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Abstract

Interested in formalizing the generation of fast running code for linear algebra applica-
tions, the authors show how an index-free, calculational approach to matrix algebra can
be developed by regarding matrices as morphisms of a category with biproducts. This
shifts the traditional view of matrices as indexed structures to a type-level perspective
analogous to that of the pointfree algebra of programming. The derivation of fusion,
cancellation and abide laws from the biproduct equations makes it easy to calculate al-
gorithms implementing matrix multiplication, the central operation of matrix algebra,
ranging from its divide-and-conquer version to its vectorization implementation.

From errant attempts to learn how particular products and coproducts emerge from
biproducts, not only blocked matrix algebra is rediscovered but also a way of extend-
ing other operations (e.g. Gaussian elimination) blockwise, in a calculational style, is
found.

The prospect of building biproduct-based type checkers for computer algebra sys-
tems such as MATLAB™ is also considered.

Keywords: Linear algebra, categories of matrices, algebra of programming

“Using matrix notation such a set of simultaneous equations takes the
form A ⋅ x = b where x is the vector of unknown values, A is the
matrix of coefficients and b is the vector of values on the right side
of the equation. In this way a set of equations has been reduced to a
single equation. This is a tremendous improvement in concision that
does not incur any loss of precision!”

Roland Backhouse [1]

1. Introduction

In a recent article [2], David Parnas questions the traditional use of formal meth-
ods in software development, which he regards unfit for the software industry. At the
core of Parnas objections lies the contrast between the current ad-hoc (re)invention of
cumbersome mathematical notation, often a burden to use, and elegant (thus useful)
concepts which are neglected, often for cultural or (lack of) background reasons.
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The question is: what is it that tells “good” and “bad” methods apart? As Par-
nas writes, there is a disturbing gap between software development and traditional
engineering disciplines. In such disciplines one finds a successful, well-established
mathematical background essentially made of calculus, vector spaces, linear algebra
and probability theory. This raises another question: can one hope to share such a suc-
cessful tradition in the computing field, or is this definitely a different kind of science,
hostage of formal logics and set theory?

There are signs of change in such direction already, as interest in the application
of linear algebra techniques to computing seems to be growing, driven by disparate
research interests briefly reviewed below.

Gunther Schmidt, for instance, makes extensive use of matrix notation, concepts
and operations in his recent book on relational mathematics [3]. This pays tribute
to binary relations being just Boolean matrices. Of historical relevance, explained in
[4], is the fact of one of the first known definitions of relational composition, due
to Charles Peirce (1839-1914), being essentially what we understand today as matrix
multiplication.

In the area of process semantics, Bloom et al [5] have developed a categorical,
machines as matrices approach to concurrency 2; Trčka [7] presents a unifying ma-
trix approach to the notions of strong, weak and branching bisimulation ranging from
labeled transition systems to Markov reward chains; and Kleene coalgebra is going
quantitative [8].

The “quantum inspiration” is also pushing computing towards linear algebra foun-
dations. Focussing on quantum programming and semantics of probabilistic programs,
Sernadas et al [9] adopt linear algebra techniques by regarding probabilistic programs
as linear transformations over suitable vector spaces. Natural language semantics, too,
is going vectorial, as nicely captured by the aphorism nouns are vectors, adjectives are
matrices [10]. In this field of “quantum linguistics”, Coecke et al [11] have developed
a compositional model of meaning in which the grammatical structure of sentences is
expressed in the category of finite dimensional vector spaces. Unrelated to quantum
linguistics but related to knowledge discovery, the authors of the current paper show
in [12] how to implement data mining operations solely based on linear algebra opera-
tions. And more examples of the adoption of linear algebra background in computing
could be mentioned.

2. Typing Linear Algebra

One R&D field whose core lies in linear algebra (LA) is the automatic generation of
fast running code for LA applications running on parallel architectures [13, 14, 15, 16].
The sophisticated techniques developed in this direction of research call for matrix
multiplication as kernel operator, whereby matrices are viewed and transformed in an
index-free way [16].

2Work in this vein can be traced much earlier, back to Conway’s work on regular algebras [6] and regular
algebras of matrices, so elegantly presented in textbook [1, Chap. 10] where the opening quotation of the
current paper is taken from.
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Interestingly, the successful language SPL [14] used in generating automatic par-
allel code has been created envisaging the same principles as advocated by the purist
computer scientist: index-free abstraction and composition (multiplication) as a kernel
way of connecting objects of interest (matrices, programs, etc).

There are several domain specific languages (DSLs) bearing such purpose in mind
[14, 15, 16]. However, they arise as programming dialects with poor type checking. Of
popular use and suffering from the same weakness one finds the widespread MATLAB 3

library of matrix operations, in which users have to keep track of dimensions all the
way through and raise exceptions wherever “expressions don’t fit with each other”.
This hinders effective use of such languages and libraries, calling for a “type structure”
in linear algebra systems similar to that underlying modern functional programming
languages such as Haskell, for instance [17].

It so happens that, in the same way function composition is the kernel operation of
functional programming, leading to the algebra of programming [18], so does matrix
multiplication once matrices are viewed and transformed in an index-free way. There-
fore, rather than interpreting the product AB of matrices A and B as an algorithm for
computing a new matrix C out ofA andB, and trying to build and explain matrix alge-
bra systems out of such an algorithm, one wishes to abstract from how the operation is
carried out. Instead, the emphasis is put on its type structure, regarded as the pipeline
A ⋅B (to be read as “A after B”), as if A and B were functions

C = A ⋅B (1)

or binary relations — the actual building block of the algebra of programming [18]. In
this discipline, relations are viewed as (typed) composable arrows (morphisms) which
can be combined in a number of ways, namely by joining or intersecting relations of
the same type, reversing them (thus swapping their source and target types), and so on.

If relations, which are Boolean matrices, can be regarded as morphisms of a suitable
mathematical framework [18, 19], why not regard arbitrary matrices in the same way?
This matches with the categorical characterization of matrices, which can be traced
back to Mac Lane [20], whereby matrices are regarded as arrows in a category whose
objects are natural numbers (matrix dimensions):

A =
⎡⎢⎢⎢⎢⎢⎣

a11 . . . a1n
⋮ ⋱ ⋮

am1 . . . amn

⎤⎥⎥⎥⎥⎥⎦m×n

m n
Aoo (2)

Such a category MatK of matrices over a field K merges categorical products and
coproducts into a single construction termed biproduct [20]. Careful analysis of the
biproduct axioms as a system of equations provides a rich palette of constructs for
building matrices from smaller ones. In [21] we developed an approach to matrix
blocked operation stemming from one particular solution to such equations, which in
fact offers explicit operators for building block-wise matrices (row and column-wise) as
defined by [5]. We also showed how divide-and-conquer algorithms for linear algebra
arise from biproduct laws emerging from the underlying categorial basis.

3MATLAB ™ is a trademark of The MathWorks ®.
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In the current paper we elaborate on [21] and show how biproduct-orientation leads
into a simple, polymorphic type system for linear algebra. In the same way the catego-
rial approach to functional programming — types-as-objects, functions-as-morphisms,
etc [18] — leads into a widely acclaimed type-system, so one expects categories of
matrices to offer a basis for typing linear algebra, as will be shown in this paper. Re-
sistance to adopting such a categorial, but simple type system entails the need for more
elaborate type mechanisms such as eg. dependent types [22] 4.

The paper includes three illustrations of biproduct-orientation: the implementation
of matrix-matrix multiplication (MMM), a blocked version of the Gauss-Jordan elimi-
nation algorithm and a thorough study of vectorization, required in mapping matrices
into computers’ linear storage. Altogether, the paper gives the details of a construc-
tive approach to matrix algebra operations leading to elegant, index-free proofs of the
corresponding algorithms.

Structure of the paper. The remainder of this paper is structured as follows. Section
3 introduces the reader to categories of matrices and biproducts. Section 4 finds so-
lutions to the biproduct equations, in particular those which explain blocked-matrix
operations. Sections 5 and 6 develop a calculational approach to blocked linear alge-
bra and present an application — that of calculating the nested-loop implementation of
MMM. Section 7 shows how to develop biproduct algebra for applications, illustrated
by the synthesis of a blocked-version of Gauss-Jordan elimination. Sections 8 and 9
show how the algebra of matrix vectorization emerges from a self-adjunction in the
category of matrices whose unit and counit are expressed in terms of the underlying
biproduct. Section 10 shows how to refine linear algebra operators once matrices are
represented by vectors.

The remaining sections review related work and conclude, giving pointers for future
research.

3. The Category of Matrices MatK

Matrices are mathematical objects that can be traced back to ancient times, doc-
umented as early as 200 BC [23]. The word “matrix” was introduced in the western
culture much later, in the 1840’s, by the mathematician James Sylvester (1814-1897)
when both matrix theory and linear algebra emerged.

The traditional way of viewing matrices as rectangular tables (2) of elements or
entries (the “container view”) which in turn are other mathematical objects such as
e.g. complex numbers (in general: inhabitants of the field K which underlies MatK ),
encompasses as special cases one column and one line matrices, referred to as column
(resp. row) vectors, that is, matrices of shapes

v =
⎡⎢⎢⎢⎢⎢⎣

v1
⋮
vm

⎤⎥⎥⎥⎥⎥⎦
and w = [w1 . . . wn]

4In fact, typing matrix operators provides a popular illustration of dependent types [22].
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What is a matrix?. The standard answer to this question is to regard matrix A (2) as
a computation unit, or transformation, which commits itself to producing a (column)
vector of size m provided it is supplied with a (column) vector of size n. How is such
output produced? Let us abstract from this at this stage and look at diagram

m n
Aoo 1

voo

w

gg

arising from depicting the situation above in arrow notation. This suggests a pictorial
representation of the product of matrix Am×n and matrix Bn×q , yielding a new matrix
C = (AB)m×q with dimensions m × q, as follows,

m n
Aoo q

Boo

C=A⋅B

gg (3)

which automatically “type-checks” the construction: the “target” of n q
Boo simply

matches the “source” of m n
Aoo yielding a matrix whose type m qoo is the

composition of the given types.
Having defined matrices as composable arrows in a category, we need to define its

identities [20]: for every object n, there must be an arrow of type n noo which is
the unit of composition. This is nothing but the identity matrix of size n, which will be

denoted by n n
idnoo or n n

1oo , indistinguishably. Therefore, for every matrix

m n
Aoo , equalities

idm ⋅A = A = A ⋅ idn n

A

��

n
idnoo

A

��A}}
m m

idm

oo

(4)

hold. (Subscripts m and n can be omitted wherever the underlying diagrams are as-
sumed.)

Transposed matrices. One of the kernel operations of linear algebra is transposition,
whereby a given matrix changes shape by turning its rows into columns and vice-versa.

