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Abstract

In this work we develop some mathematical methods for the Boltzmann equa-

tion in the context of chemically reactive gases. The problems here addressed

have practical applications on several areas, namely combustion and other

engineering applications as well as chemical physics.

First, we study the reaction heat influence on the steady detonation wave.

Then, we analyze the influence of both the reaction heat and the activation

energy, on the stability spectrum of the steady detonation wave. Finally,

we thoroughly construct the simple reacting spheres theory for a quaternary

reactive mixture, derive the mathematical properties related to the consis-

tency of the SRS theory and deduce the explicit expressions of the collisional

operators’ kernels of the linearized SRS system.

We tried to present this work as clear and complete as possible in order to

allow to those less familiarized with the kinetic theory of gases to the un-

derstand the developments presented.

Although it was not our purpose to describe exhaustively the existing works

on the matters here addressed, those we considered important on the contex-

tualization and grounding of the work developed in this thesis are presented.
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Resumo

Nesta tese desenvolveram-se alguns métodos matemáticos para tratar a equação

de Boltzmann no contexto dos gases quimicamente reativos. Os problemas

aqui abordados têm diversas aplicações práticas, refira-se por exemplo a com-

busto e outras aplicações da engenharia bem como da f́ısica e qúımica.

Primeiro estuda-se a influência do calor de reação na onda de detonação

estacionária. Em seguida, analisa-se a influência do calor de reação, bem

como da energia de activação, no espetro de estabilidade da onda de de-

tonação estacionária. Finalmente, contrói-se, de forma detalhada, a teoria

das “siple reacting spheres” para uma mistura quaternária reativa, deduzem-

se as propriedades matemáticas relacionadas coma consistência da teoria SRS

e deduzem-se as expressções expĺıcitas dos núcleos dos operadores colisionais

para o sistema SRS linearizado.

Procurou-se estruturar a tese de uma forma clara e to completa quanto o

possvel, de modo a possibilitar que aqueles menos familiarizados com a teoria

cinética de gases fossem capazes de acompanhar os desenvolvimentos apre-

sentados.

Apesar de não ser nosso objectivo descrever de forma exaustiva os diversos

trabalhos que abordam os temas aqui tratados, não deixamos de apresentar

os que consideramos serem importantes na contextualização e fundamentação

do trabalho desenvolvido.
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List of symbols

A affinity

Ai gas mixture constituent

ci velocity of a particle of the constituent Ai

D detonation wave velocity

Ei formation energy of the constituent Ai

fi distribution function of the constituent Ai

f̂i weighted distribution function of the constituent Ai

fM
i Maxwellian distribution function of mechanical equilibrium

gsi relative velocity ci − cs

H residual function in linear stability calculations

H Boltzmann H-function

k Boltzmann constant

LE
i linearized elastic operator of the constituent Ai

LR
i linearized reactive operator of the constituent Ai

L̂i linearized weighted operator of the constituent Ai

mi molecular mass of the constituent Ai

Mi Maxwellian distribution function of thermodynamical equilibrium

M molecular mass of the reactants (m1 +m2) and products (m3 +m4)

ni number density of the constituent Ai

pi pressure of the constituent Ai

QR reaction heat

QE
i elastic collisional operator of the constituent Ai

QR
i reactive collisional operator of the constituent Ai

Qi weighted linearized elastic operator

pilr pressure tensor component of the constituent Ai
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qil heat flux component of constituent Ai

Ri weighted linearized reactive operator

T temperature of the gas mixture

Ti weighted linearized “hybrid” operator

tc characteristic time

xF spacial position of the final state in the steady detonation structure

xs normalized steady variable in the detonation structure

x0 spatial position of the shock front in the steady detonation structure

x+ spatial position of the state ahead of the shock front in the steady

detonation structure

ui diffusion velocity of the constituent Ai

vi velocity of the constituent Ai

z∗ steady detonation solution in the stability analysis

z̄ space disturbance in the stability analysis

α perturbation growth rate of the normal mode approach in the

stability analysis

β perturbation frequency of the normal mode approach in the

stability analysis

βij steric factor for the collision between constituents Ai and Aj

δrl Kronecker’s delta

ǫ unit vector along the the line passing through the centers of the

spheres at the moment of impact

Γij threshold velocity of the reactive collisions in the SRS theory

γ ratio of specific heats

γi relative translational energy

σ2
is elastic cross section of constituents Ai and As

σ microscopic entropy

σ⋆
ij
2 reactive cross section of constituents Ai and Aj

µi chemical potential of the constituent Ai

µij reduced mass of constituents Ai and Aj
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νi stoichiometric coefficient of the constituent Ai

ρi mass density of the constituent Ai

τi reaction rate of the constituent Ai

Θ Heaviside step function

εi activation energy of the constituent Ai

ξ1, ξ2, ξ relative velocity c1 − c2

ξ3, ξ4, ξ
′ relative velocity c3 − c4

ζi peculiar velocity of the constituent Ai
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Introduction

The dynamics of rarefied gases is a complex subject with several real life

applications. In aerospace engineering its application is obvious because the

atmospheric density decreases with altitude. In addition, there are several

other fields in which this subject has been applied, namely environmental

engineering, vacuum industry, ionized gases, electrons behavior, swarms and

crawls dynamics and nano-science, among others [19, 31].

As it deals with chemically reactive systems, the dynamics of rarefied mix-

tures can be applied to engineering problems, such as combustion crystal

growth, atmospheric reentry or chemical reactor on the modulation of pollu-

tant formation, chemical vapor deposition reactors, laminar flame extinction

limits or gas dissociation behind shocks around space vehicles [36].

The classical fluid dynamics, using the Navier-Stokes partial differential equa-

tions, describes very accurately the spatio-temporal evolution of a gas. These

equations model the behavior of some macroscopic variables such as den-

sity, velocity or temperature. They are derived using the conservation prin-

ciples and additional hypothesis that relate qualitatively the transportation

of mass, linear momentum and energy with macroscopic variables. These hy-

pothesis introduce unknown transport coefficients of diffusion, viscosity and

thermic conductivity on the fluid dynamics equations, for which experimen-

tal data is available only in some particular cases.

One of the main goals of the kinetic theory is to explain the macroscopic

evolution of a rarefied gas through the analysis of the microscopic dynamics

17



of the constituent gas particles [31, 51, 69].

When one presents a description of the gas dynamics, starting from the kine-

tic theory, the transport coefficients, as well as all the macroscopic variables,

are explicitly obtained through the molecular interaction laws. In fact, the

kinetic theory allows the establishment of connections between the different

coefficients and provides qualitative results which agree with the ones ob-

tained trough the classical gas dynamics. Moreover, its constructive process

allows the correction of the qualitative hypothesis adopted by the classical

gas dynamics [31].

The exact dynamics of all particles that constitute the gas, in terms of the

Newton equation, could be used to describe the behavior of the gas. Ho-

wever, in practice, this conceptual tool cannot be used, since it requires too

much information. On the other hand, a strictly stochastic description would

not permit the connection between the Newton equations, which describe the

individual movement of each particle, and the spacio-temporal evolution of

the macroscopic properties of a gas. The Boltzmann equation lies between

those two extremes playing a central role in the kinetic theory [69].

The Boltzmann equation, created in 1872 by Ludwing Boltzman, is an integro-

differential equation which describes the evolution of the state of a rarefied

gas. Its properties description, its multiple applications as well as its limita-

tions will be addressed throughout this work.

Solving the Boltzmann equation is a rather complex task. To cope with this

problem, a series of methods were created and simplifications were made.

Analytical methods of approximate solutions, as those proposed by Grad

and by Chapman and Enskog, as well as some simplified collisional models,

like the Bhatnagar-Gross-Krook, BGK, discrite velocity models and linear

models, enable the maintenance of the major properties of the original equa-

tion simplifying the problem. On the other hand, the range of applications

of the Boltzmann equation have grown way beyond the original one, i.e.,

dealing with the behavior of a rarefied gas with only one constituent. In

18



fact, several generalizations of the Boltzmann equation have been developed

by several authors to include relativistic or quantic effects, energy dissipa-

tion phenomena and chemical reactions. For a descriptive overview about

methods of approximate solutions, simplified collisional models and some re-

levant extensions of the Boltzmann equation to more evolved systems, see

for example, the handbook by Villani [85] and the references therein cited.

It should be noticed that a series of numerical techniques have been develo-

ped in order to overcome the underlaying analytic difficulties. Furthermore,

the numerical simulations have permitted to ease the constraints that arise

from the lack of information concerning the experimental studies [19].

In this work, we deal with chemically reactive mixture. In this context we

study the detonation wave problem and the linear stability of the steady

detonation wave. In both these problems we investigate the contribution of

the reaction heat. We also construct a specific kinetic model, starting from

some properties of the classical mechanics and some basic physical laws.

Thesis’ structure

The work developed in this thesis is organized in four chapters. Chapter 1

contains a general presentation of the relevant concepts and main properties

of the reactive Boltzmann equation. After a brief discussion on the original

Boltzmann equation, we explain how the microscopic variables can be used

to obtain the macroscopic variables. Some important concepts, such as the

elastic and chemical equilibrium and the Maxwell distribution function, are

presented. We also present the H-theorem and discuss its relation with the

concept of entropy. All these contents have already been presented in litera-

ture and are here briefly reviewed in order to exhibit the consistency of this

reactive extension of the Boltzmann equation.

In Chapter 2 we address the steady detonation waves. We start by positio-

ning the problem and the adopted model, mentioning some of its main cha-

racteristics and limitations and doing some comparisons with other existing

19



theories. Then we describe the microscopic dynamics, the adopted distri-

bution function and the motivation for that choice. Afterwards we briefly

describe the generic features of a steady detonation wave and present the

mathematical description for the steady detonation wave that results from

the adopted model and distribution function. Finally we present and discuss

some numerical results, giving special emphasis on the influence that the

reaction heat has on the behavior of the steady detonation wave.

In Chapter 3 we deal with the problem of linear stability of the steady de-

tonation wave. After a brief presentation of the motivations for the study of

this problem we address some of the most important works that dealt with

the same problem. We give special attention to the ones that were the start

point for the approach here used. Then we deduce the problem formulation

in which a closure condition is required. The physical meaning and the rea-

son for our choice is also discussed. Before presenting the numerical results

and respective discussions we describe, in detail, a numerical technique deve-

loped in this work. This technique conjugates different ideas from Erpenbeck

and Lee and Stewart and its main goal is to make the search for instabilities

more efficient.

In Chapter 4 we construct the kinetic modeling for a chemically reactive gas

mixture with hard-sphere potential. After mentioning some previous works

on chemically reactive gas mixtures in Section 4.1, we introduce the kinetic

adopted model in Section 4.2. In Section 4.3 we explore some of the pro-

perties of the collisional operator presented in the previous section and in

Section 4.4 we prove the existence of a Lyapunov function and present the

characterization of equilibrium states. In Section 4.6 we deduce the lineari-

zed Boltzmann equation and explore some of its properties. In this section

we also present the explicit expressions for the kernels and the frequency

operator of the linearized collisional operator.

In the conclusions we discuss the work presented in this thesis and mention

some interesting issues to be investigated in future works.

20



Main contributions

The original contributions of this thesis appear in Chapters 2, 3 and 4. More

in detail, in Chapter 2 we include, for the first time, the contribution of

the reaction heat effect on the detonation wave’s profile. This study was

already presented in the international conference “Waves and Stability in

Continuous Media” and published in its proceedings [13]. The study perfor-

med in Chapter 3 is based on paper [15] and constitutes the first study on the

linear stability problem, on the scope of the kinetic theory, that includes the

contribution of the reaction heat and the activation theory on the stability

spectrum. Finally, in Chapter 4 we present a new work, still in progress,

about the existence and asymptotic stability of the solutions of the Linear

Boltzmann equation. The main results of this chapter constitute the content

of paper [65], whose final form will be submitted in a near future.

21



22



Chapter 1

Kinetic modeling (general

description)

For the convenience of presentation and discussion, we introduce, in this

chapter, some important concepts and properties of kinetic theory that will

be necessary throughout this work, and explain their physical meaning. We

also present the physical assumptions and the corresponding mathematical

conditions that are usually considered to derive the Boltzmann equation.

The “classical” Boltzmann equation for one component gas is introduced in

Section 1.1. In Section 1.2 we present and explore the reactive Boltzmann

equation that describes the evolution of a specific chemically reactive gas

mixture. Neither the classical nor the reactive Boltzmann equations are here

derived in detail, we only present an informal derivation. Moreover, some

definitions and fundamental properties related to both equations are presen-

ted without their detailed derivation. They can be found, for example, in

[17, 51]. Our objective is to discuss the consistency of the kinetic modeling

and explain the physical meaning of the properties. The proofs are omitted

here.

At last, in Section 1.3 we express the macroscopic variables as suitable ave-

rages of microscopic quantities. The passage from the microscopic description

23



to the hydrodynamic limit is carried out in the construction of the macrosco-

pic equations that describe mean quantities in the gas dynamics. We present

some of the connections between the classical theory and the kinetic theory

of gas dynamics, and explore some of their differences.

1.1 Boltzmann equation

The kinetic theory is a branch of the nonequilibrium statistical physics. One

of its main objectives is to describe the macroscopic properties of a system (a

gas, a plasma or another one with a large number of particles) through the

microscopic variables associated to the particles that constitute the system.

It is important to notice that we do not consider relativistic and quantum

effects and we also do not take into account any degrees of freedom. The-

refore the microscopic variables are only the velocity components (c1, c2, c3).

These components, together with the macroscopic variables of the physical

position x, define the particle phase space. The state of the gas is mode-

led, in the phase space, by a distribution function f ≡ f(x, c, t) for any

fixed time t, in such a way that fdxdc represents the particle density in the

volume element dxdc around position x and velocity c at time t. The func-

tion f(x, c, t) is used under the assumption that a bounded domain in the

physical space contains only a finite number of particles. In this work, we

consider that the evolution domain of the gas is R3 and thus, the previous

assumption about the physical space leads to the mathematical condition∫
R3

∫
K
f(x, c, t)dxdc < +∞ for any compact in the spatial domain, K ⊂ R3,

and for any fixed time t.

The number of particles which constitute the gas, their diameter, the time

between two consecutive collisions of one particle and the distance that the

particle travels between those collisions are some of the parameters that we

have to consider in order to derive the Boltzmann equation. In fact, this

equation is only valid for some values of these parameters. We do not intend

24



to develop here the range of validity of the Boltzmann equation, we only

want to stress the importance of its discussion. There are many works, such

as [17, 18, 38, 85], that deal with the problem.

If we consider that there are no interactions (collisions) between the par-

ticles that constitute the gas then, according to Newton’s principle, each

particle travels at a constant velocity, in a straight line, and the gas density

is constant along the characteristic lines defined by dx/dt = r for any r ∈ R.

Then, if we know the initial density, it is easy to compute the value of the

density at time t, using the condition f(x, c, t) = f(x − tc, c, 0). However,

this is not the case in situations where collisions between particles are consi-

dered. When we consider that particles collide, the state evolution of the gas

depends on how these collisions occur. In order to introduce the interaction

between particles we have to consider the following assumptions:

Assumption 1: The gas is rarefied enough in order to neglect the col-

lisions of more than two particles. Each collision results in a change of

pre-collisional velocities into post-collisional velocities, say (c, c∗) → (c′, c′∗),

and implies the rearangement of linear momentum and energy.

Assumption 2: The collisions are micro-reversible, which means that the

probability that velocities (c, c∗) are transformed into (c′, c′∗) is equal to the

probability that velocities (c′, c′∗) are transformed into (c, c∗).

Assumption 3: The velocities of two particles that are about to collide are

uncorrelated. This assumption is called the Boltzmann chaos assumption.

After a collision, the velocities of the two particles are no longer uncorrela-

ted. In fact they are determined by the pre-collisional velocities. In a one
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constituent gas, the conservation of momentum and energy in a collision read

c+ c∗ = c′ + c′∗, (1.1)

c2 + c2∗ = c′2 + c′2∗ . (1.2)

Using conditions (1.1) and (1.2), the post-collisional velocities are completely

determined by the pre-collisional velocities.

In the absence of external forces, and on the basis of the considered As-

sumptions 1, 2 and 3, the time-space evolution of f is given by the integro-

differential Boltzmann equation, see[17],

∂

∂t
f +

3∑

i=1

ci
∂

∂xi
f =

∫

R3

∫

S2

(f ′f ′
∗ − ff∗)B(c− c∗, ǫ)dǫdc∗ (1.3)

where f ′ ≡ f(x, c′, t), f ′
∗ ≡ f(x, c′∗, t), f ≡ f(x, c, t), f∗ ≡ f(x, c∗, t), ǫ is a

unit vector along the line passing through the centers of the particles, at the

moment of impact, and B(c−c∗, ǫ) is the Boltzmann collisional kernel. This

kernel is a nonnegative function which depends only on ‖g‖, where g = c∗−c,

and on the scalar product 〈 g
‖g‖

, ǫ〉. Its relation with the cross section, σ2,

is given by the identity B(g, ǫ) = ‖g‖σ2(g, ǫ). The Boltzmann kernel takes

different expressions depending on the adopted potential. A particular case

of great importance is the hard-sphere model, for which

B(g, ǫ) = d2〈g, ǫ〉, (1.4)

where d is the diameter of the particles. The right-hand side of the Boltz-

mann equation (1.3) is the collisional operator, which discribes the effect

of the collisions on the distribution function f . It is usually represented by

Q(f, f) and can be written as Q(f, f) = Q+(f, f)−Q−(f, f), where Q+(f, f)

and Q−(f, f) are the gain and the loss terms, respectively. The gain term,

Q+(f, f) =
∫
R3

∫
S2
f ′f ′

∗B(c−c∗, ǫ)dǫdc∗, counts the number of particles with
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velocity c that result from collisions between particles with velocity c′ and

c′∗, whereas the loss term, Q−(f, f) =
∫
R3

∫
S2
ff∗B(c − c∗, ǫ)dǫdc∗, counts

the number of particles with velocity c that are lost in collisions between

particles with velocity c and c∗.

Note 1.1.1. Assumption 2 results in the relation B(g, ǫ) = B(g′, ǫ), with

g′ = c′ − c′∗, which is crucial in some symmetry properties of the collisional

operator.

The Boltzmann equation (1.3) constitutes a fundamental model in the ki-

netic theory of gases, that describes the dynamics of the gas particles. At

the same time, in the hydrodynamic limit, it leads to a description in terms

of suitable and physically meaningful macroscopic quantities and related ba-

lance equations. The mathematical properties of the collisional operator,

in particular its consistency in terms of conservation equations, entropy in-

equality and trend to equilibrium, are fundamental for its validity and for the

construction of several variants of the Boltzmann equation, when quantum

or relativistic effects are taken into account or when chemical reactions are

considered.

In particular, the extension of the Boltzmann equation to chemically reactive

mixtures will be treated in the next subsection and constitutes the central

model of the present work. The fundamental properties of the Boltzmann

equation and other relevant mathematical aspects of the theory are the sub-

ject of the forthcoming sections in the context of the reactive mixtures.

1.2 Reactive Boltzmann equation

In this section we present the reactive Boltzmann equation that describes

the evolution of this gas mixture and some of its properties. We give special

attention to mechanical and thermodynamical equilibrium conditions and to

the H-theorem that regards the trend to equilibrium. In the presentation of
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this theorem we make a brief excursion to one component gases. This is jus-

tified for the historical significance of the theme. It was Boltzmann, with the

H-theorem, who first tried to explain the irreversibility of natural processes

in gases, showing how the molecular collisions tend to increase the entropy.

1.2.1 Modeling

We consider a gas mixture with four components, say A1, A2, A3 and A4,

with molecular masses m1, m2, m3 and m4, and formation energies E1, E2, E3

and E4, respectively, whose particles undergo binary elastic collisions as well

as reactive collisions according to the following reversible reaction

A1 + A2 ⇋ A3 + A4. (1.5)

The reaction heat, QR, is given by the difference between the formation ener-

gies of the products and those of the reactants. For the considered reaction

we have QR = E3 + E4 − E1 − E2. Thus, QR > 0 if the direct reaction is

endothermic and QR < 0 if it is exothermic. The influence of this parameter

on the profile of the detonation wave and in the linear stability of the deto-

nation wave receives special attention in this work, specifically in Chapters

2 and 3.

Since we now have more than one component, we have to adjust the notation

used in the previous subsection. To identify each constituent we adopt a sub-

script (or superscript) i in the variables, with i = 1, 2, 3, 4. For instance, the

distribution function of each constituent Ai is denoted by fi(x, ci, t), fi(ci)

or simply fi, but the l−th spatial component of the velocity ci is represented

by cil, with l = 1, 2, 3.

At the collisional level, the physical conservation laws of mass, linear mo-

mentum and total energy of the particles, during the reactive encounters,
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are specified by the following mathematical conditions

m1 +m2 = m3 +m4, (1.6)

m1c1 +m2c2 = m3c3 +m4c4, (1.7)

E1 +
1
2
m1c

2
1 + E2 +

1
2
m2c

2
2 = E3 +

1
2
m3c

2
3 + E4 +

1
2
m4c

2
4. (1.8)

These conditions play an important role in the derivation of the reactive

Boltzmann equation.

