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I. SECOND VIRIAL COEFFICIENT FOR EVALUATING

EXPERIMENTAL AND FITTED POTENTIALS

We calculate the normalized second virial coefficient, B∗2 , according to1:

B∗2 = − 2π

B2,HS

∫ ∞
0

r2 [exp(−βU(r))− 1] dr. (1)

In this expression, B2,HS = 2/3πD3 is the second virial coefficient for a system of hard spheres

of diameter D, and U(r) is the interparticle potential given in Fig. 1 of the main text. For

0 < r ≤ 1.11σ in system 1 and 0 < r ≤ 0.75σ in system 2 the potential is too repulsive

to be accurately measured in experiment. To integrate equation 1 we thus used U(r) = ∞

for 0 < r ≤ 1.11σ in system 1 and 0 < r ≤ 0.75σ in system 2. Integration is stopped

at r = 3.6σ because all potentials are approximately zero at that interparticle separation.

The hard sphere second virial coefficient used for normalization is that for hard spheres of

diameter 1.11σ (system 1) or 0.75σ (system 2).

II. GIBBS ENSEMBLE SIMULATIONS

Calculating the properties of coexisting gas and liquid phases from a simulation where

both phases are in direct contact with each other requires a very large simulation box so

that the fraction of particles at the gas-liquid interface is small and bulk (gas or liquid)

properties can be calculated. This drawback is avoided in Gibbs ensemble2,3 simulations by

simulating each phase in a separate simulation box so that a physical gas-liquid interface

does not exist. Coexistence is ensured by allowing the boxes to exchange particles and

volume: the full system (box I + box II) is simulated in the NVT ensemble. As a result, the

system spontaneously finds the coexistence gas and liquid densities for a given experimental

temperature T . The full gas-liquid coexistence curve is obtained by performing simulations

at closely spaced temperatures in the desired experimental temperature range. Using Gibbs

ensemble simulations, bulk gas or liquid properties can be accurately calculated for all

temperatures away from the colloidal critical point; when close to the critical point, transient

interfaces between gas and liquid phases can form and this technique no longer yields reliable

results.

For each ∆T , we simulate a system of two cubic simulation boxes with a fixed number

of 2000 colloidal particles in each box for system 1 and 1372 for system 2. The initial
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configuration is obtained by first placing the particles in a face-centered cubic (FCC) lattice,

and then running a preliminary simulation using a Casimir potential at ∆T = −0.5◦C for

system 1 and ∆T = −0.3◦C for system 2. This procedure ensures that distinct gas and liquid

equilibrium phases are present in the simulation boxes. Each simulation consists of at least

5 × 105 (system 1) or 2 × 106 (system 2) Monte Carlo (MC) cycles. Each simulation cycle

contains three MC steps: a particle displacement step within one of the boxes, a change of

the volume of the two boxes, and an exchange of particles between boxes. The magnitude of

the Monte Carlo particle displacement and volume change is adjusted so that the acceptance

ratio is 20%-50%.

At the end of each simulation, one box contains the vapor phase and the other the

liquid phase. Far above the colloidal critical temperature, we obtain two narrow and clearly

separated probability volume fraction peaks clearly pinpointing equilibrium gas and liquid

densities, as illustrated in Fig. (1a) . Close to the colloidal critical point, the separation of

peaks is no longer clearly distinct (Fig. 1b). Under these conditions, the free energy penalty

for forming gas-liquid interfaces becomes very small4, so transient interfaces appear in both

boxes. This appearance of transient interfaces increases the uncertainty associated with the

volume fractions of the coexisting phases as is evident from the figure.

(a). (b).

FIG. 1. Probability of each of the simulation boxes (red or blue) having φ volume fraction of

particles at ∆T = −0.30◦C (a) and ∆T = −0.32◦C (b) for system 2.
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III. GIBBS-DUHEM INTEGRATION

We use Gibbs-Duhem integration5 to compute the full fluid-solid coexistence curve as a

function of the experimental temperature T . In Gibbs-Duhem integration, the coexistence

curve is obtained by numerically integrating the Gibbs-Duhem equation starting from a

known reference coexistence point. For our system the relevant reference point is the hard

sphere system coexistence6 at a pressure of βP/σ3 = 11.67 and volume fractions φl = 0.494

and φs = 0.545, for the liquid and the FCC crystal phases respectively. We perform the

integration in two steps2. For clarity and convenience, we associate each integration step

to one type of temperature: the simulation temperature Tβ (first step) or the experimental

temperature T (second step). The simulation temperature Tβ is the reduced temperature

in the simulation program. Unless otherwise noted, this temperature is kept constant at