Type-wise, this means converting an arrow n m
Aoo into an arrow m n

A⊺
oo ,

that is, source and target types (dimensions) switch over. By analogy with relation
algebra, where a similar operation is termed converse and denoted A○, we will use this
notation instead of A⊺ and will say “A converse” wherever reading A○. Index-wise,
we have, for A as in (2):

A○ =
⎡⎢⎢⎢⎢⎢⎣

a11 . . . am1

⋮ ⋱ ⋮
a1n . . . amn

⎤⎥⎥⎥⎥⎥⎦
m n

A○
oo
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Instead of telling how transposition is carried out index-wise, again we prefer to stress
on (index-free) properties of this operation such as, among others, idempotence and
contravariance:

(A○)○ = A (5)
(A ⋅B)○ = B○ ⋅A○ (6)

Bilinearity. Given two matrices of the same type m n
A,Boo (i.e., in the same hom-

set of MatK ) it makes sense to add them up index-wise, leading to matrix A + B
where symbol + promotes the underlying element-level additive operator to matrix-
level. Likewise, additive unit element 0 is promoted to matrix 0 wholy filled with 0s,
the unit of matrix addition and zero of matrix composition:

A + 0 = A = 0 +A (7)
A ⋅ 0 = 0 = 0 ⋅A (8)

In fact, matrices form an Abelian category: each homset in the category forms an ad-
ditive Abelian (i.e. commutative) group with respect to which composition is bilinear:

A ⋅ (B +C) = A ⋅B +A ⋅C (9)
(B +C) ⋅A = B ⋅A +C ⋅A (10)

Polynomial expressions (such as in the properties above) denoting matrices built up in
an index-free way from addition and composition play a major role in matrix algebra.
This can be appreciated in the explanation of the very important concept of a biproduct
[20, 24] which follows.

Biproducts. In an Abelian category, a biproduct diagram for the objects m,n is a dia-
gram of shape

m
i1
// r

π1oo π2 //
n

i2
oo

whose arrows π1, π2, i1, i2 satisfy the identities which follow:

π1 ⋅ i1 = idm (11)
π2 ⋅ i2 = idn (12)

i1 ⋅ π1 + i2 ⋅ π2 = idr (13)

Morphisms πi and ii are termed projections and injections, respectively. From the un-
derlying arithmetics one easily derives the following orthogonality properties (details
in the appendix):

π1 ⋅ i2 = 0 (14)
π2 ⋅ i1 = 0 (15)

One wonders: how do biproducts relate to products and co-products in the cate-
gory? The answer in Mac Lane’s [20] words is as follows:
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Theorem 2: Two objects a and b in Abelian categoryA have a product inA iff they
have a biproduct in A. Specifically, given a biproduct diagram, the object r with
the projections π1 and π2 is a product of m and n, while, dually, r with i1 and i2
is a coproduct. In particular, two objects m and n have a product in A if and only
if they have a coproduct in A.

The diagram and definitions below depict how products and coproducts arise from
biproducts (the product diagram is in the lower half; the upper half is the coproduct
one):

m

n

A

>>

i1
// n + p

[ A B ]

OO

π1oo π2 //
p

i2
oo

B

``

t

C

``

[ C

D
]

OO

D

>>

[ A B ] = A ⋅ π1 +B ⋅ π2 (16)

[ C
D

] = i1 ⋅C + i2 ⋅D (17)

By analogy with the algebra of programming [18], expressions [ A B ] and [ C

D
]

will be read “A junc B” and “C split D”, respectively. What is the intuition behind
these combinators, which come out of the blue in texts such as e.g. [5]? Let us start
by a simple illustration, for m = n = 2, p = 1, A = [ 1 2

4 5 ], B = [ 36 ], π1 = [ 1 0 0
0 1 0 ] and

π2 = [ 0 0 1 ]. Then (16) instantiates as follows:

[ A B ] = A ⋅ π1 +B ⋅ π2
= { instantiation }

[ [1 2
4 5

] [3
6
] ] = [1 2

4 5
] ⋅ [1 0 0

0 1 0
] + [3

6
] ⋅ [0 0 1]

= { composition (3) }

[ [1 2
4 5

] [3
6
] ] = [1 2 0

4 5 0
] + [0 0 3

0 0 6
]

= { matrix addition (7) }

[ [1 2
4 5

] [3
6
] ] = [1 2 3

4 5 6
]

A similar exercise would illustrate the split combinator (consider eg. transposing all
arrows).

Expressed in terms of definitions (16) and (17), axiom (13) rewrites to both

[ i1 i2 ] = id (18)

[ π1
π2

] = id (19)

somehow suggesting that the two injections and the two projections “decompose” the

7



identity matrix. On the other hand, each of (18,19) has the shape of a reflection corol-
lary [18] of some universal property. Below we derive such a property for [ A B ],

X = [ A B ] ⇔ { X ⋅ i1 = A
X ⋅ i2 = B

(20)

from the underlying biproduct equations, by two-way implication:

X = [ A B ]

⇔ { identity (4) ; (16) }
X ⋅ id = A ⋅ π1 +B ⋅ π2

⇔ { (13) }

X ⋅ (i1 ⋅ π1 + i2 ⋅ π2) = A ⋅ π1 +B ⋅ π2
⇔ { bilinearity (9) }

X ⋅ i1 ⋅ π1 +X ⋅ i2 ⋅ π2 = A ⋅ π1 +B ⋅ π2
⇒ { Leibniz (twice) }

{ (X ⋅ i1 ⋅ π1 +X ⋅ i2 ⋅ π2) ⋅ i1 = (A ⋅ π1 +B ⋅ π2) ⋅ i1
(X ⋅ i1 ⋅ π1 +X ⋅ i2 ⋅ π2) ⋅ i2 = (A ⋅ π1 +B ⋅ π2) ⋅ i2

⇔ { bilinearity (10) ; biproduct (11,12) ; orthogonality (15) }

{ X ⋅ i1 +X ⋅ i2 ⋅ 0 = A +B ⋅ 0
X ⋅ i1 ⋅ 0 +X ⋅ i2 = A ⋅ 0 +B

⇔ { trivial }

{ X ⋅ i1 = A
X ⋅ i2 = B

⇒ { Leibniz (twice) }

{ X ⋅ i1 ⋅ π1 = A ⋅ π1
X ⋅ i2 ⋅ π2 = B ⋅ π2

⇒ { Leibniz }
X ⋅ i1 ⋅ π1 +X ⋅ i2 ⋅ π2 = A ⋅ π1 +B ⋅ π2

⇔ { as shown above }

X = [ A B ]

The derivation of the universal property of [ C

D
],

X = [ C
D

] ⇔ { π1 ⋅X = C
π2 ⋅X =D

(21)

is (dually) analogous.
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Last but not least, we stress that injections and projections in a biproduct are unique.
Thus, for instance,

A ⋅ [ C
D

] = C ∧ B ⋅ [ C
D

] =D ⇔ A = π1 ∧B = π2 (22)

holds 5.

Remarks concerning notation. Outfix notation such as that used in splits and juncs
provides for unambiguous parsing of matrix algebra expressions. Concerning infix
operators (such as eg. composition, +) and unary ones (eg. converse, and others to
appear) the following conventions will be adopted for saving parentheses: (a) unary
and prefix operators bind tighter than binary; (b) multiplicative binary operators bind
tighter than additive ones; (c) matrix multiplication (composition) binds tighter than
any other multiplicative operator (eg. Kronecker product, to appear later).

We will resort to MATLAB notation to illustrate the main constructions of the paper.
For instance, split [ A

B
] (resp. junc [ A B ]) is written as [A ; B] (resp. [A B])

in MATLAB. More elaborate constructs will be encoded in the form of MATLAB func-
tions.

Parallel with relation algebra. Similar to matrix algebra, relation algebra [3, 18, 25]
can also be explained in terms of biproducts once morphism addition (13) is interpreted
as relational union, object union as disjoint union, i1 and i2 as the corresponding in-
jections and π1, π2 their converses, respectively 6. Relational product should not, how-
ever, be confused with the fork construct [26] in fork (relation) algebra, which involves
pairing. (For this to become a product one has to restrict to functions.)

It is worth mentioning that the matrix approach to relations, as intensively stressed
in [3], is not restricted to set-theoretic models of allegories. For instance, Winter [27]
builds categories of matrices on top of categories of relations.

In the next section we show that the converse relationship (duality) between projec-
tions and injections is not a privilege of relation algebra: the most intuitive biproduct
solution in the category of matrices also offers such a duality.

4. Chasing biproducts

Let us now address the intuition behind products and coproducts of matrices. This
has mainly to do with the interpretation of projections π1, π2 and injections i1, i2
arising as solutions of biproduct equations (11,12,13). Concerning this, Mac Lane [20]
laconically writes:

“In other words, the [biproduct] equations contain the familiar calculus of matri-
ces.”

5Easy to check: from right to left, just let X ∶= [ C

D
] in (22) and simplify; in the opposite direction, let

C,D ∶= A,B in (22) and note that [ A

B
] = id due to split uniqueness.

6Note that orthogonality (14, 15) is granted by the disjoint union construction itself.
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sol = Simplify[Solve[{pi1.i1 == I1,pi2.i2 == I1, i1.pi1 + i2.pi2 == I2}]]sol = Simplify[Solve[{pi1.i1 == I1,pi2.i2 == I1, i1.pi1 + i2.pi2 == I2}]]sol = Simplify[Solve[{pi1.i1 == I1,pi2.i2 == I1, i1.pi1 + i2.pi2 == I2}]]
Solve::svars ∶ Equations may not give solutions for all "solve" variables.

{{i11 → − π22
π12π21

, i12 →
1

π12
, i21 →

1

π21
, i22 → 0, π11 → 0} ,

{i11 →
π22

−π12π21 + π11π22
, i12 →

π21
π12π21 − π11π22

,

i21 →
π12

π12π21 − π11π22
, i22 →

π11
−π12π21 + π11π22

}}

Figure 1: Fragment of Mathematica script

In what way? The answer to this question proves more interesting than it seems at first,
because of the multiple solutions arising from a non-linear system of three equations
(11,12,13) with four variables. In trying to exploit this freedom we became aware that
each solution offers a particular way of putting matrices together via the corresponding
“junc” and “split” combinators.

