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ABSTRACT 

Thiol-disulphide oxidoreductases (DsbAs) are bacterial extra-cytoplasmic enzymes 

which catalyse oxidative disulphide bond formation (S-S) between the thiol sulphurs (-SH) 

of cysteine side chains in newly synthesised proteins (Shouldice, et al., 2011). In medicine, 

the key role of DsbA in catalysing the correct folding of many essential proteins that enable 

pathogenesis has led to suggestions for this enzyme as a potential antimicrobial drug target 

(Heras, et al., 2009). DsbA catalyses the correct folding of virulence factors associated with 

cell adhesion, bacterial mobility and host cell manipulation and hence its inhibition would 

reduce or impede bacterial pathogenesis. Indeed bacterial infections are a major cause of 

death in the world and this, in addition to current high levels of antibiotic resistance in many 

pathogenic bacteria, highlights the urgent need for new validated targets and for the design 

of new antibacterial agents against these targets. Due to its role in pathogenesis DsbA 

offers such a target for a new therapeutic approach and a better understanding of this 

enzyme and its function is of much importance. 

In the present study a cold adapted DsbA from Pseudoalteromonas haloplanktis 

TAC125 was studied with the long term aim of better understanding its structure and 

function relationship. Previous studies of this enzyme made use of non-optimised 

production and purification procedures and production levels were found to be poor 

(approximately 50 mg/L) with large losses being noted during purification. Therefore the 

present study was focused on optimising the shake-flask batch production in E. coli and 

simplifying and improving the purification protocol for this protein. Furthermore, as an initial 

step in our quest for a better understanding of this enzyme, a comparative structural 

analysis (with homologous enzymes) was carried out to identify structural factors which 

may be important for the low temperature activity of cold-adapted DsbAs. Mutants were 

then designed and prepared in an attempt to investigate the roles of the observed structural 

differences. 

We have shown that the rich medium Terrific broth (TB) with induction during the 

stationary phase of growth allowed for optimum DsbA production. Interestingly, high 

production levels were attained even in the absence of induction with IPTG. Optimisation of 

the purification protocol allowed for the development of a simplified procedure yielding 250 

mg of purified protein per litre of production culture (a 5-fold increase on that previously 

reported) with a reduced DsbA loss during the process. Structural comparisons allowed for 

the identification of two loop insertions in the cold-adapted enzyme as compared to 

homologs adapted to higher temperatures and four deletion mutants investigating these 

insertions have been prepared.  
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RESUMO 

As tiol-dissulfito oxidorredutases (DsbAs) são enzimas bacterianas extra 

citoplasmáticas que catalisam a formação oxidativa de pontes dissulfito (S-S) entre os 

grupos tióilicos (-SH) das cadeias laterais das cisteínas em proteínas recentemente 

sintetizadas (Shouldice, et al., 2011). Na medicina, o papel chave da DsbA prende-se com 

a catálise do correcto rearranjo de muitas proteínas essenciais na patogénese, têm assim 

surgido sugestões de que esta enzima possa ser um alvo de potenciais drogas 

antimicrobianas (Heras, et al., 2009). A DsbA é catalisadora do correcto rearranjo de 

factores de virulência associados à adesão celular, mobilidade bacteriana e manipulação 

das células hospedeiras. Na verdade, as infecções bacterianas são já a maior causa de 

morte no mundo e este facto, em junção com o actual alto nível de resistência a 

antibióticos por parte de várias bactérias patogénicas, enaltece a urgente necessidade 

tanto de validar novos alvos como de objectivar o desenho de novos agentes 

antibacterianos que actuem nesses alvos. Devido ao seu papel na patogénese, a DsbA, 

sendo um possível alvo apresenta-se assim uma nova abordagem terapêutica destacando-

se a elevada importância de um melhor entendimento desta enzima e da sua função. 

No presente estudo, foi estudada uma DsbA adaptada ao frio proveniente da 

bactéria Pseudoalteromonas haloplanktis TAC125 objectivando-se a longo prazo um 

melhor entendimento da relação entre a sua estrutura e função. Estudos anteriores 

centrados nesta enzima têm feito uso de processos de produção e purificação não 

optimizados tendo resultado em baixos níveis de produção (aproximadamente 50 mg/L), 

com grandes perdas observadas no processo de purificação. Assim sendo, o actual estudo 

centrou-se tanto na optimização da produção em batch em E. coli como em simplificar e 

melhorar o protocolo de purificação para esta proteína. Além disso, como parte inicial da 

nossa investigação focada na obtenção de um melhor entendimento desta enzima, uma 

comparativa análise estrutural (com enzimas homólogas) foi levada a cabo de modo a 

identificar os factores estruturais que possam ser importantes na actividade a baixas 

temperaturas desta DsbA naturalmente adaptada ao frio. Os mutantes foram então 

desenhados na tentativa de investigar o papel das diferenças estruturais observadas. 

Demonstrou-se neste estudo que a junção do meio rico Terrific Broth (TB) com 

indução na fase estacionária de crescimento permitiu um nível óptimo de produção da 

DsbA. Interessantemente, elevados níveis de produção foram alcançados inclusive na 

ausência de indução. No entanto, altos níveis de produção foram também observados 
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aquando da indução com 1 mM de IPTG na fase de declínio exponencial. A optimização 

do protocolo de purificação permitiu o desenvolvimento de um simplificado procedimento, 

rendendo 250 mg de proteína purificada por litro de cultura d produção (5 vezes mais) com 

a reduzida perda de proteína ao longo do processo. Comparações estruturais permitiram a 

identificação de duas inserções em loop’s da enzima adaptada ao frio quando comparada 

com os homólogos adaptados a temperaturas mais elevadas. Neste sentido, quatro 

mutantes centrados na investigação desses locais foram concebidos. 

  



 

vii 

 

ABBREVIATIONS AND SYMBOLS 

TRX – Thioredoxin 

-SH – Thiol group of cysteine 

S-S – Disulphide bond between cystines 

E. coli – Escherichia coli 

Cys – Cysteine  

Val – Valine 

Lys – Lysine  

Leu – Leucine  

Ala – Alanine  

Ser – Serine  

His – Histidine  

Asp – Aspargine  

pKa – Dissociation constant 

NMR – Nuclear Magnetic Resonance 

PhDsbA – DsbA protein from Pseudoalteromonas haloplanktis 

PhDsbB - DsbB protein from Pseudoalteromonas haloplanktis 

Tcp – Toxin co-regulated pilus 

B. pertussis – Bordetella pertussis 

kcat – enzymatic reaction rate 

A - Frequency factor related to the frequency of collision of the reactants and to the 

probability of the reactants being in the appropriate orientation to react 

T – Temperature 

R - Universal gas constant 

Ea - Activation energy necessary for the reaction 

IPTG - isopropyl β-D-1-thiogalactopyranoside 
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 THIOL-DISULPHIDE OXIDOREDUCTASE (EC 1.8.4.-) 

1. 1. Thiol-disulphide oxidoreductases (DsbAs) are bacterial extra-cytoplasmic 

enzymes which catalyse disulphide bond formation in newly synthesised proteins. Of 

small size (typically around 21 kDa), they belong to the thioredoxin (TRX) superfamily 

of structurally related proteins (Collet & Bardwell, 2002) and have been mainly isolated 

from Gram-negative bacteria, with those from Escherichia coli and Vibrio cholerae 

being the most studied (Shouldice, et al., 2011; Ruddock, et al., 1996). DsbA homologs 

have also been identified in Gram-positive organisms, but, in contrast, these have been 

poorly studied. 

The first report of DsbA was made when the enzyme’s gene sequence was 

identified in E. coli and its function determined through the analysis of dsbA- mutants 

(Bardwell, et al., 1991). These mutants showed a defect in the construction of 

disulphide bonds in newly synthesized periplasmic proteins and hence the function of 

DsbA was correlated to the oxidative formation of disulphide bonds, i.e. covalent 

chemical bond formation between the thiol sulphurs of cysteine side chains (Figure 1) 

(Shouldice, et al., 2011; Fabianek, et al., 2000). Here, the reduced thiols (-SH) of a 

proteins cysteine residues are oxidized to give the disulphide derivative cystines (S-S). 

This is a key step in the folding and stability of many secreted proteins and forms part 

of a complex cycle involving numerous other intervenient enzymes (Madonna, et al., 

2006). Indeed DsbA activity plays a key role in cell survival as the activity, stability 

(chemical and thermal) and resistance to proteases of many essential proteins are 

dependent on correct disulphide bond formation (Dutton, et al., 2010). 

 

 

Figure 1: Representative scheme for disulphide bond formation. In: (Heras, et al., 2009). 
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DsbA forms part of the disulphide bond formation system (DSB), with the first 

oxidative event of this system being the oxidized form of DsbA interacting with reduced 

substrates (nascent proteins translocated to the periplasm) to catalyze the oxidation of 

the cysteine residues and form disulphide bonds (Heras, et al., 2009; Fabianek, et al., 

2000; Madonna, et al., 2006). During the reaction, DsbA becomes reduced on 

receiving two electrons from the substrate protein and is thereafter reactivated via re-

oxidation by a membrane bound partner known as DsbB (Figure 2). This latter then 

transfers the two electrons from DsbA to membrane-bound quinones (Dutton, et al., 

2010; Horne, et al., 2007). Further enzymes are involved in the DSB system, including 

DsbC, a disulphide isomerase that proofreads and reshuffles incorrectly formed 

disulphides and DsbD a partner of DsbC that maintains this in its active reduced form 

(Heras, et al., 2009; Horne, et al., 2007). Indeed all proteins of the DSB system are 

essential and act together in ensuring correct disulphide bond formation, DsbAs directly 

act on the substrate cysteines, DsbBs are essential for re-oxidation of DsbA (Figure 2) 

and DsbC and DsbD are essential for correcting improperly formed disulphide bonds 

(Fabianek & Thöny-Meyer, 2000). In the present study we will focus only on DsbA and 

in particular on a DsbA isolated from the Gram negative cold adapted bacterium 

Pseudoalteromonas haloplanktis TAC125. 

 

Figure 2: Schematic representation of the disulphide bond formation cycle in Escherichia coli. In: (Collet & 
Bardwell, 2002) 

All proteins of the TRX superfamily share the structural characteristic of an α-

helical domain juxtaposed with β-strands and with a pair of redox active cysteines 
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(Cys-X-X-Cys) located at the N-terminal end of the first helix at the active site of the 

enzyme (Figure 3) (Heras, et al., 2009; Guddat, et al., 1997; Ruddock, et al., 1996).  

 

Figure 3: Common structural organization of DsbA fold. At left: Helices are illustrated in green and β 
sheets in brown. The locations of the catalytic CxxC motif (shown by a yellow sphere) and the cis-Pro loop 
(arrow) are also specified. Data from: (Gruber, et al., 2006). On the right: Crystal structure representation 
of oxidized Vibrio cholerae DsbA. The elements of secondary structure are sequentially numbered from 

the N terminus. Helices are presented with black numbers and the grey numbers denote strands. The 
active site is presented in a CPK representation. In: (Horne, et al., 2007). 

