
PHASE TRANSITION IN EQUILIBRIUM FLUCTUATIONS
OF SYMMETRIC SLOWED EXCLUSION
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ABSTRACT. We analyze the equilibrium fluctuations of density, current and tagged parti-
cle in symmetric exclusion with a slow bond. The system evolves in the one-dimensional
lattice and the jump rate is everywhere equal to one except at the slow bond where it is
αn−β , with α,β ≥ 0 and n is the scaling parameter. Depending on the regime of β , we
find three different behaviors for the limiting fluctuations whose covariances are explic-
itly computed. In particular, for the critical value β = 1, starting a tagged particle near the
slow bond, we obtain a family of gaussian processes indexed in α , interpolating a fractional
brownian motion of Hurst exponent 1/4 and the degenerate process equal to zero.

1. INTRODUCTION

The exclusion process is a standard interacting particle system, widely studied in Proba-
bility and Statistical Mechanics. Informally, such model corresponds to particles perform-
ing continuous time random walks in a lattice, except when a particle tries to jump to an
already occupied site. In such case, the jump is forbidden and the particle has to wait a
new random time.

There is an intensive research on the behavior of exclusion processes in many different
aspects and from varied points of view. In particular, on the behavior of exclusion processes
in random/non homogeneous medium, see for instance [2, 3, 4, 6].

In this paper we analyze the fluctuations of the one-dimensional symmetric exclusion
process with a slow bond, for which the hydrodynamic limit was treated in [4, 5]. The
dynamics of this model can be described as follows. On the one-dimensional lattice, it is
allowed at most one particle per site. To each bond is associated a Poisson clock. When
this clock rings, the occupation variables at the vertices of the bond are interchanged with
a certain rate. Of course, if both the sites are occupied or empty, nothing happens. All
bonds have a Poisson clock of parameter one, except one special bond, the slow bond, in
which the Poisson clock has parameter αn−β , where α,β ≥ 0 and n is the integer scaling
parameter. At the end n is lead to infinity. The process starts from the equilibrium measure,
namely a Bernoulli product measure of parameter ρ ∈ (0,1), and it is seen in the diffusive
time scale, or else, in times of order n2.

We are concerned with the fluctuations, that is, the Central Limit Theorem (C.L.T.) for
the density, the current of particles through a fixed bond and the tagged particle. Such
results are well known for the classical symmetric exclusion, where all the Poisson clocks
have parameter one. For the density, the fluctuations are given by a generalized Ornstein-
Uhlenbeck process, while the fluctuations of the current and the tagged particle are both
given by the fractional brownian motion of Hurst exponent 1/4.
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The introduction of the slow bond changes dramatically the scenario. Not so intuitively,
the value β = 1 is critical. For β ∈ [0,1), we obtain ipsis litteris the same results for the
fluctuations of the symmetric exclusion just mentioned. This means that, in this case, the
jump rate at the slow bond is not sufficiently strong in order to change the macroscopic
behavior of the system. Nevertheless, the proof of last result is not straightforward and
requires a Local Replacement which is sharp for this regime of β . For β ∈ (1,+∞], it is
proved here that the fluctuations of the density are driven by the semigroup of the heat
equation with Neumann’s boundary conditions. This means that for this regime of β , the
slow bond splits the system into two separate regions in which the macroscopic dynamics
evolves independently.

Finally, at the critical value β = 1, the generalized Ornstein-Uhlenbeck process obtained
is driven by the semigroup of the partial differential equation

 ∂tu(t,x) = ∂ 2
xxu(t,x), t ≥ 0, x ∈ R\{0}

∂xu(t,0+) = ∂xu(t,0−) = α{u(t,0+)−u(t,0−)}, t ≥ 0
u(0,x) = g(x), x ∈ R.

(1)

if the slow bond is located near to origin. If the slow bond is located elsewhere, the result
is the same, but with the boundary conditions stated above for the corresponding macro-
scopic point. We remark that last equation is similar to the heat equation with a boundary
condition of Robin’s type, but relating the positive and negative half-lines. Notice that, for
this regime of β , the parameter α survives in the limit. We also mention that last result, for
α = 1, exhibits explicitly the Ornstein-Uhlenbeck process as obtained in [3], considering
the measure W there as being the Lebesgue measure plus a delta of Dirac, but in infinite
volume.

Provided by the density fluctuations, we obtain, for the three regimes of β , the corre-
sponding current fluctuations and we compute explicitly the covariances for the limiting
gaussian processes. It is of worth to remark the behavior of the fluctuations of the current
through the slow bond. For β ∈ [0,1) we get a fractional brownian motion of Hurst expo-
nent 1/4 and for β ∈ (1,+∞] we get the degenerate process equal to zero. For β = 1, the
current fluctuations are given by a family of gaussian processes indexed in α interpolating
the fractional brownian motion of Hurst exponent 1/4 and the degenerate process equal to
zero. By this, we mean that we can recover these two processes from the case β = 1 by
taking the limit as α →+∞ or as α → 0, respectively, being the convergence in the sense
of finite dimensional distributions.

Lastly, as a consequence of the previous result, it is straightforward to obtain the C.L.T.
for a tagged particle. In this case, we consider as initial measure the Bernoulli product
measure conditioned to have a particle at a given site. Therefore, the system is no longer in
equilibrium, but anyhow we can use the previous result to deduce the behavior of a tagged
particle in this non-equilibrium situation. Following [7, 10] and since we are in dimension
one, the aforementioned result follows from relating the position of a tagged particle with
the current and the density of particles.

The paper is divided as follows. In Section 2, we introduce notations and state the re-
sults. In Section 3, we present the C.L.T. for the density of particles. In Section 4, we get
an explicit formula for the semigroup of (1). In Section 5 we give a martingale characteri-
zation of the generalized Ornstein-Uhlenbeck processes obtained in the fluctuations of the
density of particles. In Section 6, we prove the C.L.T. for the current. Section 7 contains
some useful estimates that we will use along the text.
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2. DEFINITIONS AND MAIN RESULTS

2.1. The model. The symmetric simple exclusion process with conductances ξ n
x,x+1 ≥ 0 is

a Markov process {ηt : t ≥ 0}, with configuration space Ω := {0,1}Z. We denote by η the
configurations of the state space Ω so that η(x) = 0, if the site x is vacant, and η(x) = 1, if
the site x is occupied. Its infinitesimal generator Ln acts on local functions f : Ω → R as

(Ln f )(η) = ∑
x∈Z

ξ n
x,x+1

[
f (ηx,x+1)− f (η)

]
, (2)

where ηx,x+1 is the configuration obtained from η by exchanging the occupation variables
η(x) and η(x+1):

(ηx,x+1)(y) =

 η(x+1), if y = x ,
η(x), if y = x+1 ,
η(y), otherwise.

We define the symmetric exclusion with a slow bond at {−1,0} by taking the conductances
as

ξ n
x,x+1 =

{
αn−β , if x =−1 ,

1, otherwise .
We notice that when β = 0 and α = 1, the process becomes the well known symmetric

simple exclusion process. We are interested in analyzing the behavior of the process when
β ∈ (0,+∞].

A simple computation shows that the Bernoulli product measures {νρ : 0 ≤ ρ ≤ 1} are
invariant, in fact reversible, for the symmetric simple exclusion process with conductances,
in particular also for the considered process. More precisely, νρ is a product measure over
Ω with marginals given by νρ{η : η(x) = 1} = ρ , for x in Z.

Denote by {ηtn2 : t ≥ 0} the Markov process on Ω associated to the generator n2Ln. Let
D(R+,Ω) be the path space of càdlàg trajectories (continuous from the right with limits
from the left) with values in Ω. For a measure µn on Ω, denote by Pβ

µn the probability
measure on D(R+,Ω) induced by the initial state µn and the Markov process {ηtn2 : t ≥ 0}.
Expectation with respect to Pβ

µn will be denoted by Eβ
µn . To simplify notation, we will

denote Pβ
νρ by Pβ

ρ . We define also χ(ρ) := ρ(1−ρ), the so-called static compressibility of
the system.

2.2. The Operators ∆β and ∇β . We introduce some spaces we will use in the sequel.

Definition 2.1. Let L2
β (R) be the space of functions H : R→ R with ∥H∥2,β < ∞, where

∥H∥2
2,β =


∫
R(H(u))2du, if β ̸= 1∫

R(H(u))2du+(H(0))2, if β = 1.

Notice that, for β ̸= 1, the norm ∥·∥2,β is the usual L2-norm with respect to the Lebesgue
measure that we denote by λ . For β = 1, the norm ∥ · ∥2,β is the L2-norm with respect to
the measure λ +δ0, where δu denotes the Dirac measure at the point u ∈ R.

In the sequel we will denote

H(0+) := lim
u→0,
u>0

H(u) and H(0−) := lim
u→0,
u<0

H(u) .

For k ∈ N, we denote by H(k)(x), the kth-derivative of a function H : R → R at the point
x ∈ R. For k = 0, H(0)(x) means H(x).
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Definition 2.2. Define S (R\{0}) as the space of functions H ∈C∞(R\{0}) and continu-
ous from the right at x = 0, for which

∥H∥k,ℓ := sup
x∈R\{0}

|(1+ |x|ℓ)H(k)(x)| < ∞ ,

for all integers k, ℓ≥ 0, and H(k)(0−) = H(k)(0+), for all k integer, k ≥ 1.