If we do not take into account external forces, the reactive Boltzmann equa-

tion for the distribution function fi can be written in the following form, see

[51]:

∂

∂t
fi +

3∑

l=1

cil
∂

∂xl
fi = QE

i +QR
i , (1.9)

with

QE
i =

4∑

s=1

∫

R3

∫

S2

(f ′
if

′
s − fifs)‖gsi‖σ2

isdǫdcs, (1.10)

QR
1(2) =

∫

R3

∫

S2

[
f3f4

(
m1m2

m3m4

)3

− f1f2

]
‖g21‖σ⋆

12
2dǫdc2(1), (1.11)

QR
3(4) =

∫

R3

∫

S2

[
f1f2

(
m3m4

m1m2

)3

− f3f4

]
‖g43‖σ⋆

34
2dǫdc4(3). (1.12)

In the above equations, gsi = ci − cs is the pre-collisional relative velocity,

σis
2 is the elastic cross section of constituents Ai and As, and σ

⋆
12

2 and σ⋆
34

2

are the differential reactive cross sections for forward and backward reactions,

respectively.

We now have four coupled Boltzmann equations for the four distribution

functions fi, i = 1, ..., 4. The first term on the right-hand side of Eq. (1.9)

refers to the elastic interactions among the particles and represents the elas-

tic operator. The second term refers to the chemical reaction and represents

the reactive operator.
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The meaning of the elastic collisional operator QE
i in Eq. (1.9) is similar to

that of the integral operator on the right-hand side of Eq. (1.3), since both

refer to elastic encounters. However, in the present case, the elastic operator

QE
i contains the mixture effects represented by the summation over the index

s = 1, ..., 4.

The reactive collisional operator can also be splitted into a gain and a loss

term. In particular, for the reactive collisional operator of constituent A1

the gain term counts the number of particles with velocity c1 that are crea-

ted from reactive collisions between particles of constituents A3 and A4 with

velocities c3 and c4, respectively. The corresponding loss term counts the

number of particles with velocity c1 that are consumed in collisions between

particles of constituents A1 and A2 with velocities c1 and c2, respectively.

An analogous interpretation can be made for the reactive collisional operator

of the other constituents.

In the definition of the collisional operators given in Eqs. (1.10), (1.11) and

(1.12), the so called micro-reversibility principle, which generates a gene-

ralized Assumption 2 of Section 1.1, was taken into account. The relation

dc3dc4 =
m1m2‖g43‖
m3m4‖g21‖

dc1dc2, (1.13)

together with

σ⋆
34

2 =

(
m1m2

m3m4

)2(‖g21‖
‖g43‖

)2

σ⋆
12

2, (1.14)

is used to obtain the micro-reversibility condition in the form

f3f4‖g43‖σ⋆
34

2dǫdc3dc4 = f3f4

(
m1m2

m3m4

)3

‖g21‖σ⋆
12

2dǫdc1dc2, (1.15)

which, in turn, is used to express the gain term in the form presented in

Eq. (1.11). The gain term in Eq. (1.12) is obtained in a similar way. A

more detailed description can be found, for example, in [51]. Although the

micro-reversibility principle is pointed out as a basic assumption, apart from
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some exception, it has not been established whether it is satisfied for realistic

particle potentials in general, see [43]. In Chapter 4 we adopt a potential

that, under simple assumptions, satisfies this principle.

1.2.2 Properties of the collisional terms

Now we present some of the basic properties of the collisional terms given

by Eqs. (1.10), (1.11) and (1.12). We aim to introduce the properties that

must be verified to assure the consistency of a kinetic model and explain their

physical meaning. The detailed derivations are omitted here, since they are

presented in Chapter 4 with reference to a particular kinetic modeling.

Proposition 1.2.1. The elastic collisional terms are such that

∫

R3

QE
i dci = 0 i = 1, ..., 4. (1.16)

This proposition states that the number of particles of each constituent does

not change during elastic interactions.

Proposition 1.2.2. The reactive terms satisfy the following property:

∫

R3

QR
1 dc1 =

∫

R3

QR
2 dc2 = −

∫

R3

QR
3 dc3 = −

∫

R3

QR
4 dc4. (1.17)

Equalities (1.17) come from the fact that, with the chemical bimolecular

reaction (1.5) the variation of the number of particles of constituents A1 and

A2 is equal and symmetric to the variation of the number of particles of

constituents A3 and A4. Thus, the reaction rates defined by τi =
∫
R3 QR

i dci

are such that τ1 = τ2 = −τ3 = −τ4.

Another fundamental property of the collisional operator states the existence

of suitable collisional invariants, this is, certain functions which do not change

during the collisional process. This property is related to the conservation

laws presented in Eqs. (1.6), (1.7) and (1.8).
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Definition 1.2.1. A function ψ = (ψ1, ψ2, ψ3, ψ4) is a collisional invariant

in the velocity space if

4∑

i=1

∫

R3

ψi

(
QE

i +QR
i

)
dci = 0. (1.18)

Proposition 1.2.3. The functions ψ = (1, 0, 1, 0), ψ = (1, 0, 0, 1),

ψ = (0, 1, 1, 0), and the functions ψ = (ψ1, ψ2, ψ3, ψ4) defined by ψi = mic
i
1,

ψi = mic
i
2, ψi = mic

i
3, and ψi = Ei +

1
2
c2imi are collisional invariants.

The first three invariants assure the conservation of the number of particles

of constituents A1 and A3, A1 and A4 and A2 and A3, respectively. This

is a consequence of the bimolecular chemical law. The conservation of the

total number of particles of the reactive mixture results from these partial

conservations. The next three invariants assure the conservation of the linear

momentum components of the gas mixture and the last invariant assures the

conservation of the total energy of the gas mixture.

All functions, which are a linear combination of the above six invariants are

also collisional invariants. They can be defined by

ψi(ci) = Gi +H ·mici + J(Ei +
1

2
c2i ), (1.19)

where Gi and J are scalar functions, with Gi being such that G1 + G2 =

G3 +G4, and H a vectorial function, all of them being independent of ci.

1.2.3 Mechanical and chemical equilibrium

When the gas reaches the equilibrium the elastic and reactive collisions do

not stop, they become balanced. This means that the collisional process does

not modify the number of particles which enter and leave a volume element

in the phase space per unit time.
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Definition 1.2.2. A gas is in mechanical equilibrium when

QE
i = 0, i = 1, ..., 4. (1.20)

It is in chemical equilibrium when

QR
1(2) = QR

3(4) = 0 (1.21)

and in thermodynamical equilibrium when

QE
i +QR

i = 0, i = 1, ..., 4. (1.22)

The relation between elastic, chemical and thermodynamical equilibrium is

established in the next proposition.

Proposition 1.2.4. For each i = 1, ..., 4, the following conditions are equi-

valent:

a) QE
i +QR

i = 0;

b) QE
i = QR

i = 0.

Proposition 1.2.4 shows that the entire collisional operator vanishes only

when both the elastic and the reactive collisional operators vanish separa-

tely. In other words, it is not possible to reach thermodynamical equilibrium

without reaching both mechanical and chemical equilibrium.

Proposition 1.2.5. If all constituents are at the same temperature, the only

distribution function that assures the mechanical equilibrium is the Maxwel-

lian distribution given by

fM
i (ci) = ni

( mi

2πkT

) 3

2

exp

[
−mi(ci − u)2

2kT

]
. (1.23)

Above, k is the Boltzmann constant and ni, T and u represent the number

density of constituent Ai and the temperature and velocity of the mixture,
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respectively, which are macroscopic quantities that will be defined in terms of

microscopic variables in Section 1.3. This result is well known and a formal

proof can be found in many books, see for example [17] for a one single specie

and [51] for a reactive mixture.

Note 1.2.1. In a non-reactive gas mixture the Maxwellian function charac-

terizes the equilibrium state. However this is not the case for a mixture with a

chemical reaction since to obtain thermodynamical equilibrium it is necessary

to reach not only mechanical equilibrium but also chemical equilibrium.

To obtain the chemical equilibrium conditions we may introduce the chemical

potential of the constituent Ai, say µi, given by

µi = Ei − kT

[
3

2
lnT − lnni +

3

2
ln

(
2πmik

h2

)]
, (1.24)

where h is the Plank constant. The deviation from chemical equilibrium can

be characterized by the affinity

A = −
4∑

i=1

νiµi, (1.25)

where νi is the stoichiometric coefficient of the constituent Ai. For the consi-

dered chemical reaction, these coefficients are such that ν1 = ν2 = −ν3 =

−ν4 = −1 and the chemical equilibrium condition is
∑4

i=1 νiµ
eq
i = 0, where

the superscript “eq” indicates equilibrium values. This condition may take

the form of the mass action law, as described in the following proposition.

Proposition 1.2.6. The chemical equilibrium is characterized by Maxwel-

lians (1.23) constrained by

(m3m4)
3fM

1 (c1)f
M
2 (c2) = (m1m2)

3fM
3 (c3)f

M
4 (c4),
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which is equivalent to the mass action law expressed by

QR

kT
=

3

2
ln

(
m3m4

m1m2

)
+ ln

(
neq
1 n

eq
2

neq
3 n

eq
4

)
. (1.26)

1.2.4 Boltzmann H-theorem

The objective of this subsection is to study the tendency to equilibrium of

a chemically reactive gas mixture and this is done using the Boltzmann H-

theorem. This theorem shows the important feature of the irreversibility of

the Boltzmann equation and states the trend to equilibrium. These features

were the source of many discussions and gave rise to some known paradoxes.

Some people could not accept that an equation which is based on classical

reversible mechanics had an irreversible feature. Some arguments for and

against this property can be found, for instance, in [17, 51, 85]. This theorem

is also related to the concept of entropy. In thermodynamics, the entropy S

is defined in equilibrium states by the equation

dS =
δQ

T
,

where δQ represents the amount of heat received by the gas. If a gas is in

equilibrium, a change in its state is only possible with external disturbances.

It is important to state that the symbol δQ is used instead of dQ because Q

is not a state variable.

It is known that in any thermodynamical process between an initial equili-

brium state I and the final equilibrium state F the following inequality holds

true:

SF ≥ SI +

∫ F

I

δQ

T
.

In the specific case of isolated gases we obviously have that δQ = 0 and thus

SF ≥ SI which is the same as

∆S = SF − SI ≥ 0.
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This is the second principle of thermodynamics, see for example [19, 31, 51].

It is also known that if a gas system is isolated there is a maximal value for

the entropy and that this value corresponds to the equilibrium state. These

are known macroscopic features of gas dynamics.

To be able to prove the H-theorem in gas mixtures, it is necessary to consider

some additional conditions to the Boltzmann equation. There are some works

that proved the existence of an H-function for reactive mixtures on the space-

homogeneous case, see [42, 50, 71], for example. For non-homogeneous cases

it is necessary to consider a certain type of domain or to impose suitable

boundary conditions. In particular, a space domain with periodic boundary

conditions or a bounded space domain with specular reflection, see [19, 27].

For the space-homogeneous case we have the following proposition.

Proposition 1.2.7. If we consider the distribution function fi uniform in

space for every i = 1, ..., 4, the functional H defined by

H(t) =

4∑

i=1

∫

R3

fi log

(
fi
m3

i

)
dci (1.27)

respects the following conditions:

a)
d

dt
H(t) ≤ 0

b)
d

dt
H(t) = 0 if and only if the gas mixture is in thermodynamical equili-

brium.

The result stated in Proposition 1.2.7 proves the asymptotic stability of the

Boltzmann equation solution, since H(t) reaches its minimum value only at

the unique equilibrium distribution function, namely the Maxwellian distri-

bution function defined in expression (1.23).

To end this section we present a note on how Boltzmann tried to explain

the temporal evolution of a gas with one constituent through microscopic
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interactions. This brief derivation from the context of reactive gas mixtures

is needed due to the historical importance of this development in the kinetic

theory.

Historical note:

To make the connection between the classical reversible mechanics of the mo-

lecular collisions and the irreversible evolution of gases, Boltzmann proposed

a definition of the entropy of a gas in terms of the microscopic states. An

H-function was proposed for a rarefied gas constituted by N particles and

occupying a spatial region R ∈ R3, as follows

H(t) =

∫

R

H(x, t)dx, (1.28)

where H(x, t) is given by

H(x, t) =

∫
f(x, c, t) log f(x, c, t)dc. (1.29)

With this function Boltzmann proposed the following definition of the mi-

croscopic entropy σ,

σ(t) = −kNH(t), (1.30)

where k is the Boltzmann constant.

Generally speaking, the H-theorem states that if f is a solution of the Boltz-

mann equation (1.3) of an isolated gas, then H(t) decreases in time and

reaches its minimum value in the equilibrium state. With this result it is pos-

sible to sustain that the Boltzmann equation creates a connection between

statistical mechanics and gas mechanics. The H-theorem proof regarding to

monotonic gases is well known, see for example [17].
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1.3 Macroscopic equations

The connection between the microscopic variables and the macroscopic quan-

tities is based on the idea that all measurable macroscopic variables can be

expressed in terms of microscopic averages of the distribution functions. We

introduce below the more relevant macroscopic quantities associated to each

constituent, denoted with the subscript i, as well as those referring to the

whole mixture, denoted with plain symbols.

Number density

ni =

∫

R3

fidci and n =
4∑

i=1

ni (1.31)

Mass density

̺i =

∫

R3

mifidci and ̺ =

4∑

i=1

̺i (1.32)

Momentum density

̺iv
i
l =

∫

R3

mic
i
lfidci and ̺vl =

4∑

i=1

̺iv
i
l (1.33)

where v denotes the velocity of the mixture.

Diffusion velocity

uil =
1

̺i

∫

R3

miζ
i
lfidci (1.34)

where ζ il = cil − vl is a peculiar velocity.

Pressure

pi =
1

3

∫

R3

miζ
2
i fidci and p =

4∑

i=1

pi (1.35)
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Pressure tensor components

pilr =

∫

R3

miζ
i
l ζ

i
rfidci and plr =

4∑

i=1

pilr (1.36)

Temperature

Ti =
pi
nik

and T =

4∑

i=1

ni

n
Ti =

p

nk
(1.37)

Heat flux components

qil =

∫

R3

1

2
miζ

2
i ζ

i
lfidci and ql =

4∑

i=1

(
qil + niEiu

i
l

)
(1.38)

where the term niEiu
i
l refers to the formation energy transfer of the consti-

tuent Ai due to diffusion.

With the macroscopic variables defined as microscopic averages of the distri-

bution function, we can use the Boltzmann equation to deduce appropriate

balance equations for the evolution of the macroscopic variables of the reac-

tive gas mixture. The evolution of the general average macroscopic variable∫
R3 ψidci is given by the transfer equation for the constituent Ai. This equa-

tion is obtained from the Boltzmann equations (1.9) by taking the product

with the function ψi ≡ ψ(x, ci, t) and integrating over the velocity ci, getting

∂

∂t

∫

R3

ψifidci+

3∑

l=1

∂

∂xl

∫

R3

ψic
i
lfidci−

∫

R3

(
∂

∂t
ψi +

3∑

l=1

cil
∂

∂xl
ψi

)
fidci

=

∫

R3

ψi

(
QE

i +QR
i

)
dci. (1.39)

From this equation, we can obtain the balance equation for the relevant ma-

croscopic variables, when the function ψi is suitably defined. The balance

equation for the number density of the constituent Ai follows from the trans-
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fer equation (1.39) by choosing ψi = 1, resulting

∂

∂t
ni +

3∑

l=1

∂

∂xl

(
niu

i
l + nivl

)
=

∫

R3

(
QE

i +QR
i

)
dci. (1.40)

The balance equation for the momentum density component of the consti-

tuent Ai follows from the transfer equation (1.39) by choosing ψi = mic
i
l,

resulting

∂

∂t
(̺iv

i
l) +

3∑

r=1

∂

∂xr

(
pilr + ̺iu

i
lvr + ̺iu

i
rvl + ̺ivlvr

)

=

∫

R3

mic
i
l

(
QE

i +QR
i

)
dci. (1.41)

The balance equation of the total energy of the constituent Ai follows from

the transfer equation (1.39) by choosing ψi = Ei +
1
2
mic

2
i , resulting

∂

∂t

[
3

2
pi + niEi + ̺iu

i
lvl +

1

2
̺iv

2

]
+

3∑

l=1

∂

∂xl

[
qil + pilrvr

+niEiu
i
l +

1

2
̺iu

i
lv

2 +

(
3

2
pi + niEi + ̺iu

i
lvl +

1

2
̺iv

2

)
vi

]

=

∫

R3

(
1

2
mic

2
i + Ei

)(
QE

i +QR
i

)
dci. (1.42)

The balance equations for the number density, linear momentum and total

energy of the gas mixture are obtained by summing the corresponding Eqs.

(1.40), (1.41) and (1.42) over all constituents. From Proposition 1.2.3 and

Definition 1.2.1, we easily conclude that the resulting balance equations for

the gas mixture are of conservative type, because the right-hand side of the
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equations vanish. They are given by

∂

∂t
n+

3∑

l=1

∂

∂xl
(nvi) = 0, (1.43)

∂

∂t
(̺vl) +

3∑

r=1

∂

∂xr
(plr + ̺vlvr) = 0, (1.44)

∂

∂t

[
3

2
nkT +

4∑

i=1

niEi +
1

2
̺v2

]
+

3∑

l=1

∂

∂xl

[
ql + plrvr

+

(
3

2
nkT +

4∑

i=1

niEi +
1

2
̺v2

)
vl

]
= 0. (1.45)

The so called system of evolution equations is formed by the balance equa-

tions (1.40) for the number densities of the constituents, the conservation

equations (1.44) and (1.45) for the linear momentum and total energy (1.45)

of the whole mixture constitutes. Such system is not closed. In classical gas

dynamics it is closed assuming that plr and ql respect Newton’s law,

plr = pδlr, ql = 0, (1.46)

giving rise to the Euler equations, or assuming that they respect the Stokes’

law and the Fourier’s law,

plr = pδlr − ν

(
∂vl
∂xr

+
∂vr
∂xl

− 2

3

∂vs
∂xs

δlr

)
− νB

∂vs
∂xs

δlr, ql = −λ∂T
∂xl

, (1.47)

giving rise to the Navier-Stokes equations. Above, δlr is the Kronecker’s

delta, ν is the viscosity, νB is the bulk viscosity and λ is the thermal conduc-

tivity of the gas mixture.

In kinetic theory, the system of evolution equations is closed by determining

the distributions function as an appropriate solution of the Boltzmann equa-

tion consistent with the considered mechanical and chemical regime. Kinetic

approaches to chemically reactive gas mixtures can be used as a consistent
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and justified tool to derive adequate hydrodynamic equations for reactive

mixtures. One particular case is the Maxwellian distribution function. This

particular choice for the distribution function gives the same result as consi-

dering Newton’s law in classical gas dynamics, both giving rise to the Euler

equations. These are the evolution equations of a gas mixture in mechanical

equilibrium.

The kinetic approach can help to understand, or even explain and predict,

the chemical reaction that plays a crucial role in the evolution process.
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Chapter 2

Dynamics of the steady

detonation wave

In this chapter we study the propagation of steady detonation waves, starting

from the kinetic modeling of the explosive reactive mixture in terms of the

description made in Section 1.2. First, we present a brief description of

the main theories about detonation in gas mixtures. We do so in order to

recall the relevant physical aspects of the phenomenon and introduce the

mathematical models used to describe the propagation of detonation waves.

Then we present our results on the steady representation of the detonation

wave solution, based on the so-called Zeldovich-von Neuman and Doering

(ZND) detonation theory. More in detail, we consider the kinetic modeling

of a binary reactive mixture undergoing a symmetric bimolecular chemical

reaction and then we pass to the hydrodynamic limit at the Euler level. The

resulting macroscopic equations are used to determine the steady detonation

wave solution. Finally, some numerical simulations are performed to obtain

representative profiles of the solution.
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2.1 Preliminaries

In this subsection we introduce some fundamental concepts related to the

detonation fenomena, with the aim of presenting the necessary background

to follow the central problem of this chapter.

Deflagration and detonation

In some situations, when we have a reactive mixture, a propagation wave

may appear. If this wave is subsonic, it is considered a deflagration wave and

its front is called flame. In this type of waves, downstream perturbations

may change the state of the mixture before the arrival of the wave itself.

Thus, the deflagration wave velocity depends, not only on the properties of

the initial mixture, but also on the way that the mixture is changed by the

perturbations that pass through the wave from the downstream mixture. On

the other hand, when the wave is supersonic, it is considered a detonation

wave and its front is called shock front. In this type of wave, the thermody-

namical variables vary abruptly. Since the wave velocity is supersonic, the

initial mixture does not change until the arrival of the wave, and thus its

velocity only depends on the properties of the initial mixture.

On specific situations, a deflagration wave may transit into a detonation

wave. This transition involves several interesting aspects which are the sub-

ject of many works, namely [54, 90]. The problem of deflagration to detona-

tion transition (DDT), as well as the problem of deflagration waves, are not

addressed this work. Note that the transition is not the only way of star-

ting a detonation; for instance, it may start directly from an ignition source

without passing through a deflagration. The way of starting a detonation is

also not part of this work.

Chapman-Jouguet theory

One of the fundamental features of the detonation is its propagating velo-

city. Chapman and Jouguet studied this problem using an idealized model
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in which the flux is considered one dimensional in space; the shock front

is plan and the chemical reaction is instantaneous. Therefore, the chemical

equilibrium is reached immediately after the shock front. Unlike non reac-

tive shock waves that admit any velocity greater then the sound velocity, the

detonation waves do not admit any velocity below a certain minimum value.

Chapman and Jouguet postulated that a self-sustained detonation wave must

have this minimum velocity, that is called the CJ velocity, see [33, 81, 82].