Our inspection of solutions started by reducing the “size” of the objects involved
and experimenting with the smaller biproduct depicted below:

1
i1
// 1 + 1

π1oo π2 // 1
i2
oo

The “puzzle” in this case is more manageable,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

π1 ⋅ i1 = [1]
π2 ⋅ i2 = [1]

i1 ⋅ π1 + i2 ⋅ π2 = [1 0
0 1

]

yet the set of solutions is not small. We used the Mathematica software [28] to solve
this system by inputting the projections and injections as suitably typed matrices lead-
ing to a larger, non-linear system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ π11 π12 ] ⋅ [ i11
i12

] = [1]

[ π21 π22 ] ⋅ [ i21
i22

] = [1]

[ i11
i12

] ⋅ [ π11 π12 ] + [ i21
i22

] ⋅ [ π21 π22 ] = [1 0
0 1

]

This was solved using the standard Solve command obtaining the output presented in
Figure 1, which offers several solutions. Among these we first picked the one which
purports the most intuitive reading of the junc and split combinators — that of simply
gluing matrices vertically and horizontally (respectively) with no further computation
of matrix entries:
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π1 = [1 0] π2 = [0 1]

i1 = [1
0
] i2 = [0

1
]

Interpreted in this way, [ A

B
] (17) and [ A B ] (16) are the block gluing matrix op-

erators which one can find in [5]. Our choice of notation — A above B in the case of
(17) and A besides B in the case of (16) reflects this semantics.

The obvious generalization of this solution to higher dimensions of the problem
leads to the following matrices with identities of size m and n in the appropriate place,
so as to properly typecheck 7:

π1 = m m + n
[ idm 0 ]
oo , π2 = n m + n

[ 0 idn ]
oo

i1 = m + n m

⎡⎢⎢⎢⎢⎢⎣

idm
0

⎤⎥⎥⎥⎥⎥⎦oo , i2 = m + n n

⎡⎢⎢⎢⎢⎢⎣

0
idm

⎤⎥⎥⎥⎥⎥⎦oo

(23)

The following diagram pictures not only the construction of this biproduct but also
the biproduct (11,12) and orthogonality (14, 15) equations — check the commuting
triangles:

m

m

0 $$

idm
::

i1
// m + n

π1

OO

π2

��

n
i2
oo

0
cc

idn{{
n

By inspection, one immediately infers the same duality found in relation algebra,

π○1 = i1 , π○2 = i2 (24)

whereby junc (16) and split (17) become self dual:

[ R S ]○

= { (16) ; (6) }

π○1 ⋅R○ + π○2 ⋅ S○

7Projections π1, π2 (resp. injections i1, i2) are referred to as gather (resp. scatter) matrices in [29]. MAT-
LAB’s (untyped) notation for projection π1 and injection i1 in (23) is eye(m,m+n) and eye(m+n,m), re-
spectively. Consistently, eye(n,n) denotes idn. Matrices π2 and π2 can be programmed using MATLAB’s
eye and zeros — see Listing 4 further on.
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= { (24) ; (17) }

[ R○

S○ ] (25)

This particular solution to the biproduct equations captures what in the literature is
meant by blocked matrix algebra, a generalization of the standard element-wise oper-
ations to sub-matrices, or blocks, leading to divide-and-conquer versions of the corre-
sponding algorithms. The next section shows the exercise of deriving such laws, thanks
to the algebra which emerges from the universal properties of the block-gluing matrix
combinators junc (20) and split (21). We combine the standard terminology with that
borrowed from the algebra of programming [18] to stress the synergy between blocked
matrix algebra and relation algebra.

5. Blocked Linear Algebra — calculationally!

Further to reflection laws (18,19), the derivation of the following equalities from
universal properties (20,21) is a standard exercise in (high) school algebra, where capi-
tal lettersA,B, etc. denote suitably typed matrices (the types, i.e. dimensions, involved
in each equality can be inferred by drawing the corresponding diagram):

• Two “fusion”-laws:

C ⋅ [ A B ] = [ C ⋅A C ⋅B ] (26)

[ A
B

] ⋅C = [ A ⋅C
B ⋅C ] (27)

• Four “cancellation”-laws 8:

[ A B ] ⋅ i1 = A , [ A B ] ⋅ i2 = B (28)

π1 ⋅ [
A
B

] = A , π2 ⋅ [
A
B

] = B (29)

• Three “abide”-laws 9: the junc/split exchange law
⎡⎢⎢⎢⎢⎣

[ A B ]

[ C D ]

⎤⎥⎥⎥⎥⎦
= [ [ A

C
] [ B

D
] ] = [ A B

C D
] (30)

8Recall (22).
9Neologism “abide” (= “above and beside”) was introduced by Richard Bird [30] as a generic name

for algebraic laws in which two binary operators written in infix form change place between “above” and
“beside”, e.g.

a

b
× c

d
= a × c

b × d

12



which tells the equivalence between row-major and column-major construction
of matrices (thus the four entry block notation on the right), and two blocked
addition laws:

[ A B ] + [ C D ] = [ A +C B +D ] (31)

[ A
B

] + [ C
D

] = [ A +C
B +D ] (32)

• Two structural equality laws (over the same biproduct):

[ A B ] = [ C D ] ⇔ A = C ∧B =D (33)

[ A
B

] = [ C
D

] ⇔ A = C ∧B =D (34)

The laws above are more than enough for us to derive standard linear algebra rules
and algorithms in a calculational way. As an example of their application we provide a
simple proof of the rule which underlies divide-and-conquer matrix multiplication:

[ A B ] ⋅ [ C
D

] = A ⋅C +B ⋅D (35)

We calculate:

[ A B ] ⋅ [ C
D

]

= { (17) }

[ A B ] ⋅ (i1 ⋅C + i2 ⋅D)

= { bilinearity (9) }

[ A B ] ⋅ i1 ⋅C + [ A B ] ⋅ i2 ⋅D

= { +-cancellation (28) }
A ⋅C +B ⋅D

Listing 1 converts this law into the corresponding MATLAB algorithm for matrix mul-
tiplication.

As another example, let us show how standard block-wise matrix-matrix multipli-
cation (MMM),

[ R S
T U

] ⋅ [ A B
C D

] = [ R ⋅A + S ⋅C R ⋅B + S ⋅D
T ⋅A +U ⋅C T ⋅B +U ⋅D ] (36)

13



relies on divide-and-conquer (35):

[ [ R
T

] [ S
U

] ] ⋅ [ [ A
C

] [ B
D

] ]

= { junc-fusion (26) }

[ [ [ R
T

] [ S
U

] ] ⋅ [ A
C

] [ [ R
T

] [ S
U

] ] ⋅ [ B
D

] ]

= { divide and conquer (35) twice }

[ [ R
T

] ⋅A + [ S
U

] ⋅C [ R
T

] ⋅B + [ S
U

] ⋅D ]

= { split-fusion (26) four times }

[ [ R ⋅A
T ⋅A ] + [ S ⋅C

U ⋅C ] [ R ⋅B
T ⋅B ] + [ S ⋅D

U ⋅D ] ]

= { blocked addition (32) twice }

[ [ R ⋅A + S ⋅C
T ⋅A +U ⋅C ] [ R ⋅B + S ⋅D

T ⋅B +U ⋅D ] ]

= { the same in block notation (30) }

[ R ⋅A + S ⋅C R ⋅B + S ⋅D
T ⋅A +U ⋅C T ⋅B +U ⋅D ]

6. Calculating Triple Nested Loops

By putting together the universal factorization of matrices in terms of the junc and
split combinators, one easily infers yet another such property handling four blocks at a
time:

X = [ A11 A12

A21 A22
] ⇔

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

π1 ⋅X ⋅ i1 = A11

π1 ⋅X ⋅ i2 = A12

π2 ⋅X ⋅ i1 = A21

π2 ⋅X ⋅ i2 = A22

Alternatively, one may generalize (16,17) to blocked notation

[ A11 A12

A21 A22
] = i1 ⋅A11 ⋅ π1 + i1 ⋅A12 ⋅ π2 + i2 ⋅A21 ⋅ π1 + i2 ⋅A22 ⋅ π2

which rewrites to

[ A11 A12

A21 A22
] = [A11 0

0 0
] + [0 A12

0 0
] + [ 0 0

A21 0
] + [0 0

0 A22
] (37)

once injections and projections are replaced by the biproduct solution of Section 4.
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function R = MMM(X,Y)
[k1, n] = size(Y);
[m, k2] = size(X);
if (k1 ˜= k2)

error(’Dimensions must agree’);
else

k = k1;
R = zeros(n, m);
if k1 == 1

R = X * Y;
else

k1 = round(k / 2);
A = X(:,1:k1); B = X(:,k1+1:k);
C = Y(1:k1,:); D = Y(k1+1:k,:);
R = MMM(A,C) + MMM(B,D);

end
end

end

Listing 1: Divide-and-conquer law (35) converted to MATLAB script for matrix-matrix multiplication.
Blocks A, B in (35) are generated by partitioning argument matrix X column-wise and blocks C, D are
obtained in a similar way from Y . The algorithm stops when both argument matrices degenerate into vectors
(k = 1). There is no type checking, meaning that function MMM issues an error when the two size operations
don’t match — the number of columns (resp. lines) of X (resp. Y ) must be the same.

Iterated Biproducts. It should be noted that biproducts generalize to finitely many ar-
guments, leading to an n-ary generalization of the (binary) junc/split combinators. The
following notation is adopted in generalizing (16,17):

[ A1 . . . Ap ] = ⦶
1≤j≤p

Aj =
p

∑
j=1

Aj ⋅ πj

⎡⎢⎢⎢⎢⎢⎣

A1

⋮
Am

⎤⎥⎥⎥⎥⎥⎦
= ⊖

1≤j≤m
Aj =

m

∑
j=1

ij ⋅Aj

Note that all laws given so far generalize accordingly to n-ary splits and juncs. In
particular, we have the following universal properties:

X = ⦶
1≤j≤p

Aj ⇔ ⋀
1≤j≤p

X ⋅ ij = Aj (38)

X = ⊖
1≤j≤m

Aj ⇔ ⋀
1≤j≤m

πj ⋅X = Aj (39)

The following rules expressing the block decomposition of a matrix A

A = [ A1 . . . Ap ] = ⦶
1≤j≤p

A ⋅ ij =
p

∑
j=1

A ⋅ ij ⋅ πj (40)
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A =
⎡⎢⎢⎢⎢⎢⎣

A1

⋮
Am

⎤⎥⎥⎥⎥⎥⎦
= ⊖

1≤j≤m
πj ⋅A =

m

∑
j=1

ij ⋅ πj ⋅A (41)

arise from the iterated definitions by letting X = A in the universal properties and
substituting.