Next, we present the domains for ∆β and ∇β .

Definition 2.3. For β ∈ [0,1), we define Sβ (R) as the subset of S (R\{0}) composed of
functions H satisfying

H(0−) = H(0+) .

Notice that the space above is nothing more than the usual Schwartz space S (R). Fix
now α > 0.

Definition 2.4. For β = 1, we define Sβ (R) as the subset of S (R\{0}) composed of
functions H satisfying

H(1)(0+) = H(1)(0+) = α{H(0+)−H(0−)} .

Definition 2.5. For β ∈ (1,+∞], we define Sβ (R) as the subset of S (R\{0}) composed
of functions H satisfying

H(1)(0+) = H(1)(0+) = 0 .

Proposition 2.1. For any chosen β ∈ R, the space Sβ (R) is a Fréchet space.

The definition of a Fréchet space can be found, for instance, in [15]. The proof that
S (R\{0}) is a Fréchet space follows the same lines of that of [15] for the usual Schwartz
space S (R), and for that reason it will be omitted. Since the spaces Sβ (R) are closed
vector spaces of S (R\{0}), this implies they are also Fréchet spaces. We notice that
along the paper we only use this fact when we invoke the result of [12] about tightness of
stochastic process taking values in Fréchet spaces.

Definition 2.6. We define the operators ∆β : Sβ (R)→ S (R) and ∇β : Sβ (R)→ S (R)
by

∇β H =

{
H(1)(u), if u ̸= 0 ,

H(1)(0+), if u = 0 ,
and ∆β H =

{
H(2)(u), if u ̸= 0 ,

H(2)(0+), if u = 0 .

Notice that the operators ∇β and ∆β are essentially the usual derivative and the usual
second derivative, but defined in specific domains.

2.3. Hydrodynamic limit, PDE’s and semigroups. The hydrodynamic limit for the ex-
clusion process with a slow bond was already studied in [4, 5]. We state them here for
completeness. Let g : R→ [0,1] be a continuous by parts function and suppose that there
exists a constant Cg such that g−Cg has compact support. Let n∈N be a scaling parameter.
We define a probability measure µn in Ω by

µn(η(z1) = 1, ...,η(zℓ) = 1
)
=

ℓ

∏
i=1

g(zi/n)

for any set {z1, ...,zℓ} ⊆ Z and ℓ ∈ N. Let {ηtn2 ; t ≥ 0} have initial distribution µn. We
define the empirical measure {πn

t ; t ≥ 0} as the measure-valued process given by

πn
t (dx) =

1
n ∑

z∈Z
ηtn2(x)δ x

n
(dx).
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In words, the empirical measure represents the time evolution of the spatial density of
particles.

Theorem 2.2 (Franco, Gonçalves, Neumann [4, 5]).
For any T ≥ 0, as n → +∞, the sequence of measure valued processes {πn

t (dx); t ∈
[0,T ]}n∈N converges in probability with respect to the Skorohod topology of D([0,T ],M+(R)),
to some {u(t,x)dx; t ∈ [0,T ]}. Moreover,

• for β ∈ [0,1), {u(t,x); t ≥ 0, x ∈ R} is the unique weak solution of the heat equa-
tion {

∂tu(t,x) = ∂ 2
xxu(t,x), t ≥ 0, x ∈ R

u(0,x) = g(x), x ∈ R. (3)

• for β = 1, {u(t,x); t ≥ 0,x ∈ R} is the unique weak solution of the heat equation
with a boundary condition of Robin’s type at x = 0 ∂tu(t,x) = ∂ 2

xxu(t,x), t ≥ 0, x ∈ R\{0}
∂xu(t,0+) = ∂xu(t,0−) = α{u(t,0+)−u(t,0−)}, t ≥ 0
u(0,x) = g(x), x ∈ R.

(4)

• for β ∈ (1,+∞], {u(t,x); t ≥ 0,x ∈ R} is the weak solution of the heat equation
with a boundary condition of Neumann’s type at x = 0 ∂tu(t,x) = ∂ 2

xxu(t,x), t ≥ 0, x ∈ R\{0}
∂xu(t,0+) = ∂xu(t,0−) = 0, t ≥ 0
u(0,x) = g(x), x ∈ R.

(5)

In [4, 5] we dealt with the finite volume case (periodic). However, the proof for infinite
volume is the same, aside from some topological adaptations.

Each one of the partial differential equations mentioned above is linear. As we will see
later, in order to prove the existence of a Ornstein-Uhlenbeck process with characteristics
∆β and ∇β , we will make use of the explicit expression for the semigroups corresponding
to ∆β . The semigroup of (3) is classical and it acts on g : R→ R as

Ttg(x) =
1√
4πt

∫
R

e−
(x−y)2

4t g(y)dy , for x ∈ R . (6)

The semigroup of (5) is also known and it is given by

T Neu
t g(x) =


1√
4πt

∫ +∞

0

[
e−

(x−y)2
4t + e−

(x+y)2
4t

]
g(y)dy , for x > 0 ,

1√
4πt

∫ +∞

0

[
e−

(x−y)2
4t + e−

(x+y)2
4t

]
g(−y)dy , for x < 0 .

(7)

Denote by geven and godd the even and odd parts of a function g : R→ R, respectively,
or else, for x ∈ R,

geven(x) =
g(x)+g(−x)

2
and godd(x) =

g(x)−g(−x)
2

.

Proposition 2.3. The semigroup of (4) acts on g : R→ R as

T α
t g(x) =

1√
4πt

{∫
R

e−
(x−y)2

4t geven(y)dy

+ e2αx
∫ +∞

x
e−2αz

∫ +∞

0

[
( z−y+4αt

2t )e−
(z−y)2

4t +( z+y−4αt
2t )e−

(z+y)2
4t

]
godd(y)dydz

}
,
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for x > 0, and

T α
t g(x) =

1√
4πt

{∫
R

e−
(x−y)2

4t geven(y)dy

− e−2αx
∫ +∞

−x
e−2αz

∫ +∞

0

[
( z−y+4αt

2t )e−
(z−y)2

4t +( z+y−4αt
2t )e−

(z+y)2
4t

]
godd(y)dydz

}
.

for x < 0.

Throughout the text we will simply write T β
t for the three semigroups Tt , T α

t and T Neu
t ,

corresponding to the regimes β ∈ [0,1), β = 1 and β ∈ (1,+∞], respectively.
Notice that T Neu

t evolves a function in independent ways in each half line, but T α
t does

not. From this characterization of the semigroup T α
t , we get almost for free the following

result:

Proposition 2.4. Let u,uα ,uNeu : R+×R → [0,1] be the unique smooth solution of (3),
(4) and (5), respectively. Then,

lim
α→+∞

uα(t,x) = u(t,x) and lim
α→0

uα(x, t) = uNeu(t,x) .

for all (t,x)∈R+×(R\{0}). Besides that, for fixed t > 0, the following convergence holds

lim
α→+∞

∥uα(t, ·)−u(t, ·)∥Lp(R) = 0 and lim
α→0

∥uα(t, ·)−uNeu(t, ·)∥Lp(R) = 0

for all p ∈ [1,+∞].

The convergence above can be improved to some extent related to space and time si-
multaneously. Since this is not the main issue of this paper, we do not enter into details on
this.

2.4. Ornstein-Uhlenbeck process. Based on [9, 11], we give here a characterization of
the generalized Ornstein-Uhlenbeck process which is a solution of

dYt = ∆β Ytdt +
√

2χ(ρ)∇β dWt , (8)

where Wt is a space-time white noise of unit variance, in terms of a martingale problem.
We will see later that this process governs the equilibrium fluctuations of the density of
particles. In spite of having a dependence of Yt on β , in order to keep notation simple, we
do not index on it.

In what follows S ′
β (R) denotes the space of bounded linear functionals f : Sβ (R)→R

and D([0,T ],S ′
β (R)) (resp. C ([0,T ],S ′

β (R))) is the space of càdlàg (resp. continuous)
S ′

β (R) valued functions endowed with the Skohorod topology.

Proposition 2.5. There exists an unique random element Y taking values in the space
C ([0,T ],S ′

β (R)) such that:

i) For every function H ∈ Sβ (R), Mt(H) and Nt(H) given by

Mt(H) = Yt(H)−Y0(H)−
∫ t

0
Ys(∆β H)ds ,

Nt(H) =
(
Mt(H)

)2 −2χ(ρ) t ∥∇β H∥2
2,β

(9)

are Ft-martingales, where for each t ∈ [0,T ], Ft := σ(Ys(H);s≤ t,H ∈Sβ (R)).



EQUILIBRIUM FLUCTUATIONS 7

ii) Y0 is a gaussian field of mean zero and covariance given on G,H ∈ Sβ (R) by

Eβ
ρ
[
Y0(G)Y0(H)

]
= χ(ρ)

∫
R

G(u)H(u)du . (10)

Moreover, for each H ∈ Sβ (R), the stochastic process {Yt(H) ; t ≥ 0} is gaussian , being

the distribution of Yt(H) conditionally to Fs, for s < t, normal of mean Ys(T
β

t−s) and
variance

∫ t−s
0 ∥∇β T β

r H∥2
2,β dr.

