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This study aimed to assess the membrane modifications in Pseudomonas aeruginosa after
continuous exposure to increasing doses of benzalkonium chloride (BC). Two different
concentrations were used, 0.9 and 12.0 mM.
Proteomic investigations revealed that the range of the outermembrane proteome alterations
following continuous exposure is very low, i.e. about 10% and BC concentration dependent.
Adapted cells revealed different expressions of key proteins frequently reported as involved
in acquired resistance mechanisms. Porins (OprF and OprG) and lipoproteins (OprL and OprI)
were underexpressed when the higher adaptation concentration (12 mM) was used.
Some of thesemembrane alterations have been described as involved in the acquired resistance
to antibiotics, suggesting possible commonmechanisms between these two types of resistance.

Biological significance
Results obtained after P. aeruginosa adaptation to benzalkonium chloride suggest that the
bacterial adaptation to BC do not mobilize complete outer membrane systems. Though, we
showed that adaptive resistance to BC promoted some changes in proteins previously described
as involved in antibiotic resistance. These results contribute to the assumption that there are
common resistance mechanisms, between adaptive and acquired resistance of P. aeruginosa.

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Pseudomonas aeruginosa has long been regarded as an
antimicrobial-resistant organism. The major causes of this
bacteria intrinsic resistance [3] are its low outer membrane
permeability [1] responsible for preventing the access of some
agents to their sites of action and the presence of efflux
pumps responsible for the extrusion of many antibiotics [2].
There are two well-described mechanisms of resistance,
intrinsic and acquired, both characterized by an irreversible
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phenotype and independent of the presence of the antibiotic
or the adverse environmental conditions [3]. However, there is
a third mechanism, adaptive resistance that is not so well
understood. It is mainly characterized by reversible pheno-
typic changes that occur at the cell level. These changes allow
the bacteria to grow in adverse conditions [3], but once the
external stress is removed, the organism reverts to its wild-
type susceptibility [3,4].

Antimicrobial products, like benzalkonium chloride, that
are frequently used to eradicate bacteria, can alter the
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environment and can trigger adaptive resistance mechanisms
[5,6]. Some reports suggest that the widespread use of biocides
and disinfectants in hospitals, and to a lesser extent at home,
even where there is a clear benefit, could act as a selective
pressure for antimicrobial-resistant bacteria [7,8]. The shift of
bacterial adaptive resistance mechanisms due to the expo-
sure to antimicrobial agents encompasses some alterations of
the outer membrane protein systems [3].

Membrane proteins are central to cell life because they are
in the interface between the intra and extra-cellular compart-
ments of the cell [9] and play important roles in various cellular
processes such as cell adhesion, metabolites and ion transport,
and endocytosis host immune responses. Thus, membrane
proteins are very important for pharmacological action and
represent potential targets for vaccine development [10].

This work aims to identify the proteomic modifications
endorsed by the induction of adaptive resistance of P. aeruginosa
to different adaptation concentrations of benzalkonium chlo-
ride. This knowledge will give some insights in the understand-
ing of the parameters involved in sanitation failure and adaptive
resistance acquisition.
2. Experimental procedures

2.1. Strain and culture conditions

P. aeruginosa (ATCC 10145) was preserved in criovials (Nalgene)
at −80 ± 2 °C. Prior to each experiment, P. aeruginosa bacterial
cells were grown on Triptic Soy Agar (TSA, Merck Biosciences)
plates for 24 h, at 37 °C. Adapted P. aeruginosa strains were
preserved in criovials and cultured in TSA supplemented
with benzalkonium chloride (BC), in a final concentration of
0.9 mM and 12.0 mM for 24 h at 37 °C.

2.2. Antibacterial agent

Benzalkonium chloride (BC), a quaternary ammonium com-
pound, was purchased from Calbiochem (Merck Biosciences).