The Chapman Jouguet theory does not make any reference to the detonation

wave structure, that is, to the transition process from the two different equi-

librium states: before and after the detonation wave. After determining the

wave velocity the final state is determined by the conservation laws of mass,

linear momentum and total energy. Since it is considered that the mixture

reaches equilibrium immediately after the shock front, it is possible to deter-

mine the chemical composition through the thermodynamical variables and

the amount of released energy.

Zeldovich, von Neumann and Doering theory.

The ZND model, proposed independently by Zeldovich, von Neumann and

Doering, uses the Euler equations to describe the detonation. This is also an

idealized model in which the flux is one dimensional and the shock front is

plan. The main difference between the CJ model and the ZND model is that

the latter considers that the chemical reaction does not occur instantaneously

in the shock front but rather it starts at the shock front and proceeds with

a finite reaction rate until reaching the equilibrium. The conservation laws

are valid anywhere, in particular in the final equilibrium state. Thus, the CJ

hypothesis is still valid for any reaction rate, even if it is finite. This hypo-

thesis is usually used to determine the velocity of self-sustained detonation

waves.
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Less idealized theories

In order to cope with the differences between theoretical and experimental re-

sults, some new models have been proposed. The theory advanced by Wood

and Kirkwood also uses the Euler equations but allows the existence of many

different chemical reactions. Other theories use the Navier-Stokes equations

to describe the state of the mixture and thus, do consider the influence of

the thermal conductivity, diffusion and viscosity. These less idealized theo-

ries bring many mathematical difficulties and are not treated in this work.

The ZND as well as the CJ theory may seem inadequate to direct application

on real detonations. In fact, although the shock front of a real detonation is

approximately plane and its velocity is approximately constant, experimental

observations show the existence of three dimensional structures which are de-

pendent on time. Nevertheless, the one dimensional solutions are important

for theoretical developments and to create a solid base for more complete

and complex approaches.

All the presented models and theories are based on macroscopic aspects of the

gas mixture behavior. For a better understanding on the way that microsco-

pic aspects of the chemical reaction influence the detonation wave solutions

we approach this problem using the kinetic theory of gases.

For velocities greater then the CJ velocity, there are two different solutions

for the detonation wave, the strong and the week solutions. The strong so-

lution or overdriven solution is supported by a piston, its pressure is greater

than the pressure of the CJ-detonation and the flux velocity of the final state,

with respect to the reference frame moving with the shock front, is subsonic.

On the other hand, the week solution or pathological solution has less pres-

sure than the one of the CJ-detonation. Furthermore the flux velocity of the

final state, with respect to the reference frame moving with the shock front,

is supersonic [33]. In this work, we always use the detonation wave velocity

as a parameter and it takes values greater than the CJ velocity. Furthermore,
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we deal with both, overdriven and pathological solutions.

2.2 Kinetic background

In this section we present the kinetic background used to approach the steady

detonation wave problem as well as the linear stability problem which is the

object of the following Chapter. We study the detonation wave problem

starting from the Boltzmann equation for the reactive gaseous mixture and

also the influence of the reaction heat on the behavior of the wave. This

study is carried out for both the steady detonation of overdriven solution with

exothermic chemical reaction and for the second branch of the pathological

solution with endothermic chemical reaction.

We start by describing a model for the distribution function which is obtained

from a small deviation from the Maxwellian distribution [49]. This model

was adopted in order to emphasize the influence of the reaction heat on

the detonation wave solution. Then we use the model to investigate the

detonation wave problem and obtain some numerical results concerning the

profile of the detonation wave solution.

The results presented in this chapter have been published in papers [13, 14].

2.2.1 Adopted kinetic modeling

The detonation system is a binary reacting gaseous mixture described by a

simple kinetic model, corresponding to a particular case of the one presen-

ted in Section 1.2. Accordingly, we consider two constituents, say A and

B, with the same molecular mass m, whose particles undergo binary elastic

collisions as well as inelastic collisions with reversible chemical reaction of

type A + A⇋ B +B.

The kinetic equations, describing the behavior of the mixture, can be obtai-

ned from the general equations (1.9), (1.10), (1.11) and (1.12) referring to
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the particular adopted modeling, namely to a binary mixture with symme-

tric reaction, hard-sphere cross sections for elastic collisions and step cross

sections with activation energy for reactive collisions.

σ⋆
i
2 =

{
0 for γi < ε⋆i

d2r for γi > ε⋆i
i = A,B, (2.1)

where γi =
mg2i
4kT

is the relative translational energy.

The details and properties of this kinetic model have been treated in paper

[49] and are not object of investigation in this thesis.

On paper [49], using the Chapman-Enskog method and the Sonine polyno-

mial approximation to the coefficients of the distribution function, the au-

thors obtained an approximate solution of the kinetic equations, containing

the non-equilibrium effects of the reaction heat and activation energy. In the

Euler hydrodynamic limit, in a slow reaction regime, this solution leads to a

closed macroscopic system of hydrodynamic equations with excellent mecha-

nical and chemical kinetic properties to study the propagation of detonation

waves and its hydrodynamic stability. The closure aspects and the applica-

tion of the resulting macroscopic equations to the detonation problem can

be considered the innovative and key idea developed in this work.

Coming to the mathematical details of the closure procedure and macrosco-

pic equations, the approximate solution of the kinetic equations obtained in

paper [49] is

f
(0)
i = fM

i

[
1 + ω

(
15

8
− 5m(ci − v)2

4kT
+
m2(ci − v)4

8k2T 2

)]
, (2.2)

where fM
i is the Maxwellian distribution, and ω is given by

ω = −x2A
(
d

dr

)2
Q⋆

R

8

(
1−Q⋆

R −Q⋆
Rε

⋆
A + ε⋆ − 2ε⋆2A

)
e−ε⋆A. (2.3)
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Above, xA=nA/n is the concentration of the A-constituent, d and dr the elas-

tic and reactive diameters, ε⋆A the activation energy of the forward reaction

in units of kT and Q⋆
R = QR/kT the reaction heat in units of kT . Moreover,

QR = 2 (EB −EA), indexreaction! heatso that QR > 0 when the forward

reaction is endothermic whereas QR < 0 when it is exothermic. The solution

given by Eqs. (2.2) and (2.3) exhibits an appreciable influence of the reaction

heat and activation energy.

The closed system of hydrodynamic Euler equations, obtained with the non-

equilibrium distribution f
(0)
i given by expressions (2.2) and (2.3), have the

form:

∂

∂t
nA +

3∑

l=1

∂

∂xl
(nAvi) = τA, (2.4)

∂

∂t
(nA + nB) +

3∑

l=1

∂

∂xl
((nA + nB)vl) = 0, (2.5)

∂

∂t
(̺vl) +

3∑

r=1

∂

∂xr
(pδlr + ̺vlvr) = 0, l = 1, 2, 3, (2.6)

∂

∂t

[
3

2
nkT +

B∑

i=A

niEi +
1

2
̺v2

]
+

3∑

l=1

∂

∂xl

[
3∑

r=1

pδlrvr +

(
3

2
nkT +

B∑

i=A

niEi +
1

2
̺v2

)
vl

]
= 0, (2.7)

where the macroscopic quantities are defined in terms of the distribution

functions fi as explained in Chapter 1, for the considered binary mixture.

Moreover, the reaction rate τA has the following form

τA = −4n2
Ad

2
r

√
πkT

m
e−ε⋆A

[
1 + ε⋆A +

x2A
128

(
d

dr

)2

Q⋆
R (2.8)

×
(
1 +Q⋆

R +Q⋆
Rε

⋆
A + ε⋆A − 2ε⋆2A

) (
4ε⋆3A − 8ε⋆2A − ε⋆A − 1

)
e−ε⋆A

]
,
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where the non-equilibrium effects of the reaction heat Q⋆
R and activation

energy ε⋆A are visible.

2.3 Detonation wave solution

In this section we present some details of the ZND theory, in order to clarify

the adopted nomenclature. Then, we derive the governing equations for

the description of the detonation wave solutions. Using these equations, we

deduce the Rankine-Hugoniot conditions that connect the pre-reaction state

ahead of the wave and any state within the reaction zone behind the wave,

or even the final state.

2.3.1 Mathematical formulation

The closed hydrodynamic reactive system of governing Eqs. (2.4), (2.5),

(2.6) and (2.7) define the mathematical analog of the detonation problem

and is used to determine the steady detonation solution. It is well known

Figure 2.1: ZND configuration of a steady detonation wave profile for the
mixture pressure.

that such hyperbolic equations, in their one-space-dimensional formulation,
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admit steady traveling detonation wave solutions. These solutions describe

a combustion regime in which a strong planar shock front ignites the mix-

ture and the burning keeps the shock advancing and proceeds to equilibrium

behind the shock.

The ZND idealized model, represented in Fig. 2.1, gives a good and accepted

description of such detonation wave solutions, whose configuration consists

of a leading, planar, non-reactive shock wave propagating with constant ve-

locity, followed by a finite reaction zone where the chemical reaction takes

place. With reference to the ZND model, the shock wave is assumed to pro-

pagate in the x-direction, from left to right, with velocity D. The shock

front is located at x=x0, and the reaction zone remains from x0 to xF . The

state just behind the shock, located at x=x0, is the von Neumann state N ,

where the chemical reaction is triggered, and the one located at x = xF , at

the end of the reaction zone, is the final state S, where the chemical reaction

reaches equilibrium. Ahead of the shock front, that is for x > x0, the quies-

cent mixture is at rest in its initial state I, where the rate of the chemical

reaction is negligible. Inside the reaction zone, for xF < x < x0, the mixture

evolves through their intermediate states R of partial reaction until reaching

the final state.

2.3.2 One-dimensional steady states

Since the entire ZND configuration is steady in the shock attached frame, a

new reference frame moving with the shock is considered and the normalized

steady variable xs is introduced, namely

xs =
x−Dt

Dtc
, tc =

1

4n+d2

√
m

πkT+
, (2.9)

where the superscript + refers to the initial state I and tc is a characteristic

time. For sake of simplicity, the normalized steady variable xs is still denoted

with the plane symbol x.
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The mechanical and thermodynamical evolution of the detonating mix-

ture is described by the hydrodynamic governing equations in its closed form,

Eqs. (2.4), (2.5), (2.6) and (2.7) written in one-space-dimension,

∂

∂t
nA +

∂

∂x
(nAv) = τA, (2.10)

∂

∂t
(nA + nB) +

∂

∂x
((nA + nB)v) = 0, (2.11)

∂

∂t
v +

1

̺

∂

∂x
p+ v

∂

∂x
v = 0, (2.12)

kT
∂

∂t
n + vkT

∂

∂x
n +

5

3
nkT

∂

∂x
v +

2

3

B∑

i=A

Eiτi = 0. (2.13)

We should notice that this closed system of equations contitutes the set of

the reactive Euler equations, where τA is given by expression (2.8). Then, to

characterize steady detonation wave solutions, this system is transformed to

the steady frame attached to the shock, namely

d

dx

[
(v −D)nA

]
= DtcτA, (2.14)

d

dx

[
(v −D) (nA + nB)

]
= 0, (2.15)

d

dx

[
(v −D) ̺v + nkT

]
= 0, (2.16)

d

dx

[
(v −D)

(
3

2
nkT +

̺v2

2
+ EAnA + EBnB

)
+ nkTv

]
= 0. (2.17)

The spatial structure of the ZND detonation wave is determined by means

of the Rankine-Hugoniot conditions, connecting the fluxes of the macrosco-

pic quantities preserved across the shock front, together with the rate law,

describing the advancement of the chemical process in the reaction zone.

Accordingly, the conservative ODEs (2.15), (2.16) and (2.17) are integrated

across the shock front, between the quiescent initial state (n+
A, n

+
B, 0, T

+) and

an arbitrary state
(
nA(x), nB(x), v(x), T (x)

)
, x ∈ [xF , x0], within the reaction
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zone, leading to the Rankine-Hugoniot conditions,

(nA + nB) (v −D) = −
(
n+
A + n+

B

)
D, (2.18)

̺v (v −D) + nkT = n+kT+, (2.19)(
3

2
nkT +

̺v2

2
+ EAnA + EBnB

)
(v −D) + nkTv

= −
(
3

2
n+kT+ + EAn

+
A + EBn

+
B

)
D. (2.20)

After some rearrangements, Eqs. (2.18), (2.19) and (2.20) take the form

nB (nA) =

(
n+
B + n+

A

)
D

D − v
− nA, (2.21)

T (nA) =
(D − v) (̺+Dv + n+kT+)

n+kD
, (2.22)

v (nA) =
2Q∗

RnA+3̺+D2−5n+kT++
√
P (nA)

8̺+D
, (2.23)

where

P (nA) =
(
2Q∗

RnA +3̺+D2−5n+kT+
)2−32̺+Q∗

RD
2
(
nA−n+

A

)
. (2.24)

The rate law comes from Eq. (2.14) in the form

d

dx
nA =

DtcτA

v −D + nA
dv
dnA

, (2.25)

and gives the x-evolution of the constituent number density nA in the reac-

tion zone, specifying the chemical composition of the reactive mixture. The

algebraic equations (2.21), (2.22) and (2.23) together with the differential

equation (2.25), with D and Q∗
R as parameters, characterize any arbitrary

state within the reaction zone, in dependence of the initial state.
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2.4 Numerical results and detonation profiles

In this section, we describe the numerical procedure implemented to deter-

mine the detonation solution, and present some representative results for the

steady detonation problem. In the discussion, we give special attention to the

influence of reaction heat on the results, in agreement with our announced

objectives.

2.4.1 Numerical technique

The methodology for solving Eqs.(2.21), (2.22) and (2.23) and (2.25) com-

prises two steps. First, the von Neumann state N , just ahead the shock, is

characterized by Eqs. (2.21), (2.22) and (2.23) together with a further jump

condition of Rankine-Hugoniot type, which is consistent with the still un-

reacted character of the von Neumann state. This RH-condition is obtained

by integrating across the shock the further conservative ODE resulting from

the rate equation (2.25) with τA settled equal to zero. Then, in the second

step, all the intermediate states inside the reaction zone (x0 < x < xF ),

as well as the final state at the end of the reaction zone (x = xF ), are ob-

tained by integrating the rate equation (2.25) with initial condition at the

von Neumann state, using a fourth order Runge-Kutta routine, and then

solving the algebraic Eqs. (2.21), (2.22) and (2.23) for the considered state.

In particular, the equilibrium final state is obtained when the above referred

integration gives a vanishing reaction rate τA. This final state xF is defined

in the numerical computations by the value x for which dnA

dx
= 10−6.

The detonation problem is numerically solved for both types of exothermic

and endothermic chemical reaction and some simulations are performed for

one elementary reaction of the chain branching of a theoretical detonating

mixture. We have presented a preliminary analysis in paper [13]. The de-

tonation velocity D and the kinetic and thermodynamical reference input
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parameters are assumed as follows

D=1700ms−1, n+
A = 0.35mol/l, n+

B = 0mol/l, ε⋆A = 7.5,

m = 0.01Kg/mol, T+ = 298.15K, EA = 2400. (2.26)

Figures 2.2, 2.3, 2.4 and 2.5 show some representative steady detonation pro-

files for the number density n, temperature T , mean velocity v and mixture

pressure p, respectively, in dependence of the algebraic distance behind the

shock wave. The left frames of these figures refer to two exothermic chemi-

cal reactions with reaction heat Q∗
R = −2 and Q∗

R = −1. Conversely, the

right frames refer to two endothermic chemical reactions with reaction heat

Q∗
R = 1 and Q∗

R = 2. One can extract from these figures that the extent

of the reaction zone is larger when the reaction heat Q∗
R has greater magni-

tude (dashed lines). This is an expected feature, in agreement with other

numerical and experimental works, see [78], for example. Moreover, the n, v

and p profiles of Figs. 2.2, 2.4 and 2.5 show that the steady detonation so-

lution is a reactive rarefaction wave for an exothermic reaction (left frames)

and a reactive compression wave for an endothermic reaction (right frames).

Concerning the temperature, Fig. 2.3 shows that the steady detonation so-

lution is a reactive compression wave for an exothermic reaction (left frame)

and a reactive rarefaction wave for an endothermic reaction (right frame).

The left frames reproduce the typical configuration of an overdriven steady

detonation wave arising in a real explosive gas mixture with one exothermic

chemical reaction [33, 34]. On the other hand, the right frames replicate

the essential features of the dynamics of the endothermic stage of a typical

chain-branching reactive gas mixture with pathological detonation, more spe-

cifically, the branch between the so called pathological point and the strong

final state of a overdriven detonation [33, 34, 73, 75].

The value of the macroscopic variables in the final state xF were also

analyzed for the reaction heat in the range −2 < Q⋆
R < 2. In Figs. 2.6
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Figure 2.2: Steady detonation profile for the mixture number density n.
Left: exothermic chemical reaction with Q⋆

R = −1 (solid line) and Q⋆
R = −2

(dashed line). Right: endothermic chemical reaction with Q⋆
R = 1 (solid line)

and Q⋆
R = 2 (dashed line).
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Figure 2.3: Steady detonation profile for the mixture temperature T . Left:
exothermic chemical reaction with Q⋆

R = −1 (solid line) and Q⋆
R = −2 (da-

shed line). Right: endothermic chemical reaction with Q⋆
R = 1 (solid line)

and Q⋆
R = 2 (dashed line).

and 2.7 we can see that the number density, pressure and velocity are lar-

ger for greater values of Q⋆
R. The temperature shows an opposite behavior,

with lower values for greater values of Q⋆
R. These results are in agreement

with the trend shown in the corresponding detonation profiles of the pre-

vious Figs. 2.2, 2.3, 2.4 and 2.5 for the particular values of the reaction

heat Q⋆
R = −2,−1, 1, 2. Furthermore, the dependence of these macroscopic

variables on the reaction heat is not linear. In fact, the number density and

temperature at the final state show a more pronounced behavior for greater

values of the reaction heat, whereas the mean velocity and pressure show a

more pronounced behavior for lower values of the reaction heat.
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Figure 2.4: Steady detonation profile for the mixture mean velocity v.
Left: exothermic chemical reaction with Q⋆

R = −1 (solid line) and Q⋆
R = −2

(dashed line). Right: endothermic chemical reaction with Q⋆
R = 1 (solid line)

and Q⋆
R = 2 (dashed line).
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Figure 2.5: Steady detonation profile for the mixture pressure p. Left: exo-
thermic chemical reaction with Q⋆

R = −1 (solid line) and Q⋆
R = −2 (dashed

line). Right: endothermic chemical reaction with Q⋆
R = 1 (solid line) and

Q⋆
R = 2 (dashed line).

2.5 Final remarks

The propagation of steady detonation waves within kinetic theory of chemi-

cally reacting gases has been investigated in some previous works [22, 23],

starting from the system of reactive Euler equations in a specific chemical re-

gime, together with the related Rankine-Hugoniot conditions. However, the

effects of the reaction heat on the behavior of the detonation wave solutions

has been disregarded, since the considered kinetic model does not include

the deviations on the Maxwellian distributions induced by the heat of the

chemical process. In the present work, with reference to the kinetic model
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Figure 2.7: Left: Pressure at the final stage as a function of Q⋆
R, pF (Q

⋆
R)

Right: Gas mixture velocity at the final stage as a function of Q⋆
R, vF (Q

⋆
R)

of paper [49], and using a similar procedure to the one employed in papers

[22, 23], we study the propagation of steady detonation waves. Our main

objective is to investigate the influence of the reaction heat on such type of

solutions and, in particular, to analyze how the structure of the wave solution

varies with the reaction heat.

As discussed in previous papers about the non-equilibrium effects induced by

the chemical reaction [77], the reaction heat changes the Maxwellian distri-

bution function and therefore it has a significant influence in the description

of the reactive mixture. Thus, it seems important to include the contribution

of the reaction heat on the structure of the detonation wave solution. This

feature is reflected in the present study and constitutes a major result for

our study about detonation wave solutions.
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Chapter 3

Linear Stability of the steady

detonation wave

This chapter is dedicated to the linear hydrodynamic stability of the steady

detonation wave studied in Chapter 2. There, the influence of the reaction

heat on the steady wave profile was analyzed. Following a similar line of

study, in this chapter we investigate the influence of the reaction heat on

the linear stability of the steady detonation solution. Moreover, we dedicate

special attention to the effects of the activation energy on the stability spec-

trum.

We begin with a brief description of the stability problem and some of its

main developments, in order to introduce the relevant aspects of the sub-

ject. Then, in Section 3.2, the governing equations in the perturbed shock

frame are explicitly derived and the stability problem for the eigenfunctions

and growth rate perturbation is formulated. The radiation condition used to

close the perturbed equations is also presented. In Section 3.3 the numerical

technique used in the simulations is described and some representative com-

putational results for the stability behavior in the parameter space are given

and discussed.

The study developed in this chapter, as well as the results here presented,
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have been published in papers [14, 15].

3.1 Background and motivation

In this section we introduce the stability problem and present some of the

most important ideas and developments of the subject. With this intro-

duction we intend to explain the importance of the problem itself and the

motivation for the kinetic approach here adopted.

Experimental and computational studies show that the detonation tends

to be structurally unstable and that the instabilities propagate in a quasi-

periodic oscillating manner [33, 54]. The reaction zone behind the shock is

extremely sensitive to small rear boundary perturbations and, as a result,

the detonation wave presents, in general, an unstable configuration.

The dynamics of such propagating instabilities can provide useful information

about the unsteady structure and elucidate about the detonation mechanism.