We call the random element Y· the generalized Ornstein-Uhlenbeck process of char-
acteristics ∆β and ∇β . From the second equation in (9) and Paul Levy’s Theorem, the
process

Mt(H)(2χ(ρ)∥∇β H∥2
2,β )

−1/2 (11)

is a standard brownian motion. Therefore, in view of Proposition 2.5, it makes sense to say
that Y is the formal solution of (8).

2.5. Equilibrium Density Fluctuations. In order to establish the C.L.T. for the empirical
measure under the invariant state νρ , we need to introduce the density fluctuation field as
the linear functional acting on test functions H as:

Y n
t (H) =

1√
n ∑

x∈Z
H
( x

n

)
(ηtn2(x)−ρ).

We are in position to state the fluctuations for the density of particles.

Theorem 2.6 (C.L.T. for the density of particles).
Consider the Markov process {ηtn2 : t ≥ 0} starting from the invariant state νρ . Then,

the sequence of processes {Y n
t }n∈N converges in distribution, as n →+∞, with respect to

the Skorohod topology of D([0,T ],S ′
β (R)) to a gaussian process Yt in C ([0,T ],S ′

β (R)),
which is the formal solution of the Ornstein-Uhlenbeck equation:

dYt = ∆β Ytdt +
√

2χ(ρ)∇β dWt (12)

where Wt is a space-time white noise of unit variance and the operators ∆β and ∇β were
defined in Subsection 2.2.

2.6. Equilibrium Current Fluctuations. Next, we introduce the notion of current of par-
ticles through a fixed bond for our microscopic dynamics of generator Ln evolving on the
diffusive time scale tn2 and starting from the invariant state νρ .

For a site x ∈ Z, denote by Jn
x,x+1(t) the current of particles over the bond {x,x+ 1},

which is the total number of jumps from the site x to the site x+1 minus the total number
of jumps from the site x+1 to the site x in the time interval [0, tn2].

Let u ∈ R be a macroscopical point, to which we associate in the microscopical lattice
the bond of vertices {⌊un⌋−1,⌊un⌋}. Here ⌊un⌋ denotes the biggest integer smaller than
un. To simplify notation, we will simply write

Jn
u (t) := Jn

⌊un⌋−1,⌊un⌋(t) .

Now, we state the C.L.T. for the current. For that purpose we need to introduce some no-
tation. Denote by Φ2t(·) the tail of the distribution function of a gaussian random variable
with mean zero and variance 2t, that is, for x ∈ R,

Φ2t(x) :=
∫ +∞

x

e−u2/4t
√

4πt
du .
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Theorem 2.7 (C.L.T. for the current of particles).
Under Pβ

ρ , for every t ≥ 0 and every u ∈ R,

Jn
u (t)√

n
−−−−→
n→+∞

Ju(t)

in the sense of finite-dimensional distributions, where Ju(t) is gaussian with covariances
given by

• for β ∈ [0,1),

Eβ
ρ [Ju(t)Ju(s)] = χ(ρ)

(√ t
π
+

√
s
π
−
√

t − s
π

)
, (13)

that is Ju(t) is a fractional brownian motion of Hurst exponent 1/4.

• for β = 1,

Eβ
ρ [Ju(t)Ju(s)] = χ(ρ)

(√ t
π
+

Φ2t(2u+4αt)e4αu+4α2t

2α

+

√
s
π
+

Φ2t(2u+4αs)e4αu+4α2s

2α

−
√

t − s
π

− Φ2t(2u+4α(t − s))e4αu+4α2(t−s)

2α
− Φ2t(2u)

2α

)
.

• for β ∈ (1,+∞],

Eβ
ρ [Ju(t)Ju(s)] = χ(ρ)

(√ t
π

[
1− e−u2/t

]
+

√
s
π

[
1− e−u2/s

]
−
√

t − s
π

[
1− e−u2/(t−s)

]
+2uΦ2t(2u)

)
.

(14)

It is of particular interest the covariance at u = 0, corresponding to the current through
the slow bond {−1,0}. If β ∈ [0,1), the covariance corresponds to the one of a fractional
brownian motion of Hurst exponent 1/4. If β ∈ (1,+∞], the covariance equals zero as ex-
pected, since the Neumann’s boundary conditions at x = 0 make of it an isolated boundary.
Finally, for β = 1, we obtain a family, indexed in the parameter α , of gaussian processes
interpolating the fractional brownian motion of parameter 1/4 and the degenerate process
identically equal to zero. Such interpolation is made clear in the next corollary. Before its
statement, we emphasize that at the critical value β = 1, the limit of Jn

u (t)/
√

n does depend
on α . Let us denote it by Jα

u (t).

Corollary 2.8. For every t ≥ 0 and every u ∈ R,

Jα
u (t)−−−−→α→+∞

Ju(t) ,

where Ju(t) is the fractional brownian motion with Hurst exponent 1/4 and

Jα
u (t)−−−→α→0

Ju(t) ,

where Ju(t) is the gaussian process with covariances given by (14). The convergence is in
the sense of finite dimensional distributions.
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2.7. Fluctuations of a tagged particle. As a consequence of last construction, we are
able to deduce the behavior of a single tagged particle as done in [7, 10]. For that purpose,
fix ρ ∈ (0,1), u > 0 and consider ηtn2 starting from the measure νρ conditioned to have a
particle at the site ⌊un⌋, that we denote by νu

ρ . More precisely, νu
ρ(·) := νρ( · |ηtn2(⌊un⌋) =

1). We notice that from symmetry arguments, the same reasoning holds for u < 0. We
couple the system starting from νu

ρ and starting from νρ , in such a way that both processes
differ at most in one site at any given time. Then, the analogue of the results stated in
Theorems 2.6 and 2.7 for the starting measure νu

ρ follow from those results where the
system is taken starting from νρ .

Let Xu(t) denote the position at the time tn2 of a tagged particle initial at the site ⌊un⌋.
Since we are in dimension one, the order between particles is preserved and as a conse-
quence

{Xn
u (t)≥ n}=

{
Jn

u (t)≥
⌊un⌋+n−1

∑
x=⌊un⌋

ηtn2(x)
}
. (15)

Last relation together with Theorem 2.7, gives us that

Theorem 2.9 (C.L.T. for a tagged particle).
Under Pβ

νu
ρ
, for all β ∈ [0,+∞], every u ∈ R and t ≥ 0

Xn
u (t)√

n
−−−→
t→+∞

Xu(t)

in the sense of finite-dimensional distributions, where Xu(t) = Ju(t)/ρ in law, where Ju(t)
is the same as in Theorem 2.7. In particular, the covariances of the process Xu(t) are given
by Eβ

ρ [Xu(t)Xu(s)] = ρ−2Eβ
ρ [Ju(t)Ju(s)].

We do not present the proof of this theorem since it is very similar to the one presented
in [7, 10]. We only remark that in this case the mean of the current and the tagged particle
is zero since the dynamics is symmetric. For tightness issues we refer the reader to [13], in
which the case β = 0 and α = 1 was considered.

We observe that in the case β ∈ (1,+∞], the tagged particle starting at the origin moves
microscopically but we do not see its fluctuations macroscopically, since the variance of
X0(t) equals zero.

3. CENTRAL LIMIT THEOREM OF THE DENSITY OF PARTICLES

In this section we prove Theorem 2.6. As usual in convergence of stochastic process,
there are two facts to the be shown: convergence of finite-dimensional distributions of Y n

t
to those of Yt and tightness of the sequence {Y n

t }n∈N. We start by the former.

3.1. Characterization of limit points. In this section we want to prove that the limit
points of the sequence {Y n

t }n∈N satisfy Proposition 2.5. We start by showing that any
limit point of the sequence {Y n

t }n∈N solves (9).

3.1.1. Martingale problem. By Dynkin’s formula, for a given function H ∈ Sβ (R),

M n
t (H) = Y n

t (H)−Y n
0 (H)−

∫ t

0
n2Ln Y n

s (H)ds

is a martingale with respect to the natural filtration G n
t = σ(ηsn2 ,s ≤ t). Doing simple

computations we get to

M n
t (H) = Y n

t (H)−Y n
0 (H)−I n

t (H), (16)
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where

I n
t (H) =

∫ t

0

1√
n ∑

x∈Z
n2LnH

( x
n

)
ηsn2(x)ds (17)

and Ln is the generator of the random walk on Z given on H : Z→ R and x ∈ Z by:

(LnH)( x
n ) = ξ n

x,x+1
[
H( x+1

n )−H( x
n )
]
+ξ n

x−1,x
[
H( x−1

n )−H( x
n )
]
.

Note that, despite we do not index, the operator Ln depends on β .
We take in particular H ∈ Sβ (R). By the fact that the sum ∑x∈Z n2LnH( x

n ) is null
and by adding and subtracting

∫ t
0 Y n

s (∆β H)ds to I n
t (H), we can rewrite the martingale

M n
t (H) as

M n
t (H) = Y n

t (H)−Y n
0 (H)−

∫ t

0
Y n

s (∆β H)ds−Rn,β
t (H),

where

Rn,β
t (H) :=

∫ t

0

1√
n ∑

x∈Z

{
n2LnH

( x
n

)
− (∆β H)( x

n )
}

η̄sn2(x)ds

and for each x ∈ Z, the centered random variable η̄sn2(x) denotes ηsn2(x)−ρ .
In some points ahead we will write 0

n as zero to emphasize the discretization of space
and make easier to follow the computations.