2.3. Induction of BC adaptive resistance in P. aeruginosa

Adaptive resistance was induced by subculturing P. aeruginosa
in Triptic Soy Broth (TSB) supplemented with increasing
BC concentrations, according to the adaptive procedures
described by Machado et al. [11]. Briefly, 5 mL of an overnight
culture (1 × 107 CFU/mL) was added to flasks containing
45 mL of TSB supplemented with BC at final concentrations
of 0.5, 0.9, 1.3 and 2.0 mM. Cultures were then incubated at
37 °C for 48 h on a horizontal shaker (120 rpm). Bacterial
growth was monitored by optical density measurement at
640 nm (OD640). Every two days, 5 mL of the bacterial culture,
supplemented with the highest BC concentration for which
bacterial growth was observed, was used to inoculate 45 mL of
TSB containing BC in a final concentration 0.2 mM higher
than the one that exhibited growth. At the end of the third
growth cycle in increased BC solutions, no significant bacte-
rial load was observed. Bacteria were then subcultured in the
presence of the maximum BC concentration that allowed
growth for another three complete cycles. At the end of the
adaptation process, culture purity was checked by spreading
aliquots on to Pseudomonas spp. selective agar (Cetrimide agar
base, DIFCO).

The stability of the BC-adapted strains was later deter-
mined by continuous subculture every 24 h for 10 passages in
TSA and subsequent evaluation of the adapted strains ability
to maintain their growth in TSA supplemented with BC. To
preserve the BC-adapted strains, Petri dishes were prepared
with TSA supplemented with BC at a final concentration of
0.9 mM, and 12.0 mM (referred as adapted P. aeruginosa strains
A0.9 and A12, respectively) (Fig. 1). Bacteria from the step-wise
training were preserved in the BC-enriched TSA. Adaptation
processes were performed in three independent replicates.

2.4. Proteomics

2.4.1. Preparation and analysis of outer membrane protein
(OMP) extracts
Crude outer membrane extracts were prepared from bacterial
pellets following the spheroplast procedure described by
Mizuno and Kageyama [12].

For protein extraction, and for each adapted strain obtained
in each different adaptation process, standardized cell suspen-
sions were prepared in three separate occasions in a minimal
salt medium (MSM medium, pH 7.5) [13]. The bacterial cell
concentration of each suspension was estimated by OD640

referred to a calibration curve [14]. The bacterial planktonic
cultures were prepared in 800 mL of MSMmedium by adjusting
the final cell concentration to 1 × 107 CFU/mL and were
allowed to grow at 37 °C for 20 h, at 150 rpm. Bacterial cultures
(collection and adapted strains) were harvested for 15 min at
3500 ×g and washed twice with 20% (w/v) sucrose solution.
Cells were suspended in a digestion solution: 9 mL 2.0 M
sucrose solution; 10 mL 0.1 M Tris–HLCl pH 7.8, at 25 °C;
0.8 mL 1% (w/v) Na–EDTA, pH 7.0; and 1.8 mL 0.5% (w/v)
lysozime. The mixture was incubated for 1.5 h at 37 °C in the
presence of DNAse and RNAse (5 μg/mL; Sigma). Spheroplasts
were collected by centrifugation (20 min at 10,000 ×g) and outer
membranes were then pelleted (120,000 ×g for 1 h at 4 °C) and
resuspended in 1 mL of sterile ultra-pure (UP) water. The
protein amount was measured using the Bio-Rad protein assay
(Bio-Rad, Hercules, CA). Protein extraction experiments were
performed three times per condition.

2.5. Two-dimensional gel electrophoresis

Outer membrane protein patterns were analyzed by two-
dimensional gel electrophoresis (2-DE). Two hundred micro-
grams of proteins was added to isoelectric focusing (IEF) buffer
(final volume, 300 μL) [15], with the following composition:
5 M urea, 2 M thiourea, 1% amidosulfobetaine-14 (ASB-14), 2%
w/v DTT and 2% v/v carrier ampholytes 4–7 NL. The
first-dimension gel separationwas carried out with Immobiline
Dry Strips L (18 cm, pH 4–7, Amersham Pharmacia Biotech).
The seconddimensionwas obtained by SDS-PAGEusing a 12.5%
(w/v) polyacrylamide resolving gel (width 16 cm, length 20 cm,
thickness 0.75 mm). After migration, proteins were visualized
by silver nitrate staining [16]. For each extraction, two gels were
obtained per condition.