DsbAs are the most oxidizing proteins known, probably as a result of the CXXC 

motif structure and, more precisely, due to an unusually low pKa of the most N-terminal 

cysteine in the active site (Collet & Bardwell, 2002). The high reactivity of this Cys is 

due to an electrostatic interaction with a nearby His which stabilizes the Cys in its 

thiolate anion form (Guddat, et al., 1997). The redox potential of the enzyme also 

depends on the type of residues, XX, flanked by the two cysteines of the general motif 

(Ito & Inaba, 2008). Indeed the canonical sequence of the active site motif for TRX 

enzymes is C-P-H-C (Paxman, et al., 2009; Madonna, et al., 2006) but variations in the 

third residue (i.e the histidine) have been observed. In fact, Guddat and collaborators 

showed in 1997 that a mutation of the histidine residue of the active site motif leads to 

a significant decrease in the redox potential of these mutants (Guddat, et al., 1997). 

As mentioned above, generally disulphide bonded proteins are more stable than 

their non-disulphide bonded forms yet it has been reported that the disulphide bond of 

DsbA is very unstable and that the stability of this protein is increased on disulphide 
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bond reduction (Zapun, et al., 1993). Furthermore, a previous study showed that 

oxidised DsbA from E. coli is more rapidly cleaved by proteases than its reduced form. 

These results suggest a lower stability and higher flexibility of the oxidized form of the 

enzyme which may have importance in its disulphide bond donation activity and in the 

the accommodation of substrate (Horne, et al., 2007). 

1. 1. 1. WHY STUDY DsbA? 

DsbAs have been the focus of much study over recent years, not only because 

of their fundamental interest, but also because of their potential applied importance. 

From a fundamental point of view, a better understanding of the implications of this 

enzyme in protein folding is of obvious importance. In relation to its applied interest, its 

potential for developments in the fields of biotechnology and medicine has led to a 

drastic increase in interest in this enzyme. 

In biotechnology, the use of DsbA in catalysing the correct folding of disulphide 

bond containing proteins has led to suggestions for co-expression of this enzyme 

during recombinant protein production, for its use as an additive in cell free protein 

production systems (Kuroita, et al., 2007) and even for the refolding of misfolded 

proteins (Antonio-Pérez, et al., 2012). Indeed studies have shown that the use of this in 

cell free systems leads to higher production levels (approximately two fold higher) of 

active properly folded disulphide containing proteins (Kuroita, et al., 2007). Obviously, 

such increases in production levels warrants the use of DsbA as a tool in protein 

production procedures and the development of further more cheaply produced and 

more highly active DsbAs is called for. 

In medicine, the key role of DsbA in catalysing the correct folding of many 

essential proteins, and in particular those that enable pathogenesis (i.e. the virulence 

factors), in pathogenic organisms has led to suggestions for this enzyme as a potential 

antimicrobial drug target (Lasica & Jagusztyn-Krynicka, 2007); Heras, et al., 2009; 

Shouldice, et al., 2011). DsbA has an essential role in pathogenesis as it catalyses the 

correct folding of virulence factors associated with adhesion (e.g. fimbriae, intimin), 

bacterial mobility (flagella) and host cell manipulation (e.g. toxins, such as the cholera 

and pertussis toxins) (see below for a more in-depth discussion) (Heras, et al., 2009; 

Shouldice, et al., 2011). Blocking DsbA activity would therefore interfere with the 

functioning of these virulence factors and hence impede the pathogens ability to cause 

disease. Indeed previous studies have demonstrated that hosts with defective DsbA 
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display reduced virulence in animal infection models (Bardwell, et al., 1991; Lin, et al., 

2008; Heras, et al., 2009; Shouldice, et al., 2011). Therefore, better understanding 

DsbA and its inhibition opens up exciting new possibilities for novel antibacterial agents 

(Früh, et al., 2010). Indeed bacterial infections are a major cause of death in the world 

and this, in addition to current high levels of antibiotic resistance in many pathogenic 

bacteria, highlights the urgent need for new validated targets and for the design of new 

antibacterial agents against these targets. Due to its role in pathogenesis DsbA offers 

such a target for a new therapeutic approach. Nevertheless, it is important to note that 

drugs acting against DSB may not necessarily kill pathogens, but instead would 

impede or reduce bacterial pathogenesis by interfering with multiple essential virulence 

factors encoded by the pathogens (Heras, et al., 2009). However, this may not be a 

disadvantage as it may even result in less evolutionary pressure for bacteria to develop 

resistance (Heras, et al., 2009). 

Some examples of virulence factors, how they intervene in the disease causing 

process and documented examples of the role of DsbA in their correct functioning will 

now be discussed.  

1. 1. 2. 1.  DsbA in cell adhesion 

For a large number of bacterial pathogens the first and possibly the most important 

step is adhesion to the host cell. This process is essential for host colonisation and in 

establishing the disease. Adhesion is initially mediated by pili or fimbriae which are hair 

like structures typically made up of multiple protein subunits that propagate from the 

surface of the bacterium (Heras, et al., 2009). E. coli DsbA is reported to be important 

in the formation of disulphide bonds in the P fimbrial adhesion subunit protein PapG 

that recognises and binds to carbohydrates in the urinary tract surface (Heras, et al., 

2009). DsbA has also been shown to be important in fimbriae construction in another 

urinary tract pathogen, Proteus mirabilis and plays a critical role in functional pili 

assembly for Vibrio cholerae colonisation mediated by the toxin co-regulated pilus 

(Tcp). 

1. 1. 2. 2.  DsbA in host cell manipulation 

Following adhesion the success of bacterial colonisation is mainly dependent on 

the capacity to manipulate the hosts. Here, mass cell damage and destruction induced 

by secreted toxins and proteases occurs. Indeed, numerous secreted virulence factors 

and the secretion systems required for their discharge necessitates the DSB system to 
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catalyse their correct folding and function. This necessity shows their important role in 

this more advanced stage of bacterial pathogenesis.  

Pathogens dispose of six different methods for secreting the toxins required for 

cell damage and DsbA activity is reported to be important in both type II and type III 

secretion systems (Lasica & Jagusztyn-Krynicka, 2007; Durand, et al., 2009). Type II 

secretion systems export proteins from the periplasm via a multimeric complex 

(Durand, et al., 2009) while type III secretion uses a multi-subunit molecular syringe 

like structure that directly injects the virulence proteins into the cytosol of eukaryotic 

cells (Heras, et al., 2009). In both of these cases DsbA is essential for correct folding of 

protein subunits which themselves are essential for the establishment of the correct 

structural conformation and function of the secretion apparatuses (Heras, et al., 2009). 

Furthermore, DsbA also acts as a catalyst in the structural assembly of many of the 

actual toxins to be secreted. Examples include functional assembly of: the cholera toxin 

of Vibrio cholera, the heat-labile enterotoxin assembly in E. coli and functional 

disulphide bond formation in almost the entire complex structure of the pertussis toxin 

of B. pertussis. Here, DsbA plays an important role in the structural assembly of a 

complex structure that includes six subunits and eleven intramolecular disulphide 

bonds (Heras, et al., 2009). 

1. 1. 2. 3.  DsbA in cellular spread and survival 

Attachment through fimbriae permits bacteria to establish infections in cells. 

However mobility, which is the opposite phenotype, is also very important for virulence 

and bacterial fitness because it enables the bacteria to spread across the host cells 

(Heras, et al., 2009). Studies in several bacteria show that mutation of dsbA impedes 

functional flagella production and hence also bacterial mobility. As an example, in E. 

coli, DsbA is reported to be required for catalysing the formation of disulphide bonds in 

the FlgI protein that acts as the flagellar P-ring motor, for cell mobility (Dailey & Berg, 

1993).  

1. 1. 2.  A COMPARATIVE STUDY: UNDERSTANDING DsbAs AND COLD-

ADAPTATION 

As part of a long term goal of obtaining a better understanding of DsbAs so as 

to enable the development of their use in protein production and, more importantly, in 

the design of novel antibacterial agents, a comparative study of a cold adapted and 
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mesophilic homolog has been initiated (Collins et al, 2010). To attain the objectives, the 

structures-stabilities-functions and also dynamics of both the oxidised and reduced 

states of the two DsbA homologs, adapted to low (~5°C) and moderate temperatures 

(~37°C), will be compared. The results obtained will give clues on Nature’s strategies 

for modifying proteins to attain a desired catalytic rate within the environmental 

constraints and will help show how evolution optimises and balances dynamics, 

stability and activity (Tomatis, et al., 2008). Mutagenesis studies will then be carried out 

to better investigate these observations. DsbA is a well studied enzyme, both at the 

structural and biochemical levels (Heras, et al., 2009; Horne, et al., 2007; Schirra, et 

al., 1998) but most previous studies have focused on individual enzymes under specific 

conditions and we believe that an in-depth comparative approach should offer a more 

‘complete picture’ and better pinpoint those regions important for function and stability. 

This, in turn, should aid in identifying the most appropriate regions for targeting by 

inhibitor. 

The comparative studies should also allow for a better comprehension of life in 

the extremes and in particular of enzyme adaptation to various temperatures. More 

specifically, the study of a cold adapted DsbA should enable a better understanding of 

the molecular determinants of low temperature adaptation in enzymes. Furthermore, 

the expected high activity of the cold-adapted enzyme could allow for the development 

of a novel highly active tool for cell free protein synthesis of disulphide bond containing 

proteins.  

A more in-depth discussion of the state of the art in cold-adaptation will now be 

presented. 

1. 1. 3.  UNDERSTANDING LIFE IN COLD ENVIRONMENTS 

Life on Earth is ubiquitous, it is not restricted to those regions which we, as 

humans, classify as being normal but it is also found in those ‘extreme regions’ on 

Earth such as the deep seas, the polar regions, the volcanic regions or/and the saline 

pools. On the one hand, these regions constitute the major portion of the Earth’s 

surface and are far from being sterile (Lonhienne, et al., 2000), but on the other hand, 

to survive these various extremes, these organisms had to adapt at all levels of 

organization; from structural to physiological adaptation. The present study is focused 

on adaptation to low temperatures and how organisms are able to not only tolerate, but 

to grow and maintain high enzyme activities in this permanently extreme condition. 
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Cold-adapted microorganisms capable of growing at 0ºC were identified by Forster as 

early as 1887 when he isolated them from fish (Zecchinon, et al., 2001). In fact, for 

some cold adapted organisms, low temperatures are not only optimal, but mandatory, 

for continued cell proliferation, with moderate to high temperatures (e.g., >12 °C (Xu, et 

al., 2003)) being inhibitory. These unique organisms, called psychrophiles, have 

effectively colonized cold environments thanks to successful adjustments which 

counteract the negative effects of low temperatures. These negative effects include a 

reduction of reaction rates, alterations in enzyme-substrate interaction strength, 

increase in solvent viscosity and a modified solubility of proteins, gases and salts and 

finally also, protein cold-denaturation (Georlette, et al., 2004). Psychrophiles have 

overcome all these challenges and reveal metabolic fluxes at low temperatures more or 

less comparable to those shown by mesophilic species living at moderate temperatures 

(Zecchinon, et al., 2001). Indeed, bacterial cell densities as high as 107 ml-1 have been 

found in the Antarctic oceans, similar to the densities of temperate waters (Gerday, et 

al., 2000). 