We start by showing that Rn,β
t (H) is negligible in L2(Pβ

ρ ), for all H ∈ Sβ (R).

Proposition 3.1. For every t ∈ [0,T ], β ∈ [0,+∞] and H ∈ Sβ (R),

lim
n→+∞

Eβ
ρ

[(
Rn,β

t (H)
)2
]
= 0.

Proof. Separating the sites close to the slow bond, we can rewrite

Rn,β
t (H) =

∫ t

0

1√
n ∑

x ̸=−1,0

{
n2LnH

( x
n

)
− (∆β H)( x

n )
}

η̄sn2(x)ds

+
∫ t

0

1√
n

{
n2LnH

(−1
n

)
− (∆β H)

(−1
n

)}
η̄sn2(−1)ds

+
∫ t

0

1√
n

{
n2LnH

( 0
n

)
− (∆β H)

( 0
n

)}
η̄sn2(0)ds.

(18)

The operator ∆β distinguishes of the usual laplacian operator essentially in the domain.
Outside of the macroscopic point 0, for any β , the operator ∆β behaves as the usual lapla-
cian. Besides that, for x ̸=−1,0, the term n2Ln(x) is exactly the discrete laplacian. Hence,
by the classical approximation of the continuous laplacian by the discrete laplacian, the
first integral in (18) is O(1/

√
n) and the constant depends only on H.

Since ∆β H is bounded, in order to show that the sum of the second and third integrals
in (18) goes to zero, it is enough to show that

rn,β
t :=

∫ t

0

1√
n

{
n2LnH

(−1
n

)}
η̄sn2(−1)ds+

∫ t

0

1√
n

{
n2LnH

( 0
n

)}
η̄sn2(0)ds

goes to zero as n →+∞. Recalling the definition of Ln we arrive at

rn,β
t =

∫ t

0

1√
n

{
αn2−β [H( 0

n

)
−H

(−1
n

)]
−n2[H(−1

n

)
−H

(−2
n

)]}
η̄sn2(−1)ds

+
∫ t

0

1√
n

{
n2[H( 1

n

)
−H

( 0
n

)]
−αn2−β [H( 0

n

)
−H

(−1
n

)]}
η̄sn2(0)ds.

(19)
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For each regime of β , namely, β ∈ [0,1), β = 1 and β ∈ (1,+∞], we present a specific
argument to show that rn,β

t vanishes as n →+∞. Let us begin with the

• Case β ∈ [0,1):
Recall that in this case Sβ (R) = S (R) and thus H is smooth. Let

(∆nH)
( x

n

)
= n2[H( x+1

n

)
+H

( x−1
n

)
−2H

( x
n

)]
be the discrete laplacian. Summing and subtracting suitable increments of H in (19), rn,β

t
can be rewritten as∫ t

0

1√
n

{
αn2−β [H( 0

n )−H(−1
n )

]
−n2[H(−1

n )−H(−2
n )

]
− (∆nH)(−1

n )
}

η̄sn2(−1)ds

+
∫ t

0

1√
n

{
n2[H( 1

n )−H( 0
n )
]
−αn2−β [H( 0

n )−H(−1
n )

]
− (∆nH)( 0

n )
}

η̄sn2(0)ds,

plus a negligible term in L2(Pβ
ρ ), since H is smooth and therefore ∆nH is bounded. Then,

we have that

rn,β
t =

∫ t

0

1√
n (αn2−β −n2)

[
H
( 0

n

)
−H

(−1
n

)](
η̄sn2(−1)− η̄sn2(0)

)
ds.

Since n
[
H
( 0

n

)
−H

(−1
n

)]
is bounded, in order to show that rn,β

t goes to zero in L2(Pβ
ρ ) as

n →+∞, it is enough to show that

lim
n→+∞

Eβ
ρ

[(∫ t

0

√
n
{

η̄sn2(−1)− η̄sn2(0)
}

ds
)2]

= 0. (20)

For that purpose we will make use of a comparison with empirical averages on boxes of a
suitable size. Let

η̄ℓ(x) =
1
ℓ

x+ℓ−1

∑
y=x

η̄(y), (21)

denote the centered empirical average of particles in a box of size ℓ. Summing and sub-
tracting the empirical mean at the sites −1 and 0, and applying the elementary inequality
(a+b+ c)2 ≤ 4(a2 +b2 + c2), we bound the expectation in (20) from above by:

4Eβ
ρ

[(∫ t

0

√
n
{

η̄sn2(−1)− η̄ℓ
sn2(−1)

}
ds

)2 ]
+4Eβ

ρ

[(∫ t

0

√
n
{

η̄ℓ
sn2(−1)− η̄ℓ

sn2(0)
}

ds
)2 ]

+4Eβ
ρ

[(∫ t

0

√
n
{

η̄ℓ
sn2(0)− η̄sn2(0)

}
ds

)2 ]
.

In order to estimate the first and last expectations, we use Lemma 7.1, which guarantees
that they are bounded from above by Ct(nβ−1 + ℓ/n), where C is a constant. On the other
hand, a simple computation shows that the remaining expectation is bounded from above
by C̃t2n/ℓ2, where C̃ is a constant. Putting together the previous computations, we have
that

Eβ
ρ

[(∫ t

0

√
n
{

η̄sn2(−1)− η̄sn2(0)
}

ds
)2]

≤C(tnβ−1 +
tℓ
n
)+C̃

t2n
ℓ2 . (22)

Choose ℓ := εn. Therefore, letting n →+∞ and then ε → 0, the claim (20) follows.

• Case β = 1:
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In this case, by the definition of Sβ (R), we have that α{H(0+)−H(0−)}=H(1)(0+)=
H(1)(0−). Since ηs(−1) is bounded,

H
( 0

n

)
−H

(−1
n

)
=
[
H(0+)−H(0−)

]
+O(1/n),

and
n
[
H
(−1

n

)
−H

(−2
n

)]
= H(1)(0−)+O(1/n),

then, it is straightforward to check that the first integral in (19) is of order O(t/
√

n). The
same holds for the second integral. Hence, when β = 1, the expression rn,β

t is O(t/
√

n),
which vanishes as n →+∞.

• Case β ∈ (1,+∞]:

By definition of Sβ (R), since H(1)(0+) = H(1)(0−) = 0, then we can rewrite:

rn,β
t =

∫ t

0
n3/2−β [H( 0

n

)
−H

(−1
n

)](
η̄sn2(−1)− η̄sn2(0)

)
ds.

Since for this range of the parameter β , H is not smooth at the point 0, in order to prove
the claim it is enough to show that:

lim
n→+∞

Eβ
ρ

[(∫ t

0
n3/2−β{η̄sn2(−1)− η̄sn2(0)

}
ds

)2]
= 0.

By Lemma 7.1 and by summing and subtracting ηℓ
sn2(−1) and ηℓ

sn2(0) as done above
in the case β ∈ [0,1), we can bound the previous expectation by C(tn1−β + tℓn1−2β +

t2n3−2β/ℓ2), where C is a constant. Choose ℓ := εn. Therefore, letting n → +∞ and then
ε → 0, the claim follows.

�

Now, recall from (16) that M n
t (H) is a martingale. In the following section we prove

that the sequence {Y n
t ; t ∈ [0,T ]}n∈N is tight. Moreover, we prove that the sequences

{I n
t ; t ∈ [0,T ]}n∈N and {M n

t ; t ∈ [0,T ]}n∈N are tight. Assuming last results, let {kn}n ∈N
be a subsequence such that all the sequences {Y kn

t ; t ∈ [0,T ]}n∈N, {I kn
t ; t ∈ [0,T ]}n∈N and

{M kn
t ; t ∈ [0,T ]}n∈N converge. Let {Yt ; t ∈ [0,T ]}, {It ; t ∈ [0,T ]} and {Mt ; t ∈ [0,T ]}

denote the limit of those sequences.
We want to prove that {Yt ; t ∈ [0,T ]}n∈N is in C ([0,T ],S ′

β (R)) and also that for H ∈
Sβ (R):

Mt(H) = Yt(H)−Y0(H)−
∫ t

0
Ys(∆β H)ds

is a martingale with quadratic variation given by t∥∇β H∥2
2,β . Fix H ∈ Sβ (R). Since we

have that for each n ∈ N, M kn
t (H) is a martingale, we want to show that passing to the

limit in n we obtain that Mt(H) is a martingale. We notice that the limit in distribution of
a uniformly integrable sequence of martingales is a martingale, see Proposition 4.6 of [8].
Therefore, it is enough to show that {M kn

t (H)}n∈N is uniformly integrable. To this end we
notice that by Lemma 7.3 we have that

lim
n→+∞

Eβ
ρ [(M

kn
t (H))2] = 2χ(ρ) t∥∇β H∥2

2,β .

which is enough to conclude.
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Now, we prove that the quadratic variation of Mt(H) is given by t∥∇β H∥2
2,β . Notice

that for each n ∈ N we have that (M kn
t (H))2 −⟨M kn

t (H)⟩ is a martingale. Since its qua-
dratic variation converges to 2χ(ρ) t∥∇β H∥2

2,β we only have to prove that (M kn
t (H))2 is

uniformly integrable. For that purpose we prove that Eβ
ρ [(M

n
t (H))4] is bounded by a con-

stant that does not depend on n. Now, we can employ, for example, Lemma 3 of [1] which
says that there exists a constant C such that

Eβ
ρ [(M

kn
t (H))4]≤C

(
Eβ

ρ [(M
kn
t (H))2]+Eβ

ρ

[
sup

0≤t≤T

∣∣∣M kn
t (H)−M kn

t− (H)
∣∣∣4]).