Further note that m,p can be chosen as large as possible, the limit taking place

when blocks Ai become atomic. In this limit situation, a given matrix m n
Aoo is

defined in terms of its elements Ajk as:

A =
⎡⎢⎢⎢⎢⎢⎣

a11 . . . a1n
⋮ ⋱ ⋮

am1 . . . amn

⎤⎥⎥⎥⎥⎥⎦
= ∑

1≤j≤m
1≤k≤n

ij ⋅ πj ⋅A ⋅ ik ⋅ πk = ⊕
1≤j≤m
1≤k≤n

πj ⋅A ⋅ ik (42)

where ⊕1≤j≤m
1≤k≤n

abbreviates ⊖1≤j≤m⦶1≤k≤n — equivalent to ⦶1≤k≤n⊖1≤j≤m by the

generalized exchange law (30).
Our final calculation shows how iterated biproducts “explain” the traditional for-

loop implementation of MMM. Interestingly enough, such iterative implementation is
shown to stem from generalized divide-and-conquer (35):

C = A ⋅B
= { (42), (40) and (41) }

( ⊖
1≤j≤m

πj ⋅A) ⋅ ( ⦶
1≤k≤n

B ⋅ ik)

= { generalized split-fusion (27) }

⊖
1≤j≤m

(πj ⋅A ⋅ ( ⦶
1≤k≤n

B ⋅ ik))

= { generalized either-fusion (26) }

⊖
1≤j≤m

( ⦶
1≤k≤n

πj ⋅A ⋅B ⋅ ik)

= { (40), (41) and generalized (27) and (26) }

⊖
1≤j≤m

( ⦶
1≤k≤n

(( ⦶
1≤l≤p

πj ⋅A ⋅ il) ⋅ ( ⊖
1≤l≤p

πl ⋅B ⋅ ik)))

= { generalized divide-and-conquer (35) }

⊖
1≤j≤m

( ⦶
1≤k≤n

( ∑
1≤l≤p

πj ⋅A ⋅ il ⋅ πl ⋅B ⋅ ik))

As we can see in the derivation path, the choices for the representation of A and
B impact on the derivation of the intended algorithm. Different choices will alter the
order of the triple loop obtained. Proceeding to the loop inference will involve the
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expansion of C and the normalization of the formula into sum-wise notation:

⊕
1≤k≤m
1≤j≤n

πj ⋅C ⋅ ik = ⊖
1≤j≤m

( ⦶
1≤k≤n

( ∑
1≤l≤p

πj ⋅A ⋅ il ⋅ πl ⋅B ⋅ ik))

⇔ { (42), (40) and (41) }

⊖
1≤j≤m

( ⦶
1≤k≤n

πj ⋅C ⋅ ik) = ⊖
1≤j≤m

( ⦶
1≤k≤n

( ∑
1≤l≤p

πj ⋅A ⋅ il ⋅ πl ⋅B ⋅ ik))

At this point we rely on the universality of the junc and split constructs (38,39) to
obtain from above the post-condition of the algorithm:

⋀
1≤j≤m

( ⋀
1≤k≤n

(πj ⋅C ⋅ ik = ∑
1≤l≤p

πj ⋅A ⋅ il ⋅ πl ⋅B ⋅ ik)) (43)

This predicate expresses an outer traversal indexed by j, an inner traversal indexed
by k and what the expected result in each element of output matrix C is. Thus we
reach three nested for-loops of two different kinds: the two outer-loops (corresponding
to indices j, k) provide for navigation, while the inner loop performs an accumulation
(thus the need for the initialization).

function C = NaiveMMM(A,B)

[m, p1] = size(A);
[p2, n] = size(B);

if (p1 ˜= p2)
error(’Dimensions must agree’);

else
for j = 1:m
for k = 1:n
C(j,k) = 0;
for l = 1:p1
C(j,k) = C(j,k) + A(j,l) * B(l,k);

end
end

end
end

end

Listing 2: MATLAB encoding of naive triple for-loop implementation of MMM, corresponding to traversing
the rows of A through j and the columns of B via k. This is a refinement of the calculated post-condition
(43).

Different matrix memory mapping schemes give rise to the interchange of the j, k
and l in the loops in Listing 2. (For a complete discussion of matrix partition possibil-
ities see [31].) This is due to corresponding choices in the derivation granted by the
generalized exchange law (30), among others.
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Other variants of blocked MMM (36) such as e.g. Strassen’s or Winograd’s [32]
rely mainly on the additive structure of MatK and thus don’t pose new challenges.

7. Developing biproduct algebra for applications

For a mathematical concept to be effective it should blend expressiveness with cal-
culation power, while providing a generic setting wherefrom practically relevant situa-
tions can be derived by instantiation. It should also scale up, in the sense of exhibiting
an algebra making it easy to “build new from old”.

We will see shortly that biproducts scale up in this manner. So, instead of chas-
ing new solutions to the biproduct equations and checking which “chapters” of linear
algebra [24] they are able to constructively explain, one may try and find rules which
build new biproducts from existing ones so as to fit into particular situations in linear
algebra.

Think of Gaussian elimination, for instance, whose main steps involve row-switch-
ing, row-multiplication and row-addition, and suppose one defines the following trans-
formation t catering for the last two, for a given α:

t ∶ ( n noo ) × ( n + n moo )→ ( n + n moo )

t(α, [ A
B

]) = [ A
αA +B ]

Thinking in terms of blocks A and B rather than rows is more general; in this setting,

arrow n n
αoo means n n

idoo with all 1s replaced by αs, and αA is α ⋅ A.
Let us analyze transformation t in this setting, by using the blocked-matrix calculus in
reverse order:

t(α, [ A
B

]) = [ A
α ⋅A +B ]

= { (36) in reverse order }

[ 1 0
α 1

] ⋅ [ A
B

]

= { divide-and-conquer (35) }

[ 1
α

] ⋅A + [ 0
1

] ⋅B

It can be shown that the last expression, which has the same shape as (17), is in fact the
split combinator generated by another biproduct,

π′1 = [ 1 0 ] , π′2 = [ −α 1 ]

i′1 = [ 1
α

] , i′2 = [ 0
1

]

18



parametric on α. In summary, this biproduct, which extends the one studied earlier on
(they coincide for α ∶= 0) provides a categorial interpretation of one of the steps of
Gaussian elimination.

Biproducts in MatK are unique up to isomorphism due to universality of product
and coproduct. Splitting π′1 and π′2 with the standard projections (23) is just another
way to build elementary matrices [33] such as, for instance,

[ π′1
π′2

] = i1 ⋅ π′1 + i2 ⋅ π′2 = [ 1 0
−α 1

]

which are central to Gaussian elimination. In essence, this algorithm performs succes-
sive transformations of a given matrix into isomorphic ones via elementary matrices
that witness the isomorphisms. Below we show that such elementary steps of Gaus-
sian elimination scale up to blocks via suitable biproduct constructions. The first one
generalizes row switching to block switching.

Theorem 1 (Swapping biproducts). Let m
i1
// r

π1oo π2 // n
i2
oo be a biproduct. Then

swapping projections (resp. injections) with each other yields another biproduct.
Proof: Obvious, as (12) swaps with (11) and (13) stays the same, since addition is

commutative.

For instance, swapping the standard biproduct yields another biproduct (superscript s
stands for swap) :

is1 = [ 0
1

] is2 = [ 1
0

]

πs1 = [ 0 1 ] πs2 = [ 1 0 ]
(44)

Thus

[ A B ]s = [ B A ] (45)

[ A
B

]
s

= [ B
A

] (46)

Swapped biproduct (44) generalizes row-swapping to block-swapping, as the follow-
ing example shows: the effect of swapping A with B in matrix

⎡⎢⎢⎢⎢⎢⎣

A
C
B

⎤⎥⎥⎥⎥⎥⎦
is obtained by

representing it in swap mode:

⎡⎢⎢⎢⎢⎢⎢⎣

A

[ C
B

]
s

⎤⎥⎥⎥⎥⎥⎥⎦

s

=

⎡⎢⎢⎢⎢⎢⎢⎣

[ C
B

]
s

A

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

[ B
C

]

A

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

B

C

A

⎤⎥⎥⎥⎥⎥⎥⎦

Next we want to show how to perform row-multiplication and addition at block-
level. There is a biproduct for this, also evolving from the standard:
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Theorem 2 (Self cancellable biproducts). Replacing one of the 0 components of pro-
jection π2 (resp. π1) of the standard biproduct (23) by an arbitrary (suitably typed)
matrix C and the corresponding 0 component of i1 (resp. i2) by −C yields a biproduct.
That is,

πC1 = [ 1 0 ] , πC2 = [ C 1 ]

iC1 = [ 1
−C ] , iC2 = [ 0

1
]

(47)

form a biproduct, parametric on C, where types are as in the diagram below:

m

m

−C,C
##

1(idm)
<<

iC1
// m + n

πC1

OO

πC2

��

niC2
oo

1(idn)
||

0

bb

n

Proof: See the appendix.

Let us inspect the behaviour of the junc (16) and split (17) combinators arising from
this biproduct:

[ A B ]C = A ⋅ πC1 +B ⋅ πC2
= A ⋅ [ 1 0 ] +B ⋅ [ C 1 ] = [ A 0 ] + [ B ⋅C B ]
= [ A +B ⋅C B ]

[ A
B

]
C

= iC1 ⋅A + iC2 ⋅B

= [ 1
−C ] ⋅A + [ 0

1
] ⋅B = [ A

−C ⋅A ] + [ 0
B

]

= [ A
(−C ⋅A) +B ] = [ A

B −C ⋅A ] (48)

The universal property of split will thus be:

X = [ A
B

]
C

⇔ π1 ⋅X = A ∧ π2 ⋅X +C ⋅A = B (49)

Note that [ A

B
]
C

can be recognized as the block-version of an operation common in
linear algebra: replacing a row (cf. B) by subtracting from it a multiple of another row
(cf. A), as used in Gauss-Jordan elimination. [ A B ]C does the same column-wise,
adding rather than subtracting.
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This enables the following block-version of Gauss-Jordan elimination, where X is
supposed to be invertible (always the case if in row-echelon form):

gje ∶ ( k + n k +moo )→ ( k + n k +moo )

gje [ X B
A D

] = [ X B
0 gje(D −A ⋅X−1 ⋅B) ]

gje X =X

(50)

X−1 denotes the inverse ofX , that is,X ⋅X−1 = id holds. The rationale of the algorithm
assumes that the swapping biproduct is first applied as much as needed to transform the
input matrix in the form [ X B

A D
] where topmost-leftmost block X is in row-echelon

form. (Listing 3 shows an encoding of (50) into a MATLAB script.) Then the split
combinator (48) of the self-cancellable biproduct associated to C = A ⋅ X−1 is used
to convert [ X B

A D
] into a matrix in which cancellation ensures the 0 block of the

right-hand side of (50):

⎡⎢⎢⎢⎢⎣

[ X B ]

[ A D ]

⎤⎥⎥⎥⎥⎦

(A⋅X−1)

=
⎡⎢⎢⎢⎢⎣

[ X B ]

[ A D ] − (A ⋅X−1) ⋅ [ X B ]

⎤⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎣

[ X B ]

[ A D ] − [ A ⋅X−1 ⋅X A ⋅X−1 ⋅B ]

⎤⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎣

[ X B ]

[ A −A D −A ⋅X−1 ⋅B ]

⎤⎥⎥⎥⎥⎦

= [ X B
0 D −A ⋅X−1 ⋅B ]

The algorithm proceeds recursively applied to (smaller) block D −A ⋅X−1 ⋅B until X
is found alone, that is, the target type (i.e. number of rows) of A and D is 0.

