and 
energetic tumour metabolism. Curr Opin Genet Dev 2011, 
21(1):67-72. 

22. Zhong WD, Chen QB, Ye YK, Han ZD, Bi XC, Dai QS, 
Liang YX, Zeng GH, Wang YS, Zhu G et al: Extracellular 
matrix metalloproteinase inducer expression has an 
impact on survival in human bladder cancer. Cancer 
Epidemiol 2010, 34(4):478-482. 

23. Xue YJ, Lu Q, Sun ZX: CD147 overexpression is a 
prognostic factor and a potential therapeutic target in 
bladder cancer. Med Oncol 2011, 28(4):1363-1372. 

24. Als AB, Dyrskjot L, von der Maase H, Koed K, Mansilla F, 
Toldbod HE, Jensen JL, Ulhoi BP, Sengelov L, Jensen KM 
et al: Emmprin and survivin predict response and survival 
following cisplatin-containing chemotherapy in patients 
with advanced bladder cancer. Clin Cancer Res 2007, 
13(15 Pt 1):4407-4414. 

25. Afonso J, Longatto-Filho A, Baltazar F, Sousa N, Costa FE, 
Morais A, Amaro T, Lopes C, Santos LL: CD147 
overexpression allows an accurate discrimination of 
bladder cancer patients' prognosis. Eur J Surg Oncol 
2011, 37(9):811-817. 

26. Kramer MW, Escudero DO, Lokeshwar SD, Golshani R, 
Ekwenna OO, Acosta K, Merseburger AS, Soloway M, 
Lokeshwar VB: Association of hyaluronic acid family 
members (HAS1, HAS2, and HYAL-1) with bladder cancer 
diagnosis and prognosis. Cancer 2011, 117(6):1197-
1209. 

27. Omran OM, Ata HS: CD44s and CD44v6 in diagnosis and 
prognosis of human bladder cancer. Ultrastruct Pathol 
2012, 36(3):145-152. 

28. Hoskin PJ, Sibtain A, Daley FM, Wilson GD: GLUT1 and 
CAIX as intrinsic markers of hypoxia in bladder cancer: 
relationship with vascularity and proliferation as predictors 
of outcome of ARCON. Br J Cancer 2003, 89(7):1290-
1297. 

29. Klatte T, Seligson DB, Rao JY, Yu H, de Martino M, 
Kawaoka K, Wong SG, Belldegrun AS, Pantuck AJ: 
Carbonic anhydrase IX in bladder cancer: a diagnostic, 
prognostic, and therapeutic molecular marker. Cancer 
2009, 115(7):1448-1458. 

30. Takata R, Katagiri T, Kanehira M, Tsunoda T, Shuin T, 
Miki T, Namiki M, Kohri K, Matsushita Y, Fujioka T et al: 
Predicting response to methotrexate, vinblastine, 
doxorubicin, and cisplatin neoadjuvant chemotherapy for 
bladder cancers through genome-wide gene expression 
profiling. Clin Cancer Res 2005, 11(7):2625-2636. 

31. Han ZD, He HC, Bi XC, Qin WJ, Dai QS, Zou J, Ye YK, 
Liang YX, Zeng GH, Zhu G et al: Expression and clinical 
significance of CD147 in genitourinary carcinomas. J Surg 
Res 2010, 160(2):260-267. 

32. Kennedy KM, Dewhirst MW: Tumor metabolism of lactate: 
the influence and therapeutic potential for MCT and 



 

202 | CD147 and MCT1 – Potential partners in bladder cancer aggressiveness and cisplatin resistance | CHAPTER 7 

CD147 regulation. Future Oncol 2010, 6(1):127-148. 
33. Pinheiro C, Longatto-Filho A, Azevedo-Silva J, Casal M, 

Schmitt FC, Baltazar F: Role of monocarboxylate 
transporters in human cancers: state of the art. J 
Bioenerg Biomembr 2012, 44(1):127-139. 

34. Negi LM, Talegaonkar S, Jaggi M, Ahmad FJ, Iqbal Z, 
Khar RK: Role of CD44 in tumour progression and 
strategies for targeting. J Drug Target 2012, 20(7):561-
573. 

35. Hirschhaeuser F, Sattler UG, Mueller-Klieser W: Lactate: a 
metabolic key player in cancer. Cancer Res 2011, 
71(22):6921-6925. 

36. Supuran CT: Inhibition of carbonic anhydrase IX as a 
novel anticancer mechanism. World J Clin Oncol 2012, 
3(7):98-103. 

37. Amin MB, Srigley JR, Grignon DJ, Reuter VE, Humphrey 
PA, Cohen MB, Hammond MEH: Urinary bladder cancer 
protocols and checklists. Northfield: College of American 
Pathologists; 2005. 

38. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, 
Trotti A: AJCC Cancer Staging Manual. New York: Springer 
Verlag; 2010. 

39. Eble JN, Sauter G, Epstein JI, Sesterhenn IA: Pathology 
and Genetics of Tumours of the Urinary System and Male 
Genital Organs. Lyon: IARC Press; 2004. 

40. Pinheiro C, Reis RM, Ricardo S, Longatto-Filho A, Schmitt 
F, Baltazar F: Expression of monocarboxylate transporters 
1, 2, and 4 in human tumours and their association with 
CD147 and CD44. J Biomed Biotechnol 2010, 
2010:427694. 

41. Pinheiro C, Sousa B, Albergaria A, Paredes J, Dufloth R, 
Vieira D, Schmitt F, Baltazar F: GLUT1 and CAIX 
expression profiles in breast cancer correlate with adverse 
prognostic factors and MCT1 overexpression. Histol 
Histopathol 2011, 26(10):1279-1286. 

42. Meeks JJ, Bellmunt J, Bochner BH, Clarke NW, 
Daneshmand S, Galsky MD, Hahn NM, Lerner SP, Mason 
M, Powles T et al: A systematic review of neoadjuvant and 
adjuvant chemotherapy for muscle-invasive bladder 
cancer. Eur Urol 2012, 62(3):523-533. 

43. Mitsui Y, Yasumoto H, Arichi N, Honda S, Shiina H, Igawa 
M: Current chemotherapeutic strategies against bladder 
cancer. Int Urol Nephrol 2012, 44(2):431-441. 

44. Sternberg CN, Bellmunt J, Sonpavde G, Siefker-Radtke 
AO, Stadler WM, Bajorin DF, Dreicer R, George DJ, 
Milowsky MI, Theodorescu D et al: ICUD-EAU International 
Consultation on Bladder Cancer 2012: chemotherapy for 
urothelial carcinoma-neoadjuvant and adjuvant settings. 
Eur Urol 2013, 63(1):58-66. 

45. Siddik ZH: Cisplatin: mode of cytotoxic action and 
molecular basis of resistance. Oncogene 2003, 
22(47):7265-7279. 

46. Sedletska Y, Giraud-Panis MJ, Malinge JM: Cisplatin is a 
DNA-damaging antitumour compound triggering 
multifactorial biochemical responses in cancer cells: 
importance of apoptotic pathways. Curr Med Chem 
Anticancer Agents 2005, 5(3):251-265. 

47. Kostova I: Platinum complexes as anticancer agents. 
Recent Pat Anticancer Drug Discov 2006, 1(1):1-22. 

48. Harper BW, Krause-Heuer AM, Grant MP, Manohar M, 
Garbutcheon-Singh KB, Aldrich-Wright JR: Advances in 
platinum chemotherapeutics. Chemistry 2010, 16(24): 
7064-7077. 

49. Galanski M: Recent developments in the field of 

anticancer platinum complexes. Recent Pat Anticancer 
Drug Discov 2006, 1(2):285-295. 

50. Koberle B, Tomicic MT, Usanova S, Kaina B: Cisplatin 
resistance: preclinical findings and clinical implications. 
Biochim Biophys Acta 2010, 1806(2):172-182. 

51. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp 
O, Castedo M, Kroemer G: Molecular mechanisms of 
cisplatin resistance. Oncogene 2012, 31(15):1869-1883. 

52. Rybak LP: Mechanisms of cisplatin ototoxicity and 
progress in otoprotection. Curr Opin Otolaryngol Head 
Neck Surg 2007, 15(5):364-369. 

53. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB: 
Mechanisms of Cisplatin nephrotoxicity. Toxins (Basel) 
2010, 2(11):2490-2518. 

54. McWhinney SR, Goldberg RM, McLeod HL: Platinum 
neurotoxicity pharmacogenetics. Mol Cancer Ther 2009, 
8(1):10-16. 

55. Drayton RM, Catto JW: Molecular mechanisms of cisplatin 
resistance in bladder cancer. Expert Rev Anticancer Ther 
2012, 12(2):271-281. 

56. Yu HM, Wang TC: Mechanism of cisplatin resistance in 
human urothelial carcinoma cells. Food Chem Toxicol 
2012, 50(5):1226-1237. 

57. Shinohara ET, Maity A: Increasing sensitivity to 
radiotherapy and chemotherapy by using novel biological 
agents that alter the tumor microenvironment. Curr Mol 
Med 2009, 9(9):1034-1045. 

58. Zhao Y, Butler EB, Tan M: Targeting cellular metabolism 
to improve cancer therapeutics. Cell Death Dis 2013, 
4:e532. 

59. Schiavoni G, Gabriele L, Mattei F: The tumor 
microenvironment: a pitch for multiple players. Front 
Oncol 2013, 3:90. 

60. Halestrap AP, Wilson MC: The monocarboxylate 
transporter family--role and regulation. IUBMB Life 2012, 
64(2):109-119. 

61. Benton CR, Campbell SE, Tonouchi M, Hatta H, Bonen A: 
Monocarboxylate transporters in subsarcolemmal and 
intermyofibrillar mitochondria. Biochem Biophys Res 
Commun 2004, 323(1):249-253. 

62. Dubouchaud H, Butterfield GE, Wolfel EE, Bergman BC, 
Brooks GA: Endurance training, expression, and 
physiology of LDH, MCT1, and MCT4 in human skeletal 
muscle. Am J Physiol Endocrinol Metab 2000, 
278(4):E571-579. 

63. Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E: 
Comparison of metabolic pathways between cancer cells 
and stromal cells in colorectal carcinomas: a metabolic 
survival role for tumor-associated stroma. Cancer Res 
2006, 66(2):632-637. 

64. Pinheiro C, Longatto-Filho A, Scapulatempo C, Ferreira L, 
Martins S, Pellerin L, Rodrigues M, Alves VA, Schmitt F, 
Baltazar F: Increased expression of monocarboxylate 
transporters 1, 2, and 4 in colorectal carcinomas. 
Virchows Arch 2008, 452(2):139-146. 

65. Pinheiro C, Albergaria A, Paredes J, Sousa B, Dufloth R, 
Vieira D, Schmitt F, Baltazar F: Monocarboxylate 
transporter 1 is up-regulated in basal-like breast 
carcinoma. Histopathology 2010, 56(7):860-867. 

66. Koukourakis MI, Giatromanolaki A, Bougioukas G, Sivridis 
E: Lung cancer: a comparative study of metabolism 
related protein expression in cancer cells and tumor 
associated stroma. Cancer Biol Ther 2007, 6(9):1476-
1479. 



 

  CHAPTER 7 | CD147 and MCT1 – Potential partners in bladder cancer aggressiveness and cisplatin resistance | 203 

67. Hao J, Chen H, Madigan MC, Cozzi PJ, Beretov J, Xiao W, 
Delprado WJ, Russell PJ, Li Y: Co-expression of CD147 
(EMMPRIN), CD44v3-10, MDR1 and monocarboxylate 
transporters is associated with prostate cancer drug 
resistance and progression. Br J Cancer 2010, 
103(7):1008-1018. 

68. Pertega-Gomes N, Vizcaino JR, Miranda-Goncalves V, 
Pinheiro C, Silva J, Pereira H, Monteiro P, Henrique RM, 
Reis RM, Lopes C et al: Monocarboxylate transporter 4 
(MCT4) and CD147 overexpression is associated with 
poor prognosis in prostate cancer. BMC Cancer 2011, 
11:312. 

69. Miranda-Goncalves V, Honavar M, Pinheiro C, Martinho O, 
Pires MM, Cordeiro M, Bebiano G, Costa P, Palmeirim I, 
Reis RM et al: Monocarboxylate transporters (MCTs) in 
gliomas: expression and exploitation as therapeutic 
targets. Neuro Oncol 2013, 15(2):172-188. 

70. Froberg MK, Gerhart DZ, Enerson BE, Manivel C, Guzman-
Paz M, Seacotte N, Drewes LR: Expression of 
monocarboxylate transporter MCT1 in normal and 
neoplastic human CNS tissues. Neuroreport 2001, 
12(4):761-765. 

71. Pinheiro C, Longatto-Filho A, Ferreira L, Pereira SM, 
Etlinger D, Moreira MA, Jube LF, Queiroz GS, Schmitt F, 
Baltazar F: Increasing expression of monocarboxylate 
transporters 1 and 4 along progression to invasive cervical 
carcinoma. Int J Gynecol Pathol 2008, 27(4):568-574. 

72. Chen H, Wang L, Beretov J, Hao J, Xiao W, Li Y: Co-
expression of CD147/EMMPRIN with monocarboxylate 
transporters and multiple drug resistance proteins is 
associated with epithelial ovarian cancer progression. Clin 
Exp Metastasis 2010, 27(8):557-569. 