The enzymes produced by psychrophilic organisms have adapted to 

temperatures close to the freezing point of water and typically display high catalytic 

rates and low stability as compared to their higher temperature adapted homologs i.e 

enzymes from mesophiles and thermophiles. Indeed many enzymes are incapable of 

carrying out their function under these low temperature conditions due to the reduced 

kinetic energy available at low temperatures, this effectively ‘freezing’ enzymatic 

motion. Currently it is hypothesised that psychrophilic enzymes have evolved an 

increased flexibility to overcome this (Collins, et al., 2003), thereby allowing for a high 

activity but also leading to the observed reduced stability. A reduced number or 

strength of intramolecular interactions are frequently reported for these enzymes as 

compared to their higher temperature adapted homologs (Gerday, et al., 1997) and it 

has ben hypothesized that these reduced interactions allow for the proposed flexibility 

of these enzymes and hence the enhanced activity at low temperatures. The actual 

molecular basis for the adaptation is enzyme specific however it still completely 

understood and direct evidence of the proposed increased flexibility is scant, with 

previous attempts to demonstrate this leading to conflicting results. 

1. 1. 4. 1. The psychrophilic – mesophilic pair 

This study is centred on a cold adapted thiol-disulphide oxidoreductase from a 

Gram negative psychrophilic bacterium (Pseudoalteromonas haloplanktis TAC125) 
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which has been isolated from an Antarctic coastal sea water sample collected in the 

vicinity of the French Antarctic station at Dumont d’Urville in Terre Adélie, Antarctica 

(66º 40’ S; 140º 01’ E) (Médigue, et al., 2005; Collins, et al., 2003). The gene encoding 

the cold-adapted enzyme has been cloned and the protein overexpressed using the 

pET22b(+)/E. coli BL21(DE3) expression system and purified from the periplasmic 

extracts. Production was carried out with Terrific Broth medium, using isopropyl β-D-1-

thiogalactopyranoside (IPTG) for induction, and purification involved a combination of 

hydrophobic interaction chromatography and anion exchange chromatography. The 

production and purification procedures were not optimised and production levels were 

approximately 50 mg/L with large losses during purification being noted. Furthermore, 

precipitation of the protein, and in particular of the oxidised form, led to large losses of 

protein over time and no biochemical, dynamics or activity studies were carried out on 

this protein. Backbone and side-chain 1H, 15N and 13C NMR assignments for the 

reduced form were however reported (Collins, et al., 2010a) and the NMR structure has 

been recently determined (Figure 4). 

 

Figure 4: Structure of the psychrophilic PhDsbA revealing the thioredoxin domain in blue and in green the 

α-helical domain. Peptide substrate (yellow) and the oxidising loop of PhDsbB (red) were overlayed onto 
the structure of PshDsbAp by aligning it with the E.coli DsbA structural complexes DsbA-peptide and 
DsbA-DsbB. In: (Collins, et al., 2010a) 

This cold adapted protein was found to be very similar to previously reported 

homologous mesophilic DsbAs with the 4 α-helices of the helical domain inserted into a 

thioredoxin like fold composed of a central 5 stranded β-sheet flanked by 3 α-helices. 
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In addition, this contains the consensus DsbA active site sequence (i.e. Cys-Pro-His-

Cys) at a break in the first α-helix in the thioredoxin-like domain. 

In contrast to the psychrophilic DsbA, a large number of mesophilic DsbAs have 

been studied in detail, both at the structural and biochemical levels (Heras, et al., 2009; 

Horne, et al., 2007; Schirra, et al., 1998). Examples include DsbAs from Vibrio cholera 

(Horne, et al., 2007), Escherichia. coli (Mössner, et al., 1998; Fabianek, et al., 2000), 

Neisseria meningitidis (Vivian, et al., 2009) Salmonella enterica serovar Typhimurium 

(Heras, et al., 2010) and Staphylococcus aureus (Williams, et al., 2010). Of these, that 

from Vibrio cholera is one of the best understood, with both NMR and crystallographic 

structures of both the oxidised and reduced states being reported as well as 

investigations of activity, stability and dynamics (by NMR) (Horne, et al., 2007). This 

mesophilic Vibrio cholerae DsbA is to be used for comparison in this project, it has 

already been cloned, successfully overexpressed in E. coli and purified, and protocols 

for these have already been optimised and reported (Horne, et al., 2007). 

The availability of in-depth information for mesophilic enzymes homologous to 

the cold adapted protein of the present study and in particular for the Vibrio cholera 

DsbA should allow for a more comprehensive comparative analysis of the activity, 

stability, structure and dynamics of the enzymes. This should enable a better 

understanding of structure and function relationships in DsbAs as well as of cold 

adaptation in this enzyme.  

1. 1. 4. THE pET22B(+)/E. COLI BL21(DE3) EXPRESSION SYSTEM 

The first report of the Gram-negative, rod-shaped bacterium, Escherichia coli, 

was made in 1885 by Theodor Escherich. Escherichia coli is an abundant inhabitant of 

the mammalian colon and is one of the most thoroughly studied organisms known 

(Jeong, et al., 2009). It is well understood, easy to manipulate, grows rapidly on 

relatively cheap media (Khow & Suntrarachun, 2012) and is described as one of the 

most efficient vehicles for over-expression of both eukaryotic and prokaryotic proteins 

(Miroux & Walker, 1996). The current term ‘over-expression’ is here mentioned to 

define the capacity to produce target proteins at levels much higher than those of its 

own repertoire of proteins. Studies reveal that monomeric proteins that contain few 

cysteines and have an average size smaller than 60 kDa will give good production in 

an E. coli expression host (Bell, 2001). Indeed, in some cases up to 60 % of the total 

protein produced can be constituted by the recombinant protein.  

http://en.wikipedia.org/wiki/Bacterium
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The pET22b(+)/E. coli BL21(DE3) expression system based on the 

bacteriophage T7 promoter expression system is one of the most widely used 

laboratory systems for recombinant protein expression in E. coli. This is based on an 

inducible machinery that permits control of target gene expression. It consists of a lac 

operator sequence directly downstream of the T7 promoter, and the gene for the lac 

repressor (termed lacI) all encoded on the expression vector. The E.coli BL21 

expression host used with this system contains a chromosomal copy of the T7 DE3 

lysogen which comprises the T7 polymerase gene under control of the E. coli lacUV5 

promoter as well as a chromosomal copy of the lacI repressor gene. In DE3 lysogens 

the lac repressor acts not only at the lacUV5 promoter in the host chromosome and 

thereby repressing T7 RNA polymerase gene transcription by the host polymerase, but 

also at the vector at the T7lac promoter, blocking the transcription of the target gene. 

The lacUV5 and T7 lac promoters are inducible with IPTG or lactose, the addition of 

which to the growth medium ‘inactivates’ the lac I repressor and induces the production 

of the T7 RNA polymerase whereupon binding to the T7 lac promoter transcribes the 

target DNA (Figure 5). 

 

Figure 5: Representative scheme of IPTG induction in the pET/E. coli BL21(DE3) expression system. In: 

(Novagen, 2003) 

Production with this system can make use of batch or fed-batch approaches, 

with batch production in shake flasks being the most common at a laboratory scale. 

Typically, the most frequently used shake flask production approach uses lysogeny 
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broth (LB) with IPTG induction at the mid-exponential phase of growth (Teulé, et al., 

2009) but the use of richer media such as terrific broth (TB) or super broth (SB) has 

recently become common place. While being a highly used and efficient method for 

recombinant protein production in E. coli, this system does however sometimes suffer 

from low yields of protein product (mg/L) (Teulé, et al., 2009), with yields being 

dependent on the actual system used, the target protein, induction conditions and 

environmental factors. In fact, process optimisation to maximise productivity is an 

essential first step in the production of any recombinant protein.  

In the case of the cold-adapted DsbA of the present study, the specific 

expression system used is the pET22b(+)/E. coli BL21(DE3) system already described 

above. Here, the use of the pET22b(+) expression vector allows for expression of 

unmodified and untagged DsbA in the host periplasm (Novagen, 2003). The wild-type 

signal sequence of DsbA which targets the produced protein to the periplasmic space 

and is removed during the translocation process is used. 

 

 
Figure 6: Schematic representation of pET22b(+) plasmid. In: (Novagen, 2003) 
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1. 1. 5.  MEASUREMENT OF DsbA ACTIVITY 

Several assays have previously been described for measuring DsbA activity. 

These assays are centred on the observation and/or quantification of the 

conformational and/or chemical differences between the two states of the protein, more 

precisely the reduced and oxidised states. The oxidised state displays a disulphide 

bond in the active site of DsbA and can oxidise any substrate that exhibits two free 

cysteines, itself becoming reduced in the process. Several strategies to measure DsbA 

activity have been reported, these include: an insulin activity assay, Ellmans assay, 

HPLC analysis, a fluorimetric assay, an SDS-PAGE based detection method and an 

assay using a synthetic fluorescent peptide. In this study the insulin assay will be used 

to monitor the reducing activity of the protein studied. 

1. 1. 6. PSYCHROPHILIC DsbA PURIFICATION 

Chromatography, which separates compounds on the basis of their differential 

partitioning between two phases (i.e. a mobile phase and a stationary phase), will be 

used to purify the cold adapted DsbA from the E. coli endogenous proteins. A variety of 

chromatographic approaches can be used for protein purification, including gel filtration 

chromatography, ion-exchange chromatography, hydrophobic interaction 

chromatography and affinity chromatography. Of these, hydrophobic interaction and 

ion-exchange chromatographies have been previously investigated for purification of 

the cold adapted homologs DsbA and will be encountered in this study. 

Hydrophobic interaction chromatography (HIC): This technique makes use of subtle 

differences in protein surface hydrophobicity for separation. Here a reversible 

interaction occurs between exposed hydrophobic patches on the protein and 

hydrophobic ligands (e.g. phenyl, octyl, butyl, isopropyl etc.) on the column matrix. It is 

very similar to reverse phase chromatography but the ligands used are much less 

hydrophobic and hence less extreme elution conditions are required, thereby avoiding 

the denaturing conditions often used in reverse phase chromatography. Hydrophobic 

binding in HIC is often facilitated by use of neutral salts effective in ‘salting out’ (e.g. 

ammonium sulphate, NaCl), with these reducing protein solvation and leading to higher 

exposure of protein hydrophobic groups and thus improving binding. Reduction of the 

salt concentration is used in protein elution and these are eluted in order of increasing 

hydrophobicity (Amersham Pharmacia Biotech, 2000). 