By Lemma 7.3 the first term on the left hand side of the previous inequality is bounded.
On the other hand, since

sup
0≤t≤T

|M n
t (H)−M n

t−(H)|= sup
0≤t≤T

|Y n
t (H)−Y n

t−(H)| ≤ C(H)√
n

,

the second term on the right hand side of the previous inequality is also bounded, this
finishes the proof.

3.1.2. Convergence at initial time.

Proposition 3.2. Y n
0 converges in distribution to Y0, where Y0 is a gaussian field with

mean zero and covariance given by (10).

Proof. We first claim that, for every H ∈ Sβ (R) and every t > 0,

lim
n→+∞

logEβ
ρ

[
exp{iθY n

0 (H)}
]
=−θ 2

2
χ(ρ)

∫
R

H2(u)du .

Since νρ is a Bernoulli product measure,

logEβ
ρ [exp{iθY n

0 (H)}] = logEβ
ρ

[
exp

{ iθ√
n ∑

x∈Z
η̄0(x)H

( x
n

)}]
= ∑

x∈Z
logEβ

ρ

[
exp

{ iθ√
n

η̄0(x)H
( x

n

)}]
.

Since H is smooth except possibly at x = 0, using Taylor’s expansion the right hand side
of the last expression is equal to

−θ 2

2n ∑
x∈Z

H2
( x

n

)
χ(ρ)+O(1/

√
n).

Taking the limit as n → +∞ and using the continuity of H, the proof of the claim ends.
Replacing H by a linear combination of functions and recalling the Crámer-Wold device,
the proof finishes. �

Remark 3.3. We notice that the result stated above holds true for Yt for any t ∈ [0,T ]. In
particular we conclude that the gaussian white noise is a stationary solution of (12), for
any β ∈ [0,+∞].
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3.2. Tightness. Here we prove tightness of the process {Y n
t ; t ∈ [0,T ]}n∈N. At first we

notice that by the Mitoma’s criterium and Proposition 2.1, it is enough to prove tightness
of the sequence of real-valued processes {Y n

t (H); t ∈ [0,T ]}n∈N, for H ∈ Sβ (R).

Proposition 3.4 (Mitoma’s criterium [12]).
A sequence {xt ; t ∈ [0,T ]}n∈N of processes in D([0,T ],S ′

β (R)) is tight with respect to
the Skorohod topology if and only if the sequence {xt(H); t ∈ [0,T ]}n∈N of real-valued pro-
cesses is tight with respect to the Skorohod topology of D([0,T ],R), for any H ∈ Sβ (R).

Now, to show tightness of the real-valued process we use Aldous’ criterium:

Proposition 3.5. A sequence {xt ; t ∈ [0,T ]}n∈N of real-valued processes is tight with re-
spect to the Skorohod topology of D([0,T ],R) if:

i) lim
A→+∞

limsup
n→+∞

Pβ
ρ

(
sup

0≤t≤T
|xt |> A

)
= 0 ,

ii) for any ε > 0 , lim
δ→0

limsup
n→+∞

sup
λ≤δ

sup
τ∈TT

Pβ
ρ (|xτ+λ − xτ |> ε) = 0 ,

where TT is the set of stopping times bounded by T .

Fix H ∈ Sβ (R). By (16), it is enough to prove tightness of {Y n
0 (H)}n∈N, {I n

t (H); t ∈
[0,T ]}n∈N, and {M n

t (H); t ∈ [0,T ]}n∈N. By Proposition 3.2 the sequence of initial fields
is obviously tight. For the martingale term, the first claim of the Aldous’ criterium is
straightforwardly verified as an application of Doob’s inequality together with (36). By
Lemma 7.6, the first claim can be easily checked for the integral term. It remains to check
the second claim, which is more demanding. For that purpose, fix a stopping time τ ∈ TT .
By the Chebychev’s inequality together with Lemma 7.3 we have that

Pβ
ρ
(∣∣M n

τ+λ (H)−M n
τ (H)

∣∣> ε
)
≤ 1

ε2E
β
ρ
[(

M n
τ+λ (H)−M n

τ (H)
)2]

≤ 1
ε2 2χ(ρ)λ∥∇β H∥2

2,β

≤ 1
ε2 2χ(ρ)δ∥∇β H∥2

2,β ,

which vanishes as δ → 0. In order to check the second claim for the integral term, we use
the same argument as above together with Lemma 7.6 to have that

Pβ
ρ
(∣∣I n

τ+λ (H)−I n
τ (H)

∣∣> ε
)
≤ 1

ε2E
β
ρ
[(

I n
τ+λ (H)−I n

τ (H)
)2]

≤ 1
ε2 δ χ(ρ)∥∇β H∥2

2,β ,

which vanishes as δ → 0. This finishes the proof of tightness.

4. SEMIGROUP RESULTS

Here we present the deduction of the explicit formula for the semigroup T α
t associated

to the following heat equation with a boundary condition of Robin’s type ∂tu(t,x) = ∂ 2
xxu(t,x), t ≥ 0, x ∈ R\{0}

∂xu(t,0+) = ∂xu(t,0−) = α{u(t,0+)−u(t,0−)}, t ≥ 0
u(0,x) = g(x), x ∈ R.

(23)
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Let Tt be the semigroup associated to the heat equation (3). Let T̃ α
t be the semigroup

related to the following partial differential equation on the half-line: ∂tu(t,x) = ∂ 2
xxu(t,x), t ≥ 0, x > 0

∂xu(t,0+) = 2αu(t,0+), t ≥ 0
u(0,x) = g(x), x > 0.

(24)

A direct verification shows that

T α
t g(x) =

{
Ttgeven(x)+ T̃ α

t godd(x) , for x > 0 ,
Ttgeven(x)− T̃ α

t godd(−x) , for x < 0 ,
(25)

is solution of (23). Since, the semigroup Tt has the classical expression given in (6), we are
therefore left to deduce an explicit expression for T̃ α

t . Denote by u the solution of (24) and
consider v = 2αu−∂xu , which is the solution of the following equation ∂tv(t,x) = ∂ 2

xxv(t,x), t ≥ 0, x > 0
v(t,0+) = 0, t ≥ 0
v(0,x) = v0(x), x > 0.

with v0(x) = 2αg(x)−∂xg(x). Last equation is the heat equation with a boundary condition
of Dirichlet’s type. The semigroup T Dir

t v0(x) associated to last equation, is classical and is
given by

T Dir
t v0(x) =

1√
4πt

∫ +∞

0

[
e−

(x−y)2
4t − e−

(x+y)2
4t

]
v0(y)dy . (26)

Then, we get to

v(t,x) =
1√
4πt

∫ +∞

0

[
e−

(x−y)2
4t − e−

(x+y)2
4t

]
{2αg(x)−∂xg(x)}dy .

Solving the ordinary linear differential equation v = 2αu−∂xu gives that

u(t,x) = e2αx
∫ +∞

x
e−2αz v(t,z)dz .

From the last two formulas, we arrive at

T̃ α
t g(x) =

e2αx
√

4πt

∫ +∞

x
e−2αz

∫ +∞

0

[
e−

(z−x)2
4t − e−

(z+x)2
4t

](
2αg(y)−∂yg(y)

)
dydz .

Finally, an integration by parts on the term of the integral above involving ∂yg yields

T̃ α
t g(x) =

e2αx
√

4πt

∫ +∞

x
e−2αz

∫ +∞

0

[
( z−y+4αt

2t )e−
(z−y)2

4t +( z+y−4αt
2t )e−

(z+y)2
4t

]
g(y)dydz .

(27)
Putting this formula together with (25) and (6) we get the statement of Proposition 2.3.

In possess of the expression of all the semigroups, we can proceed to the

Proof of Proposition 2.4. Recall (25). We claim that

lim
α→0

T̃ α
t godd(x) = T Neu

t godd(x) (28)

and
lim

α→+∞
T̃ α

t godd(x) = T Dir
t godd(x) , (29)
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where T Dir
t is given by (26). We observe that proving (28) and (29) is enough to conclude

the proof, since it is of easy verification that

Ttg(x) =

{
Ttgeven(x)+T Dir

t godd(x) , for x > 0 ,
Ttgeven(x)−T Dir

t godd(−x) , for x < 0 ,

and

T Neu
t g(x) =

{
Ttgeven(x)+T Neu

t godd(x) , for x > 0 ,
Ttgeven(x)−T Neu

t godd(−x) , for x < 0 .

Since godd will have no special role in the convergences (28) and (29), we will write just g
instead. We start by showing (28). First, we rewrite (27) to get to

T̃ α
t g(x) =

e2αx
√

4πt

∫ +∞

x
e−2αz

∫ +∞

0

[
( z−y

2t )e
− (z−y)2

4t +( z+y
2t )e

− (z+y)2
4t

]
g(y)dydz

+
2αe2αx
√

4πt

∫ +∞

x
e−2αz

∫ +∞

0

[
e−

(z−y)2
4t − e−

(z+y)2
4t

]
g(y)dydz .