Fig. 1 – Summary scheme of the adaptation process to benzalkonium chloride; ODi and ODf are respectively the growth of
bacteria observed by absorbance reading at OD640 nm in the beginning and the end of each stage of adaptation. n.g. represents
planktonic culture where no growth was observed.
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2.6. Gel analysis

Spot quantification was achieved by computing scanning
densitometry (ProXPRESS 2D, PerkinElmer Sciex). Gels were
analyzed using the Progenesis Samespot (Nonlinear Dynam-
ics). For each experimental condition, three 2-DE gels were
matched together to form a reference image. The two reference
gels were then matched together so that the same spot in
different gels had the same number. Protein spots from the two
bacterial populations were considered to display significant
quantitative differences if they fulfilled the following criteria: p
values ≤ 0.05 (t-test); detection threshold, average volume ≥ 20
(n = 3); differential tolerance, fold change ≥ 2 [13].

2.7. Protein identification

Spots were excised from the polyacrylamide gel and sliced into
small pieces. Selected spots compliedwith the following criteria:
volume varying with the incubation condition and displaying a
high (average) value with a low coefficient of variation. Gel plugs
were then dried using a SpeedVac centrifuge. Trypsin digestion
was performed using an automatic digester (MultiPROBE II,
PerkinElmer Sciex). After lyophilization, the peptide extracts
were resuspended in 10 μL of 0.2% formic acid/5% acetonitrile.

Peptides were enriched and separated using a lab-on-a-chip
technology (Agilent, Massy, France) and fragmented using an
on-line XCT mass spectrometer (Agilent). The fragmentation
data were interpreted using the Data Analysis program (version
3.4, Bruker Daltonic). For protein identification, MS/MS peak lists
were extracted and compared to the NCBInr protein database
restricted to P. aeruginosa (February 2, 2007, version 4, 1,342,017
residues, 4243 sequences), using the MASCOT Daemon (version
2.1.3) search engine. All searches were performed with no fixed
modification and allowed for carbamidomethylation, oxidation
and a maximum of one missed trypsin cleavage. MS/MS spectra
were searched with a mass tolerance of 1.6 Da for precursor ions
and 0.8 Da for fragment ions, respectively. If a protein was
characterized by two peptides with a fragmentation profile score
higher than 25 the protein was validated.When one of the criteria
was not met, peptides were systematically checked and/or
interpretedmanually to confirmorcancel theMASCOTsuggestion.

2.8. Bioinformatic tools for subcellular location

For the identified proteins, and in particular for unknown
proteins, the prediction of their location within the bacterial
cell was obtained from the genome annotation of P. aeruginosa
(accessible at http://www.pseudomonas.com/).
3. Results and discussion

3.1. Antimicrobial adaptation

The stability of BC adapted cells (A0.9 and A12 cultures) was
determined after three transfers in TSB. Regarding the
de-adaptation process, adapted strains lost their adaptive
resistance, as they were unable to grow in TSA supplemented
with BC after 10 passages in TSA. Despite being easily attained,
adaptive resistance can be lost if bacteria are sub-cultured in the
absence of the selection pressure [17]. This seems to be a
specific characteristic of bacterial adaptation achieved by

http://www.pseudomonas.com/
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continuous exposure. This feature was also reported by Gilleland
et al. [18] who confirmed the instability of P. aeruginosa resistance
as the strains readily revert to susceptible during several transfers
in theabsence of antibiotic. In order to keep the bacterial adaptive
resistance, and to assure that this condition was kept for
proteomic studies, A0.9, and A12, P. aeruginosa cultures were
maintained in TSA supplementedwith 0.9 and 12.0 mMof BC, as
referred in the Experimental procedures section.