 

15 

 

Ion exchange chromatography (IEX): This technique is based on the reversible 

interaction between a charged protein and an oppositely charged chromatographic 

medium. Proteins carry many ionisable groups such as the basic groups on the side 

chains of lysine, arginine and histidine as well as the acidic groups on the side chains 

of aspartic acid and glutamic acid residues. The charge of these side chains is 

influenced by the dissociation constant (pKa) of the side chains, the environment of 

these side chains (i.e. their neighbouring residues in space) as well as the pH of the 

solution. In turn, the charge, number and structural positioning of these ionisable 

groups determines the net charge of the protein in a particular condition. Indeed, 

knowledge of the pI of a protein, this latter being defined as the pH at which the protein 

carries a net zero charge i.e. equal number of positive and negative charges, and 

control of the pH of the solution can be used in deciding the type of ion exchange 

approach to use. Namely, at a pH above the pI proteins carry a net negative charge 

and will bind to an anion exchanger (positively charged matrix) whereas at a pH below 

the pI a net positive charge is displayed and a cation exchanger (negatively charged 

matrix) should be used (Amersham Biosciences, 2002). 

 

 

1. 1. 7.  OBJECTIVES 

The present study will be focused on the cold-adapted DsbA termed here as 

PhDsbA (Ph represents Pseudoalteromonas haloplanktis). Within the long term 

objectives of obtaining a better understanding of the structure-function relationship of 

DsbAs as well as of cold-adaptation in this enzyme, here we will focus on the following 

multiple objectives: 

Figure 7: Anion and cation exchange chromatography. In anion exchange chromatography (shown 

at left) the matrix carries a positive charge and attracts negatively charged molecules. On the right 
cation exchange chromatography is illustred, this is based on the attraction of positively charged 
molecules by a negatively charged matrix. In: (Amersham Biosciences, 2002) 
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 Optimisation of the batch production in shake flask of PhDsbA with the 

pET/E. coli BL21(DE3) expression system 

Current production levels are approximately 50 mg/L and here culture medium, 

culture aeration (via medium volume to flask volume ratio), induction time and induction 

period will be investigated in an attempt to improve production levels 

 Development of a simplified purification protocol for PhDsbA 

An initial attempt to purify this protein involved periplasmic extraction, HIC, 

dialysis and IEX, but this was found to result in large losses of PhDsbA. Here we will 

attempt to develop a simplified efficient purification protocol for this study. 

 Identify determinants of cold-adaptation. 

A comparative structural analysis of PhDsbA with its mesophilic homologs and 

in particular with that from Vibrio cholera will be carried out so as to identify mutations 

or alterations which may be important in adaptation to low temperatures. Primary, 

secondary and tertiary structures will be compared. 

 Construction of mutants  

Mutants identified in the structural comparison will be constructed so as to allow 

for identification of their role in the protein. 

  



 

17 

 

 
 
 
 
 
 
 
 
 

Chapter 2: Materials and methods 

 

  



 

18 

 

2. 1. BIOLOGICAL MATERIAL 

2. 1. 1.  Escherichia coli strains 

In this study, the principal working strain used was E. coli BL21 (DE3), a 

descendent strain from the native E. coli strain B (Daegelen, et al., 2009). 

Transformants of this working strain that were constructed and used in this study to 

produce wild-type and mutant DsbA are described in Table 1. 

Table 1: Strains used in this work 

Stains Genotype Source/reference 

BL21 (DE3) 
F-, ompT, hsdS(rB-, mB-), gal, dcm, λDE3 

(lacI, lacUV5-T7 gene 1, ind1, sam7, nin5) 

Studier and 

Moffatt (1986) 

BL21 (DE3)-pET22b(+) BL21 (DE3) transformed with pET22b This work 

BL21 (DE3)-pET22b(+)-DsbA 
BL21 (DE3) transformed with pET22b-

DsbA 
This work 

BL21 (DE3)-pET22b(+)-DsbA-

Val64_Pro66del 

BL21 (DE3) transformed with pET22b-

DsbA- Val64_Pro66del  
This work 

BL21 (DE3)-pET22b(+)-DsbA-

Val64_Ser65del 

BL21 (DE3) transformed with pET22b-

DsbA- Val64_Ser65del 
This work 

BL21 (DE3)-pET22b(+)-DsbA-

Ser147_Leu149del 

BL21 (DE3) transformed with pET22b-

DsbA- Ser147_Leu149del 
This work 

BL21 (DE3)-pET22b(+)-DsbA-

Ser147_Leu149+Ala151del 

BL21 (DE3) transformed with pET22b-

DsbA- Ser147_Leu149+Ala151del 
This work 

All plasmids used in this work are listed and detailed in Table 2 with the 

respective characteristics and sources. The pET22b(+)-dsbA construct provided for this 

study contains the dsbA gene inserted in the pET22b(+) multiple cloning site between 

the NdeI and EcoRI restriction sites. The inserted sequence contains the wild–type N-

terminal signal sequence for periplasmic expression. 

 

 

 



 

19 

 

 

Table 2: Plasmids used in this work 

Stains Characteristics Source/reference 

pET22b(+) 
amp

R
, T7lac, optional C-terminal His.Tag

®
 sequence, 

signal sequence for potential periplasmic localization 
Novagen 

pET22b(+)-dsbA pET 22b, dsbA 
Tony Collins 

collection 

pET22b(+)-DsbA-

Val64_Pro66del 
pET22b(+)-DsbA-Val64_Pro66del This work 

pET22b(+)-DsbA-

Val64_Ser65del 
pET22b(+)-DsbA-Val64_Ser65del This work 

pET22b(+)-DsbA-

Ser147_Leu149del 
pET22b(+)-DsbA-Ser147_Leu149del This work 

pET22b(+)-DsbA-

Ser147_Leu149+Ala151del 
pET22b(+)-DsbA-Ser147_Leu149+Ala151del This work 

2. 1. 2. DsbA Production: optimisation of medium, aeration and induction (time, 

period) 

In an attempt to optimise production levels of the cold adapted DsbA we 

investigated various media (Table 3) and various production conditions for induced and 

non-induced cultures (Table 4).  

Table 3: Composition of the media used in this work 

 

The rich media TB, SB and LB were investigated for both induced and non-

induced cultures. Aeration was investigated by varying the medium volume to flask 

volume ratio from 1:3 to 1:20, with the lower medium volume (i.e. higher ratio) allowing 

for better culture mixing and hence better aeration. Elapsed fermentation times (EFT) 

before induction with 1 mM IPTG of 12, 16, 24 and 28 hours, corresponding 

Medium Composition 

LB Bacto tryptone (1% w/v), yeast extract (0.5% w/v), and sodium chloride (0.5% w/v) 

TB 
Bacto tryptone (1.2% w/v), yeast extract (2.4% w/v), glycerol 99.5 % (0.4% w/v), 70 mM 

K2HPO4.3H2O and 20 mM KH2PO4 

SB Peptone (3.2% w/v), yeast extract (2% w/v) and sodium chloride (0.5% w/v) 
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respectively, to the early, mid, declining exponential and stationary phases of growth 

were also examined and compared to non-induced cultures. Induction periods of 2, 4, 6 

and 12 hours after induction with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) 

were investigated. Cultivations in the absence of induction were carried out to 

determine growth curves. Biomass (OD600nm) and DsbA production levels (SDS-PAGE) 

were compared for all production optimisation conditions. 

PROTOCOL: 

 Plate out glycerol cultures or fresh transformants of the producing strains on LB-

agar plates containing 100 µg/mL of ampicillin as the selection marker and 

incubate overnight at 37 ºC. 

 Inoculate 100 mL LB+ampicillin preculture in a 500 ml erlenmeyer with a cfu of 

the plate culture. Incubate for approximately 15 hours at 25 ºC and 200 rpm. 

 Inoculate production cultures (in 500 mL erlenmeyers) to an initial OD600nm of 

0.1. Incubate at 20 ºC and 200 rpm (25 mm orbital). 

 Induce when required with 1 mM IPTG. Collect 0.5 mL cell pellet samples at 2, 

4, 6 and 12 hours after induction for determination of production levels by SDS-

PAGE. Monitor biomass levels throughout the productions by measuring 

OD600nm. 
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Table 4: Production conditions examined 

Condition 
number 

Medium 
Ratio: flask 
volume to liquid 
volume 

Induction 
with 1 mM 
IPTG 

Elapsed Fermentation 
Time (EFT) of induction 
(hours of growth) 

1 LB 1:3 No  

2 LB 1:5 No  

3 LB 1:10 No  

4 LB 1:20 No  

5 TB 1:3 No  

6 TB 1:5 No  

7 TB 1:10 No  

8 TB 1:20 No  

9 SB 1:3 No  

10 SB 1:5 No  

11 SB 1:10 No  

12 SB 1:20 No  

13 LB 1:5 Yes 0 hours 

14 SB 1:10 Yes 12 hours 

15 TB 1:10 Yes 12 hours 

16 TB 1:10 Yes 16 hours 

17 SB 1:10 Yes 16 hours 

18 TB 1:5 Yes 24 hours 

19 TB 1:10 Yes 24 hours 

20 SB 1:5 Yes 24 hours 

21 TB 1:5 Yes 28 hours 

22 TB 1:10 Yes 28 hours 

23 SB 1:5 Yes 28 hours 

2. 1. 3.  SDS-PAGE analysis 

12 % SDS-PAGE was used for analysis of protein production levels as well as 

for monitoring the purification. Here proteins are linearized and imparted with a 

negative charge by SDS and DTT pre-treatment before being separated on the basis of 

differences in their size on an acrylamide-bis-acrylamide gel (see gel components in 

Table 5). Separated protein bands are then visualised by staining with Coomassie Blue 

which interacts ionically and hydrophobically with proteins. 
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Table 5: SDS-PAGE stacking and running gel composition. 

Solution Stacking gel Running gel (12%) 

Acrylamide 40% 216 µL 1.62 mL 

Bis-acrylamide 2% 117 µL 960 µL 

0.25 M Tris-HCl (pH 6.8), 
2%SDS 

1.1 mL - 

0.75 M Tris-HCl (pH 8.8), 
2%SDS 

- 2.8 mL 

TEMED 3 µL 4.5 µL 

APS (10%) 12.5 µL 30 µL 

H2O 750 µL 170 µL 

Final volume  2.2 mL  5.6 mL 

 

PROTOCOL (for preparation of production sample for SDS-PAGE): 

 Collect cells from 500 µL production samples by centrifuging at maximum 

speed for 5 minutes and discard supernatant. 

 Add 100 µL of a 50 mM Tris, 1 mM EDTA solution at pH 8 and mix well. 

 Add 25 µL of SDS-PAGE loading solution (10 % SDS, 10 mM β-

mercaptoethanol, 20 % glycerol, 0.2 M Tris at pH 6.8 and bromophenol blue) 

and vortex. 

 Centrifuge at max speed for 25 minutes. 

 Run 4 µL of supernatant on a 12 % SDS-PAGE gel at a constant current flow of 

10 amps. 

PROTOCOL (for preparation of purification samples for SDS-PAGE): 

 Gently mix samples by inversion. 