When α → 0, the second parcel on the right hand side of previous equation vanishes. Thus,
we are concerned only with the first parcel. Its limit when α → 0 is

1√
4πt

∫ +∞

0

∫ +∞

x

[
( z−y

2t )e
− (z−y)2

4t +( z+y
2t )e

− (z+y)2
4t

]
g(y)dydz .

Applying Fubini’s Theorem to last expression above gives

1√
4πt

∫ +∞

0
g(y)

∫ +∞

x

[
( z−y

2t )e
− (z−y)2

4t +( z+y
2t )e

− (z+y)2
4t

]
dzdy .

Solving the integral in z, we get that last expression equals to T Neu
t g(x), as claimed.

Now we prove (29). We begin by splitting (27) as

T̃ α
t g(x) =2αe2αx

∫ +∞

x
e−2αz 1

2α

∫ +∞

0

1√
4πt

[
( z−y

2t )e
− (z−y)2

4t +( z+y
2t )e

− (z+y)2
4t

]
g(y)dydz

+2αe2αx
∫ +∞

x
e−2αz

∫ +∞

0

1√
4πt

[
e−

(z−y)2
4t − e−

(z+y)2
4t

]
g(y)dydz .

(30)

Since ∫ +∞

x
e−2αz dz =

e−2αx

2α
,

we can see that the first parcel on right hand side of (30) is an average of the function

1
2α

∫ +∞

0

1√
4πt

[
( z−y

2t )e
− (z−y)2

4t +( z+y
2t )e

− (z+y)2
4t

]
g(y)dy (31)

over the finite measure 1[x,+∞)(z)e−2αz dz. Since (31) goes to zero when α →+∞, we are
only concerned with the second parcel in (30). By Fubini’s Theorem, it is equal to

e2αx
√

4πt

∫ +∞

0
g(y)

∫ +∞

x
2αe−2αz

[
e−

(z−y)2
4t − e−

(z+y)2
4t

]
dzdy .
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Performing an integration by parts to the integral in z yields

e2αx
√

4πt

∫ ∞

0
g(y)

[
− e−2αz

(
e−

(z−y)2
4t − e−

(z+y)2
4t

)∣∣∣z=+∞

z=x

+
∫ +∞

x
e−2αz

(
− (y−z)

2t e−
(z−y)2

4t − (y+z)
2t e−

(z+y)2
4t

)
dz

]
dy

which is equal to

T Dir
t g(x)− e2αx

√
4πt

∫ +∞

0
g(y)

[∫ +∞

x
e−2αz

(
(y−z)

2t e−
(z−y)2

4t + (y+z)
2t e−

(z+y)2
4t

)
dz

]
dy .

Multiplying and dividing the integral term above by 2α , and then applying the same ar-
gument on the average previously used, we get that the limit when α → +∞ is given by
T Dir

t g(x), finishing the proof of the pointwise convergence.
In order to conclude the Lp(R) convergence, we notice that the semigroups are written

in terms of the gaussian kernel, from which is not difficult to get a uniform bound in α .
Invoking the Dominated Convergence Theorem the proof finishes. �

5. PROOF OF PROPOSITION 2.5

The existence of the Ornstein-Uhlenbeck process solution of (8) was already proved in
Section 3. In this section we guarantee that there exists at most one random element Y
taking values in C ([0,T ],S ′

β (R)) such that i) and ii) of Proposition 2.5 hold. The next

lines follow closely from [11, page 307]. The key result is the equality T β
t+ε H −T β

t H =

ε∆β T β
t H + o(ε), which is well-known for β ∈ [0,1). Since the semigroups T α

t and T Neu
t

are written in terms of the gaussian kernel, the same property holds for them, provided H
is in the corresponding domain. In what follows, the same arguments apply for all cases of
β , and we will just write T β

t for the corresponding semigroup.

Fix H ∈ Sβ (R) and s > 0. Recall from (11) that Mt(H)(2χ(ρ)∥∇β H∥2
2,β )

−1/2 is a
standard Brownian Motion. Therefore, by Itô’s Formula, the process {X s

t (H) ; t ≥ s} de-
fined by

X s
t (H) = exp

{
1
2
(t − s)∥∇β H∥2

2,β + i
(
Yt(H)−Ys(H)−

∫ t

s
Yr(∆β H)dr

)}
is a martingale. We affirm now that the process {Zt , 0 ≤ t ≤ S} defined by

Zt = exp
{1

2

∫ t

0
∥∇β T β

S−rH∥2
2,β dr+ iYt(T

β
S−tH)

}
is also a martingale. To prove this, consider two times 0 ≤ t1 < t2 ≤ S and a partition of
the interval [t1, t2] in n intervals of equal size, or else, t1 = s0 < s1 < · · · < sn = t2 , with
s j+1 − s j = (t2 − t1)/n. Observe now that

n−1

∏
j=0

X
s j
s j+1(T

β
S−s j

H) =exp

{
1
2n

n−1

∑
j=0

∥∇β T β
S−s j

H∥2
2,β

+ i
n−1

∑
j=0

(
Ys j+1(T

β
S−s j

H)−Ys j(T
β

S−s j
H)−

∫ s j+1

s j

Yr(∆β T β
S−s j

H)dr
)}

.
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As n →+∞, the first sum inside the exponential above converges to
1
2

∫ t2

t1
∥∇β T β

S−rH∥2
2,β dr .

because it is a Riemann sum. The second sum inside the exponential can be rewritten as

Yt2(T
β

S−t2+ 1
n
H)−Yt1(T

β
S−t1

H)+
n−1

∑
j=1

(
Ys j(T

β
S−s j−1

H −T β
S−s j

H)−
∫ s j+1

s j

Yr(∆β T β
S−s j

H)dr
)
.

Since Y ∈ C ([0,T ],S ′
β (R)), since T β

t H is continuous in time and applying the expansion

T β
t+ε H−T β

t H = ε∆β T β
t H+o(ε), we conclude that the almost sure limit of the the previous

expression is just Yt2(T
β

S−t2
H)−Yt1(T

β
S−t1

H) . Thus, we have obtained that

lim
n→+∞

n−1

∏
j=0

X
s j
s j+1(T

β
S−s j

H)= exp

{
1
2

∫ t2

t1
∥∇β T β

S−rH∥2
2,β dr+i

(
Yt2(T

β
S−t2

H)−Yt1(T
β

S−t1
H)

)}
,

which equals to
Zt2
Zt1

almost surely. Since the complex exponential is bounded, the Dom-

inated Convergence Theorem ensures also the L1 convergence, which on the other hand
implies that

Eβ
ρ

[
G

Zt2
Zt1

]
= lim

n→+∞
Eβ

ρ

[
G

n−1

∏
j=0

X
s j
s j+1(T

β
S−s j

H)
]
,

for any bounded function G. Take G bounded and Ft1 -measurable. Since for any H ∈
Sβ (R), the process X s

t (H) is a martingale, by taking the conditional expectation with
respect to Fsn−1 we can see that

Eβ
ρ

[
G

n−1

∏
j=0

X
s j
s j+1(T

β
S−s j

H)
]
= Eβ

ρ

[
G

n−2

∏
j=0

X
s j
s j+1(T

β
S−s j

H)
]
.

By induction, we conclude that

Eβ
ρ

[
G

Zt2
Zt1

]
= Eβ

ρ

[
G
]
,

for any G bounded and Ft1 -measurable, what proves that {Zt , t ≥ 0} is a martingale. From
Eβ

ρ [Zt |Fs] = Zs, we get

Eβ
ρ

[
exp

{1
2

∫ t

0
∥∇β T β

S−rH∥2
2,β dr+ iYt(T

β
S−tH)

}∣∣∣Fs

]
= exp

{1
2

∫ s

0
∥∇β T β

S−rH∥2
2,β dr+ iYs(T

β
S−sH)

}
,

which in turn gives

Eβ
ρ

[
exp

{
iYt(T

β
S−tH)

}∣∣∣Fs

]
= exp

{
− 1

2

∫ t

s
∥∇β T β

S−rH∥2
2,β dr+ iYs(T

β
S−sH)

}
.

Since T β
S−sH = T β

t−sT
β

S−tH, performing a change of variables in H and then a change of
variables in time, we are lead to

Eβ
ρ

[
exp

{
iYt(H)

}∣∣∣Fs

]
= exp

{
− 1

2

∫ t−s

0
∥∇β T β

r H∥2
2,β dr+ iYs(T

β
t−sH)

}
.

Replacing H by xH, where x ∈ R, we get that conditionally to Fs, the random variable
Yt(H) has gaussian distribution of mean Ys(T

β
t−sH) and variance

∫ t−s
0 ∥∇β T β

r H∥2
2,β dr.
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Successive conditioning implies the uniqueness of the finite dimensional distributions of
the process {Yt(H) ; t ∈ [0,T ]}, which in turn gives uniqueness in law of the random ele-
ment Y , finishing the proof.

6. CENTRAL LIMIT THEOREM FOR THE CURRENT

In this section we follow [7, 10, 14]. Recall the definition of the current Jx,x+1(t) given
in Subsection 2.6. Since the system starts from the equilibrium νρ and the dynamics is
symmetric, then Eβ

ρ [Jn
x,x+1(t)] = 0, for any time t ≥ 0 and any site x ∈ Z.

For any x ∈ Z, if the number of particles in the configuration η is finite, we can write

Jn
x,x+1(t) = ∑

y≥x+1

(
ηtn2(y)−η0(y)

)
.