The classical version of the algorithm corresponds to making block k k
Xoo

singular, 1 1
xoo , yielding

ge ∶ ( 1 + n 1 +moo )→ ( 1 + n 1 +moo )

ge [ x B
A D

] = [ x B

0 ge(D − A
x
⋅B) ]

ge x = x

(51)

The correction of the algorithm is discussed elsewhere [34] with respect to the
specification: transform the input matrix into one which is in row-echelon (RE) form
and keeps the same information. In brief, (50) ensures RE-form since X is in RE-form
(by construction) and gje(D−A⋅X−1 ⋅B) inductively does so. The other requirement is
ensured by the universal properties underlying block-notation, granted by the biproduct
construction: splits and juncs are isomorphisms, so they preserve the information of
the blocks they put together. For instance, denoting the hom-set of all matrices with n
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function R = GJE(M)
[m,n] = size(M);
k = MPRef(M);
if k < n

X = M(1:k,1:k);
B = M(1:k,k+1:n);
A = M(k+1:m,1:k);
D = M(k+1:m,k+1:n);
R(1:k,1:k) = X;
R(1:k,k+1:n) = B;
R(k+1:m,1:k) = zeros(m-(k+1)+1,k);
R(k+1:m,k+1:n) = GJE(D - A * inv(X) * B);

else
R = M;

end
end

Listing 3: MATLAB encoding of the algorithm for blocked version of Gauss-Jordan elimination given by
(50). Auxiliary function MPRef calculates the size of the largest topmost-leftmost block of input matrix M
that is in row-echelon form.

columns and m rows by mn, property (20) establishes isomorphism

mn ×mp ≅ mn+p (52)

— cf. (34) on page 181 of [24]. So, all “juncs” of similarly typed matrices are isomor-
phic, meaning that they hold the same information under different formats.

Scaling biproducts. Finally, we address the operation of scaling a biproduct by some
factor — a device which will be required in the calculational approach to vectoriza-

tion of Section 8. The question is: given biproduct m
i1
// m + n

π1oo π2 // n
i2
oo , can its

dimensions be “scaled up k times”?
This will mean multiplying m and n (and m + n) by k. The matrix operation

which has this behaviour dimension-wise is the so-called Kronecker product [35]:

given p m
Aoo and q n

Boo , Kronecker product p × q m × nA⊗Boo is the ma-
trix which replaces each element aij of A by block aijB.

In the categorial setting of MatK , Kronecker product is a tensor product, captured
by a (bi)functor ⊗ ∶ MatK ×MatK → MatK . On objects, m ⊗ n = m × n (product of
two dimensions); on morphisms,A⊗B is the matrix product defined above. Recall that
a category is monoidal [20, 36, 37] when it comes equipped with one such bifunctor
which is associative

(A⊗B)⊗C = A⊗ (B ⊗C) (53)

and has a left and a right unit. In the case of MatK the unit is id1. This means that we
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can rely on the following properties 10 granting ⊗ as a bilinear bifunctor, for suitably
typed A, B and C:

(A⊗B) ⋅ (C ⊗D) = (A ⋅C)⊗ (B ⋅D) (54)
id⊗ id = id (55)

A⊗ (B +C) = (A⊗B) + (A⊗C) (56)
(B +C)⊗A = (B ⊗A) + (C ⊗A) (57)

Theorem 3 (Scaling biproducts). Let m
i1
// m + n

π1oo π2 // n
i2
oo be a biproduct. Then

m × k
i1⊗idk

// (m + n) × k
π1⊗idkoo π2⊗idk // n × k

i2⊗idk
oo

is a biproduct.
Proof: See the appendix.

This result has a number of nice consequences, namely two simplification rules

πj ⊗ id = πj (j = 1,2) (58)
ij ⊗ id = ij (j = 1,2) (59)

which lead to the two Kronecker-product fusion laws,

[ A B ]⊗C = [ A⊗C B ⊗C ] (60)

[ A
B

]⊗C = [ A⊗C
B ⊗C ] (61)

which in turn provide for blocked Kronecker product operation. The simplification
rules are better understood with types made explicit, for instance

( n m + nπ1oo )⊗ ( k k
idoo ) = k × n k ×m + k × nπ1oo

thus exhibiting the type polymorphism of biproduct injections and projections. The
calculation of fusion law (60) is given in the appendix and that of (61) is similar.

Finally, we define another MatK bifunctor — direct sum,

A⊕B = [ i1 ⋅A i2 ⋅B ] (62)

of type

n

A
��

m

B

��

n +m
A⊕B
��

k j k + j

10More can be said about MatK but for our purposes it is enough to stick to its monoidal structure. Further
properties can be found in [38]. For alternative definitions of the Kronecker product in terms of other matrix
products see section 13.
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which is such that

id2 ⊗A = A⊕A (63)

holds. From (62) we see that each biproduct generates its own direct sum. This offers a
number of standard properties which can be expressed using coproduct (dually product)
combinators. Thus absorption-law

[ A B ] ⋅ (C ⊕D) = [ A ⋅C B ⋅D ] (64)

and the injections’ natural properties which follow:

(A⊕B) ⋅ i1 = i1 ⋅A (65)
(A⊕B) ⋅ i2 = i2 ⋅B (66)

The same properties can be expressed by reversing the arrows, that is, in terms of
projections and products. Checking them all from (62) and the universal property of
junc (dually: split) is routine work.

8. Vectorization: “from product to exponentiation”

Vectorization (or linearization) is the operation (linear transformation) which con-
verts a matrix into a (column) vector 11. Given matrix A below, we can transform it
into vector v as shown, which corresponds to parsing A in column-major order :

A = [a11 a12 a13
a21 a22 a23

] vecA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11
a21
a12
a22
a13
a23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The linearization of an arbitrary matrix into a vector is a data refinement step. This

means finding suitable abstraction/representation relations [40] between the two for-
mats and reasoning about them, including the refinement of all matrix operations into
vector form. In this section we show that such an abstraction/representation pair is cap-
tured by isomorphisms implicit in a universal construct, and use these in calculating the
implementation of two matrix combinators — composition and transpose.

8.1. Column-major Vectorization
In the example given above, matrix A is of type 2 3oo and vecA is of type

6 1oo . So, we can write the type of operator vec as follows:

vec ∶∶ (2← 3 × 1)→ (3 × 2← 1)

11“Vectorization” is an ambiguous term, for it also means using SIMD vector instructions [39] and not
storing matrices as vectors. We adhere to it because of its widespread use in the bibliography, see eg.
[3, 33, 35].
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Writing 3 × 1 (resp. 3 × 2) instead of 3 (resp. 6) is suggestive of the polymorphism of
this operator,

veck ∶∶ (n← k ×m)→ (k × n←m)
where a factor k is shunted between the input and the output types.

Thus vectorization is akin to exponentiation, that is, currying [17] in functional
languages. While currying “thins” the input of a given binary function f ∶∶ c← a× b by
converting it into its unary (higher-order) counterpart curry f ∶∶ (c← b)← a, so does

vectorization by thinning a given matrix n k ×mAoo into k × n m
vecAoo .

We will refer to k as the “thinning factor” of the vectorization. This factor is k = 3
in the illustration above. For m = 1, vecA becomes a column vector: the standard
situation considered in the literature [33, 35].

As we shall see briefly, operator veck is a bijection, in fact one of the witnesses of
the isomorphism that underlies the empirical observation that vectorization and devec-
torization preserve matrix contents, changing matrix shape only. The other witness is
its converse unveck :

n← k ×m

veck
++

≅ k × n←m

unveck

jj

As we did for other matrix combinators, we shall capture such intuition formally
in the form of the universal property which wraps up the isomorphism above, this time
finding inspiration in [41]:

X = veckA ⇔ A = εk ⋅ (idk ⊗X) k × n k × (k × n) εk // n

m

X

OO

k ×m

idk⊗X
OO

A

:: (67)

Following the standard recipe, (67) grants vec and its converse unvec as bijective
transformations. Among the usual corollaries of (67) we record the following, which
will be used shortly: the cancellation-law,

A = εk ⋅ (idk ⊗ veckA) (68)

obtained for X ∶= veckA, and a closed formula for devectorization,

unvecX = ε ⋅ (id⊗X) (69)

obtained from (67) knowing that X = vecA is the same as unvecX = A.
For k = 1 it is easy to see that vectorization degenerates into identity: vec1A = A

and ε1 = id. We start by putting our index-free, biproduct matrix algebra at work in the
calculation of εk for k = 2.
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Blocked vectorization. For k = 2, the smallest possible case happens for m = n = 1,
where one expects vec2 [x y] to be [x

y
], for x and y elementary data. We proceed

to the generalization of this most simple situation by replacing x and y with blocks

n m
Aoo and n m

Boo , respectively, and reasoning:

vec2 [ A B ] = [ A
B

]

⇔ { (67) }

[ A B ] = ε2 ⋅ (id2 ⊗ [ A
B

])

⇔ { (63) ; unjunc ε2 into ε21 and ε22 }

[ A B ] = [ ε21 ε22 ] ⋅ ([ A
B

]⊕ [ A
B

])

⇔ { ⊕-absorption (64) }

[ A B ] = [ ε21 ⋅ [
A
B

] ε22 ⋅ [
A
B

] ]

⇔ { (33) ; (22) }
ε21 = π1 ∧ ε22 = π2

⇔ { junc ε21 and ε22 back into ε2 }

ε2 = [ π1 π2 ]

We have obtained, with types

n 2n + 2n
ε2oo = [ π1 π2 ] (70)

expressing εk (for k = 2) in terms of the standard biproduct projections. Thus vec2 ε =
[ π1
π2

] = id2, a particular case of reflection law,

veck εk = idk×n (71)

easy to obtain in general from (67) by letting X ∶= idk×n and simplifying. This can be
rephrased into

ε = unvec id (72)

providing a generic way of defining the mediating matrix ε in (67).
As an exercise, we suggest the reader checks the following instance of cancellation

law (72), for k =m = n = 2:

[a11 a12
a21 a22

] = [1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1

] ⋅ (id2 ⊗

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11
a21
a12
a22

⎤⎥⎥⎥⎥⎥⎥⎥⎦

)
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It can be observed that ε = [ 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1 ] = [1 0 0 1] ⊗ id2. This illustrates

equality

ε⊗ id = ε (73)

easy to draw from previous results 12. Again rendering types explicit helps in checking
what is going on:

( k2 × n εk // n )⊗ ( j id // j ) = k2 × (n × j) εk // n × j

Doing a similar exercise for k = 3, vec3 [A B C] = [AB
C
] — that is,

vec3 [ [ A B ] C ] =

⎡⎢⎢⎢⎢⎢⎢⎣

[ A
B

]

C

⎤⎥⎥⎥⎥⎥⎥⎦

— one would obtain for 32 × n ε3 // n matrix [ [ π1 ⋅ π1 π2 ⋅ π1 ] π2 ], with types
as in diagram:

n n + nπ1oo

π2

��

(n + n) + nπ1oo π2 // n

n

Recalling absorption law (64), (63) and ε2 (70), we observe that ε3 rewrites to
[ [ π1 π2 ] ⋅ (π1 ⊕ π1) π2 ], itself the same as [ ε2 ⋅ (id2 ⊗ π1) π2 ], providing a
hint of the general case:

εk+1 = [ εk ⋅ (idk ⊗ π1) π2 ] (74)
ε1 = id (75)

Let us typecheck (74), assuming completely independent types as starting point:

j (k + 1)2 × jεk+1oo

i k2 × iεkoo

k k
idkoo

n n +mπ1oo

b a + bπ2oo

12See the appendix. Equality (73) provides an explanation for the index-wise construction of ε given in
[41].
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Type equations a = n and b = m follow from π1 and π2 belonging to the same biprod-
uct. Term εk ⋅ (idk ⊗ π1) forces type equation (“unification”) k2 × i = k × n, that is,
n = k × i. Term [ εk ⋅ (idk ⊗ π1) π2 ] entails i =m. Finally, the whole equality forces

j = m

(k + 1)2 × j = k × (k × i +m) +m + k × i
whereby, unfolding and substituting, k2 ×m + 2k ×m +m = k2 × i + k ×m + i + k × i
yields i =m. Thus the most general types of the components of (74) are:

m (k + 1)2 ×mεk+1oo

m k2 ×mεkoo

k k
idkoo

k ×m k ×m +mπ1oo

m k ×m +mπ2oo

as displayed in the following diagram (dropping × symbols for better layout):

k(km +m) i1 //

idk⊗π1
))

(k + 1)2m = k(km +m) + (km +m)
εk+1
��

km +mi2oo

π2

tt
k(km)

εk ,, m

From (69) and looking at the diagram above we find an even simpler way of writing
(74):

εk+1 = [ unveck π1 π2 ]
Summing up, the index-free definition of the counit εk of a vectorization for any

thinning factor k is made possible by use of the biproduct construction, by induction
on k. The corresponding encoding in MATLAB can be found in Listing 4.

8.2. Devectorization
There is another way of characterizing column-major vectorization, and this is by

reversing the arrows of (67) and expressing the universal property of unvec , rather than
that of vec ,

X = unveckA ⇔ A = (idk ⊗X) ⋅ ηk (76)

cf. diagram k × n

X

��

k × (k × n)

idk⊗X
��

n
ηkoo

A}}
m k ×m

where (dropping subscripts) η = ε○ [41]. From this we infer not only the cancellation-
law of devectorization,

A = (id⊗ unvecA) ⋅ η (77)
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function E = epsilon(k,m)
if k==1

E = eye(m)
else

n=k-1;
p1 = eye(n*m,k*m);
p2 = jay(m,k*m);
E = [ (epsilon(n,m) * kron(eye(n),p1)) p2 ]

end
end

function J = jay(r,c)
if r>=c

J = [ zeros(r-c,c) ; eye(c) ];
else

J = [ zeros(r,c-r) eye(r) ];
end

end

Listing 4: MATLAB encoding of εk (74,75). Auxiliary function jay (cf. letter J) implements biproduct
components π2 and i2 in the same way eye (cf. letter I) implements π1 and i1. Both eye and kron are
primitive operations in MATLAB providing the identity matrix and the Kronecker product operation.

but also a closed formula for vectorization,

vecX = (id⊗X) ⋅ η (78)

since X = unvecA is the same as vecX = A. Thus

ηk = vec k idk×m (79)

holds. Reversing the arrows also entails the following converse-duality,

(vecA)○ = unvec (A○) (80)

easy to draw from (69) and (78).

8.3. Self-adjunction

Summing up, we are in presence of an adjunction between functor FX = idk ⊗X
and itself — a self-adjunction [41] — inducing a monoidal closed structure in the
category. The root for this is again the biproduct, entailing the same functor ⊕ (62)
for both coproduct and product. It is known that the latter is the right adjoint of the
diagonal functor ∆(n) = (n,n), which in turn is the right adjoint of the former. Using
adjunction’s notation, ⊕ ⊣ ∆ and ∆ ⊣ ⊕ hold. By adjunction composition [20] one
obtains (⊕⋅∆) ⊣ (⊕⋅∆), whereby — because⊕⋅∆ = (id2⊗) (63) — the self-adjunction
(id2⊗) ⊣ (id2⊗) holds.
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9. Unfolding vectorization algebra

This section will show how vectorization theory, as given in eg. [33, Chap. 10],
follows from universal properties (67,77) by index-free calculation. This is an advance
over the traditional, index-wise matrix representations and proofs [33, 35, 41] where
notation is often quite loose, full of dot-dot-dots. We will also stress on the role of
matrix types in the reasoning.

Vectorization is linear. To warm up let us see a rather direct result, the linearity of vec :

vec (A +B) = vecA + vecB (81)

Its derivation, which is a standard exercise in algebra-of-programming calculation style,
can be found in the appendix.

Roth’s relationship. On the other side of the spectrum we find the following relation-
ship of the vec operator and Kronecker product

vec (A ⋅B ⋅C) = (C○ ⊗A) ⋅ vecB (82)

which Abadir and Magnus [33] attribute to Roth [42] and regard as the fundamental
result of the whole theory.

In [33], (82) is said to hold “whenever the product ABC is defined”. Our typed
approach goes further in enabling us to find the most general type which accommo-
dates the equality. The exercise is worthwhile detailing in so far as it spells out two
different instances of polymorphic vec , with different thinning-factors. We speed up
the inference by starting from types already equated by the matrix compositions and
by the equality as a whole:

j n
Aoo k

Boo m
Coo

m × j k × nC○⊗Aoo x
vecBoo

m × j x
vec (A⋅B⋅C)

oo

The type relationship betweenB and vecB entails k = k×x, and therefore x = 1. Thus
the principal type of (82) is:

j n
Aoo k

Boo m
Coo

m × j k × nC○⊗Aoo 1
veckBoo

vecm (A⋅B⋅C)
jj

We will show briefly that (82) is the merge of two other facts which express the
vectorization of the product of two matrices B and C in two alternative ways,

veck (B ⋅C) = (idk ⊗B) ⋅ veck C (83)
vecm (C ⋅B) = (B○ ⊗ idn) ⋅ veck C (84)
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whose types schemes are given by diagrams

j n
Boo k ×mCoo

k × j k × nidk⊗Boo m
veck Coo

veck (B⋅C)

jj

(85)

and

n k
Coo m

Boo

m × n k × nB○⊗idnoo 1
veck Coo

vecm (C⋅B)
jj

respectively. The derivation of (83) follows by instantiation of cancellation law (77),
for A ∶= vec (B ⋅ C), knowing that unvec (vecX) = X — see the appendix. The
calculation of (84), also in the appendix, proceeds in the same manner. Thanks to these
two results, calculating (82) is routine work:

(C○ ⊗A) ⋅ vecB

= { identity ; bifunctor ⊗ }

(C○ ⊗ id) ⋅ (id⊗A) ⋅ vecB

= { (83) }

(C○ ⊗ id) ⋅ vec (A ⋅B)
= { (84) }

vec (A ⋅B ⋅C)

Roth’s relationship (82) is proved in different ways in the literature. In [35], for
instance, it turns up in the proof of a result about the commutation matrix which will
be addressed in the following section. In [33] it is calculated by expressing matrix B
as a summation of vector compositions and relying on the linearity of vec , using an
auxiliary result about Kronecker product of vectors. In a similar approach, a proof for
the particular case of boolean matrices is presented in [3] using relational product.

Vectorization as (blocked) transposition. Finally, we state a result which relates vec-
torization with transposition — compare with (25):

veck+k′ [ A B ] = [ veckA
veck′ B

] (86)

Type inference reveals that the most generic types which accommodate this result are

n k ×mAoo and n k′ ×mBoo . The proof can be found in the appendix.
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When does, then, vectorization (86) coincide with transposition (25)? We reason:

veck+k′ [ A B ] = [ A B ]○

⇔ { (25) ; (86) ; (34) }

veckA = A○ ∧ veck′ B = B○

The two clauses correspond to the induction hypothesis in a structurally inductive
argument, breaking down thinning factors until base case k = 1 is reached. Since
vec1X = X , we conclude that vectorization is transposition wherever A and B can
be broken in “rows” of symmetric blocks, that is, blocks X such that X = X○. In the
particular case of [ A B ] being a row vector (type n = 1), this always happens, the
symmetric blocks being individual cells of type 1 1oo . Thus

vecmA = A○ (87)

holds, for 1 m
Aoo a row vector.

10. Calculating vectorized operations

We close the paper by showing how typed linear algebra helps in calculating matrix
operations in vectorial form. We only address the two basic combinators transpose and
composition, leaving aside the sophistication required by the parallel implementation
of such combinators. (See eg. [13, 14, 15, 16, 39] concerning the amazing evolution of
the subject in recent years.)

To begin with, let us show that transposition can be expressed solely in terms
of the vec and unvec combinators. The argument is a typical example of reason-

ing with arrows in a categorial framework. Let n m
Aoo be an arbitrary matrix.

We start by building 1 n ×mB=unvecnAoo , then n ×m 1
C=vecn×mBoo and, finally

m n
unvecnCoo . So, the outcome unvecn (vecn×m (unvecnA)) has the same type

as A○. Checking that they are actually the same arrow is easy, once put in another way:

vecn (A○) = vecn×m (unvecnA) (88)

We calculate:

vecn (A○)
= { (80) }

(unvecnA)○

= { (87) since unvecnA is of type 1 m × noo }

vecm×n (unvecnA)

Next, we show how (88) helps in calculating a particular, generic matrix — the com-
mutation matrix — usefull to implement transposition of matrices encoded as vectors
using matrix-vector products.
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10.1. Implementing transposition in vectorial form

Magnus and Neudecker [35] present the commutation matrix n ×m m × nKnmoo

as the unique solution Knm to equation

vecn (A○) =Knm ⋅ vecmA cf. diagram n ×m m × nKnmoo n

1
vecnA○

aa

vecmA

OO

m

A

OO (89)

the practical impact of which is obvious: knowing how to build (generic) Knm enables
one to transpose matrix A by composing Knm with A vectorized, the outcome being
delivered as a vector too. Implemented in this way, transposition can take advantage
of the divide-and-conquer nature of matrix multiplication and therefore be efficiently
performed on parallel machines.