 To 20 µL of sample add 5 µL of SDS-PAGE loading solution. 

 Mix to homogenize and run 20 µL in a 12 % SDS-PAGE gel at a constant 

current flow of 10 amps. 

The Coomassie Blue staining solution is composed of 10 % acetic acid in 

deionised water with Coomassie Brilliant Blue R-250 addition until the solution attains a 

strong blue colour. The de-staining solution has the same composition with the 

exception of the Coomassie Brilliant Blue R-250 component. 
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ImageJ was employed for quantification of Coomassie Blue stained protein 

bands.  

2. 1. 4. DsbA PURIFICATION 

A previously used purification protocol was optimised in this project. This 

involved the following steps: DsbA  periplasmic extraction, hydrophobic interaction 

chromatography, dialysis for buffer exchange and ion exchange chromatography. 

A Pharmacia Biotech FPLC system composed of a LCC-501 Plus LKB 

controller, two P500 pumps, a UV-M II optical unit, a FRAC 100 fraction collector and a 

Rec 102 chart recorder was used for all chromatographic steps. 

2. 1. 4. 1.  DsbA periplasmic extraction 

An osmotic shock when transferring cells from a high sucrose concentration to a 

dilute MgSO4 solution in conjunction with a thermal shock by rapidly decreasing the 

temperature from approximately 25 ºC (room temperature) to 4 ºC allows for liberation 

of periplasmic proteins. 

PROTOCOL: 

 Collect cells by centrifugation at 7000 rpm for 5 minutes at 4 ºC. 

 Add 1/40th the volume of the initial culture volume of 30 mM Tris-HCl at pH 8 

and gently ressuspend pellet, on ice, with a Pasteur pipette. 

 Add 1/40th the volume of initial culture volume of 2×PEB and mix by gentle 

inversion. (2×PEB is composed of 30 mM Tris-HCl at pH8, 40 % of sucrose and 

2 mM EDTA) 

 Transfer to 40 mL centrifuge tubes and leave for 20 minutes at room 

temperature. 

 Centrifuge at 14000 rpm for 30 minutes at 20 ºC and discard supernatant. 

 Immediately add 1/20th the volume of initial culture volume of cold 5 mM MgSO4 

and mix well. 

 Leave tubes for 20 minutes on ice. 

 Centrifuge tubes at 14000 rpm for 40 minutes at 4 ºC. 

 Retain supernatant. 
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 Add 0.1 mM calcium and 5 -10 units of DNase (Fermentas®) and incubate for 10 

minutes at room temperature. 

 Store at 4 ºC. 

 

2. 1. 4. 2.  Hydrophobic interaction chromatography (HIC) 

HIC is based on the reversible binding of proteins with exposed hydrophobic 

groups. A 1.6 cm x 20 cm, 40 mL Phenyl Sepharose High Performance (Pharmacia) 

column was used. This contains a hydrophobic phenyl group covalently coupled to a 

highly porous cross-linked 4 % agarose matrix. The sample solution is filtered through 

a 0.45 µm filter and 1 M ammonium sulphate added before loading to the column. The 

ammonium sulphate is added to enhance protein hydrophobicity and hence column 

binding and a gradient of decreasing ammonium sulphate (buffer B) is used for elution. 

See table 9 for details of the chromatographic conditions used. 

Table 6: Details of gradient employed, buffer composition and loading speed used in HIC. 

Gradient (percentage of buffer B) Elapsed time (minutes) 

0 to 100% 53 

100% 80 

100 to 0% 82 

0% 115 

Buffer A 20 mM Tris-HCl, 1 mM EDTA, 1 M (NH4)2SO4 at pH 8 

Buffer B 20 mM Tris-HCl, 1 mM EDTA at pH 8 

Buffer load speed 3 mL/min 

Fraction size 5 mL (i.e. 1.67 minutes) 

 

2. 1. 4. 3.  Dialysis 

This is based on the diffusion of solutes across a semi-permeable membrane 

from a region of high concentration to a region of low concentration. It is used for the 

exchange of buffers. 

PROTOCOL: 

Load sample into a pre-wetted 12000-14000 kDa MWCO dialysis tubing and 

dialyse, with constant mixing, overnight in 4 to 5 litres of the appropriate buffer (i.e. 

buffer A for the IEX). 
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2. 1. 4. 4.   Ion exchange chromatography (IEX) 

Ion-exchange chromatography separates proteins based on their charge. A 

1.6 cm x 20 cm, 40 mL DEAE Fast Flow Sepharose (Pharmacia) column was used. 

This anion exchanger contains the positively charged reactive group 

diethylaminoethanol (DEAE) covalently linked to a sepharose (a polysaccharide 

polymer) matrix. A gradient of increasing NaCl concentration (buffer B) is used for 

protein elution. 

In the present study the pH of the equilibration buffer used was optimised to 

maximise DsbA binding: pH 7.2, 7.5 and 8.0 were investigated. 

Table 7: Details of the gradient employed, buffer composition and running speed used in IEX. 

Gradient (percentage of buffer B) Elapsed time (minutes) 

0 to 50% 56 

50 to 100% 59 

100% 79 

100 to 0% 81 

0% 105 

Buffer A 10 mM MOPS, 1 mM EDTA tested at pH 7.2; 7.5 and 8. 

Buffer B 
10 mM MOPS, 1 mM EDTA, 1 M NaCl tested at pH 7.2; 

7.5 and 8. 

Buffer load speed 5 mL/min 

Fraction size 5 mL (i.e. 1 minute) 

2. 1. 5.  DsbA reducing activity assay 

DsbA reducing activity was confirmed according to a procedure described by 

Arne Holmgren in 1979. This assay is based on the reduction of insulin disulphide 

bonds by DsbA under the conditions used and measuring the resultant insulin 

precipitation by monitoring the increase in absorbance at 650 nm. DTT is used to 

recycle oxidised DsbA following catalysis.  

The assay was used to monitor the purification process as well as to determine 

the activity of wild-type and mutant DsbAs. 
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PROTOCOL (for insulin solution preparation at 10 mg/mL): 

 Add 50 mg of insulin to 4 mL of 0.05 M Tris-HCl at pH 8. 

 Add 1M HCl to adjust pH between a range of 2 or 3. 

 Immediately add 1M NaOH to adjust pH to 8. 

 Bring the volume to 5 mL with deionized water. 

PROTOCOL: 

 Add a known concentration of DsbA to a 1 mL cuvette and add 2 mM EDTA, 

0.75 mg/mL insulin and 20 mM MOPS at pH 7 to bring the final volume to 1 mL. 

 Mix gently by inversion and blank the spectrophotometer at 650 nm with this 

solution 

 Add 0.33 mM DTT, mix by inversion. 

 Immediately monitor the change in A650nm over time. A Genesys 20 (R) 

spectrophotometer from Thermo Spectronic (R) was used. 

 A negative control with all components except DsbA should also be monitored. 

2. 1. 6.  Sugar detection assay 

Sugar detection was performed according to a protocol first described in 1956 

by Dubois and collaborators (Dubois, et al., 1956). This is a quantitative and sensitive 

colorimetric test where sulphuric acid in the presence of phenol is used for sugar 

detection. The sugars are converted to hydroxymethylfufurals in the hot acidic 

conditions and form a green product on interaction with phenol. Even small quantities 

of sugars can be detected and quantified based on the direct relationship between the 

enhancement of colour (A490nm) and the sugar quantity. 

PROTOCOL: 

 To 1 mL of sample solution (in water) add 1 mL of a 5 % phenol solution. 

 Add 5 mL of 96 % sulphuric acid to each tube and mix well. 

 Leave 10 minutes at room temperature, mix and place in a water bath at 25 to 

30 ºC for 20 minutes. 

 Blank spectrophotometer with water.  

 Read absorbance at 490 nm. 
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 Calculate the amount of total carbohydrate using a standard curve prepared 

using 0.02 – 0.1 mg/mL glucose. 

All reactions were carried out in glass tubes in a laminar flow hood. 

2. 1. 7.  Bradford assay for protein quantification 

The Bradford assay was used to calculate protein concentration 

spectrophotometrically at 595 nm. This method is based on the reaction between the 

NH3
+ and possibly also the aromatic groups of amino-acids with the coomassie blue 

reagent (Kruger, 2002). For this purpose a standard curve with known concentrations 

of BSA was used.  

Bradford Reagent: Dissolve 100 mg Coomassie Blue G-250 in 50 ml 95% ethanol, add 

100 ml 85% (w/v) phosphoric acid to this solution and dilute the mixture with 850 mL of 

water. Leave to agitate overnight and filter twice. 

PROTOCOL: 

 Place 5 to 20 µL of sample solution in a 1 mL cuvette and bring to a final 

volume of 100 µL with distilled water. 

 Add 1 mL of Bradford solution and mix immediately. 

 Leave at room temperature to allow reaction to develop for 10 minutes. 

 Blank spectrophotometer with the mixture without enzyme sample solution. 

 Read absorbance at 595 nm and calculate concentration from a standard curve 

prepared with BSA concentrations of 5 to 500 µg/ml. 

2. 1. 8.  MUTANT CONSTRUCTION 

In an attempt to better understand adaptation to temperature, structural 

differences between DsbAs adapted to various temperatures were identified and a 

number of mutants designed and prepared so as to investigate these differences. This 

involved a number of steps. 

 Mutant selection: sequence and structure comparisons so as to identify 

structural differences in DsbAs adapted to various temperatures. 

 Design of PCR primers for introduction of desired mutations. 
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 Introduction of selected mutations into cold-adapted DsbA gene sequence by 

inverse PCR, recircularisation of vector by ligation, and transformation to an 

expression host (Scheme 1). 

 Plasmid isolation, confirmation of mutation by restriction digestion analysis and 

sequencing. 

 

Scheme 1: Representation of process used for deletion of amino acids in the PhDsbA sequence. 

2. 1. 9. 1.  Mutant selection: structure comparisons 

Here, the primary, secondary and tertiary structures of the cold-adapted 

enzyme were compared to homologous DsbAs. Major differences in the cold-adapted 

DsbA primary sequence (and in any other cold-adapted DsbA sequence available in 

the UniProtKB databank) were first identified by sequence comparisons of DsbAs 

available at the UniProtKB databank. Mutations identified in the primary sequences 

were then investigated in more detail by comparisons of the tertiary structures of the 

cold-adapted (reduced state) DsbA with the E. coli and V. cholera DsbAs. 

 DsbA sequences for primary structure analysis were identified and retrieved 

from the uniprotkb database by a similarity search with the PhDsbA amino acid 

sequence (e-value) and by manually retrieving sequences based on a bibliography 
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search. Cold-adapted and mesophilic sequences were identified among these by a 

bibliography search. 

 Amino acid sequence comparisons were carried out with the basic local 

alignment search tool (blast) available at the NCBI 

(http://blast.ncbi.nlm.nih.gov/blast.cgi?page=proteins). The blastp 2.2.26 algorithm with 

the Blosum62 (blocks of amino acid substitution matrix number 62) matrix was used 

with default parameters. 