73. Wilson MC, Meredith D, Fox JE, Manoharan C, Davies AJ, 
Halestrap AP: Basigin (CD147) is the target for 
organomercurial inhibition of monocarboxylate transporter 
isoforms 1 and 4: the ancillary protein for the insensitive 
MCT2 is EMBIGIN (gp70). J Biol Chem 2005, 
280(29):27213-27221. 

74. Gallagher SM, Castorino JJ, Wang D, Philp NJ: 
Monocarboxylate transporter 4 regulates maturation and 
trafficking of CD147 to the plasma membrane in the 
metastatic breast cancer cell line MDA-MB-231. Cancer 
Res 2007, 67(9):4182-4189. 

75. Philp NJ, Ochrietor JD, Rudoy C, Muramatsu T, Linser PJ: 
Loss of MCT1, MCT3, and MCT4 expression in the retinal 
pigment epithelium and neural retina of the 5A11/basigin-
null mouse. Invest Ophthalmol Vis Sci 2003, 44(3):1305-
1311. 

76. Pinheiro C, Longatto-Filho A, Simoes K, Jacob CE, 
Bresciani CJ, Zilberstein B, Cecconello I, Alves VA, 
Schmitt F, Baltazar F: The prognostic value of 
CD147/EMMPRIN is associated with monocarboxylate 
transporter 1 co-expression in gastric cancer. Eur J 
Cancer 2009, 45(13):2418-2424. 

77. Pinheiro C, Longatto-Filho A, Pereira SM, Etlinger D, 
Moreira MA, Jube LF, Queiroz GS, Schmitt F, Baltazar F: 
Monocarboxylate transporters 1 and 4 are associated with 
CD147 in cervical carcinoma. Dis Markers 2009, 
26(3):97-103. 

78. Zhu S, Chu D, Zhang Y, Wang X, Gong L, Han X, Yao L, 
Lan M, Li Y, Zhang W: EMMPRIN/CD147 expression is 
associated with disease-free survival of patients with 
colorectal cancer. Med Oncol 2013, 30(1):369. 

79. Zhao S, Ma W, Zhang M, Tang D, Shi Q, Xu S, Zhang X, 

Liu Y, Song Y, Liu L et al: High expression of CD147 and 
MMP-9 is correlated with poor prognosis of triple-negative 
breast cancer (TNBC) patients. Med Oncol 2013, 
30(1):335. 

80. Deora AA, Philp N, Hu J, Bok D, Rodriguez-Boulan E: 
Mechanisms regulating tissue-specific polarity of 
monocarboxylate transporters and their chaperone CD147 
in kidney and retinal epithelia. Proc Natl Acad Sci U S A 
2005, 102(45):16245-16250. 

81. Misra S, Ghatak S, Zoltan-Jones A, Toole BP: Regulation of 
multidrug resistance in cancer cells by hyaluronan. J Biol 
Chem 2003, 278(28):25285-25288. 

82. Turley EA, Noble PW, Bourguignon LY: Signaling 
properties of hyaluronan receptors. J Biol Chem 2002, 
277(7):4589-4592. 

83. Toole BP: Hyaluronan: from extracellular glue to 
pericellular cue. Nat Rev Cancer 2004, 4(7):528-539. 

84. Ponta H, Sherman L, Herrlich PA: CD44: from adhesion 
molecules to signalling regulators. Nat Rev Mol Cell Biol 
2003, 4(1):33-45. 

85. Kuncova J, Urban M, Mandys V: Expression of CD44s and 
CD44v6 in transitional cell carcinomas of the urinary 
bladder: comparison with tumour grade, proliferative 
activity and p53 immunoreactivity of tumour cells. APMIS 
2007, 115(11):1194-1205. 

86. Stern R, Shuster S, Neudecker BA, Formby B: Lactate 
stimulates fibroblast expression of hyaluronan and CD44: 
the Warburg effect revisited. Exp Cell Res 2002, 
276(1):24-31. 

87. Rudrabhatla SR, Mahaffey CL, Mummert ME: Tumor 
microenvironment modulates hyaluronan expression: the 
lactate effect. J Invest Dermatol 2006, 126(6):1378-
1387. 

88. Toole BP: Hyaluronan-CD44 Interactions in Cancer: 
Paradoxes and Possibilities. Clin Cancer Res 2009, 
15(24):7462-7468. 

89. Toole BP, Slomiany MG: Hyaluronan: a constitutive 
regulator of chemoresistance and malignancy in cancer 
cells. Semin Cancer Biol 2008, 18(4):244-250. 

90. Wang SJ, Bourguignon LY: Hyaluronan and the interaction 
between CD44 and epidermal growth factor receptor in 
oncogenic signaling and chemotherapy resistance in head 
and neck cancer. Arch Otolaryngol Head Neck Surg 2006, 
132(7):771-778. 

91. Ohashi R, Takahashi F, Cui R, Yoshioka M, Gu T, Sasaki 
S, Tominaga S, Nishio K, Tanabe KK, Takahashi K: 
Interaction between CD44 and hyaluronate induces 
chemoresistance in non-small cell lung cancer cell. 
Cancer Lett 2007, 252(2):225-234. 

92. Torre C, Wang SJ, Xia W, Bourguignon LY: Reduction of 
hyaluronan-CD44-mediated growth, migration, and 
cisplatin resistance in head and neck cancer due to 
inhibition of Rho kinase and PI-3 kinase signaling. Arch 
Otolaryngol Head Neck Surg 2010, 136(5):493-501. 

93. Bourguignon LY, Wong G, Earle C, Chen L: Hyaluronan-
CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-
302 expression leading to self-renewal, clonal formation, 
and cisplatin resistance in cancer stem cells from head 
and neck squamous cell carcinoma. J Biol Chem 2012, 
287(39):32800-32824. 

94. Lee JT, Jr., Steelman LS, McCubrey JA: 
Phosphatidylinositol 3'-kinase activation leads to multidrug 
resistance protein-1 expression and subsequent 
chemoresistance in advanced prostate cancer cells. 



 

204 | CD147 and MCT1 – Potential partners in bladder cancer aggressiveness and cisplatin resistance | CHAPTER 7 

Cancer Res 2004, 64(22):8397-8404. 
95. Misra S, Ghatak S, Toole BP: Regulation of MDR1 

expression and drug resistance by a positive feedback 
loop involving hyaluronan, phosphoinositide 3-kinase, and 
ErbB2. J Biol Chem 2005, 280(21):20310-20315. 

96. Mogi M, Yang J, Lambert JF, Colvin GA, Shiojima I, Skurk 
C, Summer R, Fine A, Quesenberry PJ, Walsh K: Akt 
signaling regulates side population cell phenotype via 
Bcrp1 translocation. J Biol Chem 2003, 278(40):39068-
39075. 

97. Takara K, Sakaeda T, Yagami T, Kobayashi H, Ohmoto N, 
Horinouchi M, Nishiguchi K, Okumura K: Cytotoxic effects 
of 27 anticancer drugs in HeLa and MDR1-overexpressing 
derivative cell lines. Biol Pharm Bull 2002, 25(6):771-
778. 

98. Clifford SC, Neal DE, Lunec J: Alterations in expression of 
the multidrug resistance-associated protein (MRP) gene in 
high-grade transitional cell carcinoma of the bladder. Br J 
Cancer 1996, 73(5):659-666. 

99. Swietach P, Vaughan-Jones RD, Harris AL: Regulation of 
tumor pH and the role of carbonic anhydrase 9. Cancer 
Metastasis Rev 2007, 26(2):299-310. 

100. Hussain SA, Palmer DH, Ganesan R, Hiller L, Gregory J, 
Murray PG, Pastorek J, Young L, James ND: Carbonic 

anhydrase IX, a marker of hypoxia: correlation with clinical 
outcome in transitional cell carcinoma of the bladder. 
Oncol Rep 2004, 11(5):1005-1010. 

101. Turner KJ, Crew JP, Wykoff CC, Watson PH, Poulsom R, 
Pastorek J, Ratcliffe PJ, Cranston D, Harris AL: The 
hypoxia-inducible genes VEGF and CA9 are differentially 
regulated in superficial vs invasive bladder cancer. Br J 
Cancer 2002, 86(8):1276-1282. 

102. Pinto-Leite R, Arantes-Rodrigues R, Palmeira C, Colaco B, 
Lopes C, Colaco A, Costa C, da Silva VM, Oliveira P, 
Santos L: Everolimus combined with cisplatin has a 
potential role in treatment of urothelial bladder cancer. 
Biomed Pharmacother 2013, 67(2):116-121. 

103. Wang B, Xu YF, He BS, Pan YQ, Zhang LR, Zhu C, Qu LL, 
Wang SK: RNAi-mediated silencing of CD147 inhibits 
tumor cell proliferation, invasion and increases 
chemosensitivity to cisplatin in SGC7901 cells in vitro. J 
Exp Clin Cancer Res 2010, 29:61. 

104. Zhu C, Pan Y, He B, Wang B, Xu Y, Qu L, Bao Q, Tian F, 
Wang S: Inhibition of CD147 gene expression via RNA 
interference reduces tumor cell invasion, tumorigenicity 
and increases chemosensitivity to cisplatin in laryngeal 
carcinoma Hep2 cells. Oncol Rep 2011, 25(2):425-432. 

 

 
 
 
 

 



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

CHAPTER 8 | General Discussion 



 

206 | General Discussion | CHAPTER 8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

CHAPTER 8 | General Discussion | 207 

8.1. CONTRIBUTION TO THE STATE OF THE ART – AN OVERVIEW 

 

 

While, in the past, etiology of heterogeneous clinical behavior and response to treatment in cancer 

patients has eluded science, currently there is no doubt that prognostic and/or predictive biomarkers 

will eventually guide clinical-decision making. In fact, the extraordinary progresses achieved in cancer 

genetics and genomics are positively affecting the management of solid tumours. This important step 

towards personalized medicine has already allowed significant survival benefits and improvements in 

the quality of life of numerous patients, such as breast cancer patients with HER2 (human epidermal 

growth factor receptor 2)-positive tumours treated with trastuzumab, or advanced non-small-cell lung 

cancer patients harbouring specific EGFR (epidermal growth factor receptor) mutations and, thus, 

selected for gefitinib and erlotinib treatments [1-2]. Conversely, although urothelial bladder carcinoma 

(UBC) is relatively genetically well-characterized, it has largely been excluded from validation trials on 

potential biomarkers. Due to its unique divergent natural history among epithelial malignancies [3-4], 

UBC represents a major challenge in the oncology field, and this clearly reflects the delay in translating 

biology into the clinic [5-7]. However, areas in which biomarkers may prove valuable are evident, 

encompassing the three most important risk factors that threaten survival and life quality of bladder 

cancer patients [8]. First, the majority of UBCs emerge as non-muscle invasive (NMI), low grade, 

papillary lesions. Due to their high risk of recurrence, current guidelines recommend intense follow-up 

that classically relies in invasive techniques such as cystoscopy and biopsy, causing significant patient 

discomfort and implicating substantial costs. Thus, prediction of tumour recurrence through non-

invasive methods would be of great value [9]. Second, an important proportion of NMI tumours, such as 

high grade or carcinoma in situ lesions, incur at an increased risk of progression to muscle-invasive (MI) 

disease. Timely prediction of progression would guide a vigilant surveillance, and would help clinicians 

to identify patients in need of early, aggressive management, while avoiding over-treatment in others 

[10]. Third, the risk of metastasis is the main pitfall for MI-UBC patients, and the majority of bladder 

cancer deaths occur as a consequence of metastatic disease [11]. In this scenario, robust biomarkers 

could help to identify circulating or lymph-node occult micrometastases, could represent potential 

therapeutic targets, and could forecast and stratify responses to conventional cytotoxic therapies or to 

emerging targeted therapies (the so called companion biomarkers) [7, 12-14]. Hence, UBC represents 

a considerable opportunity and challenge for biomarkers’ research. 

In the last years, efforts have been taken to uncover prognostic and/or predictive biomarkers that 
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might be useful in the clinical care of UBC patients. Traditional approaches of single-molecule or single-

pathway profiling are being replaced by investigations on panels of biomarkers encompassing several 

hallmarks of cancer [6, 8, 15-17]. While the few biomarkers of potential clinical relevance that have 

been identified so far are mainly related to the key molecular pathways of bladder tumourigenesis [e.g. 

FGFR3 (fibroblast growth factor receptor 3) and TP53 (tumour protein p53) mutations] [8, 17-18], there 

is the need to expand the research into poorly explored scenarios of the malignant phenotype, in an 

attempt to unveil novel promising markers that can be integrated into a molecular signature with 

accurate prognosis and predictive power. A cancer-related biomarker must be a molecule produced by 

the tumour, detectable and measurable in patient specimens (tissue, blood or urine), representative of 

various tumour properties, and reproducible, specific and sensitive [8, 19]. Immunohistochemical 

approaches in tissue arrays are well suited for the detection task, by being practical methods that can 

easily allow the translation of new described biomarkers into clinical practice [17, 20]. In this line of 

investigation, we used immunohistochemistry to study, in a cohort of well-characterized UBC samples, 

the clinical and prognostic significance of several poorly studied putative biomarkers encompassing and 

overlapping three hallmarks of cancer: inducing tumour angiogenesis (and lymphangiogenesis), 

activating invasion and metastasis, and reprogramming cellular energetics and the tumour 

microenvironment. We additionally performed validation assays with bladder cancer cell lines. Our 

research efforts have resulted in important findings concerning some biological parameters that seem 

to influence bladder cancer aggressiveness and chemoresistance, and thus should be further explored 

as potential prognosis and predictive biomarkers, as well as new therapeutic targets. 