The usual first step is a hydrodynamic stability analysis of the steady detona-

tion solution. Assuming that the perturbations are small, a linearized theory

is used to describe their evolution and determine the instability modes. The

results of this linear analysis are relevant for detonation waves in channels or

square tubes and give important information about the growth rate of the

instabilities and the influence of the detonation parameters in the instability

behavior [1, 76].

An extensive and valuable study of the linear stability problem was developed

by Erpenbeck using a Laplace transform approach and a numerical technique

based on the Nyquist-winding theorem to determine the number of unstable

solutions [28, 30]. The works by Abouseif and Toong [1, 2], Buckmaster,

Ludford and Neves [10, 11], and Majda and Rosales [56] gave important

analytical and numerical contributions for the physical interpretations of the

instability behavior.

A further relevant contribution to the linear detonation stability was given by
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Lee and Stewart in paper [53], using a normal mode approach and a numerical

shooting technique to find the unstable modes. An extensive literature based

on similar approaches and using rather sophisticated numerical techniques,

include, among others, the papers [8, 37, 44, 45, 47, 55, 58, 61, 72, 78, 79, 82]

for ZND detonation, and [73, 74, 75, 79] for pathologic-type detonations. Mo-

dern computer facilities allowed to produce several experimental and com-

putational studies, as for example those of papers [3, 21, 26, 62].

Although a linear stability analysis can describe some relevant physical ef-

fects of the perturbations [1], it requires that the steady character of the

detonation wave can only be slightly perturbed and therefore its validity is

restricted to the initial stage of very small amplitude oscillations. A non-

linear stability analysis is needed for detonation waves whose structure is

very far from that of the steady wave. A typical case is the curved detona-

tion wave propagating through an unconfined material, for which more real

effects of multi-dimensional instabilities are observed, such as bifurcations to

multi-mode and irregular oscillations, and “diamond” or “fish scale” patterns

are produced [54, 76].

The hydrodynamic linear stability of steady detonation waves, concerning

the detonation stability analysis in the context of the kinetic theory for che-

mically reactive gas mixtures, has been investigated for the first time in

paper [6]. The emphasis of this paper is on the mathematical formulation

and solutions to the stability problem in the kinetic frame, for a quaternary

gas mixture with a reversible bimolecular chemical reaction. Some numeri-

cal results and visualizations are shown regarding the time evolution of the

eigenfunctions for both instability and stability pictures as well as at condi-

tions of neutral stability. However, the considered kinetic modeling does not

include the effects of the reaction heat neither those of the activation energy,

therefore the stability picture remains incomplete.

In this chapter, starting from the kinetic formulation proposed in [6], we

investigate linear stability of the steady detonation solution characterized
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in Chapter 2. The main objective is to develop a detailed hydrodynamic

stability analysis, and investigate the influence of the reaction heat and acti-

vation energy on the stability behavior. A first contribution in this direction

was presented in paper [14], where some numerical simulations have been

shown about the structure of the detonation wave and its linear stability.

This preliminary stability analysis was then expanded and detailed in paper

[15] exploiting the non-equilibrium effects due to the heat of the chemical

reaction.

Both the mathematical formulation of the stability problem and the numeri-

cal method of solution are explained in detail in this chapter. Some numerical

simulations are performed and the results are presented and discussed.

3.2 Formulation of the linear stability pro-

blem

In this section we formulate the one dimensional linear stability problem.

This is considered the standard preliminary step of any formal treatment

of stability analysis [82]. We want to investigate the effect of a small rear

boundary perturbation in the steady configuration of the detonation wave

solution. The rear perturbation induces a deviation in the shock wave po-

sition which, in turn, affects the steady character of the detonation wave

solution. In particular, the state variables in the reaction zone are pertur-

bed. The evolution of these perturbations determines the stability of the

steady detonation solution. More in detail, when any perturbation grows

in time, the steady solution is said to be hydrodynamically unstable, and

if all perturbations decay in time, the steady solution is stable. A normal

mode approach is assumed for the perturbations and the growth or decay of

the disturbances are determined by the complex eigenvalues of the stability

equations. We are not interested in the eigenvalues with negative real part
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because they represent perturbations that decay in time and therefore do

not add any important information about the instabilities. Conversely, the

existence of eigenvalues with positive real part means that the perturbations

grow in time. Consequently, a steady solution is unstable if it admits at least

one eigenvalue with positive real part, which is called an instability mode.

From the mathematical point of view, the hydrodynamic stability problem

requires the transformation to the perturbed shock attached frame, and then

the linearization of the governing equations and Rankine-Hugoniot shock

conditions around the steady detonation solution. This will be done in

the next subsection, adopting the normal mode approach first proposed by

Lee and Stewart in paper [53] and then followed by several authors, see for

example paper [82] and the references therein cited.

3.2.1 Governing equations in the perturbed shock frame

The mathematical analog is defined by the stability equations derived from

the one-space dimensional version of the hydrodynamic equations, see Eqs.

(2.10), (2.11), (2.12) and (2.13), through a linearization around the steady so-

lution assuming an exponential time-dependence for the perturbations. First,

we introduce dimensionless time and space variables into the hydrodynamic

equations (2.10), (2.11), (2.12) and (2.13) defined by ta = t/tc, y = x/Dtc.

For sake of simplicity, we relabel the new time coordinate ta with the pre-

vious symbol t.

The following step consists in transforming the resulting equations to the

perturbed shock attached frame. In order to do so we introduce the shock

front displacement from the unperturbed position, ψ̃(t), so that the pertur-

bed shock is located at ψ(t) = Dt+ ψ̃(t) and its velocity is D(t) = D+ ψ̃ ′(t).

Note that the considered wave coordinate, x = y−ψ(t), measures the distance

from the perturbed shock and the instantaneous position of the perturbed

shock wave is x = 0 in the new shock-attached coordinate system. The
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corresponding transformed equations are

D
∂

∂t
nA +

(
v −D −D

d

dt
ψ̃(t)

)
∂

∂x
nA + nA

∂

∂x
v = DtcτA, (3.1)

D
∂

∂t
n +

(
v −D −D

d

dt
ψ̃(t)

)
∂

∂x
n+ n

∂

∂x
v = 0, (3.2)

̺D
∂

∂t
v +

∂

∂x
p+ ̺

(
v −D −D

d

dt
ψ̃(t)

)
∂

∂x
v = 0, (3.3)

D
∂

∂t
p +

5p

3

∂

∂x
v +

(
v −D −D

d

dt
ψ̃(t)

)
∂

∂x
p =

QRDtcτA
3

. (3.4)

The next step consists in the linearization of the transformed hydrodynamic

equations around the steady state, assuming a normal mode expansion, for

the state variables nA, nB, v and p, with exponential time dependent per-

turbations. Introducing the state vector z defined by z = [nA n v p]T , the

expansions are assumed in the form

z(x, t) = z∗(x) + eat z(x), ψ(t) = ψeat, a, ψ ∈ C, (3.5)

where z∗(x) represents the steady solution and z(x) the unknown space

disturbances, with z ∈ C. Moreover, ψ is a perturbation parameter and

a = α + iβ, with α being the perturbation growth rate and β the perturba-

tion frequency. Since the assigned perturbations are small, the transformed

governing equations in the perturbed shock frame are linearized about the

steady solution z∗(x), by means of the expansions (3.5). Performing a further

normalization of the state variables with respect to the complex amplitude

parameter ψ, namely w = z/ψ, one obtains the evolution equations in the

wave coordinate x, for the complex disturbances. Rewriting z instead of w,
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the resulting equations, for x ∈ ]xF , 0[, are

DanA + (v∗ −D)
d

dx
nA + (v −Da)

d

dx
n∗
A + nA

d

dx
v∗ + n∗

A

d

dx
v = τA, (3.6)

Dan+ (v∗ −D)
d

dx
n + (v −Da)

d

dx
n∗ + n

d

dx
v∗ + n∗ d

dx
v = 0, (3.7)

̺∗Dav+
d

dx
p+̺∗(v−Da) d

dx
v∗+̺ (v∗−D)

d

dx
v∗+̺∗(v∗−D)

d

dx
v=0, (3.8)

Dap+
5

3

(
p∗
d

dx
v+p

d

dx
v∗
)
+(v∗−D)

d

dx
p+(v−Da) d

dx
p∗=

Q∗
RDtcτA
3

. (3.9)

In the above equations, τA denotes the linearized reaction rate perturbation

of constituent A, given by

τA = −4d2r

√
πk

m
e−ǫ⋆

[(
2n∗

AnA

√
T ∗ +

p+ n
n∗p

∗

2n∗k
√
T ∗
n∗
A
2

)(
1 + ǫ⋆ + Γx∗A

2
)
+

2
√
T ∗
n∗
A

n∗

3

(−n∗
AnB + n∗

BnA)

]
, (3.10)

where

Γ =
1

128

(
d

dr

)2

Q⋆
R

(
1 +Q⋆

R +Q⋆
Rε

⋆
A + ε⋆A − 2ε⋆2A

) (
4ε⋆3A − 8ε⋆2A − ε⋆A − 1

)
e−ε⋆A.

Equations (3.6), (3.7), (3.8) and (3.9) constitute the stability equations for

the present modeling, giving the spatial evolution of the complex perturba-

tions z(x) in the reaction zone, from the perturbed shock position x=0 to the

equilibrium final state x=xF . They constitute a system of eight first-order

homogeneous linear ordinary differential equations with spatially varying co-

efficients, for the real and imaginary parts of the complex perturbations.

3.2.2 Initial conditions

The initial conditions to be joined to the stability equations (3.6), (3.7), (3.8)

and (3.9) are the linearized perturbed Rankine-Hugoniot relations which
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connect the value of the disturbances at the von Neuman state to their

zero value ahead the perturbed shock. They are provided by the Rankine-

Hugoniot relations (2.18), (2.19) and (2.20) together with the further jump

condition for the von Neuman state obtained as explained in Subsection 2.3.2.

After transforming to the wave coordinate, linearizing around the steady

state and normalizing with respect to ψ, the resulting jump conditions at

the von Neuman state are obtained in the form

ni(0) =

(
n∗
i − n+

i

)
a− n∗

i v(0)

v∗ −D
, i = A,B, (3.11)

v(0) =
3̺+v∗2 + 3

2
(p∗ − p+)− 3

2
D̺+v∗ + 2EAn

+ +Q∗
Rn

+
B

−̺∗ (v∗ −D)2 + 5
2
p∗

a, (3.12)

p(0) = −̺+av∗ − (v∗ −D) ̺∗v(0). (3.13)

Equations (3.11), (3.12) and (3.13) give the initial conditions for the stability

equations (3.6), (3.7), (3.8) and (3.9). The stability system involves the

complex parameter a and thus, the system is not closed.

3.2.3 Closure condition

The required closure condition, which gives the dispersion relation for the

normal modes (3.5), is the acoustics radiation condition adopted in many

previous works on detonation stability as, for example, in papers [6, 10,

37, 45, 53, 78, 82]. Such condition states that the inherent instability of

the detonation wave solution results exclusively from the interplay between

the leading shock and the reaction zone and cannot be affected by further

disturbances traveling towards the shock from a great distance from the

reaction zone. Thus the closure condition is a boundary condition assigned

at the equilibrium final state as

v(xF ) + a =
−1

γ̺∗eqc
∗
eq

p(xF ), (3.14)
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where γ is the ratio of specific heats, c∗eq and ̺∗eq the isentropic sound speed

and gas mixture density at the equilibrium final state, for x = xF . Equation

(3.14) is usually regarded as the necessary condition to define the dynamics of

the complex growth rate a. It was originally derived in paper [10] through an

acoustic analysis performed at the end of the reaction zone. Important dis-

cussions about the closure condition and detailed derivations can be found in

papers [45, 53, 82], for example. These papers show that the closure condition

can be alternatively derived following two distinct approaches, one being phy-

sically based on an accurate acoustic analysis and another one being justified

by a boundedness condition which requires that the asymptotic structure of

the perturbed solution is independent from elementary unbounded solutions.

Different closure conditions can be imposed to assure the determinacy of the

stability problem, as for example a piston-type condition which requires the

vanishing of the velocity perturbation at a piston located far downstream of

the shock wave. However, as discussed in paper [45], the further interaction

of the piston with the shock wave would alter the instability spectrum leading

to different stability results in comparison to those coming from the intrinsic

mechanism between the shock wave and the reaction zone.

Concluding this section, the one-dimensional linear stability problem of the

steady detonation is formulated in terms of the complex disturbances z(x)

and complex growth rate a, by means of the ordinary differential equations

(3.6), (3.7), (3.8) and (3.9) for x ∈ ]xF , 0[, with initial conditions (3.11),

(3.12) and (3.13) at x = 0 and closure condition (3.14) at x = xF . This

problem will be treated numerically as described in the next section.
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3.3 Numerical treatment of the stability pro-

blem

The stability problem is treated numerically with the aim of obtaining an

extensive investigation of the stability spectrum for the eigenfunction per-

turbations z and eigenvalue perturbation parameter a, in terms of the para-

meters characterizing the steady solution. For a given set of thermodynami-

cal and chemical parameters describing the steady detonation solution, the

disturbances z(x) and perturbation parameter a are determined applying an

iterative shooting technique based on the numerical method proposed by Lee

and Stewart in paper [53].

3.3.1 Discussion on the numerical scheme

A trial value of a in a fixed bounded domain R of the complex plane is

considered and then equations (3.6), (3.7) and (3.8) are integrated in the

reaction zone ]xF , 0[ with initial conditions (3.11), (3.12) and (3.13) at x = 0,

using a fourth order Runge-Kutta routine. The solution z(x), x ∈ [xF , 0],

obtained for the considered trial value of a is then specialized for x = xF

to inquire if the boundary condition (3.14) is verified. However, for a given

steady detonation solution, an arbitrary value of a does not satisfy the closure

condition (3.14) and thus it does not produce a solution of the stability

problem. To overcome this difficulty, the residual function H(a), defined

from the closure condition (3.14) by the expression

H(a) = v(xF ) + a+
1

γ̺∗eqc
∗
eq

p(xF ), a ∈ R, (3.15)

is estimated at each trial value of a. Only those solutions z(x) obtained for

values of a for which the residual function H(a) vanishes within a given to-

lerance are accepted. The search for trial values of the complex parameter

a constitutes the key problem in the stability analysis. There exist some
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numerical techniques to search for these values, as for example those used by

Erpenbeck in papers [28, 30] and by Lee and Stewart in paper [53]. However,

in the present study, a different numerical scheme is proposed, recovering the

Erpenbeck’s idea of counting the number of zeros of H in a fixed domain of

the complex plane, combined with the shooting method proposed by Lee and

Stewart.

In some situations we only need to know if there exist any instability mode

since, as we mentioned before, the existence of one instability mode is enough

to conclude that the steady detonation wave is hydrodynamically unstable.

In these situations, it is sufficient to implement the search procedure just

once to know if the steady detonation wave is hydrodynamically unstable.

To be able to identify the instability modes, and determine the growth rate

and frequency, we use a three-dimensional plot of |H|. In order to construct

a suitable plot of |H| it is necessary to define a thin grid in the region R
and then estimate the value of |H| in each point of the grid. The number of

trial points where we need to evaluate |H| vary with the size of the region

R. In order to reduce the number of trial points, and thus reduce both the

computational effort and the time spent in the identification of the instabi-

lity modes, the three-dimensional plot of |H| is constructed in a considered

refinement of R in which there are at least one instability mode. This re-

finement is obtained through an iterative manner by using successively the

numerical procedure in different subregions of R.

3.3.2 Numerical technique

Instability modes correspond to a positive growth rate Re a, so that the zeros

of the residual function H are searched in a domain R on the right half of

the complex plane. On the other hand, since these modes occur in conjugate

pairs, it is enough to choose a domain R in the upper-right quarter of the

complex plane.

The numerical method proposed in this work provides a rapid and efficient
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procedure to investigate if the domain R contains any zero of H, meaning

that the corresponding detonation solution is unstable. Moreover, the ef-

fective determination of the approximate locations of the zeros of H in the

domain R, and the identification of the corresponding growth rate Re a and

frequency Im a, requires a further refinement of the domain R as well as a

three-dimensional plot of |H| in the refinement.

Preliminaries. The argument principle used by Erpenbeck in paper [30],

combined with the shooting method proposed by Lee and Stewart in paper

[53], is adopted here to count the number of zeros of the residual function

H and approximate their location. This principle states that the difference

between the number Z of zeros and P of poles of the function H within the

region R, provided that there are no zeros in its contour, is given by

Z − P =
1

2πi

∫

ζ

H ′(u)

H(u)
du, (3.16)

or equivalently by

Z − P =
1

2πi

∫ ℓ

k

H ′(ζ(t))

H(ζ(t))
‖ ζ ′(t) ‖ dt, (3.17)

where ζ : [k, ℓ] → C is a path smooth by parts, describing the contour of R
in the positive sense. Since H has no poles in the complex plane, one has

P = 0 and the expression (3.17) gives the number of zeros of H inside the

region R, that is

Z =
1

2πi

∫ ℓ

k

H ′(ζ(t))

H(ζ(t))
‖ ζ ′(t) ‖ dt. (3.18)

It is important to note that the requirement that the residual function H
has no zeros in the contour of R does not constitute an actual limitation for

the application of expressions (3.18) in the present numerical computation.

In fact, the method starts with the residual values H(aj) for a very huge
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number of points aj in the contour of R. If there is any zero of H in the

contour of R then, at least one of the considered points aj should be close

enough to this zero and the location of such point allows to identify the zero

without using any further strategy.

General description of the numerical technique. The starting point for the

implementation of the numerical technique is the random selection of a great

number of trial values for the perturbation parameter a in the contour of

a fixed domain R, say aj, j = 1, 2, . . . , n, such that aj = ζ(tj), for j =

1, 2, . . . , n. Then the integral in expression (3.18) is estimated using a rather

cumbersome procedure. More in detail, the mean value theorem gives

∫ ℓ

k

H ′(ζ(t))

H(ζ(t))
‖ ζ ′(t) ‖ dt = µ(ℓ− k), (3.19)

where µ represents the mean value in the interval [k, ℓ] of the function h :

[k, ℓ] → R defined by

h(t) =
H ′(ζ(t))

H(ζ(t))
‖ ζ ′(t) ‖, t ∈ [k, ℓ]. (3.20)

The mean value µ of h, in turn, is approximated with the mean value µS of

the set

S =

{H ′(ζ(tj))

H(ζ(tj))
‖ ζ ′(tj) ‖: j = 1, 2, . . . , n

}
. (3.21)

The derivative H ′(ζ(tj)) = H ′(aj) is estimated by choosing a suitable point

close enough to aj , say bj , with Re bj = Re aj + 10−6 and Im aj = Im bj , as

follows

H ′(aj) ≈
H(bj)−H(aj)

bj − aj
, j = 1, 2, . . . , n. (3.22)

Moreover, it is well known that if n is large enough, then the mean value of

the sample S, µS, can be treated as a statistical variable following a normal

distribution with mean value µ and standard deviation σS/
√
n, with σS being

the standard deviation of S. Therefore, the mean value µ of the function h
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can be inferred in a confidence interval by the mean value µS of the sample S.

The amplitude of the confidence interval can be reduced enlarging, as much as

necessary, the number n of points in the set S. Here, all the calculations have

been performed with a confidence level of 99%. Consequently, the number of

zeros of the residual function H inside the domain R is estimated as follows

ℓ− k

2πi

(
µS − 2.58

σS√
n

)
< Z <

ℓ− k

2πi

(
µS + 2.58

σS√
n

)
. (3.23)

3.3.3 Numerical solution

Having the above preliminary ideas in mind, the numerical solution of the

stability problem is determined through the following steps.

Step 1 (choice of the domain R). A bounded domain R in the upper-

right complex plane is considered, and a path ζ : [k, ℓ] → C, which is smooth

by parts and describes the contour of R in the positive sense, is fixed.

Step 2 (selection of the trial values for a). A great number of points, say

aj with j = 1, . . . , n, are selected at random in the contour of R. For each

point aj , one determines the unique point tj ∈ [k, ℓ] such that aj = ζ(tj).

Moreover, for each point aj one chooses another point close enough, say bj ,

such that Re bj = Re aj + 10−6 and Im aj = Im bj , for j = 1, . . . , n.

Step 3 (integration of the ODE’s). Assuming each point aj and bj , for

j = 1, . . . , n, as a trial value for the perturbation parameter a, the differential

equations (3.6), (3.7), (3.8) and (3.9) are integrated with initial conditions

(3.11), (3.12) and (3.13), using a fourth order Runge-Kutta routine.

Step 4 (evaluation of the residual function). The solutions z(x), x ∈
[xF , 0], obtained in the previous step for the considered trial values aj and bj

are used to evaluate the residual function H defined by expression (3.15) at

each point aj and bj , for j = 1, . . . , n.
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Step 5 (estimation of the derivative of the residual function). The deriva-

tiveH ′(aj) is estimated with the quotient between the differencesH(bj)−H(aj)

and bj − aj , as indicated in Eq. (3.22).

Step 6 (mean value of the sample S). The mean value µS of the sample S

introduced in expression (3.21) is evaluated as the mean value of a statistical

variable following a normal distribution with standard deviation given by

σS/
√
n, where σS is the standard deviation of S.

Step 7 (mean value of the function h). The mean value µ of the function h

defined by expression (3.20) is inferred from the mean value µS of the sample

S, using a 99% confidence interval.

Step 8 (estimation of the number of zeros of H). The integral in Eq.

(3.18) is approximated by the quantity (k− ℓ)µ. The number of zeros of the

residual functionH within the regionR is approximated using the estimation

(3.23). The amplitude of the interval can be controlled by the number n of

points in the set S in such a way that there is only one integer in the interval.