2. 1. 9. 2.  Design of PCR primers 

Primers were designed so as to allow for introduction of the desired mutations 

in the cold-adapted DNA sequence in pET22b(+) by inverse PCR. Fast PCR and 

Primer3 were used for design and analysis of primers and the Finnzymes Tm calculator 

(http://www.diagnostics.finnzymes.fi/tm_determination_old.html) was used for 

annealing temperature calculation. This latter allows for calculation of the annealing 

temperature when using polymerases such as the Phusion polymerase as the DNA 

binding domain fused to this leads to a tighter binding and hence higher melting and 

annealing temperatures. Complementarity of primers as calculated with the Fast PCR 

program was taken into account in minimising dimer formation, this has a scoring range 

from 0 (no propensity for formation) to 7 (high propensity). Primers of 20 to 30 bp with a 

GC content of 40 to 60 % were chosen where possible, primer pairs with similar 

melting temperatures were designed where possible. 

2. 1. 9. 3.  Site directed mutagenesis 

Mutations were introduced on the circular DsbA-pET22b(+) template by inverse 

PCR using the appropriate primers resulting in linearised mutated product (see 

Scheme I). Phusion High-Fidelity DNA Polymerase (kindly provided by Professor Björn 

Johansson) was used as this allows for high fidelity, highly processive replication of 

large fragments. It consists of a novel Pyrococcus furiosus DNA polymerase fused to a 

DNA binding domain. PCR was carried out with a 96 well PCR thermal cycler 

(MyCycler from Bio-Rad®) and standard conditions were used as recommended by the 

polymerase supplier and as described below (Table 8 and 9). 

 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
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Table 8: Details of PCR mix. 

Compound Concentration Volume added 
Final concentration in 

total solution 

dNTP mix 10 mM 1 µL 0.2 mM 

Ultra-pure H2O  35 µL  

Phusion HF Buffer 5× 10 µL 1× 

Template 33 ng/µL 0.5 µL 16.5 ng 

Reverse Primer 20 µM 1.25 µL 0.5 µM 

Forward Primer  20 µM 1.25 µL 0.5 µM 

Phusion HF DNA 

polymerase 

(Finnzymes) 

2000 units/mL 1 µL 2 units 

Total volume 50 µL 

 

Table 9: PCR cycle details 

 

 

As already mentioned, the annealing temperature was calculated according to 

the Finnzymes online calculator. To ensure best results the Phusion HF DNA 

polymerase supplier recommends using the lower Tm given by the calculator for 

annealing when primers have less than 20 nucleotides. However, for primers greater 

than 20 nucleotides it is recommended to use an annealing temperature 3 ºC higher 

than the lower Tm given by the calculator program. 

 

 

 

PCR step Temperature Time 

Pre-denaturation 98 ºC 2 minutes 

Denaturation 98 ºC 30 seconds 

Annealing 
Calculated using Finnzymes Tm 

calculator 
20 seconds 

Extension 72 ºC 
2 minutes and 30 

seconds 

Final extension 72 ºC 10 minutes 

 4 ºC ∞ 
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2. 1. 9. 4.  Re-circularization of PCR product 

Re-circularisation of DNA is carried out by use of a polynucleotide kinase (PNK) 

that phosphorylates the 5’ phosphate and a ligase (T4 ligase) that links this to the 3’ 

hydroxyl group of the linear PCR product. 

PROTOCOL: 

 To 18.5 µL of PCR product in an eppendorf tube add 2.5 µL of 10× ligase buffer 

and 2 µL of T4 polynucleotide kinase (PNK) at 10 units/µL (both from 

Fermentas®). 

 Leave 30 minutes at 37 ºC. 

 Add 2 µL of PNK (10 units/µL) and leave for 30 minutes at 37 ºC. 

 Add 2 µL of T4 ligase (Fermentas®) and leave at 37 ºC for 2 hours. 

Following phospholigation the restriction digestion enzyme DpnI was added to 

digest the methylated DNA of the template used in the PCR reaction. Buffer Tango 

(final concentration 1×) and 10 units of DpnI per 10 µL of reaction mix were added and 

incubated for 1 hour at 37 ºC (both the digestion enzyme and respective buffer are 

from Fermentas®). 

2. 1. 9. 5.  Preparation of E. coli competent cells and transformation 

E. coli BL21 (DE3) competent cells were prepared using a rapid procedure first 

described in 1987 (Hanahan, 1983). In this procedure the transformation efficiency of 

the cells is enhanced by using rubidium chloride. Some modifications were made to the 

original protocol and the complete procedure utilized is described below. 

PROTOCOL: 

 Inoculate 5 mL LB with a cfu of E. coli BL21 (DE3). 

 Grow over night at 37 ºC in an orbital incubator at 200 rpm. 

 Transfer 300 µL to a 2 L Erlenmeyer flask containing 400 mL LB and incubate in 

an orbital incubator at 37 ºC, 200 rpm until an OD600 of 0.4 – 0.6 is reached. 

 Divide culture in 8 frozen 50 mL falcons. 

 Centrifuge for 5 minutes at 4500 rpm at 4 ºC 

 Discard supernatant 

 Ressuspend pellet in TEB1 solution (Table 10) with mixing. 
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 Incubate tubes for 5 minutes on ice. 

 Centrifuge 5 minutes at 4500 rpm and 4 ºC. 

 Discard supernatant. 

 Add 20 mL of TEB2 solution (Table 10) to the first falcon, ressuspend, transfer 

to the second falcon, ressuspend and so on until all pellets are ressuspended. 

 Incubate during 45 to 60 minutes on ice. 

 Distribute into eppendorfs, 100-200µL to each. 

 Store frozen at -80 ºC. 

Table 10: Detailed composition of TEB1 and TEB2 solutions used in competent cells preparation.. 

TEB1 TEB2 

Reagent Concentration Reagent Concentration 

CH3COOK 3 M MOPS 1 M 

CaCl2 1 M CaCl2 1 M 

MnCl2 2 M RbCl2 0.12% (w/v) 

RbCl2 1.2% (w/v) Glycerol (99,5%) 15% 

Glycerol (99,5%) 15%   

The transformation of competent E. coli cells was made with an adaptation of a 

commonly utilized protocol from Inoue and co-workers (1990). The entire procedure is 

described below and it consists of making the competent cells susceptible to uptake of 

DNA by a thermal shock treatment (Inoue, et al., 1990). 

 Defreeze 200 µL of competent cells on ice. 

 Add approximately 100 ng of circular DNA to each tube. 

 Leave tubes on ice for 30 minutes. 

 Proceed to a thermal shock effectuated for 45 seconds at 42 ºC with gentle 

agitation of tubes. 

 Leave tubes on ice for 10 minutes and add 800 µL of preheated LB. 

 Incubate for 1 hour at 37 ºC with 200 rpm agitation. 

 Centrifuge the mixture at 14500 rpm for 1 minute. 

 Reject 800 µL of the supernatant and ressuspend the remaining 200 µL of 

culture. 

 Plate cells on solid LB medium supplemented with ampicillin (100 µg/mL) and 

incubate over night at 37 ºC. 
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2. 1. 9. 6.  Plasmid isolation 

Plasmid isolation from Escherichia coli was carried out with the GenEluteTM 

Plasmid miniprep kit (Sigma®). This kit provides a simple method based on the affinity 

to silica of the smaller sized plasmids (as compared to the chromosomal DNA) of a cell 

lysate for isolating plasmid DNA from recombinant E. coli cultures. Bacterial cells are 

collected through centrifugation, exposed to an alkaline-SDS lysis solution and the 

DNA adsorbed to silica in the presence of high salt concentrations. Thereafter, 

contaminants are removed through a simple wash step and bound plasmid is eluted 

using a solution of low salt concentration. 

PROTOCOL: 

 Grow 6 mL of inoculated LB supplemented with 100 µg/mL of ampicillin over 

night at 37 ºC in an orbital incubator agitating at 200 rpm. 

 Pass culture to 2 mL collection tubes centrifuge at 12000 × g for 5 minutes and 

discard supernatant. 

 Ressuspend cells with 200 µL of the ressuspension solution (supplied with 

RNase A) and pipette up and down or vortex the mixture. 

 Add 200 µL of the lysis solution and invert gently to mix. Allow to clear for less 

than 5 minutes. 

 Add 350 µL of neutralization solution and invert tubes 4 to 6 times to mix. 

 Centrifuge tubes for 10 minutes at maximum speed and discard supernatant. 

 Prepare binding columns by adding 500 µL of the column preparation solution 

supplied and centrifuge at 12000 × g for 1 minute. 

 Discard flow-through, transfer cleared lysate into binding columns and spin for 

30 seconds to 1 minute. Discard flow-through. 

 Add 750 µL of wash solution supplemented with ethanol to columns and 

centrifuge 30 seconds to 1 minute then discard flow-through. 

 Spin for 1 minute to remove residual ethanol. 

 Transfer column to new collection tube. 

 Add 50 µL of elution solution (ultrapure water) and spin for 1 minute. 

DNA concentration was quantified using a NanoDrop ND-1000 

spectrophotometer. Absorbances at 260 nm (for DNA quantification) and 280 nm (for 

analysis of protein contamination) were determined. 
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2. 1. 9. 7.  Mutation confirmation 

So as to confirm a correct introduction of mutations the isolated plasmids were 

subjected to restriction digestion analysis where possible. The software programs 

Geneious and SerialCloner were employed for identification of restriction enzymes for 

use in the mutation analysis.  

PROTOCOL: 

 In an eppendorf tube join 10 µL of the DNA sample (plasmid isolate) with 2.5 µL 

of ultra-pure water, 10 units of the appropriate enzyme and 1.5 µL of the 

appropriate buffer (10×) for the enzyme used (buffer A from Roche® with EaeI 

and buffer R from Fermentas® with BsuRI). 

 Leave for 3 hours at 37 ºC. 

Digested DNA was run on a 2 % agarose gel using Loading Dye 6× Orange 

(final concentration 1×) from Thermo Scientific to load samples and GeneRuler 1kb 

DNA ladder Plus as a molecular weight marker. Results from gels were observed with 

a UV transluminator. 

Sequencing of the DsbA gene sequence of the selected clones was carried out 

using the T7 forward primer by Eurofins MWG Operon so as to ensure correct 

introduction of the desired mutations and absence of other mutations. 
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3.1. PRODUCTION OPTIMIZATION 

The objectives of this task were to maximise batch production of PhDsbA in 

shake flasks at 20 ºC by optimising various process variables for non-induced and 

induced cultures. In particular we examined 1) various rich media; 2) various liquid 

volume to flask volume ratios so as to optimise aeration; 3) cultivation time (for non-

induced cultures); 4) elapsed fermentation time at induction (i.e. stage of growth when 

induced); and 5) induction period (hours after induction). Both the biomass levels 

(OD600nm) and target protein production levels (SDS-PAGE, Coomassie Blue staining) 

were monitored. 