3.2. Outer-membrane protein patterns

Due to their interfacial position in cells, membrane proteins
play important roles in various cellular processes including
signal transduction, metabolites and ions transport, and cell
adhesion [19]. The membrane is also a protective barrier and
constitutes more than half of all known drug targets [20].
Also, its implication in adaptive resistance acquisition in
P. aeruginosa is one of the most impressive features of this
cellular component. However, membrane proteins are notori-
ous complex to analyze via 2-DE due to extraction from the
membrane difficulties and their inherently hydrophobic nature
[21]. The hydrophobicity of these proteins makes them difficult
to solubilize for isoelectric focusing (IEF) and they often
precipitate at their isoelectric point (pI) in the immobilized pH
gradient (IPG), reducing transfer to the second-dimension gel.
The incorporation of the zwitterionic detergent ASB-14 in the
2-D sample solution prior to 2-DE has previously been shown to
improve the solubility of the membrane proteins compared
with sample solutions containing CHAPS or SB 3-10 [22]. Protein
hydrophobicity and solubilization as well as sample contami-
nation with cytoplasmic proteins revealed to be the major
difficulties regarding sample preparation and proteome analy-
sis. Also, it could have occurred some protein loss during
extraction. All together, these issues may be the reason
underlying the reduced number of outer membrane proteins
differentially expressed in this work.

Bacteria adaptive resistance to antimicrobials occurs mainly
at the outer membrane level [3,23] therefore, changes induced
by BC on P. aeruginosaOMP pattern were studied. Some proteins
were found as mass isoforms. Those isoforms exhibited
different apparentmolecular masses and pI values andwitness
posttranslational modifications [24]. The major constitutive
porin OprF was found as three isoforms, confirming previous
observation [19]. It was also the case of OprL and OprG. The
range of the membrane proteome alterations following adap-
tation was very low (about 10%) i.e. only 21 on 206 spots were
discriminated on 2-DE gels and BC concentration dependent.

Protein identification showed that some of these spots
correspond to cytosolic proteins, e.g. HemB, Ndk, PyrB, SucC, Tsf,
PA4352 and PA 5339 (Table 1). The presence of these proteins in
samples obviously points out some cytoplasmic contaminations.

Four OMPs where differentially expressed in 0.9 mM BC
adapted cells when compared with non-adapted organism,
whereas seven OMPs were differentially expressed in 12 mM
adapted organisms (Table 1). The number of outer membrane
proteins that were differentially expressed after BC treatment
was surprisingly low if it is considered (i) that antimicrobial
action of BC occurs mainly at the bacterial outer membrane
level [23] and (ii) the strategic role of the outer membrane in
the cell adaptive resistance to environmental stresses.
OprF was accumulated by the bacteria adapted to 0.9 and
12 mM BC. This OMP is non-covalently linked to peptidogly-
can and is involved in the maintenance of P. aeruginosa shape,
having homology to another structural outer membrane
protein, the Escherichia coli OmpA [25]. It has been shown
that the N-terminal domains of OprFs from Pseudomonas
strains are able to form ion channels in planar lipid bilayers
similar to those induced by the OmpA N-terminal transmem-
brane domain [26]. Besides that, OprF is also a major
environmental sensor [27,28], with an important role in
adaptation to hyperosmotic conditions [28]. However, the
role of OprF in antibiotic resistance remains controversial [29].
It has been suggested that loss of this proteinmay be involved
in the multiple-antibiotic resistance phenotype [30,31].

Bacteria adapted to the higher BC concentration accumu-
lated the probable outer membrane protein PA10141 whose
function is yet unknown.

OprL and OprI were down-regulated in adapted P. aeruginosa
for the two BC concentrations tested. Lipoproteins, like OprL and
OprI have been shown to play a role in many fundamental
cellular processes and in the pathogenesis. In P. aeruginosa,
microarray analysis revealed that there is a prominent induction
of lipoprotein-encoding genes during mucoid conversion [32,33].