3.3.4 Remarks on the numerical approach

A direct approach such as the representation of the three-dimensional plot

of |H| in all region R would give the necessary information for the stability

study, since it would allow to identify all the zeros of H in R. However, as

we said before, in order to obtain a suitable plot of |H|, it would be necessary

a really great number of trial points in the region R. This number is much

larger then the number of trial points that are needed to count the number

of zeros in the same region (Step 2). The procedure that we propose here is

not direct but allows the obtainment of valuable results in much less time.

In some situations it is only required to know if there is any eigenvalue in the

region R. In these situations the procedure gives all the needed information.

Conversely, in those situations in which it is necessary to determine the ze-

ros of H, we combine this search procedure with a three-dimensional plot of
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|H|. We start in region R and count the number of zeros of |H|. If there

are no zeros we conclude that the detonation wave is stable in the region

parameter R. On the other hand, if there is at least one zero, then the de-

tonation is unstable and we may identify this zero. Next we split the region

R into two different subregions, R1 and R2, and use the search procedure

in subregion R1. This allows to count the zeros in this subregion. At the

same time, it allows to count the remaining zeros in R2. This method is used

iteratively, excluding subregions of R that have no zeros of H and obtaining

smaller subregions of R with at least one zero of H. After some iterations we

obtain subregions of R that are much smaller then R and we plot a three-

dimensional representation of |H| in these small subregions, identifying all

the zeros of H in region R.

It is important to stress that, even in situations that require the determi-

nation of the zeros of H, the proposed combined procedure uses much less

time. In fact, if we decide to plot directly the representation of |H| in all

region R, without a pre-selection criteria, the computational time and effort

increase significantly. It is also important to underline that, in spite of the

several approximations used in this procedure, its results remain valid. The

large number of plots of |H|, that we did during the preparation of this work,

confirmed this validity.

For a given set of thermodynamical and chemical parameters, and conside-

ring certain bounds for the perturbation parameter a, the numerical method

described above has been applied to investigate the linear stability of the

steady detonation solution. The main objective is to describe the structure

of unstable detonation waves and provide more detailed information about

the instability parameter regimes. Some numerical simulations have been

performed and several visualizations will be provided in the next section.
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3.4 Numerical results

The response of the steady detonation solution to the rear boundary pertur-

bations, as well as the influence of the reaction heat on the stability spectra,

is investigated numerically. The stability problem formulated in terms of per-

turbation parameter a and spatially disturbances z by the ODE’s (3.6), (3.7),

(3.8) and (3.9) with initial conditions (3.11), (3.12) and (3.13) and closure

boundary condition (3.14) is treated with the numerical shooting technique

described in Subsection 3.3.2. A rectangular domain R in the upper-right

complex plane is considered in order to locate the unstable modes, namely

0.001 < Re(a) < 0.02 and 0.001 < Im(a) < 0.1. This particular choice of

the domain allows to avoid numerical difficulties coming from the possible

existence of a neutral mode, a = 0, as well as other instability modes on

the coordinate axes. The missing area in the domain R, namely the region

[0, 0.001]× [0, 0.1] ∪ [0.001, 0.02]× [0, 0.001], is rather small when compared

with the domain R and can be studied separately.

All the results presented here about the linear stability problem are in di-

mensionless form. The numerical simulations have been performed assuming

the following data in what concerns the kinetic and thermodynamical input

parameters as well as the initial state of the fresh mixture,

D=1700 ms−1, EA = 2400 K, m = 0.01 Kg/mol,

n+
A = 0.35 mol/l, n+

B = 0 mol/l, T+ = 298.15 K.
(3.24)

The considered detonation velocity corresponds to an overdriven detonation.

The reaction heat is varying in the range −2 ≤ Q∗
R ≤ 2, allowing to inves-

tigate the stability for both types of exothermic and endothermic chemical

reactions. Furthermore, the equilibrium final state at the end of the reac-

tion zone is assumed to be that point where the derivative of the number

density of the constituent A reaches the value 10−6. Fig. 3.1 shows the sta-

bility boundary in the parameter plane defined by the reaction heat Q∗
R and
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Figure 3.1: Stability boundary in the Q∗
R−ε⋆A plane, for the considered region

R.

forward activation energy ε⋆A, for the considered domain R in the complex

plane, and for the selected detonation velocity. One can interpret this re-

presentation as follows: a pair (Q∗
R, ε

⋆
A) in the stability zone indicates that

for the corresponding values of the reaction heat and activation energy, no

instability modes have been found in the domain R; analogously, a pair

(Q∗
R, ε

⋆
A) in the instability zone indicates that for the corresponding values of

the reaction heat and activation energy, one instability mode, at least, has

been found in the domain R. Moreover, Fig. 3.1 reveals that for a fixed value

of the activation energy, the detonation becomes stable for larger values of

the reaction heat, whereas for a fixed value of the reaction heat, the detona-

tion becomes stable for smaller values of the activation energy. These results

are consistent with previous experimental works and numerical simulations,

which show that increasing the reaction heat, or decreasing the activation

energy, tends to stabilize the detonation. See, for example, the book [54] by

J. H. S. Lee and the references therein cited.

A further and detailed analysis can provide a more deep description of the

instability spectrum. In particular, if one sets the forward activation energy

equal to a fixed value, namely ε⋆A = 7, and left the reaction heat Q∗
R varying

in a certain range as the parameter of interest, the numerical method allows

to count the instability modes. Table 3.1 reveals the number of instability

modes that have been found in the domain R, for different values of the
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reaction heat in the range −2 ≤ Q∗
R ≤ 2. One can see that the number

of instability modes in the region R is zero when Q∗
R ≥ −0.6 and increases

for lower values of Q∗
R. These results are in agreement with the behavior

recognizable in Fig. 3.1 as well as with the general trend described above.

Q∗
R number of modes Q∗

R number of modes
2 0 −0.62 1
1.5 0 −0.65 2 to 3
1 0 −0.7 4 to 7
0 0 −1 18 to 24

−0.5 0 −1.5 57 to 70
−0.6 0 −2 215 to 252

Table 3.1: Number of the instability modes in the domainR, for fixed forward
activation energy, ε⋆A = 7, and different values of the reaction heat in the
range −2 ≤ Q∗

R ≤ 2.

Table 3.1 suggests the idea that for the considered value of the forward acti-

vation energy, ε⋆A = 7, the number of instability modes increases indefinitely

when the reaction heat decreases. Similar results have been obtained in some

previous works, see [53] for example.

Figure 3.2 shows a three-dimensional plot of |H(a)|, for an exothermic

chemical reaction with QR = −0.1 and forward activation energy ε⋆A = 7.5.

This plot was obtained with increased resolution in a refinement of the region

R, namely in the sub-region [0.00102, 0.00117]× [0.089, 0.091]. A very thin

uniform grid is used, with step 10−4 for the imaginary part and 10−5 for the

real part. The points aj of this grid are assumed as trial values to evaluate the

magnitude of the residual function and the instability modes are obtained

as the zeros of |H(a)|. Figure 3.2 shows the existence of four instability

modes. A thinner grid should produce accurate approximations for these

modes, however the computational effort should become rather intensive.

Applying this procedure with grids occupying different regions, one obtains

the instability spectra represented bellow, in Fig. 3.4, for different values of

the reaction heat Q∗
R. In particular, the spectrum of Fig. 3.4, for Q∗

R = −0.1,
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Figure 3.2: Three-dimensional plot of the magnitude of the residual func-
tion, |H(a)|, in the sub-domain of R defined by Re (a) ∈ [0.00102, 0.00117],
Im (a) ∈ [0.089, 0.091], for reaction heat and forward activation energy given
by QR = −0.1 and ε⋆A = 7.5.

includes the four instability modes of Fig. 3.2.

Another study concerning the effect of the reaction heat on the stability be-

havior is represented in Figs. 3.3 and 3.4. Figure 3.3 shows the migration of

the fundamental instability mode, corresponding to the lowest perturbation

frequency (small imaginary part), for the activation energy ε⋆A = 7.5, as the

reaction heat Q∗
R is varied from −0.5 to 0.5. This choice for the range of the

reaction heat allows to follow the migration of the fundamental mode when

it passes, in particular, through the inert gas mixture characterized by the

vanishing of the reaction heat, Q∗
R = 0. Note that the plot range of Fig.

3.3 is not contained in the domain R, already defined, but they intercept

each other. In Fig. 3.3, the inert gas mixture is represented by the square

labeled point, which is located on the right-hand-side of the frame. All the

points labeled with the cross correspond to Q∗
R < 0, or ZND detonation with

exothermic chemical reaction, whereas the points labeled with the black tri-

angle correspond to Q∗
R > 0, or pathological stage of the detonation with

endothermic chemical reaction. The mode departs from the crossed point
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Figure 3.3: Migration of the fundamental instability mode (lowest perturba-
tion frequency) for the activation energy ε⋆A = 7.5, as the reaction heat Q∗

R

is varied, with a step of 10−2, from −0.5 to 0.5. Re a is scaled by the factor
103 and Im a by the factor 10.

located on the left-hand-side of the frame, corresponding to Q∗
R = −0.5, and

starts moving above and to the right, until Q∗
R reaches its zero value at the

square labeled point. This trend means that the perturbation frequency and

the growth rate increases, so that a destabilizing effect of the detonation is

verified. Then, when Q∗
R increases from its zero value to positive values, the

mode moves above and to the left. This behavior signifies that the perturba-

tion frequency increases but the growth rate decreases, so that a stabilizing

effect of the detonation is observed. Therefore one can conclude that the en-

dothermic reaction (Q∗
R > 0) has a stabilizing effect on the detonation wave.

The results shown in Fig. 3.3 are in agreement with those provided in other

previous works on detonation stability, see for example [37, 53, 72, 79].

The unstable spectra in the domain R are represented in Fig. 3.4, when

the forward activation energy is ε⋆A = 7.5, and the reaction heat takes the va-

lues Q∗
R = −0.1, Q∗

R = 0, Q∗
R = 0.1. All the instability modes in the domain

R are located in the upper-left sub-domain [0.1, 0.22] × [0.79, 1] considered

in Fig. 3.4. These modes were obtained using various three-dimensional

plots of |H(a)| similar to the one drawn in Fig. 3.2. Each curve of Fig. 3.4

consists of all instability modes that have been found in the considered sear-

ching window, for the corresponding value of the reaction heat. In particular,
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Figure 3.4: Unstable spectra for the activation energy ε⋆A = 7.5, as the
reaction heat takes the values Q∗

R = −0.1, Q∗
R = 0, Q∗

R = 0.1. Re a is
scaled by the factor 102 and Im a by the factor 10. Zoom at an upper-left
sub-domain of R.

the four instability modes with lower perturbation frequency shown in the

instability spectrum for Q∗
R = −0.1 are those modes previously represented

in the three-dimensional plot of Fig. 3.2. Similarly, the instability mode

with the lowest perturbation frequency shown in the instability spectrum for

Q∗
R = 0 is the one represented in Fig. 3.3 at the square labeled point. Since

the lower curve corresponds to the inert case (Q∗
R = 0) and all the instability

modes for both positive and negative reaction heat are located in the area

above this curve, Fig. 3.4 suggests the idea that all other possible instability

modes are located above the inert curve for Q∗
R = 0, and thus the region

below the curve corresponds to a stability region. Since the perturbation

frequency increases with the growth rate, another interesting feature of Fig.

3.4 is that, for a fixed growth rate, the perturbation frequency of the inert

instability mode may be seen as the lower bound of the instability perturba-

tion frequencies. Conversely, for a fixed perturbation frequency, the growth

rate of the inert instability mode may be seen as the upper bound of the

instability perturbation frequencies.
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3.5 Final remarks

The one-dimensional linear stability of the steady detonation wave is here

investigated, with emphasis on the influence of the reaction heat on the in-

stability behavior. Assuming a chemical regime of slow reactive process,

the Euler equations obtained with the kinetic approach incorporate explicit

contributions of the reaction heat and activation energy, which result as fun-

damental for the stability analysis. In fact, this explicit dependence permits

to obtain a rather complete description, in comparison to the previous in-

vestigations based on a kinetic approach. The numerical method of solution

proposed for the stability problem allowed to present some results concer-

ning linear stability spectra of the whole structure of the ZND solution with

exothermic chemical reaction and the second branch of the pathological so-

lution with endothermic chemical reaction. The stability boundary in the

parameter plane Q∗
R − ε∗A and the migration of the fundamental instability

mode with lowest perturbation frequency are just two interesting examples

of these results.

We intend to extended this study to a quaternary reactive mixture, starting

from the kinetic modeling and macroscopic closure procedure referred to a

mixture of four constituents, in order to consider more general detonating

mixtures. Another interesting extensions of the present study could be its

application to the CJ idealized detonation in a reactive mixture of two or

four constituents and the analysis of the complete structure and stability of

the pathological detonation, by considering two consecutive chemical reac-

tions, the former being of exothermic type describing the branch between

the shock front and the pathological point and the latter being of endother-

mic type describing the branch between the pathological point and the final

equilibrium state.
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Chapter 4

SRS theory for a quaternary

reactive mixture

In this chapter we present the theory of simple reacting spheres (SRS) for the

chemically reactive Boltzmann equation. After mentioning some preliminary

works about this theory [57, 64, 87], we explore these model’s characteristics.

The mathematical properties of the collisional dynamics are deduced from the

physical principles, and the consistency of the theory and other mathematical

properties are then investigated in detail.

The structure of this chapter is similar to that of Chapter 1, but here we

built in the dynamics of the SRS theory and prove all the relevant results.

In particular, we derive the linearized version of the SRS kinetic equations

and give the explicit representation of the collisional kernels. To the best

of our knowledge, this is the first contribution at the level of the kernel

representation for a reactive kinetic system. The derivation of the kernels is

rather intricate and requires some hard manipulations. The main aspects of

the SRS linearized theory and the kernel representation are given in paper

[16]. Representative examples, for both elastic and reactive kernels, are given

in Appendixes A and B, respectively.
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4.1 Introduction

In this section we briefly mention some previous contributions to the che-

mically reactive Boltzmann theory. Then we describe the SRS theory and

explain its strong points from the mathematical point of view. The problem

of polyatomic reactive mixtures, within kinetic theory, was first investiga-

ted in 1949 by Prigogine and Xhrouet [68]. They treated the reactive terms

as perturbations of the elastic terms. This approach is only valid if the

reactive cross sections are much smaller then the elastic cross sections. In

1959, Present gave another important contribution to this problem [66]. Al-

though, in some aspects, different from the work by Prigogine and Xhrouet,

the Present’s theory is also based on the assumption that the reactive terms

are small perturbations of the elastic terms. Ross and Mazur, in 1961, as

well as Shizgal and Karplus, in 1970, see papers [70, 77] respectively, used the

Chapman-Enskog method in the space homogeneous case with the aim of in-

vestigating the non-equilibrium effects induced by the chemical reactions and

deducing, in particular, the explicit expression of the reaction rate specifying

the chemical production of each constituent of the mixture. The works of

Moreau [59], in 1975, and Xystris and Dahler [86], in 1978, used the method

of Grad in both homogeneous and inhomogeneous cases with the objective

of deducing, again, explicit expressions for the reaction rate. The generaliza-

tion of the H-theorem to chemically reactive gas mixture was given by Polak

and Khachoyan [63] in 1985. In 1998, Rossani and Spiga [71] constructed a

kinetic model based on physical principles, namely on the conservation laws

and trend to equilibrium. Polewczak proved, in his work [64] in 2000, the

existence of global in time, spatially inhomogeneous, and L1-renormalized

solution for the model of simple reacting spheres, under the assumption of

finite initial mass, momentum and energy. The existence result refers to a

four component mixture with a chemical bimolecular reaction in which there

was no mass exchange. The kinetic theories developed in papers [64, 71] were

analyzed and compared in 2004, by Groppi and Polewczak, see [43].
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The kinetic theory of the simple reacting spheres was first proposed by Mar-

ron [57] in 1970 and then developed by Xystris and Dahler [87] in 1978. Wi-

thin this theory, both elastic and reactive collisions are of hard-sphere type.

This feature reduces the micro-reversibility principle to a simpler condition

that we explain in Section 4.2. Furthermore, being a natural extension of the

hard-sphere collisional model, when the chemical reactions are turned off the

model reduces itself to the revised Enskog theory. In the dilute-gas limit, it

provides an interesting kinetic model of chemical reactions that has not yet

been studied in detail.

In the present chapter, starting from the previous papers on the SRS theory,

we consider the general case of a four-component mixture undergoing a bimo-

lecular chemical reaction. A detailed analysis of the mathematical properties

of the SRS theory is presented here and rigorous results about the collisional

dynamics, passage to the hydrodynamics and trend to equilibrium are proved

and explained in detail. Finally, in order to prove the existence and stability

of close to equilibrium solutions, particular attention is devoted to the linea-

rized version of the SRS system around the local Maxwellian equilibrium.

The content of this chapter is based on paper [65], still in preparation. Some

proofs and details of the SRS theory, as well as some spectral properties of

the linearized system, are explained here and omitted in paper [65].

4.2 Kinetic modeling

We consider a gas mixture with four constituents, say A1, ..., A4, with masses

m1, ..., m4, and formation energies E1, ..., E4, respectively, which undergo the

reversible reaction

A1 + A2 ⇋ A3 + A4. (4.1)
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The constituents’ indexes are chosen in such a way that the reaction heat

and molecular masses verify

QR = E3 + E4 − E1 − E2 > 0, m1 < m2 and m4 < m3.

Note 4.2.1. The above choices do not represent any specific restriction. With

the exception of a gas mixture where all the constituents have the same mass,

any situation can be described using them. They are used to fix the notation.

Nevertheless, they affect, formally, some results that are obtained in this

chapter.

In this Chapter, only collisions between two particles are considered. The

collisions might be elastic or reactive. An elastic collision between particles

Ai and As with velocities ci and cs, respectively, results in a change of the

velocities of both constituents, (ci, cs) → (c′i, c
′
s), with i, s = 1, ..., 4. A

reactive collision between particles Ai and Aj with velocities ci and cj, res-

pectively, results in a transition of the constituents into Ak and Al and a

consequent change of velocities to ck and cl, respectively, with (i, j, k, l) ∈
{(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1)}.
Concerning the elastic collisions, the mass of the colliding particles is ob-

viously preserved, since the constituents do not change during the collision.

Moreover, the physical conservation laws of linear momentum and kinetic

energy of the colliding particles are specified by the following mathematical

conditions

mici +mscs = mic
′
i +msc

′
s, (4.2)

mic
2
i +msc

2
s = mic

′2
i +msc

′2
s. (4.3)

Concerning reactive collisions, the physical conservation laws of mass, linear

momentum and total energy of the colliding particles are specified by the
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following mathematical conditions

m1 +m2 = m3 +m4, (4.4)

m1c1 +m2c2 = m3c3 +m4c4, (4.5)

E1 +
1

2
m1c

2
1 + E2 +

1

2
m2c

2
2 = E3 +

1

2
m3c

2
3 + E4 +

1

2
m4c

2
4. (4.6)

4.2.1 Collisional dynamics

In this subsection we deduce some important relations concerning the col-

lisional dynamics. We try to base our analysis only on classical mechanics

theory and basic physical laws. Some properties are used in other important

results presented here.

The hard-spheres model is one of the most important and more frequently

used models for the elastic cross section, mainly due to its simplicity. The

elastic cross section σ2
is associated to an elastic collision between two particles

of constituents Ai and As is given by

σ2
is =

1

4
(di + ds)

2, (4.7)

where di and ds denote the diameters of the particle constituents Ai and As,

respectively. The natural extension of the hard-spheres model to chemically

reactive gas mixtures is the SRS model, in which the chemical collisions are

treated as hard-spheres-like collisions . Additionally, the reactive collision

between particles Ai and Aj , with (i, j) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)}, occurs
if the kinetic energy associated with the relative motion along the line of

centers exceeds the respective activation energy. The chemical reactive cross

sections for the SRS model have the expressions

σ∗2
12 =

{
β12σ

2
12, 〈ǫ, c1 − c2〉 ≥ Γ12,

0, 〈ǫ, c1 − c2〉 < Γ12,
(4.8)
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and

σ∗2
34 =

{
β34σ

2
34, 〈ǫ, c3 − c4〉 ≥ Γ34,

0, 〈ǫ, c3 − c4〉 < Γ34,
(4.9)

for the direct and inverse reaction, respectively. Above, βij is the steric

factor for the collision between constituents Ai and Aj , with 0 ≤ βij ≤ 1.

Moreover, Γij is a threshold velocity given by Γij =
√
2εi/µij, where εi is the

activation energy for the constituent Ai, and µij =
mimj

mi+mj
is a reduced mass.

The notation 〈·, ·〉 is used for the inner product in R3 and ǫ is the unit vector

along the line passing through the centers of the spheres at the moment of

impact,

ǫ ∈ {ǫ ∈ R
3 : ‖ǫ‖ = 1 ∧ 〈ǫ, ci − cj〉 ≥ 0} ≡ S

2
+.

Notice that for the chemical reaction defined in Eq. (4.1), we have ε2 =

ε1, ε3 = ε1 − QR and ε4 = ε3. Moreover, we have βij = 0 for (i, j) 6∈
{(1, 2), (2, 1), (3, 4), (4, 3)}. Furthermore, since we consider that QR > 0, we

have ε1 > QR. For other general relations between the activation energies

and the reaction heat, see Chapter 9 of [51].