 

8.1.1. TUMOUR ANGIOGENESIS AND LYMPHANGIOGENESIS 

 

The role of angiogenesis in UBC is well established. Both VEGF (vascular endothelial growth factor) 

levels and high blood vessel density (BVD) counts independently predicted progression and lymph node 

metastasis, significantly lowering survival rates [21-25]. Large scale approaches have also confirmed 

VEGF as an independent prognosis factor [26]. Moreover, although studies on lymphangiogenesis 

occurrence and its usefulness in urothelial malignancies are fewer in number, the general tendency 

points out for an important task of lymphatic vessel formation in malignant dissemination [27-29]. 

VEGF-C levels were associated with high lymphatic vessel density (LVD) counts, predicting lymph node 

metastasis [29-32]. Both blood and lymphatic vessels participate in the metastatic cascade, and 

lymphovascular invasion (LI) has been identified as an independent prognostic factor for recurrence and 
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overall survival [33-35]. Importantly, it has been demonstrated that the LI status helps to stratify N0 

UBC patients who are at increased risk of bladder cancer recurrence and death [35-37]. Despite these 

important associations, LI occurrence is not routinely described on the pathology reports, due to the 

lack of diagnosis reproducibility [38-39]. 

In our research, we assessed angiogenesis, lymphangiogenesis and lymphovascular invasion 

occurrence in a series of 83 UBC tissue sections from patients who underwent radical cystectomy 

(CHAPTER 3, [40]). An immunohistochemical method was used to differentiate between blood and 

lymphatic endothelial cells. Although we aimed to confirm previous findings on angiogenesis and 

lymphangiogenesis preponderance in UBC setting, our main goal was to investigate different ways of 

counting vessel invasion. Thus, we did observe that tumour neovascularization occurrence determines 

bladder cancer aggressiveness, although no significant association with outcome variables was found. 

While contradicting a few prior reports [22-25], others have also failed to demonstrate correlations 

among BVD and prognosis [41], and it has been advocated that, due to the inconsistency among 

various studies, BVD alone does not capture the real effect of angiogenesis occurrence on tumour 

progression and metastasis [18, 42]. On the other hand, in our study it was noted that intratumoural 

lymphatic vessels, described as collapsed and non-functional by some authors [43-46], had visible 

lumens in a significant proportion of cases, and no edema was observed, which supports an efficient 

lymphatic flow. Moreover, these intratumoural vessels, when functional, seem to actively cooperate in 

malignant dissemination, as observed by the presence of single malignant cells in the well-preserved 

intratumoural lymphatic vessels, which portended a low overall survival rate. Similar results have been 

obtained by others [28]. Regarding our major aim – to evaluate different methods of quantifying vessel 

invasion – we obtained interesting results. The specific staining of blood and lymphatic endothelium 

significantly contributed to an accurate evaluation of LI occurrence, and to a specific distinction between 

blood vessel invasion (BVI) and lymphatic vessel invasion (LVI). This was particularly important in the 

accurate detection of isolated malignant cells invading lymphatic capillaries, which have a higher 

propensity to survive in the lymphatic flow, when comparing with the rigors of the blood circulation. In 

fact, malignant emboli – easily detectable in hematoxylin and eosin (H&E) stained sections if no stromal 

retraction is observed – are more prone to invade the chaotic and hyperpermeable structure of the 

blood vasculature and to overcome the hostilities inherent to blood flow, such as serum toxicity, high 

shear stress and mechanical deformation [47-48]. Conversely, lymph flows slowly, and has a 

composition similar to interstitial fluid, being ideal for the survival and dissemination of single malignant 

cells [49-50]. These are more difficult to detect in H&E sections. Thus, and according to our results, the 
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specific staining of lymphatic endothelium contributes to accurately diagnose LVI occurrence, which 

significantly impairs overall survival, as well as BVI by malignant emboli. BVI was identified as an 

independent prognostic factor in our cohort. In another study (CHAPTER 6, [51]) where we developed a 

model of bladder cancer aggressiveness by the combined analysis of clinicopathological – stage and 

grade – and biological – specifically highlighted BVI and LVI, and CD147 expression – parameters in 77 

UBC patients, we found that BVI and LVI clearly contributed to separate between low and high 

aggressiveness groups. BVI and LVI occurrence may, therefore, represent potential prognostic 

biomarkers that can guide personalized selection of patients likely to benefit from perioperative 

chemotherapy regimens and/or targeted therapies. In accordance, a recent review has emphasized 

that LI should be routinely reported in the pathological report, and that immunohistochemistry 

identification of blood and lymphatic vessels should be employed in histologically equivocal cases for 

confirmation [39]. 

In order to further elucidate the role of lymphangiogenesis in urothelial malignancy, we additionally 

assessed VEGF-C and VEGFR-3 (VEGF receptor 3) expression in our cohort of 83 UBC patients 

(CHAPTER 3, [40]). Although others have found significant associations between VEGFR-3 expression, 

poor clinicopathological parameters and short disease-free survival [52], in our series VEGFR-3 was 

monotonously expressed by all tumour cases.  VEGF-C overexpression was well-defined in the group of 

poor prognosis patients; however, no significant association with survival rates was found. Some 

authors have also failed to demonstrate correlations among VEGF-C and poor prognosis [52-53]. We 

and others [29-30] observed significant correlations among LVD counts and VEGF-C levels, confirming 

its role as a lymphangiogenic factor. Moreover, intratumoural BVD was considerable enhanced by VEGF-

C overexpression, supporting the expression of its fully processed form, which also activates VEGFR-2, 

and induces angiogenesis [30, 54-56]. Recent in vitro and in vivo assays demonstrated that VEGF-C 

depletion suppresses malignant progression and lymph node metastasis, and enhances 

chemosensitivity of urothelial malignant cells [57-58]; more studies are being developed to unveil the 

inherent biological mechanisms [58]. Although VEGF-C has been proposed as a potential prognostic 

biomarker for UBC patients [59], caution is recommended due to some controversial results, and 

additional studies with larger and more comprehensive series are demanded. 

Angiogenesis and lymphangiogenesis represent potential targets for therapeutic intervention in 

UBC setting, and several compounds targeting the most relevant neovascularization signalling pathways 

are being tested in clinical trials [60-61]. However, caution is recommended, due to the risk of 

refractoriness to VEGFs/VEGFRs signalling blockade. In fact, compensation mechanisms to VEGF 
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abrogation in UBC cells lines have been described [62]. In alternative, mTOR pathway, besides 

transducing signals that activate the translational machinery and promote cell growth [63], is also an 

important signalling mediator in hypoxia-induced angiogenesis [64]. Some rapamycin analogues have 

demonstrated anti-angiogenic effects in UBC pre-clinical [65] and clinical trials [66]. Nevertheless, the 

levels of mTOR activation in UBC tissue sections have been poorly explored, and controversial results 

were found [67-72]. We assessed phospho-mTOR (p-mTOR) levels in a series of 76 UBC sections with 

representative tumour and non-tumour (normal-like or hyperplasic) areas, where blood and lymphatic 

vessels were also stained by immunohistochemistry, in order to correlate angiogenesis and 

lymphangiogenesis occurrence with p-mTOR expression (CHAPTER 4, submitted results). No significant 

associations were found between the clinicopathological parameters and vascular density, and p-mTOR 

expression. Even though, we observed that p-mTOR decreased with increasing stage, and was lost from 

non-tumour to tumour urothelium, particularly in MI lesions, where immunoexpression was observed in 

a few spots of cells. Angiogenesis occurrence was impaired in pT3/pT4 negative tumours; conversely, 

pT3/pT4 positive cases had worse survival rates, as reported by other authors [67, 69]. In NMI 

tumours, p-mTOR was evenly distributed within the malignant urothelium, although staining was 

stronger at the superficial layers of cells, resembling the pattern of expression that was observed in the 

non-tumour urothelium, where p-mTOR expression was restricted to umbrella cells and some superficial 

cells of the intermediate layer. This pattern of expression has been similarly described in other studies 

[69, 73]. We hypothesized that umbrella cells from non-tumour urothelium express p-mTOR 

constitutively, as part of their metabolic plasticity, and that NMI lesions with increasing malignant 

potential extend immunoexpression to the inner layers. The two patterns among MI tumours – absence 

of expression or expression in cell clusters – probably indicate divergent biological scenarios 

encompassing the mTOR pathway. Our preliminary results need to be further explored, and the next 

step will be to assess the immunoexpression of the remaining upstream and downstream actors of the 

mTOR pathway. 

 

8.1.2. INVASION AND METASTASIS 

 

High risk NMI and, more often, MI-UBC, carry a significant threat of invasion and metastasis 

despite radical surgical treatment [11]. Timely detection of biomarkers that enable malignant cells with 

invasive and metastatic properties would allow identifying patients that could benefit from early 

aggressive approaches such as radical cystectomy and perioperative chemotherapy, and would guide 
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the development of targeted therapies. In the pursuit of these objectives, we studied the 

immunoexpression of the endoglycosidase heparanase in a cohort of 77 UBC patients (CHAPTER 6, 

[51]). Heparanase cleaves heparan sulfate into smaller fragments, regulating the functions of this highly 

sulfated polysaccharide abundantly present in the extracellular matrix [74-75]. We observed that 

heparanase was upregulated in malignant urothelium, and exhibited a heterogeneous pattern, with the 

invasion front of the tumours being more intensely stained than the tumour core, which apparently 

supports its role in the disassembly of the extracellular matrix. However, heparanase immunorreactivity 

did not reveal any clinicopathological and prognostic information in our series. Conversely, other 

authors have demonstrated that heparanase overexpression associates with tumour progression, high 

BVD, invasion, metastasis, and poor prognosis [76-78], and its depletion in in vitro assays significantly 

inhibited those traits of malignancy [79-80]. Therefore, although our results do not support that 

hypothesis, heparanase may represent a new prognostic biomarker, and additional studies are 

necessary to validate such potential function. 

 

While inhibiting biomarkers of invasion and metastasis emerges as an attractive therapeutic 

strategy, restoring the function of metastasis suppressor proteins is not less appealing. The 

preponderance of the metastasis suppressor RKIP (Raf kinase inhibitor protein) in UBC setting is largely 

unknown, although low mRNA levels have been reported in NMI tumours, when compared with normal 

urothelium [81]. We evaluated RKIP expression in a cohort of 81 tumour sections from UBC patients. 

Blood and lymphatic vessels were also immunostained, in order to correlate BVI and LVI occurrence 

with RKIP levels (CHAPTER 5, [82]). To the best of our knowledge, this is the first study evaluating RKIP 

immunoexpression in bladder cancer tissue samples. We observed a homogeneous expression of RKIP 

in normal urothelium and in tumour sections with a favourable clinicopathological profile, namely NMI 

tumours where LVI was absent. Conversely, a heterogeneous pattern of expression, with loss of RKIP 

expression intensity from the tumour centre to the invasion front, was associated with LVI occurrence. 

Moreover, low RKIP expression significantly lowered disease-free and overall survival, remaining as an 

independent prognostic factor for disease-free survival. RKIP loss or diminution had been previously 

reported in other types of aggressive cancers, significantly impairing prognosis. Clinically, RKIP 

expression is higher in benign tumors than in malignant tissues while its expression is completely 

absent in metastases [83]. Additional studies in bladder cancer setting need to be urgently developed, 

in order to confirm our promising results and to expand the research into therapeutic strategies that can 

potentially restore RKIP functionality. Besides acting as a prognostic biomarker, RKIP status may also 
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have a role as a predictive biomarker, once it has been demonstrated that its expression may potentiate 

apoptosis induced by chemotherapeutic agents, which might be useful in defining therapy response 

profiles [84-85]. 

 

8.1.3. ENERGY METABOLISM REPROGRAMMING AND THE  
TUMOUR MICROENVIRONMENT 

 

Altered energy metabolism, although only recently emerged as a new hallmark of cancer [86], is 

proving to be as widespread in tumour cells as the classical traits of malignancy. In fact, cancer growth 

is characterized by deregulated cell proliferation and corresponding adjustments of energy metabolism, 

such as the adoption of the Warburg effect. This necessarily involves different inputs to the tumour 

microenvironment, namely the extrusion of high amounts of lactate from the malignant cells that will 

sculpt an acid-resistant phenotype, which supports increased migration and invasion, favouring 

metastasis [87-89]. Molecules and pathways involved in this intricate backstage of malignancy 

potentially represent new areas of therapeutic intervention. 