The uniqueness of Knm is captured by the “universal” property,

X =Knm ⇔ vec (A○) =X ⋅ vecA (90)

of which (89) is the cancellation corollary. However, (90) defines Knm implicitly, not
its explicit form. In the literature, this matrix (also referred to as the stride permutation
matrix [13, 29]) is usually given using indexed notation. For instance, Magnus and
Neudecker [35] define it as a double summation

Knm =
n

∑
i=1

m

∑
j=1

(Hij ⊗H○
ij) (91)

where each component Hij is a (n,m) matrix with a 1 in its ijth position and zeros
elsewhere.

Below we give a simple calculation of its generic formula, arising from putting (89)
and (88) together:

Knm ⋅ vecmA = vecn×m (unvecnA)

Knowing the reflection law vecm εm = id (71) and substituting we obtain a closed
formula for the commutation matrix:

Knm = vecn×m (unvecn εm) (92)

The types involved in this formula can be traced as follows: take idm×n and de-

vectorize it, obtaining n m × (m × n)εmoo . Then devectorize this again, getting

1 (n ×m) × (m × n)unvecn εmoo . Finally, vectorize this with the product of the

two thinning factors m and n, to obtain n ×m m × n
Knm=vecn×m (unvecn εm)oo .
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function R = cm(n,m)
R = Vec(n*m,UnVec(n,epsilon(m,n)));

end

function R = cmx(n,m)
a=kron(eye(n*m),epsilon(n,1));
b=kron(eye((n*m)*n),epsilon(m,n));
R = a*b*eta(n*m,m*n);

end

Listing 5: Two MATLAB encodings of commutation matrix Kmn following (92) and its expansion (93).

The conceptual economy of (92) when compared with (91) is beyond discussion.
A factorization of (92) can be obtained by unfolding the vec and unvec isomorphisms:

Knm = vecn×m (unvecn εm)
= (idn×m ⊗ (εn ⋅ (idn ⊗ εm))) ⋅ ηn×m
= (idn×m ⊗ εn) ⋅ (idn×m ⊗ (idn ⊗ εm)) ⋅ ηn×m
= (idn×m ⊗ εn) ⋅ (id(n×m)×n ⊗ εm) ⋅ ηn×m (93)

Listing 5 includes both versions of the commutation matrix encoded in MATLAB nota-
tion.

Magnus and Neudecker [35] give many properties of the commutation matrix, in-
cluding for instance,

(B ⊗A) ⋅Kts = Knm ⋅ (A⊗B) (94)

which in our categorial setting is nothing but the statement of its naturality in the
underlying category of matrices (polymorphism), cf. diagram:

t × s
B⊗A

��

s × tKtsoo

A⊗B
��

n ×m m × n
Knm

oo

Another property, not given in [35],

Knn ⋅ ηn = ηn (95)

is easy to draw from (89) — just let A ∶= idn and simplify.

10.2. Implementing MMM under matrix-to-vector representation
As we did for transpose, let us reuse previous results in refining MMM to vectorized

form. Applying (68) to B in (83) we obtain, recalling type scheme (85):

veck (B ⋅C) = (idk ⊗ (εn ⋅ (idn ⊗ vecnB))) ⋅ veck C
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function vBC = vecMMM(n,vB,vC)

a = length(vB);
b = length(vC);

if(mod(a,n) ˜= 0 || mod(b,n) ˜= 0)
error(’n must be a common length factor’);

else
j = a / n;
k = b / n;
x=kron(eye(k),epsilon(n,j));
y=kron(eye(k*n),vB);
vBC = ap(x,ap(y,vC));

end
end

Listing 6: MATLAB encoding of vectorized MMM. Intermediate type n is given explicitly. vB and vC are
input vectors which represent composable matrices B and C, respectively. Matrix x is a constant matrix
which can be made available at compile time. ap(B,v) denotes the application of matrix B to input vector
v.

This re-writes to

veck (B ⋅C) = (idk ⊗ εn) ⋅ (idk×n ⊗ vecnB) ⋅ veck C (96)

It may seem circular to resort to composition in the right hand side of the above, but
in fact all instances of composition there are of a special kind: they are matrix-vector
products, cf. linear signal transforms [29]. Denoting such an application of a matrix B
to a vector v by ap(B,v), we can encode (96) into MATLAB function vecMMM shown
in Listing 6, under type scheme:

j n
Boo k

Coo

k × j k × (n × j)idk⊗εnoo k × nidk×n⊗vBoo 1
vCoo

vBC

ll

The operator equivalent to this in the Operator Language DSL of [16] has interface

MMM j,n,k ∶ Rjn ×Rnk → Rjk

assuming the field of real numbers and vectors representing matrices in row-major
order. The operator is specified by a number of breakdown rules expressing recursive
divide-and-conquer algorithmic strategies.

For instance, one such rule prescribes the divide-and-conquer algorithm that splits
the left-hand vector row-wise in a number of blocks. Instantiating the rule to the par-
ticular case of a two-block split corresponds to our law (26), vectorized. The whole
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OL syntax is very rich and explaining its intricacies in the current paper would be a
long detour. See Section 13 for on-going work on typing OL formulæ according to the
principles advocated in the current paper.

11. Related Work

Categories of matrices can be traced back to the works of MacLane and Birkhoff
[20, 24], with focus on either illustrating additive categories or establishing a relation-
ship between linear transformations and matrices. Biproducts have been extensively
studied in algebra and category theory. In [24], the same authors find applications of
biproducts to the study of additive Abelian groups and modules. A relationship be-
tween biproducts and matrices can also be found in [24], but it is nevertheless in [20]
that the hint which triggered the current paper can be found explicit (recall Section 4).
However, no effort on exploiting biproducts calculationally is present, let alone algo-
rithm derivation. To the best of the authors’ knowledge, the current paper presents the
first effort to put biproducts in the place they deserve in matrix algebra.

Bloom et al [5] define a generic notion of machine and give their semantics in terms
of categories of matrices, under special (blocked) composition schemes. They make
implicit use of what we have identified as the standard biproduct (enabling blocked
matrix algebra) to formalize column and row-wise matrix join and fusion, but the em-
phasis is on iteration theories which matricial theories are a particular case of.

Other categorial approaches to linear algebra include relative monads [43], whereby
the category of finite-dimensional vector spaces arises as a kind of Kleisli category.
Efforts by the mathematics of program construction community in the derivation of
matrix algorithms include the study of two-dimensional pattern matching [44].

Reference [5] is related to Kleene algebras of matrices [45]. An account of the work
on calculational, index-free reasoning about regular and Kleene algebras of matrices
can be found in [1]. The close relationship between categories of matrices and relations
is implicit in the allegorial setting of Freyd and Ščedrov [19]: essentially, matrices
whose data values are taken from locales (eg. the Boolean algebra of truth values) are
the morphisms of the corresponding allegory (eg. that of binary relations). Bird and
de Moor [18] follow [19]. Schmidt [3] dwells on the same relation-matrix binomial
relationship too, but from a different, set-theoretical angle. He nevertheless pushes it
quite far, eg. by developing a theory of vectorization in relation algebra. Relational
biproducts play no explicit role in either [3], [19] or [18].

12. Conclusions

In this paper we have exploited the formalization of matrices as categorial mor-
phisms (arrows) in a way which relates categories of matrices to relation algebra and
program calculation. Matrix multiplication is dealt with in detail, in an elegant, calcu-
lational style whereby its divide-and-conquer, triple-nested-loop and vectorized imple-
mentations are derived.
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The notion of a categorial biproduct is at the heart of the whole approach. Using
categories of matrices and their biproducts we have developed the algebra of matrix-
block operations and shown how biproducts scale up so as to be fit for particular appli-
cations of linear algebra such as Gaussian elimination, for instance.

We have also shown how matrix-categorial biproducts shed light into the essence
of an important data transformation — vectorization — indispensable to the efficient
implementation of linear algebra packages in parallel machines. Our calculations in
this respect have shown how polymorphic standard matrices such as eg. the commu-
tation matrix are, making dimension polymorphism an essential part of the game, far
beyond the loose “valid only for matrices of the same order” [33] attitude found in
the literature. We have prototyped our constructs and diagrams in MATLAB™ all the
way through, and this indeed showed how tedious and error-prone it is to keep track
of matrix dimensions in complex expressions. It would be much nicer to write eg.
eye instead of eye(n), for some hand-computed n and let MATLAB infer which n
accommodate the formula we are writing.

The prospect of building biproduct-based type checkers for computer algebra sys-
tems such as MATLAB is therefore within reach. This seems to be already the approach
in Cryptol [46], a Haskell based DSL for cryptography, where array dimensions are
inferred using a strong type-system based on Hindley-Milner style polymorphism ex-
tended with arithmetic size constraints.

In retrospect, we believe to have contributed to a better understanding of the blocked
nature of linear algebra notation, which is perhaps its main advantage — the tremen-
dous improvement in concision which Backhouse stresses in the quotation which opens
the paper — and which can be further extended thanks to the (still to be exploited) al-
gebra of biproducts. This raises the issue of matrix polymorphism and enriches our
understanding that matrix dimensions are more than just numbers: they are types in
the whole sense of the word. Thus the matrix concept spruces up, raising from the
untyped number-container view (“rectangles of numbers”) to the typed hom-set view
in a category. Perhaps Sir Arthur Eddington (1882-1944) was missing this richer view
when he wrote 13:

I cannot believe that anything so ugly as multiplication of matrices is an essential
part of the scheme of nature [47, page 39].

13. Future Work

A comprehensive calculational approach to linear algebra algorithm specification,
transformation and generation is still missing. However, the successes reported by
the engineering field in automatic library generation are a good cue to the feasibility
of such a research plan. We intend to contribute to this field of research in several
directions.

13The authors are indebted to Jeremy Gibbons for pointing their attention to this interesting remark of the
great physicist.
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SPIRAL. The background of our project is the formalization of OL, the Operator Lan-
guage of [14, 16], in matrix-categorial biproduct terms. In the current paper we have
stepped forward in this direction (as compared to [21], for instance) in developing a
categorial approach to vectorization, but much more work is still needed to achieve a
complete account of the refinement steps implicit in all OL-operator breakdown rules.
SPIRAL’s row-major vectorized representation calls for further work in adapting our
results to such a variant of vectorization.

Kleene algebras of matrices. Thus far we have assumed matrices to take their ele-
ments from an algebraic field K. The matrix concept, however, extends to other, less
rich algebraic structures, typically involving semirings instead of rings, for instance.
Fascinating work in this wider setting shows how, by Kleene algebra, some graph al-
gorithms are unified into Gaussian elimination, for instance [1]. We would thus like to
study the impact of such a relaxation on our biproduct approach to the same algorithm.