Note 4.2.2. In expressions (4.8) and (4.9) that define the reactive cross

sections, condition 〈ǫ, ci−cj〉 ≥ Γij is equivalent to 1/2µij(〈ǫ, ci−cj〉)2 ≥ εi,

which expresses that the energy of the relative motion along the line of centers

is greater or equal to the corresponding activation energy.

Note 4.2.3. From definition (4.7) of the elastic cross sections it is clear

that elastic collisions verify the micro-reversibility principle. Moreover, the

reactive cross sections defined in (4.8) and (4.9) verify the micro-reversibility

principle when the steric factors are symmetric and equal for the forward and

backward reactions, that is βij = βji and β12 = β34, and the mean collisional

diameter is preserved in the reactive collisions, that is σ12 = σ34.

Now we construct the post-collisional velocities, using some physical proper-

ties of the model, such as the conservation of linear momentum (4.5) and the

conservation of total energy (4.6).
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Proposition 4.2.1. In the case of elastic collisions between two particles

of constituents Ai and As, with initial velocities ci and cs, respectively, the

post-collisional velocities are given by

c′i = ci − 2
µis

mi
ǫ〈ǫ, ci − cs〉 and c′s = cs + 2

µis

ms
ǫ〈ǫ, ci − cs〉, (4.10)

respectively.

Proof: From the definition of ǫ, we may write

c′i = ci − Pǫ, (4.11)

with P being an unknown scalar. Inserting expression (4.11) in the conser-

vation equation (4.2) of linear momentum for elastic collisions, we obtain:

c′s = cs +
mi

ms
Pǫ. (4.12)

Using the conservation equation (4.3) of kinetic energy for elastic collisions,

inserting expressions (4.11) and (4.12) and discarding the trivial null solution

for P , we get

P =
2µis

mi
〈ǫ, ci − cs〉. (4.13)

Finally, inserting expression (4.13) for the scalar P into Eqs. (4.11) and (4.12)

for the post-collisional velocities, we obtain expression (4.10) and conclude

the proof. �

Before deducing the expressions for the reactive post-collisional velocities we

present a property that is used to prove them.

Lemma 4.2.1. For the considered reactive collisions the following condition

holds true
1

2
µ12(c1 − c2)

2 =
1

2
µ34(c3 − c4)

2 +QR. (4.14)
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Proof: We start by considering the conservation Eq. (4.6) of total energy

written in the equivalent form

m1c
2
1 +m2c

2
2 = m3c

2
3 +m4c

2
4 + 2QR. (4.15)

Multiplying Eq. (4.15) by M , with M = m1 +m2 = m3 +m4, we obtain

m2
1c

2
1+m1m2c

2
1+m1m2c

2
2+m

2
2c

2
2 = m2

3c
2
3+m3m4c

2
3+m3m4c

2
4+m

2
4c

2
4+2MQR,

or even

(m1c1 +m2c2)
2 − 2m1m2c1c2 +m1m2c

2
1 +m1m2c

2
2 (4.16)

= (m3c3 +m4c4)
2 − 2m3m4c3c4 +m3m4c

2
3 +m3m4c

2
4 + 2MQR.

Taking into account the conservation Eq. (4.5) of linear momentum, Eq. (4.16)

transforms to

m1m2(c1 − c2)
2 = m3m4(c3 − c4)

2 + 2MQR,

which reproduces Eq. (4.14). �

It is known, from the theory of physical mechanics, see for instance [19],

that the tangential component of the relative velocity does not change in a

hard-spheres collision and, therefore,

〈ξ, τ〉 = 〈ξ′, τ〉, (4.17)

where τ is the unit vector perpendicular to ǫ and ξ1 = ξ2 = ξ = c1 − c2,

ξ3 = ξ4 = ξ′ = c3 − c4. Property (4.17), together with Lemma 4.2.1, is used

to derive the expressions for the reactive post-collisional velocities.

Proposition 4.2.2. In the case of reactive collisions between two particles,
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the post-collisional velocities for the direct reaction are

c3 =
1

M

[
m1c1 +m2c2 +m4

√
µ12

µ34

{
ξ − ǫ〈ǫ, ξ〉+ ǫα−

}]
(4.18)

and

c4 =
1

M

[
m1c1 +m2c2 −m3

√
µ12

µ34

{
ξ − ǫ〈ǫ, ξ〉+ ǫα−

}]
. (4.19)

The post-collisional velocities for the inverse reaction are

c1 =
1

M

[
m3c3 +m4c4 +m2

√
µ34

µ12

{
ξ′ − ǫ〈ǫ, ξ′〉+ ǫα+

}]
(4.20)

and

c2 =
1

M

[
m3c3 +m4c4 −m1

√
µ34

µ12

{
ξ′ − ǫ〈ǫ, ξ′〉+ ǫα+

}]
. (4.21)

Above, α− =
√
(〈ǫ, ξ〉)2 − 2QR/µ12 and α+ =

√
(〈ǫ, ξ′〉)2 + 2QR/µ34.

Proof: Here we deduce the expression of the post-collisional velocity c3. The

expressions of the other velocities are obtained following similar procedures.

The relative velocities ξ and ξ′ may be written as linear combination of τ

and ǫ, in the following form

ξ′ = 〈ξ′, τ〉τ + 〈ξ′, ǫ〉ǫ and ξ = 〈ξ, τ〉τ + 〈ξ, ǫ〉ǫ. (4.22)

From condition (4.14), using expressions (4.22) for the relative velocities ξ

and ξ′, we obtain

1

2
µ12(〈ξ, τ〉τ + 〈ξ, ǫ〉ǫ)2 = 1

2
µ34(〈ξ′, τ〉τ + 〈ξ′, ǫ〉ǫ)2 +QR. (4.23)
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Now, using property (4.17), we obtain

µ12(〈ξ, ǫ〉)2 = µ34(〈ξ′, ǫ〉)2 + 2QR,

and therefore,

(〈ξ′, ǫ〉)2 = µ12

µ34

[
(〈ξ, ǫ〉)2 − 2QR

µ12

]
. (4.24)

Now, taking into account the conservation of linear momentum (4.5), the

first equality of (4.22) can be written as

c3 =
m1c1 +m2c2 −m3c3

m4
+ 〈ξ′, τ〉τ + 〈ξ′, ǫ〉ǫ.

Using Eq. (4.17) to transform the tangential component of the relative velo-

city ξ′ and Eq. (4.24) to transform the normal component, we get

c3 =
m1c1 +m2c2 −m3c3

m4
+

√
µ12

µ34
〈ξ, τ〉τ + ǫ

√
µ12

µ34

[
(〈ξ, ǫ〉)2 − 2QR

µ12

]
,

that is,

Mc3

m4
=
m1c1 +m2c2

m4
+

√
µ12

µ34
〈ξ, τ〉τ + ǫ

√
µ12

µ34

[
(〈ξ, ǫ〉)2 − 2QR

µ12

]
.

Using the second equality of (4.22) and taking into account the definition of

α− we obtain the expression (4.18) for the post-collisional velocity c3. �

Note 4.2.4. In the proof of Proposition 4.2.2, due to the reversibility of the

conservation equations and other laws used in the proof, there is no need to fix

wether we refer to post-collisional or pre-collisional velocities. Therefore the

pre-collisional velocities can be expressed in terms of the post-collisional velo-

cities through the same Eqs. (4.18), (4.19), (4.20) and (4.21). In particular,
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if two particles of constituents A1 and A2 are the result of a reactive colli-

sion between two particles of constituents A3 and A4, then the pre-collisional

velocities c3 and c4 can be expressed in terms of the post-reactive velocities

c1 and c2 through the expressions (4.18) and (4.19).

A similar statement is valid for the elastic pre-collisional and post-collisional

velocities.

Lemma 4.2.2. For a fixed vector ǫ the following equalities hold true:

〈ǫ, ξ〉 =
√

µ34

µ12
α+, (4.25)

〈ǫ, ξ′〉 =
√

µ12

µ34
α−, (4.26)

1
2
µ12(〈ǫ, ξ〉)2 − ε1 =

1
2
µ34(〈ǫ, ξ′〉)2 − ε3. (4.27)

Proof: The proof follows directly from expressions (4.18), (4.19), (4.20) and

(4.21) by computing the inner products 〈ǫ, ξ〉 and 〈ǫ, ξ′〉. �

We finish this subsection with the following lemma about the Jacobian of

the transformation from the pre-collisional to the post-collisional velocities.

It will be used in the next subsection.

Lemma 4.2.3. For a fixed vector ǫ, the Jacobians of the transformations

(c1, c2) 7→ (c3, c4) and (c3, c4) 7→ (c1, c2) are given by

(
µ34

µ12

)3/2 〈ǫ, ξ′〉
α+

and

(
µ12

µ34

)3/2 〈ǫ, ξ〉
α−

, (4.28)

respectively.

Proof: We prove the first part of the lemma. The proof of the second part

is similar. The Jacobian matrix of the transformation (c3, c4) 7→ (c1, c2), say
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A, with elements aij, i, j ∈ {1, 2, 3, 4, 5, 6}, is defined by

aij =
∂

∂c1j
c3i =






1
M

[
m1 −m4

√
µ12

µ34

{
−1 + ǫ2i

(
1− 〈ǫ,ξ〉

α−

)}]
, i = j

−m4

M

√
µ12

µ34

{
ǫiǫj

(
1− 〈ǫ,ξ〉

α−

)}
, i 6= j

for i, j ∈ {1, 2, 3},

aij =
∂

∂c2j
c3i =





1
M

[
m2 +m4

√
µ12

µ34

{
−1 + ǫ2i

(
1− 〈ǫ,ξ〉

α−

)}]
, i+ 3 = j

m4

M

√
µ12

µ34

{
ǫiǫj

(
1− 〈ǫ,ξ〉

α−

)}
, i+ 3 6= j

for i ∈ {1, 2, 3}, j ∈ {4, 5, 6},

aij =
∂

∂c1j
c4i =





1
M

[
m1 +m3

√
µ12

µ34

{
−1 + ǫ2i

(
1− 〈ǫ,ξ〉

α−

)}]
, i = j + 3

m3

M

√
µ12

µ34

{
ǫiǫj

(
1− 〈ǫ,ξ〉

α−

)}
, i 6= j + 3

for i ∈ {4, 5, 6}, j ∈ {1, 2, 3} and

aij =
∂

∂c2j
c4i =





1
M

[
m2 −m3

√
µ12

µ34

{
−1 + ǫ2i

(
1− 〈ǫ,ξ〉

α−

)}]
, i = j

−m3

M

√
µ12

µ34

{
ǫiǫj

(
1− 〈ǫ,ξ〉

α−

)}
, i 6= j

for i ∈ {4, 5, 6}, j ∈ {4, 5, 6}. Thus, by inspection, the determinant of the

matrix is given by
(

µ12

µ34

)3/2
〈ǫ,ξ〉
α− . �

4.2.2 Kinetic equations

In this subsection we deduce the kinetic equations of the SRS model. If we

consider the absence of external forces, they are of type

∂

∂t
fi +

3∑

l=1

cil
∂

∂xl
fi = QE

i +QR
i , (4.29)
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where QE
i and QR

i represent the elastic and the reactive collisional opera-

tors, respectively. The expressions of the collisional operators, both elastic

and reactive, are justified in what follows.

The collisional operator of constituent Ai has a gain term and a loss term, as

usual, that count the number of particles of that constituent that are gained

and lost, respectively, due to collisions.

By considering the hard-sphere model for the elastic collisions and the SRS

model for the reactive collisions, the elastic operator QE
i takes the form:

QE
i =

4∑

s=1

{
σ2
is

∫

R3

∫

S2
+

[f ′
if

′
s − fifs] 〈ǫ, ci − cs〉dǫdcs

}
(4.30)

−βijσ2
ij

∫

R3

∫

S2
+

[
f ′
if

′
j − fifj

]
Θ(〈ǫ, ξi〉 − Γij)〈ǫ, ξi〉dǫdcj,

where Θ is the Heaviside step function and (i, j) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)}.
Some collisions between particles of constituents A1 and A2 or A3 and A4

are elastic and some of them are reactive. The definition of the chemical

reactive cross section, in terms of an activation energy, determines how to

count each collision. The interpretation of the elastic collisional operator is

similar to the one presented in Chapter 1 but here we have an additional

term to avoid the double counting. In fact, the second term in (4.30) singles

out those pre-collisional states that are energetic enough to result in chemical

reaction, and thus preventing double counting of the events in the collisional

operators.

Many works neglect the counting of reactive collisions in the elastic operator.

There are some situations where this is not a serious problem but, there are

others where this procedure leads to critical ones, see for instance [51]. With

the elastic collisional operator defined in (4.30) this double counting does not

occur.
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Now we construct the reactive collisional operator QR
i . We only present the

construction of QR
1 , since the other operators QR

i , with i = 2, 3, 4, follow

a similar procedure. The number of reactive collisions between particles

of constituents A1 and A2 that contribute to the loss of particles A1 with

velocity c1, with the hard-sphere type reactive cross section defined in (4.8),

is given by

β12σ
2
12

∫

R3

∫

S2
+

f1f2Θ(〈ǫ, ξ〉 − Γ12)〈ǫ, ξ〉dǫdc2. (4.31)

To obtain QR
1 we also have to count the number of particles A1 with velocity

c1 that are gained with reactive collisions between particles of constituents

A3 and A4 with velocities c3 and c4. However, the velocities c3 and c4 must

be related to the velocities c1 (corresponding to the situation that we are

considering) and c2 (corresponding to the integrand of expression (4.31)) by

the conservation equations of linear momentum and total energy. Thus, if

we consider the micro-reversibility principle and Lemmas 4.2.2 and 4.2.3, the

number of particles of constituent A1 with velocity c1 that are gained from

reactive collisions between particles of constituents A3 and A4 is given by

β34σ
2
34

∫

R3

∫

S2
+

f3f4Θ(〈ǫ, ξ′〉 − Γ34)〈ǫ, ξ′〉dǫdc3

= β12σ
2
12

∫

R3

∫

S2
+

f3f4Θ(〈ǫ, ξ〉 − Γ12)

√
µ12

µ34
α−

(
µ12

µ34

)3/2 〈ǫ, ξ〉
α−

dǫdc2

= β12σ
2
12

∫

R3

∫

S2
+

(
µ12

µ34

)2

f3f4Θ(〈ǫ, ξ〉 − Γ12)〈ǫ, ξ〉dǫdc2. (4.32)

Joining the loss term (4.31) and the gain term (4.32), we obtain the following

expression for the reactive operator QR
1 ,

QR
1 = β12σ

2
12

∫

R3

∫

S2
+

[(
µ12

µ34

)2

f3f4 − f1f2

]
Θ(〈ǫ, ξ〉−Γ12)〈ǫ, ξ〉dǫdc2. (4.33)

Using a similar procedure, we obtain the reactive collisional operators for all
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the constituents, namely

QR
i = βijσ

2
ij

∫

R3

∫

S2+

[(
µij

µkl

)2

fkfl − fifj

]
Θ(〈ǫ, ξi〉 − Γij)〈ǫ, ξi〉dǫdcj, (4.34)

where (i, j, k, l) ∈ {(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1)}.

As known in literature, see for instance [17, 51], and described in Chap-

ter 1, the Boltzmann equations may be used to deduce appropriate balance

equations for the evolution of the macroscopic variables of the reactive gas

mixture. For that purpose, one needs to define the macroscopic variables

as microscopic averages of the distribution function. for brevity, we present

here the definition of those macroscopic variables that will be used in later

sections.

The number density ni of constituent Ai, with i = 1, ..., 4, and the number

density n of the gas mixture are defined by

ni =

∫

R3

fidci and n =
4∑

i=1

ni. (4.35)

The gas velocity components vl, with l = 1, ..., 3, of the mixture are defined

by

vi =

4∑

i=1

miniv
i
l

4∑

i=1

mini

, with vil =

∫

R3

cilfidc
i
l

ni

. (4.36)

The temperature T of the gas mixture is defined by

T =

4∑

i=1

pi

nk
, with pi =

1

3

∫

R3

mi(c
i
l − vl)

2fidci, (4.37)
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where k is the Boltzmann constant.

4.3 Properties of the collisional operators

The consistency of the model is assured when the collisional operators have

some important properties. We begin with the following fundamental results,

concerning the elastic and reactive operators.

Proposition 4.3.1. If we assume that βij = βji then, for ψi measurable on

R3 and fi ∈ C0(R
3), i = 1, 2, 3, 4,

∫

R3

ψiQE
i dci =

1

4

4∑

s=1

{
σ2
is

∫

R3

∫

R3

∫

S2
+

[ψi+ψs−ψ′
i−ψ′

s] [f
′
if

′
s−fifs]〈ǫ, ci − cs〉dǫdcsdci

}

−1

4
βijσ

2
ij

∫

R3

∫

R3

∫

S2
+

[
ψi+ψj−ψ′

i−ψ′
j

] [
f ′
if

′
j − fifj

]

×Θ(〈ǫ, ξi〉−Γij)〈ǫ, ξi〉dǫdcjdci. (4.38)

Proof: Taking into account the expression (4.30) for the elastic operator

QE
i , we separate the proof in two parts, namely

σ2
is

∫

R3

∫

R3

∫

S2
+

ψi [f
′
if

′
s − fifs] 〈ǫ, ci − cs〉dǫdcsdci (4.39)

=
1

4
σ2
is

∫

R3

∫

R3

∫

S2
+

[ψi + ψs − ψ′
i − ψ′

s] [f
′
if

′
s − fifs] 〈ǫ, ci − cs〉dǫdcsdci

and

−βijσ2
ij

∫

R3

∫

R3

∫

S2
+

ψi

[
f ′
if

′
j − fifj

]
Θ(〈ǫ, ξi〉−Γij)〈ǫ, ξi〉dǫdcjdci (4.40)

= −1

4
βijσ

2
ij

∫

R3

∫

R3

∫

S2
+

[
ψi+ψj−ψ′

i−ψ′
j

][
f ′
if

′
j − fifj

]

×Θ(〈ǫ, ξi〉−Γij)〈ǫ, ξi〉dǫdcjdci.
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First we prove condition (4.39). We start by taking the left-hand side of the

equality and rename the velocities as follows: the pre-collisional velocities

become now c′i, c
′
s and the post-collisional velocities become ci, cs. Then

we perform the transformation (c′i, c
′
s) 7→ (ci, cs) whose Jacobian is 1. The

described steps can be represented by

σ2
is

∫

R3

∫

R3

∫

S2
+

ψi [f
′
if

′
s − fifs] 〈ǫ, ci − cs〉dǫdcsdci

= σ2
is

∫

R3

∫

R3

∫

S2
+

ψ′
i [fifs − f ′

if
′
s] 〈ǫ, c′i − c′s〉dǫdc′sdc′i

= −σ2
is

∫

R3

∫

R3

∫

S2+

ψ′
i [f

′
if

′
s − fifs] 〈ǫ, ci − cs〉dǫdcsdci.

Thus we have

σ2
is

∫

R3

∫

R3

∫

S2
+

ψi [f
′
if

′
s − fifs] 〈ǫ, ci − cs〉dǫdcsdci

=
1

2
σ2
is

∫

R3

∫

R3

∫

S2
+

[ψi − ψ′
i] [f

′
if

′
s − fifs] 〈ǫ, ci − cs〉dǫdcsdci. (4.41)

Now, considering the right-hand side of Eq. (4.41), we rename the velocities

ci and cs by changing the indices i and s of the particles. By taking into

account that σis = σsi, we have

1

2
σ2
is

∫

R3

∫

R3

∫

S2
+

[ψi − ψ′
i] [f

′
if

′
s − fifs] 〈ǫ, ci − cs〉dǫdcsdci

=
1

2
σ2
is

∫

R3

∫

R3

∫

S2
+

[ψs − ψ′
s] [f

′
if

′
s − fifs] 〈ǫ, ci − cs〉dǫdcsdci. (4.42)

Therefore, combining expressions (4.41) and (4.42), we derive expression

(4.39). Then, we prove condition (4.40) using a similar procedure and the

conclusion comes out. �
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Proposition 4.3.2. If 0 ≤ βij = βji ≤ 1 (i = 1, . . . , 4) and β12σ
2
12 = β34σ

2
34,

then we have

4∑

i=1

∫

R3

ψiQR
i dci = β12σ

2
12

∫

R3

∫

R3

∫

S2+

[ψ1 + ψ2 − ψ3 − ψ4] (4.43)

×
[(

µ12

µ34

)2

f3f4 − f1f2

]
Θ(〈ǫ, ξ〉 − Γ12)〈ǫ, ξ〉dǫdc2dc1

= β34σ
2
34

∫

R3

∫

R3

∫

S2
+

[ψ3 + ψ4 − ψ1 − ψ2] (4.44)

×
[(

µ34

µ12

)2

f1f2 − f3f4

]
Θ(〈ǫ, ξ′〉 − Γ34)〈ǫ, ξ′〉dǫdc4dc3.

Proof: It is easy to verify, by inspection, that

∫

R3

ψ2QR
2 dc2 = β12σ

2
12

∫

R3

∫

R3

∫

S2
+

ψ2

[(
µ12

µ34

)2

f3f4 − f1f2

]
(4.45)

×Θ(〈ǫ, ξ〉 − Γ12)〈ǫ, ξ〉dǫdc2dc1.

We now prove that

∫

R3

ψ3QR
3 dc3 = −β12σ2

12

∫

R3

∫

R3

∫

S2
+

ψ3

[(
µ12

µ34

)2

f3f4 − f1f2

]
(4.46)

×Θ(〈ǫ, ξ〉 − Γ12)〈ǫ, ξ〉dǫdc2dc1.