In such case, the current through the bond {⌊un⌋−1,⌊un⌋} can be written in terms of the
density fluctuation field Y n

t as

Jn
u (t)√

n
= Y n

t (Hu)−Y n
0 (Hu),

where Hu is the Heaviside function, or else, Hu(x) = 1[u,+∞)(x). Our goal is to take the
limit as n →+∞ in the previous equality. At this point we face two problems. Firstly, the
equality itself makes no sense unless the configuration η has a finite numbers of particles.
Secondly, the Heaviside function does not belong to the space Sβ (R). To overcome these
difficulties, we notice that by the conservation on the number of particles it holds that

Jx−1,x(t)− Jx,x+1(t) = ηt(x)−η0(x). (32)

Next, we define a sequence of functions Gu
j(x) := (1− x−u

j )+Hu(x), approximating the
Heaviside function Hu. For these functions, the process Y n

t (Gu
j) makes sense, no matter

the finiteness of the total number of particles. A discrete integration by parts together with
(32) gives

Y n
t (Gu

j)−Y n
0 (Gu

j) =
1√
n ∑

x∈Z

(
Gu

j(
x+1

n )−Gu
j(

x
n )
)

Jx,x+1(t) .

As j → +∞, the derivative of Gu
j becomes zero except at the discontinuity point x = u.

This motivates the next lemma:

Lemma 6.1. For every t ≥ 0 and for every β ∈ [0,+∞],

lim
j→+∞

Eβ
ρ

[(Jn
u (t)√

n
− (Y n

t (Gu
j)−Y n

0 (Gu
j))

)2]
= 0 ,

uniformly over n.

Proof. Recall (16) and (17). A simple computation together with (32) shows that:

Jn
u (t)√

n
− (Y n

t (Gu
j)−Y n

0 (Gu
j)) = M n

t (Hu −Gu
j)+I n

t (Hu −Gu
j)

By the inequality (x+ y)2 ≤ 2x2 +2y2, in order to prove the lemma, it is enough to show
that the second moment of the two terms on the right hand side of the previous equality
vanish as j →+∞, uniformly over n.

Taking f = Hu −Gu
j in Lemma 7.3 we have that:

Eβ
ρ [(M

n
t ( f ))2]≤ t

{
2χ(ρ)

[
1
n ∑

x ̸=−1

(
∇n f ( x

n )
)2

+n1−β ( f ( 0
n )− f (−1

n )
)2
]
+O f (1/ j)

}
.
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Hence, by the definition of f we can bound the previous expression by 2χ(ρ)/ j, which
vanishes as j →+∞. On the other hand, taking f = Hu −Gu

j in Lemma 7.6, we get to

Eβ
ρ [(I

n
t ( f ))2]≤ 80 t

{
χ(ρ)

[
1
n ∑

x ̸=−1

(
∇n f ( x

n )
)2

+n1−β ( f ( 0
n )− f (−1

n )
)2
]
+O f (1/ j)

}
,

which can be bounded from above by 80 t χ(ρ)/ j and vanishes as j → +∞, finishing the
proof of this lemma. �

Proof of the Theorem 2.7. The proof follows from the previous lemma and Theorem 2.6.
We start with some considerations that work for all β ∈ [0,+∞].

Fix j ∈ N and approximate each Gu
j in L2(R) by a sequence of smooth functions of

compact support, let us say Hu
k, j. Moreover, choose Hu

k, j constant in a neighborhood of
zero, which ensures that Hu

k, j ∈ Sβ (R). For fixed t ≥ 0 we have that

Eβ
ρ
[(

Y n
t (Hu

k, j)−Y n
t (Gu

j)
)2]≤ χ(ρ)∥Hu

k, j −Gu
j∥2

2 ,

which vanishes as k → +∞, by hypothesis. Hence Y n
t (Hu

k, j) converges to Y n
t (Gu

j) in

L2(Pβ
ρ ), as k →+∞. By the Theorem 2.6, we have that Y n

t (Hu
k, j) converges to Yt(Hu

k, j) in
distribution, as n →+∞. On the other hand, since for all H,G ∈ Sβ (R),

Eβ
ρ [Yt(H)Ys(G)] = χ(ρ)

∫
R

T β
t−sH(v)G(v)dv , (33)

and since Yt is linear, we have that Yt(Hu
k, j) converges to Yt(Gu

j) in L2, as k →+∞.
As a consequence, Y n

t (Gu
j) converges to Yt(Gu

j) in distribution, as n → +∞. By the
previous lemma, (Y n

t (Gu
j)−Y n

0 (Gu
j)) j∈N is a Cauchy sequence uniformly in n. Then,

(Yt(Gu
j)−Y0(Gu

j)) j∈N is a Cauchy sequence and converges, as j →+∞, to some random
variable with gaussian distribution. We denote such limit by Yt(Hu)−Y0(Hu). Therefore,
the normalized current Jn

u (t)/
√

n converges to a gaussian random variable, which formally
reads as Yt(Hu)−Y0(Hu), where Yt is the solution of the Ornstein-Uhlenbeck equation
(12). Since the distributions of Yt(Hu) are gaussian, this implies the limit current to be
gaussian distributed.

The same argument can be applied to show the same result for any vector (Ju(t1), ..,Ju(tk)).
We claim that to compute the covariance, it is enough to compute the variance. Re-

versibility plus a simple computation together with (33) yields

Eβ
ρ [(Ju(t))2] =2Eβ

ρ [Y0(Hu)(Y0(Hu)−Yt(Hu))]

=2χ(ρ)⟨Hu,Hu −T β
t Hu⟩ .

(34)

Above we used (33) despite Hu is not in Sβ (R). Nevertheless, by approximating argu-
ments as above one can get that equality for Hu. Then, linearity shows that the covariance
can be written as

Eβ
ρ [Ju(t)Ju(s)] = χ(ρ)

[
⟨Hu,Hu −T β

t Hu⟩+ ⟨Hu,Hu −T β
s Hu⟩−⟨Hu,Hu −T β

t−sHu⟩
]

=
1
2

{
Eβ

ρ [(Ju(t))2]+Eβ
ρ [(Ju(s))2]−Eβ

ρ [(Ju(t − s))2]
}
.

Therefore, we only need to compute the variance for each one of the regimes of β .

• Case β ∈ [0,1).
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Recalling (6), we have that

⟨Hu,Hu −T β
t Hu⟩=

∫ +∞

u

(
1−

∫ +∞

u

1√
4πt

e−
(x−y)2

4t dy
)

dx =

√
t
π
.

From (34) we get

Eβ
ρ [Ju(t)Ju(s)] = χ(ρ)

(√ t
π
+

√
s
π
−
√

t − s
π

)
.

• Case β = 1.

Recalling Proposition 2.3, we have that ⟨Hu,Hu −T β
t Hu⟩ is equal to∫ +∞

u

(
1−

∫ −u

−∞

1
2
√

4πt
e−

(x−y)2
4t dy−

∫ +∞

u

1
2
√

4πt
e−

(x−y)2
4t dy

− e2αx
∫ +∞

x

e−2αz

2

∫ +∞

u

{ z− y+4αt
2t
√

4πt
e−

(z−y)2
4t +

z+ y−4αt
2t
√

4πt
e−

(z+y)2
4t

}
dydz

)
dx ,

which can be rewritten as∫ +∞

u

(1
2
+

∫ −u

−u

1
2
√

4πt
e−

(x−y)2
4t dy

− e2αx
∫ +∞

x

e−2αz

2

{
−

∫ z+u

z−u

v
2t
√

4πt
e−

v2
4t dv+2α −2αΦ2t(z−u)+2αΦ2t(z+u)

}
dz
)

dx.

A long but elementary computation shows that

⟨Hu,Hu −T β
t Hu⟩=

√
t
π
+

e4αue4α2tΦ2t(2u+4αt)−Φ2t(2u)
2α

,

which from (34) is enough to conclude.

• Case β ∈ (1,+∞].
Recalling (7), we have that

⟨Hu,Hu −T β
t Hu⟩=

∫ +∞

u

(
1−

∫ +∞

u

1√
4πt

e−
(x−y)2

4t dy−
∫ +∞

u

1√
4πt

e−
(x+y)2

4t dy
)

dx

=

√
t
π

[
1− e−u2/t

]
+2uΦ2t(2u) ,

which from (34) concludes the proof. �

Proof of Corollary 2.8. In order to prove the result notice that gaussian processes are char-
acterized by its covariance, and the limit of the covariance guarantees the convergence of
the processes in the sense of finite dimensional distributions. Thus, it is sufficient to show
that

lim
α→0

e4αu+4α2tΦ2t(2u+4αt)−Φ2t(2u)
2α

= 2uΦ2t(2u)−
√

t
π

e−u2/t

and

lim
α→+∞

e4αu+4α2tΦ2t(2u+4αt)−Φ2t(2u)
2α

= 0.

The first limit comes out by L’Hôpital’s Rule and the second one is consequence of the
estimate

∫ +∞
a e−x2/2dx ≤ 1

a e−a2/2, for a ∈ R. �
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7. SOME USEFUL L2 ESTIMATES

In this section we prove what we call Local Replacement which is fundamental in char-
acterizing the limit points of the density fluctuation field.