Khatri-Rao product generalization of relational forks. The monoidal structure pro-
vided by the tensor product defined in Section 7 is the key concept to generalize, to
arbitrary matrices, the relational (direct) product presented in [3, 26].

It turns out that the fork operation of relation algebras [26] is nothing but the op-
erator known in the linear algebra community as the Khatri-Rao product [48]. The
standard definition offers this product as a (column-wise) variant of Kronecker prod-
uct. To emphasise the connection to relation algebra, our definition is closer to that of a

fork [26]: given matrices m n
Aoo and k n

Boo , the Khatri-Rao product (fork)
of A and B, denoted A▽B, is the matrix of type m × k noo defined by

A▽B = (p1 ○ ⋅A) ∗ (p2 ○ ⋅B)

where A ∗B is the Hadamard (element-wise) product and matrices m m × kp1oo

and k m × kp2oo are known as projections. To define these we rely on row vectors
wholly filled up with 1s, denoted by symbol “!” 14:

p1 = id⊗ !

p2 = !⊗ id

Khatri-Rao product is associative and its unit is !, that is, !▽A = A = A▽ ! hold.
The close link between the Khatri-Rao and Kronecker products can be appreciated by
expressing the latter in terms of the former, A⊗B = (A ⋅ p1 )▽ (B ⋅ p2 ), that is,

A⊗B = (p1 ○ ⋅A ⋅ p1 ) ∗ (p2 ○ ⋅B ⋅ p2 )

meaning that Khatri-Rao can be used as alternative to Kronecker in formulating con-
cepts such as, for instance, vectorization [3]. A thorough comparison of both ap-
proaches in the setting of arbitrary matrices is a topic for future work [34].

14Notation “!” is imported from the algebra of programing [18].
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Self-adjunctions. The self-adjunction which supports our approach to vectorization
offers a monad which we have not yet exploited. Already in (76) we see the unit

k2 × n n
ηoo at work, for functor T n = k2 × n, whose multiplication is of type

k2 × n k4 × nµoo and can be computed following the standard theory:

µ = id⊗ unvec id = id⊗ ε

Curiously enough, the monadic flavour of vectorization can already be savored in ver-
sion (96) of MMM, suggesting such an implementation as analogue to composition in
the “brother” Kleisli category:

B ●A = (idk ⊗ εn)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

µ

⋅ (idk×n ⊗B)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F B

⋅A

This should be studied in detail, in particular concerning the extent to which known
laws of vectorization are covered by the generic theory of monads, discharging the
corresponding proof obligations. The relationship between this monadic setting and
that of relative monads presented in [43] is another stimulus for further work in this
research thread.
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J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko, K. Chen, R. W. Johnson, N. Riz-
zolo, SPIRAL: Code generation for DSP transforms, Proceedings of the IEEE
93 (2) (2005) 232–275.

[15] R. A. V. de Geijn, E. S. Quintana-Ortı́, The Science of Programming Matrix Com-
putations, www.lulu.com, 2008.

[16] F. Franchetti, F. de Mesmay, D. McFarlin, M. Püschel, Operator language: A
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Appendix A. Calculational proofs postponed from main text

Calculation of (14, 15). The derivation of these facts is based on the existence of
additive inverses and can be found in [20]. Let us see that of (14) as example:

π1 ⋅ i2 = 0

⇔ { additive inverses }
π1 ⋅ i2 = π1 ⋅ i2 − π1 ⋅ i2

⇔ { additive inverses }
π1 ⋅ i2 + π1 ⋅ i2 = π1 ⋅ i2

⇔ { (11, 12) ; bilinearity (9, 10) }

π1 ⋅ (i1 ⋅ π1 + i2 ⋅ π2) ⋅ i2 = π1 ⋅ i2
⇔ { (13) }

π1 ⋅ id ⋅ i2 = π1 ⋅ i2
⇔ { identity (4) }

π1 ⋅ i2 = π1 ⋅ i2
The other case follows the same line of reasoning. When additive inverses are not en-
sured, as in the relation algebra case, biproducts enjoying orthogonal properties (14,15)
are the ones built on top of disjoint unions in distributive allegories [19, 27].

Proof of Theorem 2. The calculation of (11) for biproduct (47) is immediate:

πC1 ⋅ iC1 = [ 1 0 ] ⋅ [ 1
−C ]

= [ idm 0 ] ⋅ [ idm
−C ]

= idm

The calculation of (12) is similar. That of (13) follows:

iC1 ⋅ πC1 + iC2 ⋅ πC2
= { (47) }

[ 1
−C ] ⋅ [ 1 0 ] + [ 0

1
] ⋅ [ C 1 ]

= { fusion laws (26, 27) twice }

[ 1 0
−C 0

] + [ 0 0
C 1

]

= { blocked addition (37) }
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[ 1 0
0 1

]

= { standard biproduct reflection (18,19) }
id

Proof of Theorem 3. Only the calculation of (13) is given below, those of (11) and (12)
being similar and actually simpler. Dropping identity matrix subscripts and relying on
composition binding tighter than ⊗ to save parentheses, we reason:

(i1 ⊗ id) ⋅ (π1 ⊗ id) + (i2 ⊗ id) ⋅ (π2 ⊗ id)
= { (54) twice ; (4) twice }

(i1 ⋅ π1 ⊗ id) + (i2 ⋅ π2 ⊗ id)
= { (57) }

(i1 ⋅ π1 + i2 ⋅ π2)⊗ id
= { (13) }

id⊗ id
= { (55) }

id

Calculation of fusion law (60).

[ A B ]⊗C

= { (16) }

(A ⋅ π1 +B ⋅ π2)⊗C
= { (57) }

(A ⋅ π1 ⊗C) + (B ⋅ π2 ⊗C)
= { C = C ⋅ id twice ; (54) twice }

(A⊗C) ⋅ (π1 ⊗ id) + (B ⊗C) ⋅ (π2 ⊗ id)
= { (58) }

(A⊗C) ⋅ π1 + (B ⊗C) ⋅ π2
= { (16) }

[ A⊗C B ⊗C ]

The elegance of this calculation compares favourably with the telegram-like proof of
a similar result in [33] (“Kronecker product of a partitioned matrix”) carried out at
index-level, using “dot-dot-dot” notation.
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Calculation of (73).

ε⊗ id
= { (70) }

[ π1 π2 ]⊗ id

= { (60) }

[ π1 ⊗ id π2 ⊗ id ]

= { (58) twice; (70) }
ε

Calculation of (81).

vec (A +B) = vecA + vecB

⇔ { universal property (67) }

A +B = ε ⋅ (id⊗ (vecA + vecB))
⇔ { Kronecker product (56) }

A +B = ε ⋅ (id⊗ vecA + id⊗ vecB)
⇔ { composition is bilinear (9) }

A +B = ε ⋅ (id⊗ vecA) + ε ⋅ (id⊗ vecB)
⇔ { cancellation law (68) twice }

A +B = A +B

Calculation of (83). This follows by instantiating cancellation law (77), for A ∶=
vec (B ⋅C), knowing that vec and unvec are inverses:

vec (B ⋅C)
= { (77) }

(id⊗ (B ⋅C)) ⋅ η
= { identity (4) }

(id ⋅ id)⊗ (B ⋅C) ⋅ η
= { bifunctoriality (54) ; associativity (3) }

(id⊗B) ⋅ ((id⊗C) ⋅ η)
= { canceling (77) }

(id⊗B) ⋅ vecC
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Calculation of (84). We reason, minding subscripts k, m and n:

vecm (C ⋅B) = (B○ ⊗ idn) ⋅ veck C

⇔ { (78) twice }

(idm ⊗ (C ⋅B)) ⋅ ηm = (B○ ⊗ idn) ⋅ (idk ⊗C) ⋅ ηk
⇔ { (54) twice; (4) }

(idm ⊗C) ⋅ (idm ⊗B) ⋅ ηm = (idm ⊗C) ⋅ (B○ ⊗ idk) ⋅ ηk
⇐ { Leibniz }

(idm ⊗B) ⋅ ηm = (B○ ⊗ idk) ⋅ ηk
⇔ { see (A.1) below }

true

The calculation relies on the commutativity of diagram

m

B

��

m2

idm⊗B
��

1

vecmB

xx

ηmoo

ηk
��

k m × k k2
B○⊗idk
oo

(A.1)

whose proof amounts to justifying equation

vecmB = (B○ ⊗ idk) ⋅ ηk (A.2)

for m
B // k . Changing variable A ∶= B○,

vecm (A○) = (A⊗ idk) ⋅ ηk (A.3)

we see that it means that, by swapping the terms of the Kronecker product in a vector-

ization of a matrix k
A // m , we produce a row-major vectorization of A instead of

column-major one. This is amply discussed in [13].
The calculation of (A.3) relies on known properties of the commutation matrix:

vecm (A○) = Kmk ⋅ veckA

⇔ { (78) }

Kmk ⋅ (idk ⊗A) ⋅ ηk
⇔ { natural-K (94) }

(A⊗ idk) ⋅Kkk ⋅ ηk
⇔ { (95) }

(A⊗ idk) ⋅ ηk
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Calculation of (86):

veck+k′ [ A B ]

= { either def. (16) }

veck+k′ (A ⋅ π1 +B ⋅ π2)
= { linearity of vec (81) }

veck+k′ (A ⋅ π1) + veck+k′ (B ⋅ π2)
= { vec of composition (83) }

(idk+k′ ⊗A) ⋅ (veck+k′ π1) + (idk+k′ ⊗B) ⋅ (veck+k′ π2)
= { vec of composition (83) (π1 = idk ⋅ π1) and (π2 = idk′ ⋅ π2) }

(idk+k′ ⊗A) ⋅ ((π○1 ⊗ idk) ⋅ veck id) + (idk+k′ ⊗B) ⋅ ((π○2 ⊗ idk′) ⋅ veck′ id)
= { duality (24) ; scaled injections (59) ; η def. (79) }

(idk+k′ ⊗A) ⋅ i1 ⋅ ηk + (idk+k′ ⊗B) ⋅ i2 ⋅ ηk′
= { functor bilinearity (57) (idk+k′ = idk ⊕ idk′) }

((idk ⊗A)⊕ (idk′ ⊗A)) ⋅ i1 ⋅ ηk + ((idk ⊗B)⊕ idk′ ⊗B)) ⋅ i2 ⋅ ηk′
= { naturality (66) }

i1 ⋅ (idk ⊗A) ⋅ ηk + i2 ⋅ (idk′ ⊗B) ⋅ ηk′
= { vec definition (78) }

i1 ⋅ veckA + i2 ⋅ veck′ B

= { split definition (17) }

[ veckA
veck′ B

]
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