OprL is a peptidoglycan-associated protein with strong immu-
nogenicity and a hallmark for the identification of P. aeruginosa.
OprL is the Pseudomonas homolog of Pal (peptidoglycan-associated
lipoprotein), which is part of the E. coli Tol-Pal system. OprL is
required to maintain OM integrity [34,35] and cell morphology
[36–38].

OprI is a structural lipoprotein, essentially studied for its low
variability between P. aeruginosa strains, which makes it useful
as a phylogenetic marker [39], as a potential vaccine [40] and as
an epidemic detection marker in the case of cystic fibrosis [41].
As an integral OM component, OprI plays a role in cell shape
and membrane fluidity maintenance [28]. According to Linares
[42], the exposure of P. aeruginosa to tobramycin and ciproflox-
acin also promoted the down-regulation of the OprI gene.

Bacteria adapted to BC 12 mM strain also under-expressed
OprG, OprE3 and the probable OMP PA2760 with unknown
function. These OMPs are frequently described as involved in
antibiotic resistance as porin and multidrug efflux [43]. OprG
expression is highly dependent on growth conditions [44],
includinghigh growth temperatures andmagnesiumavailability.
In particular, this protein has been suggested to be involved in
low-affinity iron uptake due to the correlation between its
expression and the iron concentration in the medium [45].

This protein has been associated with changes in LPS
in P. aeruginosa [46] and is reported as downregulated in
hyperosmotic conditions [28]. The association of bacterial
adaptive resistance to antimicrobial agents and the expres-
sion of OprG protein is yet not clear. According to Loughlin [6],
this relation does not exist. This author evaluated the effect of
BC in P. aeruginosa protein patterns, revealing an accumula-
tion of OprG, in opposition to what it is observed in the present
study. Some studies [43,47] suggested a link between thepresence
of OprG and P. aeruginosa resistance to antibiotics because
increased resistance to kanamycin, and tetracycline was associ-
ated with the down-regulation of OprG [43].

OprE3 is a hypothetical protein with homology to the E. coli
protein, b0681 that functions as a porin of the outermembrane.



Table 1 – Identification of the selected outer membrane proteins whose amount was differentially expressed in P. aeruginosa cells adapted to 0.9 mM and 12 mM of
benzalkonium chloride.

Locus tag Protein No. of
matching
peptides

Location a Gene name Gene ID Behavior in
adapted
strains b

Peptide sequence A0.9 A12 A0.9 A12

PA3190 Putative binding protein component of ABC
sugar transporter

R.SVLDPSFQK.D 8 3 P gltB 882901 − −

PA0766 Serine protease MucD precursor R.GQLSIPDLEGLPPMFR.D + Oxidation (M) 5 5 P mucD 879207 + +
PA3655 Elongation factor Ts K.LTDAAPLVEAR.E 12 6 C tsf 5358722 − −
PA3988 Hypothetical protein PA3988 R.GLGDAQFALK.E 14 18 U − 878911 − +
PA2800 Hypothetical protein PA2800 K.NLANNLLQAK.F 11 8 c OM vacJ 879842 + −
PA5339 Hypothetical protein PA5339 R.YFTQPYPAR.A 5 6 C – 877913 + +
PA2951 Electron transfer flavoprotein alpha-subunit K.NYSHVLAPATTNGK.N 22 10 U etfA 882932 + +
PA4671 50S ribosomal protein L25/general stress protein Ctc K.LLENEAAFSHVIALNVGGAK.E 9 – C – 881395 + =
PA4495 Hypothetical protein PA4495 K.LAAETTSVLNAAVADAR.K 7 – U – 881066 + =
PA1777 Major porin and structural outer membrane porin