We perform the transformation (c3, c4) 7→ (c1, c2) in the integral on the left-

hand side of Eq. (4.46), and the corresponding Jacobian is
(

µ12

µ34

)3/2
〈ǫ,ξ〉
α− , see

Lemma 4.2.3. By using expression (4.27) of Lemma 4.2.2 we may easily prove

that

〈ǫ, ξ′〉 − Γ34 > 0 ⇔ 〈ǫ, ξ〉 − Γ12 > 0,

and thus

Θ(〈ǫ, ξ′〉 − Γ34) = Θ(〈ǫ, ξ〉 − Γ12).
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With this transformation we obtain

∫

R3

ψ3QR
3 dc3 = β34σ

2
34

∫

R3

∫

R3

∫

S2
+

ψ3

[(
µ34

µ12

)2

f3f4 − f1f2

]

×Θ(〈ǫ, ξ〉 − Γ12)

(
µ12

µ34

)2

〈ǫ, ξ〉dǫdc2dc1.

Now, performing some simplifications and taking into account the assumption

β12σ
2
12 = β34σ

2
34, we obtain condition (4.46).

A similar procedure may be used to prove that

∫

R3

ψ4QR
4 dc4 = −β12σ2

12

∫

R3

∫

R3

∫

S2
+

ψ4

[(
µ12

µ34

)2

f3f4 − f1f2

]
(4.47)

×Θ(〈ǫ, ξ〉 − Γ12)〈ǫ, ξ〉dǫdc2dc1.

Now, combining conditions (4.45), (4.46) and (4.47), we prove condition

(4.43). The proof of condition (4.44) follows a similar procedure. �

Propositions 4.3.1 and 4.3.2 are fundamental for the proof of the following

results.

Proposition 4.3.3. The elastic collisional terms are such that

∫

R3

QE
i dci = 0, i = 1, ..., 4. (4.48)

Proof: The proof comes directly from Proposition 4.3.1 by considering

ψi = 1, i = 1, ..., 4. �

Proposition 4.3.3 states that elastic encounters do not change the number of

particles of each constituent.
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Proposition 4.3.4. The reaction terms satisfy the following property:

∫

R3

QR
1 dc1 =

∫

R3

QR
2 dc2 = −

∫

R3

QR
3 dc3 = −

∫

R3

QR
4 dc4. (4.49)

Proof: These results come directly from Proposition 4.3.2 by considering

ψ = (0, 1, 0, 0), ψ = (0, 0, 1, 0) and ψ = (0, 0, 0, 1). �

Proposition 4.3.4 states that the variation of the number of particles of consti-

tuent A1 is the same as that of constituent A2 and symmetric to the variation

of constituents A3 and A4.

Now we recall the definition of collisional invariants and present the definition

of elastic collisional invariants.

Definition 4.3.1. A function ψ = (ψi, ψs, ψ
′
i, ψ

′
s) is an elastic collisional

invariant in the velocity space if

∫

R3

ψiQE
i dci +

∫

R3

ψsQE
s dcs +

∫

R3

ψ′
iQE

i dc
′
i +

∫

R3

ψ′
sQE

s dc
′
s = 0. (4.50)

Definition 4.3.2. A function ψ = (ψ1, ψ2, ψ3, ψ4) is a collisional invariant

in the velocity space, for the SRS model, if

4∑

i=1

∫

R3

ψi

(
QE

i +QR
i

)
dci = 0. (4.51)

Proposition 4.3.5. Functions ψ = (1, 1, 1, 1), ψ = (mic
i
l, msc

s
l , mic

′i
l, msc

′s
l ),

l = 1, 2, 3, and ψ = (c2imi, c
2
sms, c

′2
imi, c

′2
sms) are elastic collisional inva-

riants, for i, s = 1, ..., 4.

Proof: These results come from the direct application of Proposition 4.3.1

and conservation laws (4.2) and (4.3). �
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All functions ψ which are a linear combination of the above five functions

introduced in Proposition 4.3.5 are also elastic collisional invariants. They

can be defined by

ψi = Gi +Hi ·mici + Jic
2
i , (4.52)

where Gi and Ji are two scalar functions and Hi a vectorial function, all of

them being independent of ci.

Proposition 4.3.6. Functions ψ = (1, 0, 1, 0), ψ = (1, 0, 0, 1), ψ = (0, 1, 1, 0),

and functions ψ = (ψ1, ψ2, ψ3, ψ4) defined by ψi = mic
i
1, ψi = mic

i
2,

ψi = mic
i
3 and ψi = Ei +

1
2
c2imi are collisional invariants.

Proof: These results come directly from Propositions 4.3.1 and 4.3.2 and

conservation laws (4.5) and (4.6). �

All functions ψ, which are a linear combination of the seven functions intro-

duced in Proposition 4.3.6 are also collisional invariants. They can be defined

by

ψi = Gi +Hi ·mici + Ji(Ei +
1

2
c2i ), (4.53)

where Gi and Ji are two scalar functions, such that G1 +G2 = G3 +G4, and

Hi a vectorial function, all of them being independent of ci.

4.4 Boltzmann H-theorem

In this section we prove the existence of an H-function (Liapunov functional)

for the SRS system (4.29), (4.30) and (4.34). This result is related to the

physical trend to equilibrium that will be presented in the next section.

Proposition 4.4.1. If 0 ≤ βij = βji ≤ 1 (i = 1, . . . , 4) and β12σ
2
12 = β34σ

2
34,

103



the convex function H(t), defined by

H(t) =
4∑

i=1

∫

Ω

∫

R3

fi log

(
fi
µij

)
dcidx, (4.54)

where (i, j) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)}, fi ∈ L1(R3
x) for all i = 1, .., 4, and

Ω = R
3, is an H-function (Liapunov functional) for the system (4.29), (4.30)

and (4.34).

Proof: We start by multiplying Eq. (4.29) by 1+log
(

fi
µij

)
, with i = 1, ..., 4

and (i, j) ∈ (1, 2), (2, 1), (3, 4), (4, 3). Then we integrate the resulting equa-

tions over Ω × R, sum over all constituents and use Propositions 4.3.1 and

4.3.2 with ψi = log
(

fi
µij

)
. We treat separately each term in Eq. (4.29) and

then conclude the proof gathering the results and considering the complete

equation.

If we multiply ∂
∂t
fi by 1 + log

(
fi
µij

)
, integrate over Ω× R3 and sum over all

constituents we get

4∑

i=1

∫

Ω

∫

R3

[
1 + log

(
fi
µij

)]
∂

∂t
fidcidx

=

4∑

i=1

∫

Ω

∫

R3

[
log

(
fi
µij

)
∂

∂t
fi +

1

fi
fi
∂

∂t
fi

]
dcidx

=
4∑

i=1

∫

Ω

∫

R3

∂

∂t

[
fi log

(
fi
µij

)]
dcidx,

therefore

4∑

i=1

∫

Ω

∫

R3

[
1+log

(
fi
µij

)]
∂

∂t
fidcidx=

d

dt

4∑

i=1

∫

Ω

∫

R3

fi log

(
fi
µij

)
dcidx. (4.55)

Now, if we multiply
∑3

l=1 c
i
l

∂
∂xl
fi by 1+ log

(
fi
µij

)
, integrate over Ω×R3 and
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sum over all constituents we get

4∑

i=1

∫

Ω

∫

R3

[
1 + log

(
fi
µij

)] 3∑

l=1

cil
∂

∂xl
fidcidx

=

4∑

i=1

3∑

l=1

∫

R3

cil

∫

Ω

[
1 + log

(
fi
µij

)]
∂

∂xl
fidxdci

=

4∑

i=1

3∑

l=1

∫

R3

cil

∫

Ω

∂

∂xl

[
fi log

(
fi
µij

)]
dxdci.

Since Ω = R3, we have

4∑

i=1

∫

Ω

∫

R3

[
1 + log

(
fi
µij

)] 3∑

l=1

cil
∂

∂xl
fidcidx

=

4∑

i=1

3∑

l=1

∫

R3

cil lim
r→+∞

∫

B(0,r)

∂

∂xl

[
fi log

(
fi
µij

)]
dxdci,

where B(0, r) = {x ∈ R3 : ‖x‖ < r}. Using the divergence theorem we

obtain

4∑

i=1

∫

Ω

∫

R3

[
1 + log

(
fi
µij

)] 3∑

l=1

cil
∂

∂xl
fidcidx

=

4∑

i=1

3∑

l=1

∫

R3

cil lim
r→+∞

∮

S2r

fi log

(
fi
µij

)
dxdci,

where S2
r = {x ∈ R

3 : ‖x‖ = r}. Since fi ∈ L1(R3
x) the integral

∮
S2r
fi log

(
fi
µij

)
dx

vanishes for sufficiently large values of r, and we conclude that

4∑

i=1

∫

Ω

∫

R3

[
1 + log

(
fi
µij

)] 3∑

l=1

cil
∂

∂xl
fidcidx = 0. (4.56)

If we multiply QE
i by 1+log

(
fi
µij

)
, integrate over Ω×R

3 and use Proposition
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4.3.1 with ψi = 1 + log
(

fi
µij

)
, we get

∫

Ω

∫

R3

[
1 + log

(
fi
µij

)]
QE

i dcidx

=
1

4

∫

Ω

{
4∑

s=1

σ2
is

∫

R3

∫

R3

∫

S2
+

log

(
fifs
f ′
if

′
s

)
[f ′

if
′
s−fifs]〈ǫ, ci − cs〉dǫdcsdci

−βijσ2
ij

∫

R3

∫

R3

∫

S2
+

log

(
fifj
f ′
if

′
j

)[
f ′
if

′
j − fifj

]
Θ(〈ǫ, ξi〉−Γij)〈ǫ, ξi〉dǫdcjdci

}
dx.

=
1

4

∫

Ω

4∑

s=1

σ2
is

∫

R3

∫

R3

∫

S2
+

log

(
fifs
f ′
if

′
s

)
[f ′

if
′
s−fifs]〈ǫ, ci − cs〉

× (1− γisΘ(〈ǫ, ξi〉−Γis)) dǫdcsdcidx,

where γis = βis for (i, s) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)} and zero otherwise.

Since the steric factor and the Heaviside function are such that 0 ≤ βij ≤ 1,

0 ≤ Θ(〈ǫ, ξi〉−Γij) ≤ 1 and the integration over ǫ is performed in S2
+ so that

〈ǫ, ξi〉 ≥ 0, from the well known inequality

log
(a
b

)
[b− a] ≤ 0, a > 0, b > 0, (4.57)

we conclude that

∫

Ω

∫

R3

[
1 + log

(
fi
µij

)]
QE

i dcidx ≤ 0, (4.58)

and thus,
4∑

i=1

∫

Ω

∫

R3

[
1 + log

(
fi
µij

)]
QE

i dcidx ≤ 0. (4.59)

Finally, if we multiply QR
i by 1 + log

(
fi
µij

)
, integrate over Ω × R3 and use
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Proposition 4.3.2 with ψi = 1 + log
(

fi
µij

)
, we get

4∑

i=1

∫

Ω

∫

R3

[
1 + log

(
fi
µij

)]
QR

i dcidx

= β12σ
2
12

∫

Ω

∫

R3

∫

S2
+

log




f1f2(
µ12

µ34

)2
f3f4



[(

µ12

µ34

)2

f3f4 − f1f2

]

×Θ(〈ǫ, ξ〉 − Γ12)〈ǫ, ξ〉dǫdc2dc1.

Since the steric factor and the Heaviside function are such that 0 ≤ β12 ≤ 1,

0 ≤ Θ(〈ǫ, ξ〉−Γ12) ≤ 1 and the integration over ǫ is performed in S2
+ so that

〈ǫ, ξ〉 ≥ 0, from the well known inequality (4.57) we conclude that

4∑

i=1

∫

Ω

∫

R3

[
1 + log

(
fi
µij

)]
QR

i dcidx ≤ 0. (4.60)

Now, if we consider all terms in Eq. (4.29) and take into account the partial

results (4.55), (4.56), (4.59) and (4.60) we have

d

dt

4∑

i=1

∫

Ω

∫

R3

fi log

(
fi
µij

)
dcidx ≤ 0, (4.61)

which concludes the proof. �

Note 4.4.1. When we consider the case of a spatial homogeneous evolution,

the domain Ω is irrelevant for the result stated in Proposition 4.4.1. In the

general case considered in the proposition, there exists a limited range of

known situations, for which the result is still valid. Some of them correspond

to consider Ω as a box with boundary conditions of periodic type or boundary

conditions of specular reflection at the walls, see for instance [17, 19, 85].
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4.5 Equilibrium distributions

In this section we characterize the mechanical and the thermodynamical

equilibrium states of the reactive gas mixture, in particular we define the

Maxwellian distribution and introduce the appropriate mass action law.

Proposition 4.5.1. The following expressions are equivalent:

1) fi = ni

( mi

2πkT

)3/2
exp

[
−mi(ci − v)2

2kT

]
, i = 1, .., 4 (4.62)

and

n1n2 = n3n4

√
µ12

µ34

exp [QR/kT ] ; (4.63)

2) QE
i = 0 and QR

i = 0, for i = 1, ..., 4;

3)
4∑

i=1

∫

R3

[
QE

i +QR
i

]
log

(
fi
µij

)
dci = 0.

Proof: We prove that 1 ) ⇒ 2 ) ⇒ 3 ) ⇒ 1 ). For the first implication we

introduce the expression (4.62) of fi in the elastic operator QE
i defined in

Eq. (4.30), obtaining

f ′
if

′
s − fifs = nins

(mims)
3/2

(2πkT )3

{
exp

[
−mi(c

′
i − v)2 +ms(c

′
s − v)2

2kT

]

− exp

[
−mi(ci − v)2 +ms(cs − v)2

2kT

]}
.

Now, using the conservation equations of linear momentum and total energy

for elastic collisions, namely Eqs. (4.2) and (4.3), we notice that

(c′i − v)2 +ms(c
′
s − v)2 = (ci − v)2 +ms(cs − v)2,

and we get f ′
if

′
s−fifs = 0 for all i, s = 1, ..., 4. Thus QE

i = 0 for all i = 1, ..., 4.

We proceed similarly with the reactive operator QR
i defined in Eq. (4.34).
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In particular, when i = 3, we have

(
µ34

µ12

)2

f1f2 − f3f4

=

(
µ34

µ12

)2

n1n2
(m1m2)

3/2

(2πkT )3
exp

[
−m1(c1 − v)2 +m2(c2 − v)2

2kT

]

−n3n4
(m3m4)

3/2

(2πkT )3
exp

[
−m3(c3 − v)2 +m4(c4 − v)2

2kT

]
.

By using the conservation laws of mass, linear momentum and total energy

for reactive collisions, namely Eqs. (4.4), (4.5) and (4.6), we conclude that

(
µ34

µ12

)2

f1f2 − f3f4

= exp

[
−m3(c3 − v)2 +m4(c4 − v)2

2kT

]
exp

[
−QR

kT

](
µ34

µ12

)2

(m1m2)
3/2

×
{
n1n2 − n3n4

√
µ12

µ34

exp [QR/kT ]

}
.

Taking into account condition (4.63), we conclude that

(
µ34

µ12

)2

f1f2 − f3f4 = 0,

and thus QR
3 = 0. A similar procedure can also be used to prove

that QR
1 = QR

2 = QR
4 = 0. Therefore the proof of the first implication is

concluded.

The second implication, 2 ) ⇒ 3 ), is trivially verified.

We now prove the implication 3 ) ⇒ 1 ). First, using Propositions 4.3.1 and

4.3.2, we have

4∑

i=1

∫

R3

[
QE

i +QR
i

]
log

(
fi
µij

)
dci = 0,
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if and only if,

1

4

4∑

i=1

[
4∑

s=1

σ2
is

∫

R3

∫

R3

∫

S2
+

log

(
fifs
f ′
if

′
s

)
[f ′

if
′
s−fifs]〈ǫ, ci − cs〉dǫdcjdci

−βijσ2
ij

∫

R3

∫

R3

∫

S2
+

log

(
fifj
f ′
if

′
j

)[
f ′
if

′
j − fifj

]
Θ(〈ǫ, ξi〉−Γij)〈ǫ, ξi〉dǫdcjdci

]

+β12σ
2
12

∫

R3

∫

R3

∫

S2
+

log

[(
µ34

µ12

)2
f1f2
f3f4

][(
µ12

µ34

)2

f3f4 − f1f2

]

×Θ(〈ǫ, ξ〉 − Γ12)〈ǫ, ξ〉dǫdc2dc1 = 0,

that is

1

4

4∑

i=1

4∑

s=1

σ2
is

∫

R3

∫

R3

∫

S2
+

log

(
fifs
f ′
if

′
s

)
[f ′

if
′
s−fifs]〈ǫ, ci − cs〉

× (1− γisΘ(〈ǫ, ξi〉−Γis)) dǫdcsdci

+β12σ
2
12

∫

R3

∫

R3

∫

S2
+

log

[(
µ34

µ12

)2
f1f2
f3f4

][(
µ12

µ34

)2

f3f4 − f1f2

]

×Θ(〈ǫ, ξ〉 − Γ12)〈ǫ, ξ〉dǫdc2dc1 = 0,

where γis = βis for (i, s) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)} and zero otherwise.

Since the steric factor and the Heaviside function are such that 0 ≤ βij ≤ 1,

0 ≤ Θ(〈ǫ, ξi〉 − Γij) ≤ 1, and the integration over ǫ is performed in S2
+, so

that 〈ǫ, ξi〉 ≥ 0, the previous equality is verified only if

log

(
fifs
f ′
if

′
s

)
[f ′

if
′
s−fifs] = 0, (4.64)

almost everywhere in (ci, cs) ∈ R3 × R3, for i, s = 1, ..., 4, and

log

[(
µ34

µ12

)2
f1f2
f3f4

][(
µ12

µ34

)2

f3f4 − f1f2

]
= 0, (4.65)
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almost everywhere in (c1, c2) ∈ R3 ×R3. Since, for a > 0 and b > 0, we have

log(a/b)(b − a) = 0 if and only if a = b, we conclude that conditions (4.64)

and (4.65) are verified if and only if

f ′
if

′
s=fifs (4.66)

and (
µ12

µ34

)2

f3f4 = f1f2 (4.67)

almost everywhere.

Now, from Eq. (4.66) we obtain

log f ′
i + log f ′

s=log fi + log fs. (4.68)

Thus function ψ = (log fi, log fs, log f
′
i , log f

′
s) is an elastic collisional inva-

riant and from Eq. (4.52), we may write

log fi = Gi +Hi ·mici + Jic
2
i , (4.69)

or even

fi = exp[Gi +Hi ·mici + Jic
2
i ]. (4.70)

If we now introduce expression (4.70) in the definition of the number density,

velocity and pressure of the constituents and of the mixture we obtain, see

[64],

fi = ni

( mi

2πkT

)3/2
exp

[
−mi(ci − v)2

2kT

]
. (4.71)

Now, introducing expression (4.71) in Eq. (4.67) and using the conservation

of the total energy for reactive collisions (4.6), we obtain

n1n2 = n3n4

√
µ12

µ34

exp [QR/kT ] , (4.72)
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which concludes the proof of the third implication. �

In the proof of Proposition 4.5.1 we introduced expressions (4.62) of the

distributions fi into the elastic operators QE
i defined in Eq. (4.30), and

obtained QE
i = 0, for all i = 1, ..., 4. This vanishing of the elastic operators

motivates the following definition.

Definition 4.5.1. The Maxwellian distribution functions of mechanical equi-

librium are defined by

fM
i = ni

( mi

2πkT

)3/2
exp

[
−mi(ci − v)2

2kT

]
, i = 1, .., 4. (4.73)

On the other hand, to vanish also the reactive operator, it was necessary

to include also condition (4.63). This condition represents the mass action

law and imposes a relation between the equilibrium number densities and

temperature. This feature motivates the following definition

Definition 4.5.2. The Maxwellian distribution functions of thermodynami-

cal equilibrium are given by

Mi(ci) = ni

( mi

2πkT

)3/2
exp

[
−mi(ci − v)2

2kT

]
, (4.74)

with number densities satisfying the mass action law (4.63).

In what follows, we will use the reference frame moving with the gas mixture,

in order to simplify the expression of the Maxwellian distribution functions

of thermodynamical equilibrium and subsequent calculations.

4.6 Linearized SRS kinetic equations

In this section we construct the linearized SRS kinetic system. The gas

mixture is considered to be close to the thermodynamical equilibrium and
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the distribution function fi is expanded around the Maxwellian distribution

Mi, in the form

fi(x, ci, t) =Mi(x, ci, t)
[
1 + hi(x, ci, t)

]
, i = 1, ..., 4, (4.75)

where hi represents the deviation from the equilibrium. In the sequel we will

use the following result.

Lemma 4.6.1. The Maxwellian distribution functions Mi, defined in expres-

sion (4.74), are such that

1. for i = 1, ..., 4, if ci and c′s are the elastic pre-collisional velocities of

species Ai and As, respectively, and c′i and c′s are the corresponding

elastic post-collisional velocities, we have

M ′
iM

′
s =MiMs; (4.76)

2. for (i, j, k, l) ∈ {(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1)}, if ci and

cj are the pre-collisional velocities of species Ai and Aj, respectively,

and ck and cl are the corresponding reactive post-collisional velocities,

we have (
µij

µkl

)2

MkMl =MiMj . (4.77)

Proof: Using the conservation of total energy (4.3) for elastic collisions, we

prove condition (4.76).