The biological mechanisms that reprogram cellular energetics and model the tumour 

microenvironment are poorly characterized in bladder cancer. Thus, we elected a panel of five 

microenvironment-related molecules and investigated their expressions in a subset of tumour tissue 

sections from 114 UBC patients treated by transurethral resection and/or radical cystectomy 

(CHAPTER 7, submitted results). The central player was CD147, a tumor cell surface molecule 

implicated in extracellular matrix remodeling, angiogenesis and tumour growth, and related with 

chemoresistance-promoting events [90-91]. We had previously demonstrated the prognostic impact of 

CD147 overexpression in bladder cancer patients, when we developed a model of UBC aggressiveness 

that included clinicopathological and biological parameters (CHAPTER 6, [51]). In fact, CD147 

expression was largely preponderant in the high aggressiveness group, and clearly added prognostic 

information to the model. For that reason, we decided to re-evaluate this glycoprotein in a larger series, 

together with other molecular companions. Thus, we observed that CD147 was upregulated in bladder 

tumour tissue, significantly associating with a dismal clinicopathological profile and poor prognosis. 

Other authors have identified CD147 expression in UBC as an independent prognostic biomarker [22-

24], and have additionally proposed it as a predictive biomarker in the setting of cisplatin-containing 

regimens [24]. To confirm this hypothesis, we established four CD147-expressing UBC cell lines and 

studied the effect of cisplatin treatment on cell viability, cell cycle distribution and cell death, as well as 
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on the migration and invasion abilities of the cells. CD147 expression was then downregulated in a 

cisplatin less-sensitive cell line. Importantly, we found that CD147 downregulation clearly increased 

chemosensitivity to cisplatin. To the best of our knowledge, this was the first in vitro study 

demonstrating that CD147 depletion in UBC cells enhances the therapeutic action of cisplatin, 

highlighting this molecule as a potential prognostic and predictive biomarker.  

In order to further elucidate CD147 interactions, we also analyzed monocarboxylate transporter 

(MCT) expressions in the cohort of 114 UBC patients (CHAPTER 7, submitted results). MCTs, 

particularly MCT1 and MCT4, play a key role in the promotion of the hyper-glycolytic acid-resistant 

phenotype, by exporting lactate from the glycolytic malignant cells to the tumour microenvironment 

[92]. CD147 has been described as a chaperone for the proper expression of MCTs at the plasma 

membrane [93-94], and our results support that function. In fact, we found significant associations 

among MCT1, MCT4 and CD147 expressions. MCT1 and MCT4 were upregulated in highly aggressive 

tumours, and MCT1 overexpression impaired overall survival. Although no studies with MCTs in bladder 

cancer have been reported so far (to the best of our knowledge), their upregulation has been observed 

in other malignancies [95-96]. Interestingly, a CD147 and MCT1 double-positive profile was significantly 

associated with unfavourable clinicopathological parameters and poor prognosis in our UBC series, and 

discriminated a poor prognosis group in cisplatin-treated patients. We hypothesized that MCT1 

cooperates with CD147 in the promotion of a chemoresistance phenotype and, possibly, of other 

functions that are primarily attributed to CD147. In fact, it appears that CD147 maturation is affected 

by MCT expression [97-98]. In our in vitro study, CD147 depletion was accompanied by a marked 

decrease in the expression of MCT1 and MCT4, which suggests CD147 as an MCT1/4 chaperone. It 

would be interesting to silence MCT1 expression in the UBC cell line and to study CD147 expression 

levels, in order to confirm the opposite. 

CD44 levels were also investigated in our UBC series (CHAPTER 7, submitted results), because 

this hyaluronan-receptor involved in cell adhesion and migration [99] also seems to cooperate with 

CD147 in the chemoresistance milieu. This is thought to occur through CD44-hyaluronan interaction, 

with multidrug resistance arising in CD147-overexpressing cells, in a hyaluronan-dependent manner 

[100]. In agreement with other authors [101-102], we observed that CD44 expression significantly 

correlated with UBC progression, and the concordance between expression of MCTs and CD44, and of 

CD147 and CD44, is allusive to a possible partnership among these biomarkers, which has also been 

suggested by others [103]. 

Finally, we studied the immunoexpression of the hypoxia marker CAIX (carbonic anhydrase 9) 
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(CHAPTER 7, submitted results). Hypoxia has been described as a trigger mechanism of the hyper-

glycolytic phenotype [87], and CAIX promotes intracellular pH regulation and extracellular trapping of 

acid by mediating the reversible hydration of cell-generated carbon dioxide to bicarbonate and protons 

[104]. A few studies have demonstrated CAIX upregulation in bladder cancer, although expression 

levels are generally higher in NMI that in MI lesions [105-107]. We found similar results, and the 

pattern of expression – stronger at the core of infiltrative tumours – clearly suggests the occurrence of 

hypoxia in regions were the blood supply is limited. Moreover, significant associations were observed 

when comparing immunoreactive samples for MCT4, CD147 and CD44, with CAIX plasma membrane 

positive cases, which probably reflect the adjustment to a hypoxia-mediated glycolytic metabolism 

where MCTs and their chaperones support microenvironment tumour remodeling. 

Overall, our results point out for an important role of CD147 and their companions in promoting a 

highly aggressive phenotype where glycolysis is upregulated, contributing to acidify the tumour 

microenvironment, enabling the malignant cells with growth, migration, invasion and chemoresistance 

abilities that can only be overcome if new approaches of target therapeutic intervention are investigated. 
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8.2. COMBINING PATHOLOGY AND BIOLOGY – IS IT USEFFUL FOR 

UROTHELIAL BLADDER CANCER PATIENTS? 
 

 

 

Currently, clinicians rely on the AJCC (American Joint Committee on Cancer) TNM (tumour-node-

metastases) staging system [108] and on the WHO (World Health Organization) grading guidelines 

[109] to diagnose the disease and to predict outcomes. While representing irreplaceable diagnostic and 

prognostic tools, these staging and grading schemes fail to capture the real heterogeneous nature of 

bladder tumours. Risk stratification scores have been developed to predict recurrence and progression 

of NMI tumours after transurethral resection, namely the EORTC (European Organization for Research 

and Treatment of Cancer) [110] and the CUETO (Club Urológico Español de Tratamiento Oncológico) 

[111] tables. Additionally, nomograms that predict recurrence of MI tumours after cystectomy have also 

been tested in large UBC series, with significant improvements in the predictive accuracy over AJCC 

and WHO systems [112-114]. Artificial neural networks have also surpassed the classical clinical 

classifications in predicting outcomes [115-116]. However, the lack of information that reflects the 

individual tumour biology strongly limits the personalized management of patients with bladder cancer. 

Inclusion of prognostic and predictive biomarkers in the risk stratification tables, nomograms and 

artificial neural networks would certainly refine diagnosis, prognosis and therapeutic decisions [117-

118]. 

In our research, we developed a model of tumour aggressiveness by the combined analysis of two 

clinicopathological parameters – stage and grade – with three biological parameters – BVI, LVI and 

CD147 overexpression (CHAPTER 6, [51]). The parameters included in the model had individual 

prognostic impact on the 77 UBC patients that were studied, as demonstrated in univariate analysis. 

However, the model was stronger in predicting prognosis, clearly separating a low aggressiveness from 

a high aggressiveness group, and remaining as an independent prognostic factor for disease-free and 

overall survival. Accordingly to our results, other authors have also demonstrated the potential impact of 

developing risk stratification tools that integrate clinicopathological and biological parameters. Moreover, 

it seems that combining biomarkers inherent to different cancer hallmarks improves predictive accuracy 

over one biomarker abnormality, as several biomarkers may help to elucidate individual biological 

features of the tumours [10, 15, 17, 20, 119-122]. In our scoring model, we included biomarkers that 

are manly associated with angiogenesis (BVI), lymphangiogenesis (LVI), energy metabolism 

reprogramming, invasion and chemoresistance (CD147). If an additional biomarker was included in the 
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model, namely immunoexpression of the metastasis suppressor RKIP, its accuracy would be further 

enhanced (data not shown). Therefore, combining pathology with biology will have undeniable impact 

for UBC patients, who may benefit, in the future, from accurate prediction of outcomes and response to 

therapy, and guided targeted therapy. There is the urgent need to transpose biomarker tests on small 

groups of patients to large-scale independent validation assays, encompassing multi-institutional 

collaborations, so that prospective validations and randomized trials based on the retrospective findings 

may then proceed [123]. 
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8.3. LIMITATIONS OF THE RESEARCH 

 

 

When interpreting the results of our research, it is important to acknowledge the limitations of each 

study. Thus, studies reported in chapters 3 to 6 had small sample sizes, and this necessarily reflects on 

the results. For instance, CD147 expression was first evaluated in a series of 77 patients, and its 

predictive power of outcome was restricted to pT3/pT4 tumours (CHAPTER 6, [51]). When we 

evaluated its expression in a larger series (114 UBC patients), CD147 arose as an important prognostic 

and predictive biomarker (CHAPTER 7, submitted results). Second, all of the patients included in the 

studies that have undergone radical cystectomy had limited pelvic lymphadenectomy, with only a few 

lymph nodes being removed, which compromised additional immunohistochemical evaluations that 

could further elucidate the functions of the studied biomarkers. It would be of great value to evaluate 

BVD and BVI, LVD and LVI, VEGF-C expression, or RKIP expression in the lymph nodes, due to their 

association with vascular invasion and metastasis. Third, the studies suffer from limitations inherent to 

analyses conducted via hospital patient medical record review, typical of retrospective approaches, with 

patients being lost to follow-up, which contributes to the heterogeneity in the follow-up periods. 

Nevertheless, we tried to standardize the definition of our UBC cohorts, eliminating confounding 

variables. In the in vitro study, technical complications with a cisplatin-resistant cell line limited the 

CD147 silencing assay to only one cell line. 
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8.4. OVERALL CONCLUSIONS AND FUTURE PERSPECTIVES 

 

 

Despite the limitations inherent to our research, several important results were obtained that 

deserve to be distinguished. Thus, angiogenesis and lymphangiogenesis occur both in peritumoural and 

intratumoural regions, and clearly contribute to metastatic spread. Our immunohistochemical method 

of quantifying blood vessel and/or lymphatic vessel invasion, based on the specific staining of blood 

and lymphatic endothelium, allows an accurate discrimination between the two forms of LI and, more 

importantly, allows identifying LI images that could be missed during the classical evaluation on H&E 

stained tumour sections. We and others [39] stand up for the use of this method in histologically 

equivocal cases that require confirmation. VEGF-C expression may represent a potential prognostic 

biomarker for angiogenesis and lymphangiogenesis occurrence, although additional studies with larger 

and well-characterized series are necessary. A complete immunohistochemical and molecular approach 

to the PI3K/AKT/mTOR pathway should also be addressed, in an attempt to further clarify our results 

on p-mTOR loss of expression in MI tumours. Heparanase expression was upregulated in malignant 

urothelium, but the lack of other clinical and prognostic information advocates analyzing its expression 

in a more comprehensive series. RKIP emerged as an important prognostic biomarker in our UBC 

cohort. Based on those results, other directions on the assessment of RKIP function as a metastasis 

suppressor in bladder cancer need be taken. In vitro downregulation of RKIP expression should be the 

next step, in order to assess the impact of RKIP abrogation on parameters of aggressive behaviour, 

such as migration, invasion and colony formation abilities of the malignant cells, and also on the 

response to chemotherapy, in an attempt to unveil its predictive power in the setting of bladder cancer. 

One of our stronger results was the identification of CD147 as a prognostic and predictive 

biomarker for UBC patients. Moreover, other microenvironment-related molecules, namely MCT1, 

MCT4, CD44 and CAIX, seem to contribute to the malignant phenotype, possibly cooperating among 

them and with CD147 in the implementation of a hyper-glycolytic, acid-resistant phenotype that 

promotes invasion, metastasis and chemoresistance. It is recommend improving the technical 

approach regarding the in vitro assay, namely by newly establishing cisplatin resistance in several UBC 

cell lines by culturing them in cisplatin-containing conditioned medium for, at least, six months. 

Downregulation studies with the RNA interference technique would be certainly facilitated under those 

conditions, and additional assays should be performed in order to evaluate the effect of CD147 

depletion on cell viability, migration, invasion and colony formation abilities of the cells, and on the 
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response to cisplatin. Once MCT1 seems to be a potential partner of CD147 in determining cisplatin 

resistance, protein interaction strategies should be explored, as well as co-expression analyses, and 

MCT1 expression could be dowregulated in cisplatin-resistant cells, in order to determine the effect of 

MCT1 depletion on CD147 expression, and on the promotion of an aggressive malignant phenotype 

and drug resistance. It will also be important to mimic the microenvironmental conditions where these 

molecules act on, namely acidity and hypoxia. In vivo studies would be better suited to represent the 

real tumour conditions, including nutrient and oxygen availability. Importantly, alternative inhibition 

strategies that could be potentially applied in clinical setting must be searched and explored in pre-

clinical trials, since MCTs and CD147 represent not only promising prognostic and predictive 

biomarkers, but also potential targets for therapeutic intervention in bladder cancer patients. 

Toxicological studies to determine side-effects of the inhibition treatments should also be developed. 