β = 1/(kBTβ) = 1. The experimental temperature is the temperature at which the exper-

iments were performed. Changes in this temperature are set in the simulations through

changes in the input potential. We first integrate the regular Clausius-Clapeyron equa-

tion from the hard sphere reference system to the purely repulsive colloidal particles at

∆T = −0.9◦C (system 1) and ∆T = −0.7◦C (system 2), where critical Casimir forces are

still negligible. This is done by adding a hard sphere potential to the repulsive potential

βUcc = βUrep(r) + βUHS(r), where the hard sphere diameter is set to σ. For β = 0 only

the hard sphere potential remains, while at β = 1 the full repulsive colloidal potential is

recovered. The integration of the Clausius-Clapeyron equation for Urep(r) along the coexis-

tence line is performed using a predictor-corrector algorithm for a series of constant pressure

MC simulations of both the FCC crystal and the liquid at different values of β with spac-

ing of ∆β = 0.1 for both systems. In the second step we integrate from ∆T = −0.9◦C

(system 1) and ∆T = −0.7◦C (system 2), and β = 1 for both systems, to the desired

final experimental temperature using the temperature-dependent total potential U(r;T ).

Starting from the pressure βP/σ3 = 55.76 (system 1) and βP/σ3 = 20.08 (system 2) and

the solid and liquid volume fractions for β = 1 obtained in the first step, we integrate

dP
dT

= −∆( ∂g
∂T

)/∆v = −〈 du
dT
〉/∆v, where ∆ indicates the difference between the solid and

liquid phase, v is the molar volume, g the molar Gibbs free energy, and u the molar po-

tential energy. The angular brackets denote an ensemble average. Again, the integration is

performed using a predictor-corrector algorithm for a series of constant pressure MC simu-
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lations of both the solid and the liquid for different experimental temperatures T . In what

follows we describe the Gibbs-Duhem equations that apply to each integration step.

Consider a system of N monodisperse colloids whose position vectors are denoted by

(r1, ..., rN) ≡ rN . The pair interaction potential between these particles is U = U(r;T ). The

Gibbs free energy G and the chemical potential describing the thermodynamic properties of

this system are G(N,P, Tβ, T ) = Nµ(P, Tβ, T ), where P is the pressure.

In the isobaric-isothermal ensemble, the Gibbs free energy can obtained from the partition

function by the relation

βG(N,P, Tβ, T ) = − lnQNPTβ(T ), (2)

and

QNPTβ(T ) ∝
∫
dV e−βPV

∫
V
drNe−βU(rN ,T ), (3)

where V is the volume of the N particles.

Consider also that this system is initially in an equilibrium state characterized by two

coexisting phases (solid and liquid). Each of the phases can be considered a thermodynamic

system of their own, characterized by the Gibbs-Duhem equation of the form:

dµ = −sdTβ + vdP +
∂g

∂T
dT, (4)

where s = S/N , g = G/N , v = V/N , respectively, are the molar entropy, molar Gibbs free

energy and molar volume. If the system is reversibly perturbed (by dT , dTβ and dP ), it will

reach a new equilibrium state. During this process, the two coexisting phases (labeled as

liq, sol) remain in equilibrium, so the change in their chemical potential µ must satisfy:

dµsol = dµliq. (5)

Thus, the chemical potential difference between the two phases can be written as:

dµsol − dµliq = −(ssol − sliq)dTβ + (vsol − vliq)dP +

(
∂gsol
∂T
− ∂gliq

∂T

)
dT = 0. (6)

The liquid-solid coexistence curve is determined by integrating equation 6. As mentioned

above, for convenience this integration is done in two integration steps.

Integration step 1: At constant experimental temperature T , eq. 6 reduces to the Clausius

Clapeyron equation:
dP

dTβ
=
ssol − sliq
vsol − vliq

=
∆s

∆v
. (7)
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It is convenient to formulate eq. 7 in a form that can more easily be integrated in simulation.