3. 1. 1.  Non-Induced PhDsbA Production Optimisation 

Here both the medium and aeration conditions allowing for maximum biomass 

and PhDsbA production by non-induced E. coli BL21(DE3)/pET22b(+)-PhDsbA 

cultures in shake flasks were investigated and compared.  

The 20 ºC growth curves for non-induced cultures in the media tested (i.e. LB, 

TB and SB) at various levels of aeration (i.e. liquid volume to flask volume ratios of 1:3, 

1:5, 1:10 and 1:20) are shown in Figure 9. It can be seen that highest biomass levels 

were achieved with TB and SB, with growth rates increasing with higher levels of 

aeration. Growth curves were generally similar for TB and SB but, interestingly, at the 

highest liquid volume to flask volume ratio tested (1:20) TB was found to allow for a 

significantly higher biomass production than TB and LB. 
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Figure 8: Comparisons of growth curves at 20 ºC for non-induced cultures in three different rich 

media (LB, SB and TB) at four ratios of medium volume to flask volume i.e. 1:3 (A), 1:5 (B), 1:10 (C) and 
1:20 (D). The green triangles represent growth in SB, the red squares characterize growth in TB and the 
blue diamonds denote the growth in LB. 

SDS-PAGE was used to analyse PhDsbA production levels at various time 

points throughout the non-induced cultures cultivations (every 2 hours until 28 hours of 

growth) and Figure 10 shows the results for the time points of highest production (‘best 

producers’) at each of the conditions tested. Interestingly, PhDsbA was found to start 

accumulating during the mid-log phase even in the absence of induction, with 

maximum production being observed in the stationary phase before a reduction in the 

late stationary phase (not shown). Highest PhDsbAp production was obtained with TB 

with a medium volume to flask volume ratio of 1:5. 
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Figure 9: 12% SDS- PAGE of cellular extracts from non-induced cultures under the various production 

conditions tested. The time point of highest production is shown in each case i.e. samples taken during the 
stationary phase. A represents a medium to flask volume ratio of 1:3; B, a ratio of 1:5; C, a ratio of 1:10 
and D a ratio of 1:20. The black boxes indicate the position of the bands corresponding to PhDsbA. 

Figure 10 gives an overview of the quantitative comparison of biomass and 

PhDsbA production levels for the ‘best PhDsbA producers’ under the various conditions 

examined and Figure 11 and 12 show the variation of these when using TB, the 

medium allowing for highest production. 

 

Figure 10: Comparison of maximum biomass (black points) and PhDsbA (grey bars) production levels 

obtained with the various media (LB, TB, SB) and aeration conditions (1:3, 1:5, 1:10, 1:20) examined. The 
PhDsbA production levels (grey bars) were compared using SDS-PAGE and ImageJ for quantification and 
are expressed as a percentage of the hignest production level observed. Maximum biomass levels 
attained (black points) are reported as the highest OD600nm observed during culturing.  
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.  

Figure 11: Comparison of maximum OD600nm observed with non-induced TB cultures under the various 

medium volume to flask volume ratios tested. 

 
Figure 12: Comparison of maximum PhDsbA production levels observed with various medium volume to 

flask volume ratios for non-induced TB cultures. 

It can be seen that while increased aeration allows for improved biomass levels, 

highest PhDsbA production with the non-induced TB culture is attained at a reduced 

medium volume to flask volume ratio. 

3. 1. 2.   Induced PhDsbA Production Optimisation 

Having examined production under non-induced conditions we then 

investigated production upon induction with 1 mM IPTG. Here various media, levels of 

aeration and the induction time and period were investigated. Inductions times were at 

0 hours, 12 hours (early log phase), 16 hours (late log), 24 hours (stationary) and 28 

hours (late stationary phase) of elapsed fermentation time and samples were collected 

after 2, 4, 6 and 12 hours of an induction period. 
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Figure 13 gives examples of some of the results for the SDS-PAGE analyses 

while Figure 14 gives a comparative overview of the principal results obtained. In all 

cases the ‘best producing’ conditions are shown, corresponding to 4 to 6 hours after 

induction. 

 

Figure 13: 12% SDS-PAGE analysis of induced cultures. The band corresponding to PhDsbA is indicated 

within the black boxes. 

 

Figure 14: Comparison of maximum PhDsbA production (bars) and maximum OD600nm (black squares) 

upon induction at distinct cultivation times with the various cultivation conditions shown in Figure 14. 
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It can be seen that optimum PhDsbA production levels were obtained with TB 

medium induced during the stationary phase of growth. 

3. 1. 3.   Induced versus Non-induced PhDsbA production 

The optimised production conditions for induced and non-induced cultures were 

compared and as can be seen from Figure 15 and 16 a slightly improved production 

was obtained with the induced culture. 

 

Figure 15: 12% SDS-PAGE comparison of optimised induced and non-induced PhDsbA productions. The 

band corresponding to PhDsbA is indicated within the black box. Gels were stained with Coomassie Blue. 

 

Figure 16: Comparison of relative levels of PhDsbA production with the optimised induced and non-

induced production conditions. 
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3.2. PHDSBA PURIFICATION OPTIMIZATION 

A purification protocol for PhDsbA was developed here. This involved 

periplasmic extraction, HIC at pH 8.0 in the presence of ammonium sulphate and IEX 

at pH 8.0. 

3. 2. 1.  Hydrophobic Interaction Chromatography (HIC) 

HIC was carried out in the presence of 1 M ammonium sulphate at pH 8.0 with 

elution being achieved with a gradient of decreasing ammonium sulphate 

concentration. Figure 18 shows the chromatogram and SDS-PAGE analysis of 

fractions indicated PhDsbA to elute in 0 % ammonium sulphate in a large peak 

corresponding to fractions 32 to 50. 

 

Figure 17: HIC chromatogram for purification of PhDsbA from the periplasmic extract. HIC was carried 

with 10 mM MOPS buffer at pH 8.0 with a decreasing ammonium sulphate gradient for elution. The 
transparent blue square represents the fractions containing PhDsbA as determined by SDS-PAGE.. 

3. 2. 2.  Ion Exchange Chromatography (IEX) 

Previously, purification of PhDsbA involved IEX at pH 7.2 but we observed large 

losses of the protein (approx. 40 %) in the void at this pH due to poor matrix binding. 

Therefore we investigated various pHs in an attempt to improve protein recovery during 

IEX. 
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Table 11 shows the amount of protein recovered after IEX at each of the pHs 

investigated and it can be seen that pH 8.0 allowed for minimum losses of the protein 

during IEX. Furthermore, use of this pH for IEX allowed for direct loading of the pool 

following HIC, hence avoiding the necessity for buffer pH exchange by dialysis.  

Table 11: Comparison of pH used for IEX and PhDsbA recoveries. 

Buffer pH (10 mM MOPS) % protein recovered following IEX 

7.2 ~ 50 % 

7.5 ~ 70 % 

8.0 ~ 95 % 

 

Figure 18 shows the chromatogram for IEX at pH 8.0 and it can be seen that 

PhDsbA elutes at low NaCl concentrations under the condition used. 

 

Figure 18: IEX chromatogram for purification of PhDsbA at pH 8.0 in 10 mM MOPS. Elution was carried 

out with an increasing NaCl concentration. The transparent blue square indicates the fractions containing 
PhDsbA as determined by SDS-PAGE. 

Figure 19 shows the SDS-PAGE analysis of the pools for each of the 

purification steps. It can be seen that PhDsbAp was successfully purified using the 

optimised protocol (HIC at pH 8, IEX at pH 8 with simplified two step production 

process).  
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Figure 19: 12% SDS-PAGE of sample pools after each step of the optimised PhDsbA purification protocol. 

The band corresponding to PhDsbA is indicated by black boxes. The molecular marker is the Broad Range 
SDS-PAGE Molecular Weight Standards Marker (Bio-Rad). 

Analysis of the purification process indicated that the protein was purified with a 

final yield of approximately 90 %, allowing for 250 mg of purified PhDsbA per liter of 

production culture. This is approximately five times that previously obtained. 

Following purification samples were precipitated with approximately 80 % 

ammonium sulphate, ressuspended in storage buffer and stored at 4 ºC. 

Previous studies had indicated the presence of sugars in the final purified 

PhDsbA solution (possibly fixed to the protein) but analysis of the purified solution 

obtained using the optimised protocol of the present study indicated an absence of 

sugar contaminants with the sugar detection assay used. 

The optimised purification protocol developed here for the wild-type PhDsbA 

was also successfully used for purification of the four mutants prepared in this study 

(see below for description of mutants). 

3.3. MUTANT CONSTRUCTION 

3. 3. 1.  Comparative structural analysis 

A comparison of the PhDsbA sequence with homologs available at the 

UniProtKB/SwissProt database indicated this to be distinguished by two short 

insertions, a three residue and four residue insertion, as compared to most of its 

homologous sequences. Indeed, closer examination and a literature study indicated 
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that the observed insertions were only found in DsbA sequences isolated from 

organisms inhabiting low temperature environments (i.e. marine 

psychrophiles/psychrotrophs). 

 

Figure 20: Partial sequence alignment of various DsbAs, represented here by their UniProt identifier 

codes, showing a possible 3 amino acid insertion in ‘cold’ DsbAs. Codes shown with a blue background 
represent DsbAs identified in organism inhabiting low temperature environments and those shown with a 
green background are the mesophilic DsbAs. PhDsbA is represented here as Q6ZYL6. The blue stripe 
seen in the middle of the sequences represents a possible insertion site as observed with this alignment. 

 

Figure 21: Partial sequence alignment of various DsbAs, represented here by their UniProt identifier 

codes, showing a possible 4 amino acid insertion site in ‘cold’ DsbAs. Codes shown with a blue 
background represent DsbAs identified in organism inhabiting low temperature environments and those 
shown with a green background are the mesophilic DsbAs. PhDsbA is represented here as Q6ZYL6. The 
blue stripe seen in the middle of the sequences represents a possible insertion site as observed with this 
alignment. 

Tertiary structure comparisons of PhDsbA with its mesophilic homologs (Figure 

22 - 24 indicated these insertions to be located in an inter-domain loop (the 3 residue 

insertion) and at the end of the long backbone α-helix (the 4 residue insertion). 
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Figure 22: Overlay of PshDsbAp (blue) with its mesophilic homologs from Vibrio cholerae (pdb: 2IJY) and 
E. coli (pdb: 1A23). Both mesophiles are shown in green. The two insertions in the cold-adapted DsbA are 
displayed in light blue and are circled.  

More detailed tertiary structure comparisons with Pymol and Dali are illustrated 

in Figures 23 and 24.  

 

Figure 23: Structural alignments using DALI of PhDsbA in green with with its mesophilic homologs from 

Vibrio cholerae (pdb: 2IJY) and E. coli (pdb: 1A23). The left image represents the region containing the 3 
residue loop insertion and the right the 4 residue insertion, The structural differences induced by the 
insertions are highlighted by the white circles. 

It can be seen that the insertions results in elongated loops with directional 

changes in PhDsbA as compared to its mesophilic homologs. The insertions result in 
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residues Gly62, Gly63 and Val64 in the three residue insertion and Ser147, Lys148, Leu149, 

Gly150 and Ala151 in the four residue insertions protruding out from the structure. 