 

In summary, the results presented in this thesis particularly highlight the roles of BVI and LVI 

occurrence, and RKIP, CD147 and MCT1 expressions, as relevant prognostic and/or predictive 

biomarkers, and as promising areas of therapeutic intervention, eliciting for the development of 

additional studies that can validate and further explore the potentialities of our research. 
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1. Introduction 
 

Bladder cancer is the second most common tumor of the urogenital tract. Urothelial carcinoma is the most 
frequent histologic type, being unique among epithelial carcinomas in its divergent pathways of tumorigenesis. 
Surgery continues to have a predominant role in the management of urothelial bladder cancer (Kaufman et al., 
2009). However, the debate about the best treatment approach for T1G3 and muscle invasive tumors continually 
challenges all urologic surgeons and oncologists. This debate involves several aspects. First, a significant number 
of T1G3 tumors recurs and progresses rapidly after transurethral resection and BCG treatment (Wiesner et al., 
2005). Second, half of patients with invasive tumors have a dismal outcome despite an effective treatment by 
radical cystectomy (Sternberg et al., 2007). Third, the extension of lymphadenectomy remains an issue of 
controversy, although clinical evidence suggests that an extended lymph node dissection may not only provide 
prognostic information, but also a significant therapeutic benefit for both lymph node-positive and lymph node-
negative patients undergoing radical cystectomy (May et al., 2011). In muscle invasive bladder cancer, the 
presence of tumor foci in lymph nodes is an early event in progression, and the lymphatic vessels within or in the 
proximity to the primary tumor serve as the primary conduits for tumor dissemination (Youssef et al., 2011). 
Fourth, although urothelial bladder cancer is a chemo-sensitive tumor (Kaufman et al., 2000; von der Maase et al., 
2000), adjuvant systemic chemotherapy does not reveal benefits (Walz et al., 2008), and neoadjuvant 
chemotherapy is not yet accepted as the best approach in invasive bladder cancer (Clark, 2009). Therefore, in 
order to solve the aforementioned problems, it is crucial to improve the knowledge about tumor 
microenvironment, regulation of cancer metabolism and neovascularization. 
Blood and lymphatic neovascularization are essential for tumor progression and metastasis, by promoting 
oxygenation and fluid drainage, and establishing potential routes of dissemination (Adams and Alitalo, 2007). 
Therefore, the inhibition of tumor-induced neovascularization represents a powerful option for target therapy, in 
order to restrain the most efficient pathway of cancer spread.   
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2. Angiogenesis and Lymphangiogenesis: Molecular Regulation of Vasculature Development 
 

During embryogenesis, the formation of the blood vascular system initiates by vasculogenesis: haemangioblasts 
proliferate, migrate and differentiate into endothelial cells, which in turn will organize a primitive vascular 
plexus. In parallel, angiogenesis promotes the remodeling and expansion of the primary capillary network, 
originating a hierarchical structure of different sized vessels that will mature into functional capillaries, veins and 
arteries (Risau, 1997). The lymphatic vascular system develops latter, when a group of blood endothelial cells 
differentiates into a lymphatic endothelium that subsequently sprouts to form the primary lymph sacs. By 
lymphangiogenesis, the lymphatic endothelial cells from the lymph sacs will further sprout, originating the 
peripheral lymphatic system (Sabin, 1902, as cited by Oliver & Detmar, 2002). 
During postnatal life, blood and lymphatic vascular systems are, normally, in a quiescent state. Physiological 
angiogenesis and/or lymphangiogenesis occur to maintain or restore the integrity of tissues, namely during 
wound healing and the ovarian cycle. Conversely, the neovascularization machinery may be activated in 
pathological processes such as cancer and inflammatory diseases (reviewed in Lohela et al., 2009).  
Similarly to physiological neovascularization, tumor-induced angiogenesis and/or lymphangiogenesis occur to 
satisfy the metabolic demands of a new tissue ― the malignant tissue. Therefore, the molecular factors involved in 
the formation of the vascular systems during embryogenesis are newly recruited by the growing tumor (Papetti & 
Herman, 2002). 

 
2.1. From Angiogenesis to Lymphangiogenesis in the Embryo 
 

The proliferation, sprouting and migration of endothelial cells during vasculogenesis and angiogenesis is mainly 
guided by the vascular endothelial growth factor (VEGF) signaling through VEGF receptor-2 (VEGFR-2) (Risau, 
1997). 
VEGF (or VEGF-A), initially termed as vascular permeability factor (VPF) (Senger et al., 1983), is a specific 
mitogen and pro-survival factor for blood endothelial cells, also stimulating vascular permeability. It binds and 
activates two tyrosine kinase receptors primarily found on the blood endothelium: VEGFR-1 (or Flt-1, fms-like 
tyrosine kinase 1) and VEGFR-2 (or KDR/Flk-1, human kinase insert domain receptor/mouse foetal liver kinase 
1) (reviewed in Carmeliet, 2005). Interaction of VEGF with VEGFR-1 negatively regulates vasculogenesis and 
angiogenesis during early embryogenesis (Fong et al., 1999). On the contrary, VEGFR-2 is the earliest marker for 
endothelial cell development: mouse embryos lacking VEGFR-2 die at embryonic day 8.5-9.5 due to no 
development of blood vessels as well as very low hematopoiesis (Shalaby et al., 1995). Regarding the ligand, even 
heterozygote mice for Vegf deficiency die at embryonic day 11-12: blood islands, endothelial cells and vessel-like 
tubes fail to develop (Carmeliet et al., 1996; Ferrara et al., 1996). 
In humans, five weeks after fertilization, certain blood endothelial cells become responsive to lymphatic 
inducing-signals. The lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), a CD44 homologous 
transmembrane protein, is the first marker of lymphatic endothelial commitment.  Initially, it is evenly expressed 
by the blood endothelium of the cardinal vein, which causes the blood endothelium to acquire the ability to 
differentiate in lymphatic endothelium (Banerji et al., 1999). The polarized expression of the prospero related 
homeobox gene-1 (Prox-1) transcription factor in a subpopulation of blood endothelial cells determines the 
establishment of the lymphatic identity and initiates the formation of the lymphatic vascular system. In mice, 
Prox-1 expressing cells are first observed at embryonic day 10 in the jugular vein (Wigle & Oliver, 1999). Prox1 
deletion leads to a complete absence of the lymphatic vasculature (Wigle et al., 2002). The expression of the 
transcription factor Sox18 [SRY (sex determining region Y) box 18] acts as a molecular switch to induce 
differentiation of lymphatic endothelial cells: it activates Prox-1 transcription by binding to its proximal promoter. 
Sox18-null embryos show a complete blockade of lymphatic endothelial cell differentiation (François et al., 2008). 
Later, the sprouting, migration and survival of the newly formed lymphatic endothelial cells depends on the 
expression of VEGF-C by the mesenchymal cells surrounding the cardinal veins (Karkkainen et al., 2004) (Fig. 1).  
VEGF-C, like VEGF, is a member of the VEGF family of growth factors and a mitogen for lymphatic endothelial 
cells. VEGF-D is also a pro-lymphangiogenic factor, although its deletion does not affect the development of the 
primitive lymphatic vessels (Baldwin et al. 2001). Conversely, in Vegfc-/- mice, Prox-1 positive cells appear in the 
cardinal veins, but fail to migrate and proliferate to form primary lymph sacs (Karkkainen et al., 2004). VEGF-C 
and VEGF-D interact with VEGFR-3 (of Flt-4, fms-like tyrosine kinase 4). Their affinity to VEGFR-3 is increased 
by proteolytic cleavage; the fully processed forms can also bind to VEGFR-2 (reviewed in Lohela et al., 2009). 
VEGFR-3 is widely expressed at the early stages of embryonic blood vasculature, becoming virtually restricted to 
lymphatic endothelium in the later stages of embryonic development, (after the lymphatic commitment mediated 
by Prox-1 expression), and during adult life (Kaipainen et al., 1995). In mice, inhibition of VEGFR-3 expression at 
embryonic day 15 induces regression of the developing lymphatic vasculature by apoptosis of lymphatic 
endothelial cells (Makinen et al., 2001). 
The subsequent development of the lymphatic vasculature involves the separation of the blood and lymphatic 
vascular systems, the maturation of lymphatic vessels and the formation of secondary lymphoid organs. The 
molecular regulation of these processes involves the coordinated expression of distinct genes from those involved 
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in the early events of lymphangiogenesis (reviewed in Alitalo et al., 2005) (Fig. 1). Moreover, several other growth 
factors, namely cyclooxygenase-2 (COX-2) fibroblast growth factor-2 (FGF-2), hepatocyte growth factor (HGF), 
insulin-like growth factors (IGFs) and platelet-derived growth factor-B (PDGF-B) have been shown to induce 
lymphangiogenesis and/or angiogenesis in experimental models (reviewed in Cao, 2005). These are mainly 
protein tyrosine kinases, which play central roles in signal transduction networks and regulation of cell behavior. 
In the lymphatic endothelium, these tyrosine kinases are collectively involved in processes such as the 
maintenance of existing lymphatic vessels, growth and maturation of new vessels and modulation of their 
identity and function (Williams et al., 2010). 
 
 

 
 

Fig. 1. Model for the development of mouse lymphatic vasculature (E- embryonic day; Syk- protein-tyrosine 
kinase SYK; Slp76- SH2 domain-containing leucocyte protein, 76-kDa; Ang2- angiopoietin 2; Foxc2- Forkhead Box 
C2) (adapted by permission from © 2005 Nature Publishing Group. Originally published in Nature. 438: 946-953) 

 
2.2. Promotion of Angiogenesis and Lymphangiogenesis in the Malignancy Context 
 

The major cause of cancer mortality is the metastatic spread of tumor cells that can occur via multiple routes, 
including blood and lymphatic vasculatures. For metastasis to occur, selected clones of malignant cells must be 
able to invade the newly formed vessels and disseminate. Induction of angiogenesis and/or lymphangiogenesis 
is, therefore, one of the first steps of the metastatic cascade (Alitalo & Carmeliet, 2002; Tobler & Detmar, 2006). 
During the pre-vascular phase, the malignant tumor remains small (up to 1 or 2 mm3); the preexistent 
surrounding blood vessels ensure the supply of oxygen and nutrients necessary for its survival. However, the 
expansion of the tumor mass is angiogenesis-dependent. As a compensatory response to hypoxia, proangiogenic 
factors such as VEGF are released by the malignant cells and infiltrating immune cells, namely monocytes. As a 
result, angiogenesis occurs and the tumor acquires its own blood supply. Neoplastic growth is thus promoted, as 
well as the potential for invasion and haematogenic metastasis (Kerbel, 2000). 

Vegf is upregulated in hypoxia via the oxygen sensor hypoxia-inducible factor (HIF)-1 (Pugh & Ratcliffe, 2003). 
Another recently described VEGF activation mechanism is the induction of the transcriptional coactivator 

peroxisoma proliferator-activated receptor-gamma coactivator-1 (PGC-1) in response to the lack of nutrients 
and oxygen (Arany et al., 2008). Additionally, VEGF gene expression can be upregulated by oncogene signaling, 
several growth factors, inflammatory cytokines and hormones (reviewed in Ferrara, 2004). Tumor cells secrete 
VEGF mainly in a paracrine manner, although it can also act in an autocrine manner to promote a 
protective/survival effect to endothelial cells, among other cell types (Brusselmans et al., 2005). 
The mechanisms underlying tumor lymphangiogenesis are not clearly defined. Inflammation seems to promote 
lymphatic neovascularization: inflammatory cells that infiltrate in the growing tumor produce lymphangiogenic 
growth factors. Another lymphangiogenesis trigger mechanism may be the high interstitial pressure generated 
inside the tumors due to the excessive production of interstitial fluid (reviewed in Cao, 2005). On the other hand, 
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the extracellular matrix is of central importance for the generation of new lymphatic vessels as a response to the 
pathological stimulus. Integrins, a superfamily of cell adhesion molecules, are able to influence cell migration: 

integrin 91 is a target gene for Prox1, and its direct binding to VEGF-C and VEGF-D stimulates cell migration 
(reviewed in Wiig, 2010). 
VEGF-C and VEGF-D, via signaling through VEGFR-3, appear to be essential for tumor-associated 
lymphangiogenesis, leading to lymphatic vessel invasion, lymph node involvement and distant metastasis 
(reviewed in Achen & Stacker, 2008). Moreover, VEGF interaction with VEGFR-2 may also promote lymphatic 
neovascularization, namely inside the regional draining lymph nodes, even before lymph node metastasis 
occurrence. This probably corresponds to a pathophysiologic strategy of “soil” preparation by the primary tumor 
to ensure the success of its future dissemination (Hirakawa et al., 2005). In fact, sentinel lymph node metastasis is 
the first step in the spreading of many cancer types. 
Preexisting blood and lymphatic vessels in the vicinity of the malignant mass may contribute to tumor spread. 
However, de novo formed vessels by tumor-induced angiogenesis and lymphangiogenesis seem to be the 
preferential routes for dissemination (reviewed in Cao, 2005). This is a consequence of the ultra-structure of the 
tumor-associated blood and lymphatic vessels. 