OprF precursor
K.VKENSYADIK.N 17 c 17 c OM oprF 878442 + +

PA0973 Peptidoglycan associated lipoprotein OprL precursor R.ALDVHAKDLK.G 11 c 7 OM oprL 882991 − −
PA2853 Outer membrane lipoprotein OprI precursor R.LTATEDAAAR.A 3 7 OM oprI 879851 − −
PA5489 Thiol:disulfide interchange protein DsbA precursor K.LPADVHFVR.L 6 5 P dsbA 877731 + +
PA1041 Hypothetical protein PA1041 R.DLHFAFDSSK.V – 10 OM – 881756 = +
PA4385 GroEl K.MLVGVNVLADAVK.A + oxidation (M) – 5 C groEL 881348 = -
PA1588 Succinyl-CoA synthase beta-subunit K.IILSDSNVK.A 7 – C sucC 882016 − =
PA3807 Nucleoside diphosphate kinase K.MVQLSER.E + oxidation (M) 7 – C ndk 879892 + =
PA0402 Aspartate transcarbamylase R.ELLTEILDTADSFLEVGAR.A 7 – C pyrB 878267 +
PA5243 Delta-aminolevulinic acid dehydratase K.YASAYYGPFR.D – 9 C hemB 879701 = +
PA4067 Outer membrane protein OprG precursor K.AGDFIIR.G – 13 c OM oprG 879793 = −
PA2760 Probable outer membrane protein precursor (OprE3) K.SINVFGGK.Y – 9 OM – 882719 = −

Localization prediction, gene code and function according to genome annotation, PSORTdb 2.0 and www.pseudomonas.com. Matching peptides in bold indicate a statistically significant difference
between Pseudomonas aeruginosa ATCC 10145 and the adapted strain (p < 0.05).
a OM: outer membrane; P: periplasm; EC: extracellular; C: cytoplasm.
b Symbols represent differential expression of proteins in adapted strains compared with the reference strain: (−) down regulated, (+) up regulated, (=) no change.
c Indicates proteins that are identified in more than one spot.

277
J
O

U
R

N
A

L
O

F
P
R

O
T

E
O

M
I
C

S
8
9

(
2
0
1
3
)

2
7
3
–
2
7
9

http://www.pseudomonas.com


278 J O U R N A L O F P R O T E O M I C S 8 9 ( 2 0 1 3 ) 2 7 3 – 2 7 9
The accumulation of OprE3, an anaerobically induced porin [48]
by biofilm P. aeruginosa cells has been reported [13].

The conservedhypothetical protein PA2800,whose location is
predicted in the outer membrane, was accumulated by the BC
0.9 mM BC adapted cells, but underexpressed by the BC12 mM
adapted ones. The function of this protein is yet unknown.

Some cytoplasmic proteinswere identified (Table 1) suggesting
a contamination by cytoplasmic proteins. Though predominantly
cytoplasmic, GroEL has also been localized in the membrane and
periplasm [49,50] and in extracellularmedium [51]. GroELmight be
involved in the folding of membrane-associated proteins [48] and
in cell adherence [52]. The overproduction of this chaperon
highlights bacterial adaptation to BC.

A periplasmic protein with important functions in
P. aeruginosa virulence, MucD, was also overexpressed by
adapted cells. MucD belongs to an operon of alginate regulatory
genes algT(U) > mucA > mucB > mucC > mucD [53]. Besides its
role in alginate production, and consequently in mucoidy, this
protein is also a close homolog of the E. coli periplasmic serine
protease HtrA (DegP), a protein thought to remove misfolded
proteins in the periplasm and required for resistance to high
temperatures and oxidative stress in E. coli [54,55].
4. Conclusion

A proteomic approach was herein used to characterize the
alterations of the outermembrane subproteome of P. aeruginosa
after adaptation to benzalkonium chloride. Results showed
that few OMPs exhibited a change in their amount, suggesting
that the bacterial adaptation to BC does not mobilize complete
outer membrane systems though its antimicrobial action
occurs mainly at the bacterial outer membrane level. However,
this work showed that P. aeruginosa adaptive resistance to BC,
promoted some changes in proteins previously described
as involved in antibiotic resistance. These results can conse-
quently suggest possible common resistance mechanisms,
between adaptive and acquired resistance of P. aeruginosa
when facing external chemical pressures. Moreover, it may
herein advance that, different expressions of some key proteins
found during this work, can suggest common resistance
mechanisms between antimicrobial products and antibiotics.
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