We first re-write it as a differential of βP with respect to β:

dβP

dβ
= − 1

β

∆s

∆v
+ P. (8)

As at coexistence the pressure, temperature and chemical potential of the two phases are

identical, the change in entropy can be expressed as a function of the molar potential energy

u and enthalpy h:

Tβ∆s = ∆h = ∆u+ P∆v. (9)

The final form of the Clausius Clapeyron equation directly follows from substituting eq. 7

in eq. 9:
dβP

dβ
= −∆u

∆v
. (10)

Integration step 2: At β = 1 in equilibrium, the pressure change with respect to the

change of experimental temperature T can be written as:

dP

dT
= − 1

vsol − vliq

(
∂gsol
∂T
− ∂gliq

∂T

)
= −∆

(
∂g

∂T

)
/∆v = −

〈
du

dT

〉
/∆v. (11)

The last equality follows from an explicit expression of the derivative of the molar Gibbs

free energy g(T ) with respect to T as:

∂g

∂T
= − 1

β

∂

∂T
lnQNPTβ = − 1

βQNPTβ

∂QNPTβ

∂T

=

∫
dV e−βPV

∫
drN

(
∂u
∂T

)
e−βu∫

dV e−βPV
∫
drNe−βu

=

〈
∂u

∂T

〉
, (12)

where the brackets denote an average over the isothermal-isobaric NPTβ ensemble. Using

the fact that the energy is a sum of pair potentials we can write the last average as〈
∂u

∂T

〉
=

〈∑
i<j

∂U(rij, T )

∂T

〉
. (13)

For each integration step we perform Monte Carlo simulations of a system with two cubic

boxes, one for each phase. Simulations are performed in the isothermal-isobaric NPTβ

ensemble with 2084 particles in each box for system 1 and 864 for system 2. The initial

conditions for simulations of each state point are obtained from the final configurations

(pressure, volume fraction and particle coordinates of each phase) of the preceding run. We
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use periodic boundary conditions and a cutoff distance of rc = 4.5σ for system 1 and 3.5σ

for system 2. Each simulation is equilibrated for 5× 103 (system 1) or 6.25× 104 (system 2)

MC cycles; production runs are of the same length as equilibration. One MC cycle consists

of an attempt to displace all particles in the system and one attempted volume change. The

magnitude of the Monte Carlo moves is adjusted so that the acceptance ratio is 40%-50%.

(a). (b).

FIG. 2. Gibbs-Duhem integration: Solid-fluid coexistence pressure vs. reciprocal temperature (a)

and experimental temperature (b) for system 1 (black) and system 2 (blue). βPσ3 is the reduced

pressure (β and σ are unity). Solid lines are guides to the eye.

The first Gibbs-Duhem integration step results in a rapid increase of pressure with in-

creasing reciprocal temperature, as shown in Fig. 2a. This increase in pressure reflects the

increasingly longer-range repulsive interaction between the colloids.

The second step results in an decrease of pressure as ∆T becomes less negative, i.e. with

increasing experimental temperature T , as shown in Fig. 2b. Starting from a high pressure at

low temperature, the pressure decreases with increasing temperature, as attraction between

particles becomes stronger.

IV. SCALING

As described in the main text, the scaling relations2

φl + φg
2

= φC + A(T − TC) (14)
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and

φl − φg = B(T − TC)βc (15)

with βc = 0.325 were used to estimate the critical temperature ∆TC and volume fraction φC

for each system by fits to the calculated gas-liquid coexistence curves. The critical constants

and the fitting parameters A and B obtained from these fits are shown in Table I.

TABLE I. Critical temperature ∆TC , critical volume fraction φC , and fitting parameters A and B

obtained from fitting Eqs. 14 and 15 to the gas-liquid coexistence curves of each system.

System 1 System 2

A 1.0046 1.3125

B 0.8852 1.067

∆TC (◦C) -0.38 -0.32

φC 0.115 0.134

Re-writing eqs. 14 and 15 in terms of temperature differences, ∆T = T −Tcx and ∆TC =

TC − Tcx, we obtain

φg
φC

= 1− A∆TC
φC

(
1− ∆T

∆TC

)
− B|∆TC |βc

2φC

(
1− ∆T

∆TC

)βc
(16)

φl
φC

= 1− A∆TC
φC

(
1− ∆T

∆TC

)
+
B|∆TC |βc

2φC

(
1− ∆T

∆TC

)βc
(17)

As shown in the main text, equations 16 and 17 together with the parameters in Table I

describe the scaled gas-liquid coexistence curve well.
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