 
2.3. Ultra-structure of Tumor-associated Blood and Lymphatic Vessels 
 

Blood vessels present in malignant tissues show remarkable differences with vessels present in normal tissues. 
Tumor blood vessels are highly disorganized: they are tortuous, excessively branched and dilated. The basement 
membrane and the muscular coverage are incomplete or absent. The endothelial cells, abnormal in shape, overlap 
and are projected into the lumen rather than organizing a pavement layer below the basement membrane. Blood 
vessel invasion is facilitated by this aberrant structure, but the extravasation rate is high, and blood flow is 
variable. As a result, interstitial tumor hypertension occurs, and delivery of therapeutic agents into tumors is 
compromised (Jain & Carmeliet, 2001; reviewed in Cao, 2005). The intratumoral edema is pernicious to malignant 
cells; therefore, homeostasis needs to be re-established. The formation of a tumoral lymphatic vasculature could 
potentially resolve this problem. 
The key function of lymphatic vessels is to collect the excessive amount of interstitial fluid back to the blood 
circulation for immune surveillance in lymph nodes. Unlike normal blood capillaries, lymphatic capillaries have a 
discontinuous or fenestrated basement membrane and are not ensheathed by pericytes or smooth muscle cells; 
the endothelial cells are arranged in a slightly overlapping pattern and lack tight interendothelial junctions. 
Specialized anchoring filaments of elastic fibers connect the endothelial cells to the extracellular matrix, which 
causes the vessels to dilate rather than to collapse when hydrostatic pressure rises (Alitalo et al., 2005; Tobler & 
Detmar, 2006). This structure facilitates the collection of interstitial fluid and is ideal for malignant cells’ entry into 
the lymphatic flow. 
A highly debated question is whether there are functional lymphatic vessels inside tumors (reviewed in Alitalo & 
Carmeliet, 2002; reviewed in Detmar & Hirakawa, 2002). On one hand, the elevated interstitial pressure generated 
by the proliferation of the malignant cells and by the high extravasion rate compromises the infiltration of new 
lymphatic vessels in the tumor stroma. Although intratumoral lymphangiogenesis may occur, the newly formed 
vessels are compressed and nonfunctional (Jain & Fenton, 2002). To compensate the lack of an intratumoral 
draining mechanism, the peritumoral lymphatic vessels enlarge due to an excess of pro-lymphangiogenic factors 
in that area. Therefore, in this model, the peritumoral lymphatic vessels passively collect interstitial fluid and, 
eventually, malignant cells (Carmeliet & Jain, 2000) (Fig. 2, A). However, some studies have demonstrated a 
relationship between the existence of functional intratumoral lymphatics, with cycling lymphatic endothelial cells 
and tumor emboli, and lymph node involvement (reviewed in Da et al., 2008). Additionally, peritumoral 
lymphangiogenesis occurs, and the new vessels actively contribute to metastatic spread (Padera et al., 2002) (Fig. 
2, B). Probably, there are some organ-specific determinants that influence the occurrence of peritumoral and/or 
intratumoral lymphangiogenesis, as well as the function of the newly formed vessels. 

 
2.4. Lymphovascular Invasion and Metastasis   
 

Tumor metastasis involves a coordinated series of complex events that include promotion of angiogenesis and 
lymphangiogenesis, detachment of malignant cells from the primary tumor, microinvasion of the surrounding 
stroma, blood and/or lymphatic vessel invasion, survival of the malignant cells in the blood and/or lymphatic 
flow, and extravasion and growth in secondary sites. Because the large lymphatic vessels reenter the blood 
vascular system, malignant cells spread via the lymphatic system to the regional lymph nodes and, from this 
point, to distant organs (Alitalo & Carmeliet, 2002; Tobler & Detmar, 2006) (Fig. 3). 
Follow-up data have shown that 80% of the tumors, mainly those of epithelial origin, disseminate through the 
lymphatic vasculature; the remaining 20% use the blood circulation to colonize secondary organs (reviewed in 
Saharinen et al., 2004; reviewed in Wilting et al., 2005). 
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Fig. 2. (A) Traditional model of tumor metastasis via lymphatic and blood vessels. (B) Active lymphangiogenesis 
model of tumor metastasis (reprinted by permission from © 2002 Rockefeller University Press. Originally 
published in J. Exp. Med. 196: 713-718) 
 

 

 
 

Fig. 3. Pathways of dissemination of malignant cells (reprinted by permission from © 2008 John Wiley & Sons, 
Inc. Originally published in Ann. N. Y. Acad. Sci. 1131: 225-234) 
 
The blood vessels are not the best route for the success of malignant dissemination. Although their disorganized 
structure may contribute to the intravasion of malignant cells or emboli, in the bloodstream these cells experience 
serum toxicity, high shear stresses and mechanical deformation. Consequently, the viability of the tumor cells is 
seriously compromised (reviewed in Swartz, 2001). Conversely, the success rate of lymphogenous spread is high. 
As previously referred, the structure and function of the lymphatic capillaries facilitates intravasion of tumor cells 
or emboli. On the other hand, the composition of the lymph is similar to interstitial fluid, which provides an 
optimal medium for the survival of malignant cells. In collecting lymphatic vessels, muscle fibers assure lymph 
propulsion, that flows slowly, and valves prevent its backflow. Lymph nodes are areas of flow stagnation that 
represent ideal “incubators” for malignant cells’ growth. Some cells exit the lymph node through the efferent 
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channels or high endothelial venules. Other cells may remain mechanically entrapped for long periods of time, 
originating micrometastases (Swartz, 2001; Van Trapen & Pepper, 2002). Martens and colleagues described the 
expression of a gene signature of scavenger and lectin-like receptors in the lymph node sinus, which are known 
mediators of tumour cell adhesion and, therefore, can contribute to selective metastasis in an organ-specific 
context (Martens et al., 2006). Probably, tumor-cell-specific characteristics, microenvironmental factors and 
crosstalk between tumor and host cells have a pivotal role in determining survival and growth of 
micrometastasis. Moreover, lymph node lymphangiogenesis may provide an additional mechanism to facilitate 
further metastatic spread throughout the lymphatic system (Ji, 2009). The occurrence of lymphangiogenesis prior 
to arrival of tumor cells indicates that signals derived from the primary tumor are transported to the draining 
lymph nodes (Hirakawa et al., 2005). 
Different tumors metastasize preferentially to different organs, suggesting that tumor spread is a guided process. 
It has been reported that malignant cells may use chemokine receptor ligand interactions to guide the 
colonization of target organs (reviewed in Saharinen et al., 2004; reviewed in Achen & Stacker, 2008). Chemokines 
are a family of chemoattractant cytokines that bind to G protein-coupled receptors expressed on target cells, 
namely malignant cells (Laurence, 2006). For instance, breast cancer cells, that normally choose regional lymph 
nodes, bone marrow, lung and liver as their first sites of destination, overexpress CCR7 (chemokine, CC motif, 
receptor 7) and CXCR4 (chemokine, CXC motif, receptor 4). Their ligands, SLC/CCL2 (secondary lymphoid 
chemokine / CC-type chemokine ligand 21) and SDF-1 CXCL12/ (stromal cell-derived factor 1 / chemokine, 
CXC motif, ligand 12) are expressed at high levels by isolated lymphatic endothelial cells and lymphatic 
endothelium from vessels present in the preferred sites of metastasis (Muller et al., 2001). This guides 
chemoattraction and migration of tumor cells, and characterizes lymphatic vessel invasion as an active event. 

 
3. Angiogenesis, Lymphangiogenesis and Lymphovascular Invasion in Urothelial Bladder 

Cancer  
 

The metastatic profile of urothelial bladder carcinoma implies, as in most malignant tumors, the dissemination of 
tumor cells through the lymphatic vasculature, and the colonization of regional lymph nodes is an early event in 
progression. Smith & Whitmore reported the involvement of the internal iliac and obturator groups of lymph 
nodes in about 74% of patients who underwent radical cystectomy; the external iliac nodes were involved in 65% 
of the patients, and the common iliac nodes were involved in 20% of the cases (Smith & Whitmore, 1981). As 
already referred, controversy exists regarding the optimal extent of lymphadenectomy and the number of lymph 
nodes to be retrieved at radical cystectomy. An extended pelvic lymph node dissection (encompassing the 
external iliac vessels, the obturator fossa, the lateral and medial aspects of the internal iliac vessels, and at least 
the distal half of the common iliac vessels together with its bifurcation) has been suggested as potentially curative 
in patients with metastasis or micrometastasis to a few nodes (Karl et al., 2009; Abol-Enein et al., 2011). Wright 
and colleagues observed that an increased number of lymph nodes removed at the time of radical cystectomy 
associates with improved survival in patients with lymph node-positive bladder cancer (Wright et al., 2008). The 
recommendation from the Bladder Cancer Collaboration Group is that ten to fourteen lymph nodes should be 
removed at the time of radical cystectomy (Herr et al., 2004). The concept of lymph node density (the number of 
positive lymph nodes divided by the total number of lymph nodes) was introduced by Stein and colleagues and 
helps to select lymph node-positive patients after radical cystectomy for adjuvant treatment (Stein et al., 2003). 
However, the lymph node density threshold is a debatable question (Gilbert, 2008). In large series, the median 
number of total lymph nodes removed was nine, with high lymph node density (25%), which can lead to 
misleading N0 staging (Wright et al., 2008). Therefore, in this subgroup of patients (lymph nodes removed ≤ 9 
and N0), another prognostic factor is needed to better select patients for adjuvant treatment. Moreover, according 
to Malmström, extending the boundaries of surgery will not drastically improve survival. The focus should be on 
exploring biomarkers that predict extravesical dissemination and improving on the systemic treatment concept 
(Malmström, 2011). In this line of investigation, angiogenesis, lymphangiogenesis and lymphovascular invasion 
occurrence have been implicated in bladder cancer progression, invasion and metastasis, and represent potential 
targets for guided therapy. 
Several studies reported a significant association between VEGF overexpression ― both in tumor tissue (Crew et 
al., 1997; O’Brien et al., 1995) and urine (Crew et al., 1999; Jeon et al., 2001) ―, high blood vessel density (Goddard 
et al., 2003; Santos et al., 2003) and the occurrence of recurrence and progression in patients with non-muscle 
invasive bladder cancer. In this group of patients, it has been observed that angiotensin II type 1 receptor (AT1R) 
expression associates with high blood vessel density and is related to early intravesical recurrence (Shirotake et 
al., 2011). AT1R supports tumor-associated macrophage infiltration, which results in enhanced tissue VEGF 
protein levels (Egami et al., 2009). These results suggest that AT1R is involved in bladder tumor angiogenesis and 
may become a new molecular target and a prognostic factor for urothelial bladder cancer patients  
In the subset of invasive urothelial bladder cancer, most studies also reported the association between 
angiogenesis occurrence and unfavorable prognosis. High blood vessel density was identified as an independent 
prognostic factor by several authors (Bochner et al., 1995; Chaudhary et al., 1999; Dickinson et al., 1994; Jaeger et 
al., 1995). Moreover, overexpression of VEGF associates with high blood vessel density (Sato et al., 1998; Yang et 
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al., 2004). Analysis of serum levels of VEGF has demonstrated its optimal sensitivity and specificity for predicting 
metastatic disease (Bernardini et al., 2001). Inoue and colleagues reported the importance of measuring blood 
vessel density and VEGF immunoexpression in identifying patients with invasive tumors who are at high risk of 
recurrence and development of metastasis after radical cystectomy and neoadjuvant systemic chemotherapy. The 
author highlighted the role of VEGF as a cell survival factor, not only by protecting the malignant cells in 
situations of hypoxia, but also during the occurrence of chemotherapy-induced apoptosis (Inoue et al., 2000). 
Beyond VEGF signaling, other angiogenesis-related molecules have been implicated in bladder cancer recurrence, 
progression and metastasis, namely several proangiogenic factors ― matrix metalloproteinases, fibroblast growth 
factors, platelet derived-growth factors, cyclooxygenases, integrins, angiopoietins, Notch signaling ― and several 
antiangiogenic factors ― thrombospondin-1, angiostatin-endostatin, platelet factor-4 (Chikazawa et al., 2008; 
Durkan et al., 2001; Grossfeld et al., 1997;  Patel et al., 2006; reviewed in Pinto et al., 2010; Shariat et al., 2010). 
The relevance of lymphangiogenesis in bladder cancer setting has gained recent attention. A few articles suggest 
that lymphangiogenesis occurrence, detected using specific lymphatic markers, is associated with poor prognosis 
(Fernández et al., 2008; Ma et al., 2010; Miyata et al., 2006; Zhou et al., 2011; Zu et al., 2006). VEGF-C, VEGF-D and 
VEGFR-3 are overexpressed in bladder cancer and promote tumor-induced lymphangiogenesis. This correlates 
with tumor upstaging and lymph node involvement, and results in a worse prognosis (Afonso et al., 2009; Miyata 
et al., 2006; Suzuki et al., 2005; Herrmann et al., 2007; Zhou et al., 2011; Zu et al., 2006). Interestingly, VEGF-C 
overexpression also associates with angiogenic events, probably by interaction of the fully processed form with 
VEGFR-2 (Afonso et al., 2009; Miyata et al., 2006). On the other hand, tumor associated macrophages play an 
important role in promoting lymphangiogenesis by producing VEGF-C and VEGF-D, mainly in peritumoral areas 
(Schoppmann et al., 2002). The blockade of VEGF-C/D with a soluble VEGF receptor-3 markedly inhibited 
lymphangiogenesis and lymphatic metastasis in an orthotopic urinary bladder cancer model. In addition, the 
depletion of tumor associated macrophages exerted similar effects (Yang et al. 2011). 
Lymphovascular invasion has been identified as an independent prognostic factor for bladder cancer patients in 
several studies (Cho et al., 2009; Leissner et al., 2003; Lotan et al., 2005; Quek et al., 2005). In patients with newly 
diagnosed T1 urothelial bladder cancer, lymphovascular invasion in transurethral resection of bladder tumor 
specimens predicts disease progression and metastasis (Cho et al., 2009). Lotan and colleagues observed that 
blood and lymphatic vessel invasion (accessed by Haematoxylin-eosin stain) is an independent predictor of 
recurrence and low overall survival in patients who undergo radical cystectomy for invasive urothelial bladder 
cancer and are lymph node negative. They emphasized that these patients represent a high risk group that may 
benefit from neoadjuvant or adjuvant treatments. However, in this study, the mean number of lymph nodes 
removed per patient at the time of radical cystectomy was 20,1±10,2 (Lotan et al., 2005). 
The prognostic impact of lymphovascular invasion in patients with lymph node-negative urothelial bladder 
cancer treated by radical cystectomy has been recently validated in large multicentre trials (Bolenz et al., 2010; 
Shariat et al, 2010). May and colleagues emphasized that, besides the importance of performing extended 
lymphadenectomies, the information resulting from an assessment of lymphovascular invasion is critical for 
stratification of risk groups and identification of patients who might benefit from adjuvant treatments (May, 
2011). Algaba underlined that, in this field, it would be necessary to reach a consensus on strict diagnostic criteria 
as soon as possible, to be able to incorporate this prognostic factor in clinical practice (Algaba, 2006). Leissner and 
colleagues endorsed that blood and lymphatic vessel invasion should be commented on separately in the 
pathology report (Leissner et al., 2003). 
Afonso and colleagues reported the prognostic contribution of molecular markers of blood vessels (like CD31) 
(Fig. 4, A) and lymphatic vessels (like D2-40) (Fig. 4, B) to accurately assess the occurrence of blood and/or 
lymphatic vessel invasion. The use of endothelial markers is encouraged because immunohistochemistry 
antibodies are significantly more sensitive in detecting invasive events than the standard Haematoxylin-eosin 
staining method and, additionally, facilitate the discrimination between blood and lymphatic vessel invasion. 
This is particularly important in identifying isolated malignant cells invading lymphatic vessels, because their 
viability is more probable in the lymphatic flow than in the blood circulation. Conversely, emboli of malignant 
cells are better suited to survive in the bloodstream, and are more easily identified, even by the traditional 
Haematoxylin-eosin staining method. This advocates the use of lymphatic markers for purposes of counting 
invaded lymphatic vessels. In this study, blood vessel invasion by malignant emboli assessed by CD31 staining 
(Fig. 5, A), and lymphatic vessel invasion by isolated malignant cells assessed by D2-40 staining (Fig. 5, B) 
significantly affected patients’ prognosis; blood vessel invasion remained as an independent prognostic factor 
(Afonso et al., 2009). When included in a model of bladder cancer aggressiveness, these parameters contributed to 
a clear separation between low and high aggressiveness groups (Afonso et al., 2011).  
Both peritumoral and intratumoral lymphatic vessels seem to be functional for urothelial cells’ dissemination. 
Some articles reported the existence of intratumoral lymphatic vessels in bladder tumors, and their possible 
participation in metastatic events. No intratumoral edema has been observed, which is consistent with the 
occurrence of efficient lymphatic neovascularization (Afonso et al., 2009; Fernández et al., 2008; Ma et al., 2010; 
Miyata et al. 2006). Lymphatic vessel invasion occurrence correlates with high lymphatic vessel density values, 
mainly in the intratumoral areas. Although most of the invaded lymphatic vessels were distorted and collapsed, 
single malignant cells were significantly observed in the well-preserved intratumoral lymphatic vessels (Fig. 5, B). 
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Moreover, the absence of intratumoral edema is a surrogate marker of an efficient lymphatic flow (Afonso et al., 
2009). 
 