 

Figure 24: Structural alignments using Pymol to compare PhDsbA, represented in green, with the 
mesophilic homologous protein, DsbA from Vibrio cholera, in blue. The left image represents the region 
containing the 3 residue loop insertion and the right mage conatians the 4 residue insertion. The structural 
differences induced by the insertions are highlighted by arrows. 

A closer look at the three residue insertion indicates that it is Pro66, a conserved 

residue in all cold-adapted DsbA sequences, that appears to induce a change in 

direction in the PhDsbA loop with the residues Val64, Ser65 increasing the length of this 

deviated loop and resulting in the protrusion of residues 62 to 64 from the structure.  

In the case of the four residue insertion the insertion of residues Ser147, Lys148, 

Leu149, Gly150 and/or Ala151 appear to be determinant for the loop protrusion. 

Importantly, the conservation of a Gly corresponding to Gly150 in many mesophilic 

homologs indicates the importance of this residue in DsbAs. 

3. 3. 2.  Mutant Construction 

Based on the comparative structural analysis a number of PhDsbA deletion 

mutants were prepared, namely deletions of: (Val64, Ser65 ); (Val64, Ser65 Pro66); (Ser147, 

Lys148, Leu149) and (Ser147, Lys148, Leu149, Ala151). 
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Primers were designed for deletion of these residues as described in Table 12 and 

mutagenesis carried out by the inverse PCR procedure described in the materials and 

methods.  

Table 12: Primers designed for mutation of DsbA sequence. 

Deleted 

amino-

acids 

Type 
Amino-acids 

sequence (5’ to 3’) 

Length 

(bp) 

% of 

GC 

Melting 

temperature 

Self-

complemen

tarity 

VSP Reverse 
GCCGCCTAAAAAGT

TAACGTG 
21 47,6 64,7 ºC 4 

VSP Forward 
CAAACACAAAGTAAC

TTGAGCCTAGC 
26 42,3 65,1 ºC 2 

VS Forward 
CCACAAACACAAAGT

AACTTGAGC 
24 41,7 63,9 ºC 3 

SKL Reverse 
GTATTTATTTTGTTTA

TCTTGCATTGCTT 
29 24,1 63,3 ºC 1 

SKL Forward 
GGTGCGTTAACAGG

CGTTC 
19 57,9 65,9 ºC 1 

SKLA Reverse 
ACCGTATTTATTTTG

TTTATCTTGC 
25 28 60,5 ºC 2 

SKLA Forward 
TTAACAGGCGTTCCT

ACTTTTATTG 
25 36 63,3 ºC 0 

Restriction digestion analysis of the various constructs obtained indicated 

successful deletions and gene sequencing confirmed these deletions as well as the 

absence of other mutations. All four mutant constructs were then transformed to E. coli 

BL21(DE3) and produced and purified using the procedures optimised for the wild type 

enzyme. 

3.4. ACTIVITY ASSAY 

The insulin assay was used to determine whether the purified wild type and 

mutant PhDsbAs produced maintained a reducing activity. The results of this assay 

with similar concentrations of DsbA are shown in Figure 26 where it was found that all 

mutants displayed activity. It can be seen that the VS deletion appears to have a higher 

reducing activity under the conditions used while the SKL+A mutant retained high 

activity as compared with WT. In contrast, the SKL has poor reducing activity. SKL_A 

mutant has not been studied at this level. 
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Figure 25: PhDsbA concentration dependence of precipitation. 

 

Figure 26: Insulin activity assay demonstrating activity of the various mutants produced. Green squares 

represent the DsbA-Val64_Ser65del mutant (VS deletion); red squares the DsbA-Val64_Pro66 mutant 
(VSP deletion); purple squares the DsbA-Ser147_Leu149del mutant (SKL deletion), black squares the 
negative control and orange squares the wild type. The rate of insulin precipitation, as indicated by an 
increase in the OD650nm value, is indicative of the reducing activity of the DsbA. 
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Chapter 4: Final remarks and future 

perspectives  
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DsbAs catalyse disulphide bond formation in newly synthesised proteins and 

due to the importance of these covalent bonds in the structure, stability and activity of 

many proteins they are of much fundamental and applied interest. Approximately 30% 

of currently produced pharmaceutical proteins contain disulphide bonds and hence the 

use of DsbAs as an aid in recombinant protein production has a strong potential. More 

recently, their crucial role in the correct folding and functioning of virulence factors 

produced by pathogenic bacteria has opened up a potential role in medicine and in 

particular in the development of antimicrobial agents. In an attempt to better 

understand DsbAs and their structure-function relationship and hence to develop their 

potential in the above mentioned fields we have initiated a comparative study of DsbAs 

adapted to various temperatures. We are using homologous cold-adapted and 

mesophilic DsbAs as model enzymes as we believe that such a comparative study 

would reveal much more information and better identify determinants of activity and 

stability in DsbAs as compared to studies of individual enzymes. 

As an initial part in our overall study of DsbAs, the present study is focused on 

two main areas: 

1) developing and optimising the production and purification protocols for a 

recombinantly produced cold-adapted DsbA from Pseudoalteromonas 

haloplanktis (PhDsbA). 

2) identifying structural determinants of cold-adaptation and construction of a 

number of mutants so as to allow for future studies investigating these. 

In the first part of the study the production of the cold-adapted DsbA with the E. 

coli BL21(DE3)/pET22b(+) expression system was investigated in shake flasks. Even 

though this expression system is based on a controlled induction we nevertheless 

obtained strong production even in the absence of added inducer. In fact this has 

already been noted in the past by other groups (Collins, et al., 2013; Guda, et al., 1995; 

Nair, et al., 2009) and has been attributed to low levels of lactose contamination in the 

media used. While this was not examined here, it is possibly also the cause of the 

‘uninduced’ production observed as complex unrefined media ingredients such as 

yeast extract and tryptone peptone were used. As might be expected, maximum cell 

growth was observed with the richer media TB and SB as compared to LB, with TB 

showing the highest levels at the highest medium volume to flask volume ratios (i.e. 

highest aeration rates) tested. Even though SB is a richer medium (higher 

concentrations of yeast extract and tryptone peptone) the higher biomass levels 
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achieved with TB is probably a result of the buffered (phosphate buffer) and glycerol 

supplemented nature of this. These reduce the negative effects of the co-products 

produced (namely acetate) at the higher growth rates achieved when higher medium 

volume to flask volume ratios are used (Collins et al, 2013). Finally, DsbA periplasmic 

expression was found to increase with increasing aeration up to a medium volume to 

flask volume ratio of 1:5 only, with a decreased production being noted thereafter. This 

reduced yield of periplasmic protein is attributed to losses to the extracellular 

environment at the higher medium volume to flask volume ratios tested and is probably 

a result of a greater physical force on the cells under these conditions. 

Similar results and conclusions to those observed with the ‘non-induced’ 

productions were obtained for the induced production optimisation study i.e. optimal 

growth and production was obtained with TB with intermediate (1:5) medium volume to 

flask volume ratios. Highest production was observed with induction during the 

stationary phase of growth with at least 4 to 6 hours of induction. Typically recombinant 

protein production is induced during the exponential phase of growth as it is believed 

that this is when the transcription and translational machinery are most active 

(Babaeipour, et al., 2007). Nevertheless, previous studies have demonstrated that 

expression systems with ampicillin as the selection marker display a rapid loss of the 

production plasmid immediately following induction and thereby drastically decreased 

product formation following induction (Collins et al, 2013). This obviously diminishes 

the effectiveness of early induction and long post induction times and indicates that 

protein production levels with these systems are strongly dependent on cell density 

before induction. The attainment of a high cell density before induction thus maximises 

production levels as was seen in the present study.  

A combination of hydrophobic interaction chromatography (HIC) and ion-

exchange chromatography (IEX) have been previously described for the purification of 

mesophilic DsbAs from E. coli (Wunderlich & Glockshuber, 1993) and Vibrio cholera 

(Horne et al, 2007) and hence this approach was investigated for the purification of the 

homologous cold-adapted DsbA of this study. Following osmotic shock for extraction of 

the periplasmic protein and addition of 1 M ammonium sulphate for improved column 

binding, HIC with a decreasing ammonium sulphate concentration allowed for removal 

of the majority of contaminating proteins. Initial attempts involving dialysis and anion 

exchange chromatography at pH 7.2 resulted in losses of up to 50% of the protein of 

interest in the void and hence higher pHs were investigated for improved column 
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binding. Anion exchange at a pH of 8.0 not only allowed for almost complete DsbA 

recovery but also allowed for the direct loading of the HIC pool to the IEX column, 

thereby avoiding the requirement for dialysis and hence simplifying the purification 

procedure. Following this IEX step, sufficiently pure DsbA, as demonstrated by SDS-

PAGE analysis, was recovered with a yield of approximately 90%. Approximately 

250 mg of purified DsbA per litre of production culture was obtained using the 

optimised production and purification protocols developed in this study, this equating to 

about 5 times that obtained during initial tests. 

In the second part of the study an investigation into the structural determinants 

of cold-adaptation in DsbAs was initiated. Sequence and structure alignments clearly 

show the cold-adapted enzyme to be distinguished by two short insertions in regions 

believed to be important in DsbA activity. An insertion of 3 residues occurs in an inter-

domain loop which is believed to be important in substrate binding and inter-domain 

movement while the second insertion (4 residues) occurs at the interface of the C-

terminal end of a long backbone α-helix and at the start of a long loop believed to be 

important in catalytic activity. It is possible to hypothesise that these insertions allow for 

improved inter-domain movement, improved substrate binding and improved 

movement of the loop important in enzyme activity and hence allow for the improved 

flexibility required for activity at low temperatures. Interestingly, these insertions were 

found to be conserved in all DsbAs isolated to date from low temperature environments 

and hence points to a central role of these Insertions in temperature adaptation of 

DsbAs. These loop regions are obviously important for DsbA activity and hence we 

have designed and prepared a number of deletion mutants in which these insertions 

were targeted. Four mutants were prepared, produced and purified and shown to be 

active. Interestingly one of the mutants was found to have a higher reducing activity 

than the wild-type enzyme under the conditions used while all others displayed a lower 

reducing activity. Further, more in-depth studies are required to characterise these 

mutants and compare them to their mesophilic and psychrophilic homologs in an 

attempt to better understand their role. In particular, studies comparing both the 

reducing and oxidising activities at various temperatures, most probably by HPLC 

(Zapun et al, 1993), as well as comparative stability studies (DSC, CD, irreversible 

inactivation) are required to obtain a better understanding of the effects of the 

mutations and to better characterise structure-function relationships in DsbAs. The 

information gained could enable a better design of DsbA inhibitors in the future, 

possibly even targeting the loop regions identified in this study. Finally, it is suggested 
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that in the future the cold-adapted enzyme be investigated for use in cell free protein 

production systems as the expected high activity of this enzyme should offer 

advantages over currently used mesophilic DsbAs.  
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