For a function g ∈ L2(νρ), we denote by Dn(g) the Dirichlet form of the function g,
defined as: Dn(g) = ⟨g,−Lng⟩ρ . An elementary computation shows that

Dn(g) = ∑
x∈Z

ξ n
x,x+1

2

∫ (
g(ηx,x+1)−g(η)

)2
νρ(dη) . (35)

Lemma 7.1 (Local Replacement).
For β ∈ [0,+∞], for ℓ≥ 1 and for x =−1 it holds that

Eβ
ρ

[(∫ t

0
{η̄sn2(x)− η̄ℓ

sn2(x)}ds
)2]

≤ 80t
n2 χ(ρ)

(
αnβ + ℓ

)
.

In order to prove last lemma, we use the following result:

Lemma 7.2. For β ∈ [0,+∞], for g ∈ L2(νρ), for a constant A > 0 and for x =−1, it holds
that ∫

{η̄(x)− η̄ℓ(x)}g(η)νρ(dη)≤ Aχ(ρ)(αnβ + ℓ)+
1
A

Dn(g),

where Dn(g) is the Dirichlet form, see (35).

Proof. In order to prove the previous lemma, we notice that by the definition of the empir-
ical average given in (21), we are able to write the integral in the statement of the lemma
as

1
ℓ

x+ℓ−1

∑
y=x

y−1

∑
z=x

∫
{η(z)−η(z+1)}g(η)νρ(dη).

Writing the previous expression as twice its half and performing the change of variables
η 7→ ηz,z+1, for which the measure νρ is invariant, we get to

1
2ℓ

x+ℓ−1

∑
y=x

y−1

∑
z=x

∫
(η(z)−η(z+1))(g(η)−g(ηz,z+1))νρ(dη).

Now, by the Cauchy-Schwarz inequality we bound last expression by

1
2ℓ

x+ℓ−1

∑
y=x

y−1

∑
z=x

A
ξ n

z,z+1

∫
(η(z)−η(z+1))2νρ(dη)

+
1
2ℓ

x+ℓ−1

∑
y=x

y−1

∑
z=x

ξ n
z,z+1

A

∫
(g(η)−g(ηz,z+1))2νρ(dη).

To finish the proof it is enough to recall (35).
�

Proof of Lemma 7.1. By Proposition A1.6.1 of [11] we have that

Eβ
ρ

[(∫ t

0
{η̄sn2(x)− η̄ℓ

sn2(x)}ds
)2]

≤ 20 t∥η̄(x)− η̄ℓ(x)∥2
−1.

= 20 t C sup
g∈L2(νρ )

{
2
∫
{η̄(x)− η̄ℓ(x)}g(η)νρ(dη)−n2Dn(g)

}
≤ 20 t C sup

g∈L2(νρ )

{
2Aχ(ρ)(nβ + ℓ)+

2
A

Dn(g)−n2Dn(g)
}
.
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In last inequality we used the Schwarz inequality together with the previous lemma. Taking
2/A = n2 the claim follows. �

Lemma 7.3. Fix H ∈ Sβ (R). For β ∈ [0,+∞] and for any t ≥ 0:

Eβ
ρ
[
(M n

t (H))2]= t
{

2χ(ρ)
[

1
n ∑

x ̸=−1

(
∇nH( x

n )
)2

+αn1−β (H( 0
n )−H(−1

n )
)2
]
+OH(

1
n )
}

(36)

and
lim

n→+∞
Eβ

ρ [(M
n
t (H))2] = 2χ(ρ) t∥∇β H∥2

2,β ,

where M n
t (H) is the martingale defined in (16).

Proof. The quadratic variation of M n
t (H) is given by

⟨M n(H)⟩t =
∫ t

0
n2
[
LnY

n
s (H)2 −2Y n

s (H)LnY
n

s (H)
]
ds

A simple computation shows that

⟨M n(H)⟩t =
∫ t

0

1
n ∑

x ̸=−1
(ηsn2(x)−ηsn2(x+1))2

[
n
(
H( x+1

n )−H( x
n )
)]2

ds

+
∫ t

0
αn1−β (ηsn2(−1)−ηsn2(0))2(H( 0

n )−H(−1
n )

)2ds.

(37)

To finish the first claim of the lemma is enough to take expectation with respect to νρ in
last expression.

Now, we prove the second claim. Since for all β ∈ [0,+∞], H ∈ S (R\{0}), the first
term on the right side of (36) converges to 2χ(ρ) t∥∇β H∥2

2, as n → +∞. To finish the
proof, it is enough to analyze the second term on the right side of (36). For β < 1 since
H ∈ S (R), then by Taylor’s expansion is it easy to check that the second term above is of
order OH(n−β ), which also vanishes as n → +∞. For β > 1, the second term on the right
side of (36) is bounded from above by tn1−β 4∥H∥2

∞, which vanishes as n → +∞. Finally,
for β = 1, we use Taylor’s expansion and the fact that α{H(0+)−H(0−)}= H(1)(0−) =
H(1)(0+) to show that it converges, as n → +∞, to 2χ(ρ) t

(
H(1)(0+)

)2. This concludes
the proof. �

Corollary 7.4. Fix H ∈ Sβ (R). For β ∈ [0,+∞] and for any t ≥ 0:

|⟨M n(H)⟩t | ≤ t
{

1
n ∑

x ̸=−1

(
H(1)( x

n )
)2

+n1−β (H( 0
n )−H(−1

n )
)2

+OH(
1
n )
}
. (38)

Proof. It is enough to use the triangular inequality in equation (37), together with the fact
that (ηsn2(x)−ηsn2(x+1))2 ≤ 1, for all x ∈ Z and s ≥ 0. �

Lemma 7.5. Let g in L2(νρ) and {Fn}n∈N a sequence of functions Fn : R → R. For any
constant A > 0,∫

∑
x∈Z

Fn(
x
n ){η(x)−η(x+1)}g(η)νρ(dη) ≤ Aχ(ρ) ∑

x∈Z

1
ξ n

x,x+1

(
Fn(

x
n )
)2

+ 1
A Dn(g),

where Dn(g) is the Dirichlet form given in (35).
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Proof. Rewriting the expression above as twice the half and making the transformation
η 7→ ηz,z+1 (for which the probability νρ is invariant), we have∫

∑
x∈Z

Fn(
x
n ){η(x)−η(x+1)}g(η)νρ(dη)

= 1
2

∫
∑
x∈Z

Fn(
x
n ){η(x)−η(x+1)}{g(η)−g(ηx,x+1)}νρ(dη).

By Cauchy-Schwarz’s inequality, for any A > 0, we bound the previous expression from
above by

1
2 ∑

x∈Z

A
ξ n

x,x+1

(
Fn(

x
n )
)2

∫
{η(x)−η(x+1)}2 νρ(dη)

+ 1
2 ∑

x∈Z

ξ n
x,x+1

A

∫
{g(η)−g(ηx,x+1)}2 νρ(dη).

This finishes the proof. �
Lemma 7.6. Fix H ∈ Sβ (R). For β ∈ [0,+∞] and for any t ≥ 0:

Eβ
ρ

[(
I n

t (H)
)2
]
≤ 80 t χ(ρ)

{
1
n ∑

x ̸=−1

(
∇nH( x

n )
)2

+n1−β [H( 0
n

)
−H

(−1
n

)]2
}
, (39)

where ∇nH
( x

n

)
= n

[
H
( x+1

n

)
−H

( x
n

)]
and

limsup
n→+∞

Eβ
ρ

[(
I n

t (H)
)2
]
≤ 80 t χ(ρ)∥∇β H∥2

2,β ,

where I n
t (H) was defined in (17).

Proof. Recall the definition of I n
t (H) given in (17). A simple computation shows that

I n
t (H) =

∫ t

0

√
n ∑

x ̸=−1,0

{
∇nH

( x
n

)
−∇nH

( x−1
n

)}
ηsn2(x)ds

+
∫ t

0

√
n
{

∇nH
( 0

n

)
ηsn2(0)−∇nH

(−2
n

)
ηsn2(−1)

}
ds

+
∫ t

0
n3/2−β [H( 0

n

)
−H

(−1
n

)]
{ηsn2(−1)−ηsn2(0)}ds .

Last expression can be rewritten as∫ t

0
∑
x∈Z

Fn
( x

n

)
{ηsn2(x)−ηsn2(x+1)},

where

Fn
( x

n

)
=

 n3/2−β [H( 0
n

)
−H

(−1
n

)]
, if x =−1,

√
n ∇nH

( x
n

)
, otherwise.

By Proposition A1.6.1 of [11], we have that

Eβ
ρ

[(
I n

t (H)
)2
]
≤ 20t sup

g∈L2(νρ )

{
2
∫

∑
x∈Z

Fn
( x

n

)
{η(x)−η(x+1)}g(η)νρ(dη)−n2Dn(g)

}
.

By Lemma 7.5, last expression is bounded from above by

20t sup
g∈L2(νρ )

{
2Aχ(ρ) ∑

x∈Z

1
ξ n

x,x+1

(
Fn(

x
n )
)2

+ 2
A Dn(g)−n2Dn(g)

}
.
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Taking A = 2
n2 and by the definition of Fn the proof of the first claim ends.

To prove the second one, we notice the following. The first term on the right hand side
of (39) converges to t χ(ρ)∥∇β H∥2

2. The second term on the right hand side of (39) can be
analyzed as in the proof of Lemma 7.3. �
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