  
 

Fig. 4. Intratumoral blood vessels highlighted by CD31 (A), and intratumoral lymphatic vessels highlighted by 
D2-40 (B), in invasive urothelial bladder carcinoma. Evidence of internal negative control in A (D2-40 negative 
blood vessel ) (original magnification x100) (reprinted by permission from © 2009 John Wiley & Sons, Inc. 
Originally published in Histopathol. 55: 514-524) 
 

  
 

Fig. 5. Intratumoral blood vessel highlighted by CD31 invaded by a small malignant embolus (A), and 
intratumoral lymphatic vessel highlighted by D2-40 invaded by an isolated malignant cell (B), in invasive 
urothelial bladder carcinoma (original magnification x100) (reprinted by permission from © 2009 John Wiley & 
Sons, Inc. Originally published in Histopathol. 55: 514-524) 

 
4. Angiogenesis and Lymphangiogenesis as Therapeutic Targets in Urothelial Bladder 

Cancer  
 

Our current understanding of the importance of tumor-induced angiogenesis and lymphangiogenesis for the 
occurrence of haematogenous and lymphogenous metastasis suggests that, by blocking the activity of key 
molecules involved in these processes, it should be possible to suppress the onset of metastasis following 
diagnosis of cancer and its subsequent therapy. Moreover, prophylactic suppression of metastasis would be 
useful for patients who are at risk of recurrence (Thiele & Sleeman, 2006). Therefore, clinical trials evaluating 
novel agents and combinations including chemotherapeutic drugs, as well as targeted inhibitors, are desperately 
needed (Iyer et al., 2010). 
Two types of neovascularization inhibitors have been described. The direct inhibitors refer to compounds that 
function directly on endothelial cells by blocking a common pathway of vessel growth. Indirect inhibitors are 
molecules that neutralize the functions of angiogenic and lymphangiogenic growth factors; due to their mode of 
action, these are preferred over the direct inhibitors (Cao, 2005; Folkman, 2003). The main strategies that have 
been tested focus on modulating the signaling of VEGF family of growth factors and receptors, and are based on 
the use of monoclonal antibodies or soluble versions of receptors to neutralize the ligand-receptor interaction, and 
the inhibition of the kinase activity of the receptors (Achen et al., 2006; Thiele & Sleeman, 2006).  
In 2004, the U.S. Food and Drug Administration (FDA) has approved bevacizumab (Avastin®), a humanized 
monoclonal antibody that binds to VEGF-A, as the first drug developed solely for antiangiogenesis anticancer use 
in humans. Antiangiogenic drugs are presently approved in a wide number of tumor types, namely in breast, 
colorectal, lung, liver, glioblastoma and kidney cancer. Other compounds are currently in preclinical 
development, with many of them now entering the clinic and/or achieving approval (reviewed in Boere et al., 
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2010; reviewed in Cook & Figg, 2010; reviewed in Pinto et al., 2010).  
In anticancer therapy, an angiogenesis inhibitor may prevent the growth of new blood vessels. This should 
decrease the delivery of oxygen and nutrients – the “starving therapy” – which are indispensable elements for the 
support of uncontrolled cell division and tumor expansion. Angiogenesis inhibitors are predicted to be cytostatic, 
stabilizing tumors and perhaps preventing metastasis, rather than being curative (Zhi-chao & Jie, 2008). 
Therefore, there is the need to administrate this type of therapy for long periods of time. As a consequence, 
problems with bleeding, blood clotting, heart function and depletion of the immune system are common (Cohen 
et al., 2007). Nevertheless, inhibition of circulating VEGF reduces vascular permeability and thus tumoral 
interstitial pressure, permitting easier penetration of the tumor by conventional chemotherapeutic targets 
(Ferrara, 2005). 
A second concern of anti-angiogenesis therapy is the approach to objectify the response to anti-angiogenic drugs. 
Chan and colleagues found that targeted contrast enhanced micro-ultrasound imaging enables investigators to 
detect and monitor vascular changes in orthotopic bladder tumors. Therefore, this technique may be useful for 
direct, noninvasive and in vivo evaluation of angiogenesis inhibitors (Chan et al., 2011). Lassau and colleagues 
demonstrated that dynamic ultrasound can be used to quantify dynamic changes in tumor vascularity as early as 
three days after the administration of the anti-angiogenic drug. These changes may be potential surrogate 
measures of the effectiveness of antiangiogenic therapy, namely by predicting progression-free survival and 
overall survival (Lassau et al., 2011). 
Regarding antilymphangiogenic strategies, numerous compounds that could be used to block lymphangiogenesis 
already exist, although there is some delay in the translation to the clinic. These act mainly by targeting 
lymphangiogenic protein tyrosine kinases (Williams et al., 2010) (Table 1) or other indirect regulators of 
lymphangiogenic events. For instance, rapamycin (sirolimus), a classical immunosuppressant drug used to 
prevent rejection in organ transplantation, and a known inhibitor of the mTOR (mammalian target of rapamycin) 
signaling, has demonstrated potent antilymphangiogenic properties (Huber et al., 2007), and may suppress 
lymphatic metastasis (Kobayashi et al., 2007). mTOR is a member of the phosphoinositide-3-kinase-related kinase 
family, and is centrally involved in growth regulation, proliferation control and cancer cell metabolism (Rosner et 
al., 2008). Its inhibition impairs downstream signaling of VEGF-A as well as VEGF-C via mTOR to the ribosomal 
p70S6 kinase (a regulator of protein translation, and a major substrate of mTOR) in lymphatic endothelial cells 
(Huber et al., 2007). Other derivative compounds of rapamycin, like everolimus (RAD001) and temsirolimus 
(Torisel), have also demonstrated anti-tumor properties, namely by inhibiting tumor neovascularization 
(reviewed in Garcia & Danielpour, 2008). Recently, in patients with lymphangioleiomyomatosis (LAM, a 
progressive, cystic lung disease in women, which is associated with inappropriate activation of mTOR) sirolimus 
stabilized lung function, reduced serum VEGF-D levels, and was associated with a reduction in symptoms and 
improvement in the quality of life (McCormack et al., 2011).  
 
Table 1. Protein tyrosine kinases involved in lymphatic biology, and available inhibitors (Tie- tyrosine kinase with 
immunoglobulin and EGF homology domain; EphB4- ephrin type-B receptor 4) (reprinted by permission from © 
2010 BioMed Central Ltd. Originally published in J. Ang. Res. 2: 1-13) 
 

Gene Role in lymphatic vessels 
Inhibitors 
available 

Effect of pathway inhibition 

VEGFR-2 
Receptor for the VEGF family of ligands. Can also 
heterodimerize with VEGFR-3. 

Yes 
Secreted VEGFR-2 is a naturally occurring inhibitor of 
lymphatic vessel growth; however, Sorafenib† did not block 
VEGF-C/D induced tumor lymphangiogenesis. 

VEGFR-3 

Predominant receptor for VEGF-C and VEGF-D. 
Transduces survival, proliferation and migration 
signals. 

Yes 
Cediranib‡ blocks VEGFR-3 activity and inhibits 
lymphangiogenesis. Anti-VEGFR-3 antibody prevented tumor 
lymphangiogenesis with no effect on preexisting vessels. 

Tie1 
 

Not critical for lymphatic cell commitment during 
development, and no ligand has been shown. 

None 
reported 

Tie1 knockout mouse has lymphatic vascular 
abnormalities that precede the blood vessel 
phenotype. 

Tie2 
 

Receptor for Ang-1 and Ang-2. Appears to control 
vessel maturation. 

Yes 
Tie2-/- mice are embryonic lethal due to vascular defects. 
Inhibition of Ang-2 leads to tumor blood vessel normalization. 

EphB4 
Expressed on lymphatic capillary vessels. Involved in 
vascular patterning. Binds to the ephrinB2 ligand. 

Yes 
Mice expressing a mutant form of ephrinB2 lacking the PDZ 
binding domain show major lymphatic defects in capillary 
vessels and collecting vessel valve formation. 

FGFR3 
 
 

The ligands FGF-1 and FGF-2 promote 
proliferation, migration, and survival of cultured 
lymphatic endothelial cells. FGFR3 is a direct 
transcriptional target of Prox1. 

Yes 
Knockdown of FGFR3 reduced lymphatic endothelial cells’ 
proliferation. 

IGF1R 

Both of the IGF1R ligands, IGF-1 and IGF-2, 
significantly stimulated proliferation and migration of 
primary lymphatic endothelial cells. 

Yes None reported. 

PDGFR 
 

The ligand PDGF-BB stimulated MAP kinase activity 
and cell motility of isolated lymphatic endothelial cells. 

Yes None reported. 

MET 

The ligand for c-Met, hepatocyte growth factor, has 
lymphangiogenic effect, but it is unclear if c-Met is 
expressed on lymphatic endothelial cells. 

Yes May be indirect effect. 

†Sorafenib inhibits B-Raf, PDGFRb, VEGFR-2 and c-Kit. ‡Cediranib inhibits VEGFR-1, -2, -3, PDGFRb and c-Kit. 
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Inhibition of lymphangiogenesis has been shown to block lymphatic metastasis by 50-70% in preclinical animal 
models, with good safety profiles, which suggests that anti-lymphangiogenic therapy could possibly be used 
safely in cancer patients, without disrupting normal lymphatic function (reviewed in Holopainen et al., 2011). 
Optimally, the gold-standard strategy would be the one that could inhibit both angiogenic and lymphangiogenic 
cascades, in order to compromise the success of haematogenous and lymphogenous dissemination. Some 
potential compounds are being investigated (reviewed in Boere et al., 2010; reviewed in Cook & Figg, 2010; 
reviewed in Pinto et al., 2010; reviewed in Stacker & Achen, 2008). 
Urothelial bladder carcinoma has experienced very few therapeutic successes, regarding antineovascularization 
therapy, in the last years. Compounds like bevacizumab (Avastin®), aflibercept (VEGF-Trap, AVE0005), sunitinib 
malate (Sutent, SU11248), sorafenib (BAY 43-9006), vandetanib (Zactima, ZD6474) and pazopanib (Votrient, 
GW786034) are being tested in preclinical and clinical trials (reviewed in Pinto et al., 2010) (Table 2).  
 
Table 2. Selected ongoing or recently completed trials exploring antiangiogenic therapies in urothelial bladder 
carcinoma (reprinted by permission from © 2010 Elsevier. Originally published in Commun. Oncol. 7: 500-504) 
 

Principal investigator / organization Regimen Patient population Phase 

Siefker-Radtke/MDACC 
Methotrexate + vinblastine + doxorubicin+ 

cisplatin + bevacizumab 
Neoadjuvant (muscle-invasive) II 

Kraft/MUSC 
Gemcitabine + cisplatin + bevacizumab → 
cystectomy → paclitaxel + bevacizumab 

Neoadjuvant/adjuvant (muscle-invasive) II 

Hahn/HOG Gemcitabine + cisplatin + bevacizumab First-line metastatic II 

Bajorin/MSKCC Gemcitabine + carboplatin + bevacizumab First-line metastatic (cisplatin-ineligible) II 

Rosenberg/CALGB Gemcitabine + cisplatin ± bevacizumab First-line metastatic III 

Garcia/Cleveland Clinic Sunitinib Neoadjuvant (muscle-invasive) II 

Sonpavde/HOG Gemcitabine + cisplatin + sunitinib Neoadjuvant (muscle-invasive) II 

Bellmunt Sunitinib First-line metastatic (cisplatin-ineligible) II 

Galsky/US Oncology Gemcitabine + cisplatin + sunitinib First-line metastatic II 

Hussain/University of Michigan Sunitinib versus placebo Maintenance after first-line chemotherapy II 

Gallagher/MSKCC Sunitinib Second-line metastatic II 

Milowsky/MSKCC Gemcitabine + cisplatin + sorafenib First-line metastatic II 

Kelly/Yale Gemcitabine + carboplatin + sorafenib First-line metastatic (cisplatin-ineligible) II 

Sternberg/EORTC Gemcitabine + carboplatin ± sorafenib First-line metastatic II 

Dreicer/ECOG Sorafenib Second-line metastatic II 

Choueiri/DFCI Docetaxel ± vandetanib Second-line metastatic II 

Vaishampayan/Mayo Clinic Pazopanib Second-line metastatic II 

MDACC = MD Anderson Cancer Center; MUSC = Medical University of South Carolina; HOG = Hoosier Oncology Group; MSKCC = Memorial Sloan-
Kettering Cancer Center; CALGB = Cancer and Leukemia Group B; EORTC = European Organization for Research and Treatment of Cancer; ECOG = 
Eastern Cooperative Oncology Group; DFCI = Dana-Farber Cancer Institute 

 
Bevacizumab, as has been already referred, is a monoclonal antibody that binds and neutralizes VEGF in the 
serum. Aflibercept is a soluble fusion protein of the human extracellular domains of VEGFR-1 and VEGFR-2, and 
the Fc portion of human immunoglobulin G. It binds, with a higher affinity than other monoclonal antibodies, to 
VEGF and additional VEGF-family members, namely VEGF-B and placental growth factor (PlGF). Sunitinib is an 
oral multi-targeted receptor tyrosine kinase inhibitor, with activity against VEGF receptors and PDGF receptors, 
among others. Sorafenib is a small, oral molecule that inhibits various targets along the EGFR/MAPK (epidermal 
growth factor receptor / mitogen-activated protein kinase) signal transduction pathway, and also through 
VEGFR and PDGFR families. Vandetanib is a tyrosine kinase inhibitor, antagonist of VEGFR and EGFR. 
Pazopanib is a multitargeted tyrosine kinase inhibitor against VEGF receptors, c-kit, and PDGF receptors (Cook & 
Figg, 2010). 

 
4.1. Preclinical Studies 
 

In the preclinical scenario, Videira and colleagues studied the effect of bevacizumab on autocrine VEGF 
stimulation in bladder cancer cell lines, and concluded that, at clinical bevacizumab concentrations, cancer cells 
compensate the VEGF blockade, by improving the expression of VEGF and related genes. This highlights the 
need to follow the patient’s adaptation response to bevacizumab treatment (Videira et al., 2011). The 
antiangiogenic treatment of tumours may restore vascular communication and, thereby, normalize flow 
distribution in tumour vasculature. The use of antiangiogenic drugs leads to improved tumour oxygenation and 
chemotherapy drug delivery (Pries et al., 2010). However, these mechanisms may be also the cause of malignant 
dissemination, because tumours elicit evasive resistance. Caution is recommended, due to the divergent effects 
that VEGF inhibitors can induce on primary tumor growth and metastasis (Loges et al., 2009).  
Yoon and colleagues, when exposing six human bladder cancer cell lines to an escalating dose of sunitinib alone 
or in combination with cisplatin/gemcitabine, demonstrated that sunitinib malate has a potent antitumor effect 
and may synergistically enhance the known antitumor effect of gemcitabine (Yoon et al, 2011).  
The first study with vandetanib in bladder cancer cell lines demonstrated its potential to sensitize tumor cells to 
cisplatin. At vandetanib concentrations of ≤2microM, the combination with cisplatin was synergistic, especially 
when given sequentially after cisplatin , and additive with vandetanib followed by cisplatin (Flaig et al., 2009). 
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Li and colleagues studied the efficacy of pazopanib, both alone and in combination with docetaxel, in bladder 
cancer cell lines. They demonstrated that single-agent pazopanib has modest activity, but when given in 
combination with docetaxel, acted synergistically in docetaxel-resistant bladder cancer cells, with the potential of 
improved toxicity (Li et al., 2001). 
Urothelial bladder carcinoma expresses mTOR signaling molecules, providing a rationale for clinical trials 
evaluating agents targeting this pathway (Tickoo et al., 2011). In fact, some studies using bladder cancer cell lines 
have demonstrated that sirolimus and related drugs inhibit the growth of cancer cells and decrease their viability 
(Fechner et al., 2009; Hansel et al., 2010; Pinto-Leite et al., 2009; Schedel et al., 2011). Similar results were obtained 
when treating bladder cancer animal models with sirolimus or everolimus (Chiong et al., 2011; Oliveira et al., 
2011; Parada et al., 2011; Seager et al., 2009; Vasconcelos-Nóbrega et al., 2011). 

 
4.2. Phase II Studies 
 

The results of a phase II trial of cisplatin, gemcitabine, and bevacizumab  (CGB) as first-line therapy for metastatic 
urothelial carcinoma revealed that CGB may improve overall survival ― with a median follow-up of 27.2 months, 
overall survival time was 19.1 months. However, the rate of side effects was high, namely neutropenia, 
thrombocytopenia, anemia, and deep vein thrombosis/pulmonary embolism (Hahn et al., 2011).  
In a phase II trial of gemcitabine, carboplatin, and bevacizumab in patients with advanced/metastatic urothelial 
carcinoma, Balar and colleagues concluded that addition of bevacizumab does not improve the response rate. 
However, bevacizumab can be safely added to gemcitabine and carboplatin, because the rate of venous 
thromboembolisms is similar to the one observed with gemcitabine and carboplatin alone (Balar et al., 2011). 
Moreover, in a pooled analysis of cancer patients in randomized phase II and III studies, the addition of 
bevacizumab to chemotherapy did not statistically significantly increase the risk of venous thromboembolisms 
versus chemotherapy alone. Probably, the risk for venous thromboembolisms is driven predominantly by tumor 
and host factors (Hurwitz et al., 2011). This type of side effect is primarily prevented by using anticoagulants 
simultaneously with cytotoxic chemotherapy (Riess et al., 2010). However, anticoagulant use during bevacizumab 
therapy may increase the risk of serious hemorrhage, although it is generally well tolerated (Bartolomeo et al., 
2010). This controversial issue is still under scrutiny and more data are needed to clarify the optimal regime to 
reduce venous thromboembolisms in bladder cancer patients, particularly in those who are being treated with 
antiangiogenic drugs.   
Patients with recurrent or metastatic urothelial carcinoma who had received a prior platinum-containing regimen 
were entered in a phase II trial with aflibercept as a second-line therapy. Aflibercept was well tolerated, but it had 
limited single agent activity in platinum-pretreated bladder cancer patients (Twardowski et al., 2009). 
In a phase II study of sunitinib in patients with metastatic urothelial cancer designed to assess the efficacy and 
tolerability of this drug in patients with advanced, previously treated urothelial cancer, anti-tumour responses 

were observed. However, sunitinib did not achieve the predetermined threshold of 20% activity defined by the 
Response Evaluation Criteria in Solid Tumors, and side effects such as embolic events were reported (Gallagher 
et al., 2010).  
In a multicenter phase II trial with sunitinib as first-line treatment in patients with metastatic urothelial cancer 
ineligible for cisplatin, on intention-to-treat analysis revealed that 38% of the patients showed partial responses 
(PRs), and 50% presented with stable disease (SD), the majority more than 3 months. Clinical benefit (PR + SD) 
was 58%. Median time to progression was 4.8 months and median overall survival 8.1 months (Bellmunt et al., 
2011).  
In a multicentre phase II trial of sorafenib as second-line therapy in patients with metastatic urothelial carcinoma, 
there were no objective responses to therapy. The 4-month progression-free survival rate was 9.5%, and the 
overall survival was 6.8 months (Dreicer et al., 2009). 
Choueiri and colleagues conducted a double-blind randomized trial in which patients with metastatic bladder 
cancer and as many as three previous chemotherapy regimens received intravenous docetaxel with or without 
vandetanib. The results demonstrated that the addition of vandetanib to second-line docetaxel did not result in 
significant improvements in progression-free survival, overall survival or response rates (Choueiri et al., 2011). 
The final results of a phase II study of everolimus in metastatic urothelial cell carcinoma have been presented at 
2011 ASCO (American Society of Clinical Oncology) Annual Meeting. It was demonstrated that everolimus has 
clinical activity in patients with advanced urothelial bladder cancer.  For the thirty-seven evaluable patients, the 
median progression-free survival was 3.3 months, and the median overall-survival was 10.5 months. Some side 
effects possibly related to everolimus were observed, namely anemia, infection, hyperglycemia, lymphopenia, 
hypophosphatemia and fatigue (Milowsky et al., 2011). 
Dovitinib (TKI258) is an oral investigational drug that inhibits angiogenic factors, including FGFR and VEGFR. A 
multicenter, open-label phase II trial of dovitinib in advanced urothelial carcinoma patients with either mutated 
or wild-type FGFR3 is currently underway (Milowsky et al., 2011). 
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4.3. Phase III Studies 
 

A randomized double-blinded phase III study comparing gemcitabine, cisplatin, and bevacizumab to 
gemcitabine, cisplatin, and placebo in patients with advanced urothelial carcinoma is open to enrollment. The 
primary end point is to compare the overall survival of patients with advanced urothelial carcinoma treated with 
gemcitabine hydrochloride, cisplatin, and bevacizumab versus gemcitabine hydrochloride, cisplatin, and placebo. 
The secondary end points are to compare the progression-free survival, the objective response rate and the grade 
3 and greater toxicities of these regimens in the patients (Cancer and Leukemia Group B, 2011). 

 
5. Conclusion 
 

Bladder cancer represents a significant health problem, and the costliest type of cancer to treat. Although the 
majority of cases present as non-muscle invasive disease, the recurrence and progression rates are high, which 
demands for long-term follow-up and repeated interventions. Moreover, patients with advanced tumors treated 
by neoadjuvant or adjuvant regiments frequently progress and may develop chemotherapy resistance. Therefore, 
biomarkers of tumour aggressiveness and response to therapy are urgently needed, since the classical formulae 
based on stage and grade classification are insufficient to characterize bladder cancer. In this sense, angiogenesis, 
lymphangiogenesis and lymphovascular invasion have been described as surrogate markers of bladder cancer 
progression, invasion and metastasis, and represent potential fields of intervention. On one hand, the combined 
analysis of these biological parameters in tumor samples with the classical clinicopathological parameters may 
improve the individual characterization of bladder cancer, in what concerns to its clinical and prognostic course, 
and should allow therapeutic adequacy. On the other hand, the knowledge and modulating of biological 
phenomena related with bladder cancer progression may represent a significant improvement in the 
development of new drugs and in the pathological response to therapy, which ultimately will lead to an increase 
in disease-free survival and overall survival rates. 
Targeted therapy has caused dramatic changes in the treatment of other types of tumors. However, in bladder 
cancer setting, clinical trials with molecularly targeted agents have been few in number and largely unsuccessful. 
Regarding antiangiogenic and antilymphangiogenic agents, these are still considered an investigational option for 
urothelial bladder cancer patients, and more results are needed to establish their roles in the treatment 
armamentarium. Research studies with anti-neovascularization drugs should not only provide effective agents to 
treat bladder cancer patients, but also predictive biomarkers for response to anti-neovascularization therapy, in 
order to implement the concept of personalized therapy. 
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