Now, we prove condition (4.77) for (i, j)∈{(1, 2), (2, 1)}. Using conservation

equation total energy for reactive collisions (4.6), as well as the mass action
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law (4.63), we have

(
µ12

µ34

)2

M3M4=

(
µ12

µ34

)2

n3n4

(
m3m4

(2πkT )2

)3/2

exp

[
−m3c

2
3 +m4c

2
4

2kT

]

=

(
µ12

µ34

)2(
µ12

µ34

)1/2

n1n2 exp

[
−QR

kT

](
m3m4

(2πkT )2

)3/2

× exp

[
−m1c

2
1 +m2c

2
2 − 2QR

2kT

]

= n1n2

(
m1m2

(2πkT )2

)3/2

exp

[
−m1c

2
1 +m2c

2
2

2kT

]

= M1M2.

The proof of condition (4.77) for (i, j) ∈ {(3, 4), (4, 3)} is similar. �

We proceed now with the derivation of the linearized SRS system.

Proposition 4.6.1. If we neglect quadratic terms in the deviations hi, the

linearized SRS system takes the form

∂

∂t
hi +

3∑

l=1

cil
∂

∂xl
hi = LE

i (h) + LR
i (h) ≡ Li(h), i = 1, ..., 4, (4.78)

with

LE
i (h) =

4∑

s=1

σ2
is

∫

R3

∫

S2
+

Ms

[
h′i + h′s − hi − hs

]
〈ǫ, ci − cs〉 dǫ dcs (4.79)

−βijσ2
ij

∫

R3

∫

S2
+

Mj

[
h′i + h′j − hi − hj

]
Θ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj

and

LR
i (h) = βijσ

2
ij

∫

R3

∫

S2
+

Mj [hk + hl − hi − hj ] Θ(〈ǫ, ξi〉 − Γij)〈ǫ, ξi〉dǫdcj , (4.80)

where (i, j, k, l) ∈ {(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1)}.
Proof: To obtain the linearized SRS system, we introduce expansions (4.75)
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in Eqs. (4.29), (4.30) and (4.34), and neglect quadratic terms in the devia-

tions hi. First we work on the left-hand side of Eq. (4.29), obtaining

∂

∂t
fi +

3∑

l=1

cil
∂

∂xl
fi

=
∂

∂t

(
Mi

[
1 + hi

])
+

3∑

l=1

cil
∂

∂xl

(
Mi

[
1 + hi

])

=
[
1 + hi

]( ∂

∂t
Mi +

3∑

l=1

cil
∂

∂xl
Mi

)
+Mi

(
∂

∂t
hi +

3∑

l=1

cil
∂

∂xl
hi

)
.

Since Mi is a Maxwellian, we have

∂

∂t
Mi +

3∑

l=1

cil
∂

∂xl
Mi = 0,

so that,

∂

∂t
fi +

3∑

l=1

cil
∂

∂xl
fi =Mi

(
∂

∂t
hi +

3∑

l=1

cil
∂

∂xl
hi

)
. (4.81)

Now we linearize the elastic collisional term QE
i given in Eq. (4.30). Using

Lemma 4.6.1, part 1, and neglecting quadratic terms in the deviation hi, we

obtain

f ′
if

′
s − fifs =MiMs

[
h′i + h′s − hi − hs

]
.

Therefore the linearized elastic operator takes the form

Mi

4∑

s=1

σ2
is

∫

R3

∫

S2
+

Ms

[
h′i + h′s − hi − hs

]
〈ǫ, ci − cs〉 dǫ dcs (4.82)

−βijσ2
ijMi

∫

R3

∫

S2
+

Mj

[
h′i + h′j − hi − hj

]
Θ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj .
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Now we linearize the reactive collisional term QR
i given in Eq. (4.34). Using

Lemma 4.6.1, part 2, and neglecting quadratic terms in the deviation hi, we

obtain

(
µij

µkl

)2

fkfl − fifj =MiMj [hk + hl − hi − hj] .

Therefore, the linearized reactive operator takes the form

Miβijσ
2
ij

∫

R3

∫

S2
+

Mj [hk + hl − hi − hj] Θ(〈ǫ, ξi〉 − Γij)〈ǫ, ξi〉dǫdcj. (4.83)

At last, we insert expressions (4.81), (4.82) and (4.83) into Eq. (4.29) and di-

vide it by Mi, obtaining the linearized SRS system in the form (4.78), (4.79)

and (4.80). �

Some basic properties of the linearized SRS system will be studied in the

next subsection.

4.6.1 Mathematical properties of the linearized SRS

system

In order to easily compare our results with previous ones in literature, we

will consider the following weighted distribution function

f̂i =M
1/2
i fi, with i = 1, ..., 4, (4.84)

and the following weighted operator,

L̂i(ĥ) =M
1/2
i Li(h), with i = 1, ..., 4. (4.85)

Just as the collisional operator Li, the weighted collisional operator L̂i may

be separated in two parts, the elastic weighted collisional operator L̂E
i and
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the reactive weighted collisional operator L̂R
i , which expressions read

L̂E
i (ĥ) =M

1/2
i LE

i (h) (4.86)

=

4∑

s=1

σ2
is

∫

R3

∫

S2
+

(−Msĥi −M
1/2
i M1/2

s ĥs)〈ǫ, ci − cs〉 dǫ dcs

+
4∑

s=1

σ2
is

∫

R3

∫

S2
+

M
1/2
i Ms

(
M ′

i
−1/2

ĥi
′
+M ′

s
−1/2

ĥs
′
)
〈ǫ, ci − cs〉 dǫ dcs

− βijσ
2
ij

∫

R3

∫

S2
+

(−Mj ĥi −M
1/2
i M

1/2
j ĥj)Θ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj

− βijσ
2
ij

∫

R3

∫

S2
+

M
1/2
i Mj

(
M ′

i
−1/2

ĥi
′
+M ′

j
−1/2

ĥj
′
)
Θ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj

and

L̂R
i (ĥ) =M

1/2
i LR

i (h) (4.87)

= −βijσ2
ij

∫

R3

∫

S2
+

(Mj ĥi +M
1/2
i M

1/2
j ĥj)Θ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj

+ βijσ
2
ij

∫

R3

∫

S2
+

M
1/2
i Mj

(
Mk

−1/2ĥk +Ml
−1/2ĥl

)
Θ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj .

Note 4.6.1. We can verify that hi defines a solution of the linearized SRS

system if and only if ĥi defines a solution of the weighted linearized system

∂

∂t
ĥi +

3∑

l=1

cil
∂

∂xl
ĥi = L̂i(ĥ), (4.88)

since Eqs. (4.88) are obtained from (4.78), multiplying by M
1/2
i .

In what follows we consider velocity L2-space, endowed with the inner pro-

duct defined by

〈F ,G〉 =
4∑

i=1

∫

R3

FiGidci. (4.89)
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The weighted linearized collisional operator satisfies the following property.

Proposition 4.6.2. If we consider that for (i, j) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)}
we have 0 < βij = βji ≤ 1 and β12σ

2
12 = β34σ

2
34, the weighted linearized colli-

sional operator L̂ is symmetric and non-positive semi-definite, that is:

1) 〈ĝ, L̂(ĥ)〉 = 〈ĥ, L̂(ĝ)〉 for all g, h ∈ Y 4;

2) 〈ĥ, L̂(ĥ)〉 ≤ 0, for all h ∈ Y 4 and 〈ĥ, L̂(ĥ)〉 = 0 if and only if h is a

collisional invariant.

Above, Y = L2(R3 × R3).

Proof: With the considered inner product, if we use a procedure similar to

the one employed to prove Propositions 4.3.1 and 4.3.2, we may write

〈ĝ, L̂(ĥ)〉 = −1

4

4∑

i=1

4∑

s=1

σ2
is

∫

R3

∫

R3

∫

S2
+

MiMs

[
g′i+g

′
s−gi−gs

][
h′i+h

′
s−hi−hs

]

×〈ǫ, ci − cs〉(1− γisΘ(〈ǫ, ξi〉 − Γis) 〈ǫ, ci − cs〉 dǫ dcsdci

−
4∑

i=1

βijσ
2
ij

∫

R3

∫

R3

∫

S2
+

MiMj

[
gk + gl − gi − gj

][
hk + hl − hi − hj

]

×Θ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj , (4.90)

where γis = βis for (i, s) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)} and γis = 0 otherwise.

The symmetry property, part 1, of the Proposition is easily verified using

condition (4.90). For the non-positivity, part 2, if we use condition (4.90)

and consider ĝ = ĥ, we get

〈ĥ, L̂(ĥ)〉 = −1

4

4∑

i=1

4∑

s=1

σ2
is

∫

R3

∫

R3

∫

S2
+

MiMs

[
h′i+h

′
s−hi−hs

]2

×〈ǫ, ci − cs〉(1− γisΘ(〈ǫ, ξi〉 − Γis) 〈ǫ, ci − cs〉 dǫ dcsdci

−
4∑

i=1

βijσ
2
ij

∫

R3

∫

R3

∫

S2
+

MiMj

[
hk + hl − hi − hj

]2

×Θ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj . (4.91)
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Since the steric factor and the Heaviside function are such that 0 ≤ βij ≤ 1,

0 ≤ Θ(〈ǫ, ξi〉−Γij) ≤ 1 and the integration over ǫ is performed in S2
+ so that

〈ǫ, ξi〉 ≥ 0, we conclude that 〈ĥ, L̂(ĥ)〉 is non positive and vanishes if and

only if the following two equalities

h′i+h
′
s−hi−hj = 0, for i, s = 1, ..., 4, (4.92)

and

hk+hl−hi−hj = 0, (4.93)

hold almost everywhere for (i, j, k, l) ∈ {(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1)}.
From conditions (4.92) and (4.93) we can conclude that h is a collisional in-

variant. �

4.6.2 Kernels of the linearized integral operators

In this subsection we present the kernels of the weighted linearized collisional

operators.

Starting from the weighted linearized operators (4.86) and (4.87), we intro-

duce the following notation

Qi(ĥ)=

4∑

s=1

σ2
is

∫

R3

∫

S2
+

−Msĥi〈ǫ, ci − cs〉 dǫ dcs (4.94)

+

4∑

s=1

σ2
is

∫

R3

∫

S2
+

−M1/2
i M1/2

s ĥs〈ǫ, ci − cs〉 dǫ dcs

+

4∑

s=1

σ2
is

∫

R3

∫

S2
+

M
1/2
i Ms

(
M ′

i
−1/2

ĥi
′
+M ′

s
−1/2

ĥs
′
)
〈ǫ, ci − cs〉 dǫ dcs,
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Ri(ĥ)=−βijσ2
ij

∫

R3

∫

S2
+

MjĥiΘ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj (4.95)

− βijσ
2
ij

∫

R3

∫

S2
+

M
1/2
i Mj ĥjΘ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj

+ βijσ
2
ij

∫

R3

∫

S2
+

M
1/2
i Mj

(
Mk

−1/2ĥk +Ml
−1/2ĥl

)
Θ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj,

Ti(ĥ)=βijσ
2
ij

∫

R3

∫

S2
+

Mj ĥiΘ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj (4.96)

+ βijσ
2
ij

∫

R3

∫

S2
+

M
1/2
i Mj ĥjΘ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj

− βijσ
2
ij

∫

R3

∫

S2
+

M
1/2
i Mj

(
M ′

i
−1/2

ĥi
′
+M ′

j
−1/2

ĥj
′
)
Θ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj.

The operator Qi(ĥ) represents the elastic contributions and Ri(ĥ) the reac-

tive ones. Moreover, Ti(ĥ) stands for the “hybrid” operator. Now we treat

separately these operators.

Kernels of the elastic operators

We split the operator Qi of Eq. (4.94) in the form

Qi(ĥ) = − νiĥi −Q
(1)
i (ĥ) +Q

(2)
i (ĥ) +Q

(3)
i (ĥ), (4.97)
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where

νiĥi = ĥi

4∑

s=1

σ2
is

∫

R3

∫

S2
+

Ms〈ǫ, ci − cs〉 dǫ dcs, (4.98)

Q
(1)
i (ĥ) =

4∑

s=1

σ2
is

∫

R3

∫

S2
+

M
1/2
i M1/2

s ĥs〈ǫ, ci − cs〉 dǫ dcs, (4.99)

Q
(2)
i (ĥ) =

4∑

s=1

σ2
is

∫

R3

∫

S2
+

M
1/2
i MsM

′
i
−1/2

ĥi
′〈ǫ, ci − cs〉 dǫ dcs, (4.100)

Q
(3)
i (ĥ) =

4∑

s=1

σ2
is

∫

R3

∫

S2
+

M
1/2
i MsM

′
s
−1/2

ĥs
′〈ǫ, ci − cs〉 dǫ dcs. (4.101)

Now, using Lemma 4.6.1, part 1, Q
(2)
i (ĥ) simplifies to

Q
(2)
i (ĥ) =

4∑

s=1

σ2
is

∫

R3

∫

S2
+

M1/2
s M ′1/2

s ĥ′i〈ǫ, ci − cs〉 dǫdcs, (4.102)

while Q
(3)
i (ĥ) simplifies to

Q
(3)
i (ĥ) =

4∑

s=1

σ2
is

∫

R3

∫

S2
+

M1/2
s M ′

i
1/2
ĥ′s〈ǫ, ci − cs〉 dǫdcs. (4.103)

The factor νi can be identified as a collisional operator. In what follows

we present the kernels of the operators defined in expressions (4.99), (4.102)

and (4.134). Here, we do not present their deduction that is long and very

technical. Two representative calculations are presented in Appendix A and

Appendix B. After some manipulations we have obtained the expression listed
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in the following Eqs. (4.104), (4.105) and (4.106).

N(Q
(1)
i )(u, w) =

4∑

s=1

σ2
is‖u− w‖(nins)

1/2

(
mims

(2πkT )2

)3/4

× exp

[
−miu

2 +msw
2

4kT

]
, (4.104)

N(Q
(2)
i )(u, w) =

4∑

s=1

σ2
is ns

(
mi

2µis

)2(
ms

2πkT

)1/2
1

‖u− w‖ (4.105)

× exp

[
− ms

8kT

(u2 − w2)2

‖u− w‖2 − ms

4kT

(
mi

2µis
− 1

2

)
(u− w)2

]
,

N(Q
(3)
i )(u, w) (4.106)

=
∑

s∈I−

σ2
is(nins)

1/2

(
mims

(2πkT )2

)3

4
∫

D
L
−
2

∫

D
L
−
1

1√
‖u− w‖2 − (2µis

ms
− 1)2‖L‖2

× exp

[
− 1

4kT

{
ms

(
w − 2µis

ms

L

)2

+mi

(
u

(
1− 2µis

mi

)

+
2µis

mi
w − 2µis

mi

(
2µis

ms
− 1

)
L

)2
}]

dL1dL2

+
∑

s∈I+

σ2
is(nins)

1/2

(
mims

(2πkT )2

)3

4
∫

D
L
+
2

∫

D
L
+
1

1√
‖u− w‖2 − (2µis

ms
− 1)2‖L‖2

× exp

[
− 1

4kT

{
ms

(
w − 2µis

ms
L

)2

+mi

(
u

(
1− 2µis

mi

)

+
2µis

mi
w − 2µis

mi

(
2µis

ms
− 1

)
L

)2
}]

dL1dL2

+
∑

s∈I0

σ2
is

‖u−w‖ (nins)
1/2
( ms

2πkT

)1/2
exp

[
− ms

8kT
(u− w)2 − ms

8kT

(u2 − w2)
2

‖u− w‖2

]
.
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In the above expression (4.106), the symbols I−, I+ and I0 represent sets of

indices defined by

I− =
{
s ∈ I : ms < mi

}
, I+ =

{
s ∈ I : ms > mi

}
, I0 =

{
s ∈ I : ms = mi

}
,

where I =
{
1, 2, 3, 4

}
. The integration domains DL−

1
and DL−

2
on the first

summation term on the right-hand-side of Eq. (4.106) are characterized by

w1−u1−
√

(u1−w1)2+(u3−w3)2−4

(
2µis

ms
−1

)
L2

(
u2−w2+L2

(
2µis

ms
−1

))

2
(

2µis

ms
− 1
)

≤ L1 ≤ (4.107)

w1−u1+
√

(u1−w1)2+(u3−w3)2−4

(
2µis

ms
−1

)
L2

(
u2−w2+L2

(
2µis

ms
−1

))

2
(

2µis

ms
− 1
)

w2 − u2 − ‖u− w‖
2
(

2µis

ms
− 1
) ≤ L2 ≤

w2 − u2 + ‖u− w‖
2
(

2µis

ms
− 1
) (4.108)
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whereas the domains DL+

1
and DL+

2
on the second summation term are cha-

racterized by

w1−u1+
√
(u1−w1)2+(u3−w3)2−4

(
2µis

ms

−1

)
L2

(
u2−w2+L2

(
2µis

ms

−1

))

2
(

2µis

ms
− 1
)

≤ L1 ≤ (4.109)

w1−u1−
√

(u1−w1)2+(u3−w3)2−4

(
2µis

ms

−1

)
L2

(
u2−w2+L2

(
2µis

ms

−1

))

2
(

2µis

ms
− 1
)

w2 − u2 + ‖u− w‖
2
(

2µis

ms
− 1
) ≤ L2 ≤

w2 − u2 − ‖u− w‖
2
(

2µis

ms
− 1
) (4.110)

Note 4.6.2. We should notice that if we simplify the kernels of the elastic

operators here obtained for the inert case of a single gas constituent, we ob-

tain expressions similar to those presented by Grad in [40]. The differences

between our’s and Grad’s expressions are due to the fact that he used a di-

mensionless normalized Maxwellian and we use a regular Maxwellian.

Kernels of the reactive operators

We split the operator Ri of Eq. (4.95) in the form

Ri(ĥ) = − νiR(u)ĥi(u)−R
(1)
i (ĥ) +R

(2)
i (ĥ) +R

(3)
i (ĥ),
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where

νiR(u)ĥi(u) = ĥiβijσ
2
ij

∫

R3

∫

S2
+

MjΘ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj , (4.111)

R
(1)
i (ĥ) = βijσ

2
ij

∫

R3

∫

S2
+

M
1/2
i Mj ĥjΘ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj, (4.112)

R
(2)
i (ĥ) = βijσ

2
ij

∫

R3

∫

S2
+

M
1/2
i MjMk

−1/2ĥkΘ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj, (4.113)

R
(3)
i (ĥ) = βijσ

2
ij

∫

R3

∫

S2
+

M
1/2
i MjMl

−1/2ĥlΘ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj . (4.114)

Now, using 2) of Lemma 4.6.1, R
(2)
i (ĥ) simplifies to

R
(2)
i (ĥ)=βijσ

2
ij

∫

R3

∫

S2
+

(
µij

µkl

)
M

1/2
j M

1/2
l ĥkΘ(〈ǫ, ξi〉−Γij) 〈ǫ, ξi〉 dǫ dcj , (4.115)

while R
(3)
i (ĥ) simplifies to

R
(3)
i (ĥ)=βijσ

2
ij

∫

R3

∫

S2
+

(
µij

µkl

)
M

1/2
j M

1/2
k ĥlΘ(〈ǫ, ξi〉−Γij) 〈ǫ, ξi〉 dǫ dcj . (4.116)

We work separately on the integral operators (4.112), (4.115) and (4.116).

We note that the assumptions QR > 0, m1 < m2 and m4 < m3, already

presented, are used to derive the expressions for the reactive kernels.

A) Kernel of R
(1)
i

The kernel of R
(1)
i , i = 1, ..., 4, is

N(R
(1)
i )(u, w) = βijσ

2
ij‖u− w‖(ninj)

1/2

(
mimj

(2πkT )2

)3/4

exp

[
−miu

2 +mjw
2

4kT

]

×
∫ π

2

0

cos θ sin θΘ(‖u− w‖ cos θ − Γij)dθ. (4.117)

B) Kernel of R
(2)
i

The kernel of R
(2)
i , i = 1, ..., 4, has been obtained

separately for each value of the index i.
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B1) For i = 1, the kernel is

N(R
(2)
1 )(u, w) =

∫ 2π

0

[∫ ‖w−u‖M
m2

0

∆
(2)
1 d‖L‖+

∫ ‖L‖+
12

‖L‖−
12

∆
(2)
1 d‖L‖ (4.118)

×Θ

(
‖w − u‖−

√(
m2

2 −m2
4

µ12

µ34

)
2QR

M2

)
Θ



√

2m2
2E

M2µ12
−‖w − u‖




+

∫ ‖L‖+
12

‖w−u‖M
m2

∆
(2)
1 d‖L‖Θ


‖w − u‖−

√
2m2

2E

M2µ12




×


 M

m4

√
µ12

µ34
−m2




3

dϕ,

where ‖L‖+12 and ‖L‖−12 are defined by

‖L‖+12 =
m2‖w − u‖M +

√(
m2

4
µ12

µ34
−m2

2

)
2QRm2

4

µ34
+m2

4
µ12

µ34
‖w − u‖2M2

m2
2 −m2

4
µ12

µ34

,

‖L‖−12 =
m2‖w − u‖M −

√(
m2

4
µ12

µ34
−m2

2

)
2QRm2

4

µ34
+m2

4
µ12

µ34
‖w − u‖2M2

m2
2 −m2

4
µ12

µ34
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and ∆
(2)
1 is given by

∆
(2)
1 = β12σ

2
12(n2n4)

1/2

(
m2m4

(2πkT )2

)3/4
µ12

µ34

× exp


−

m2

2kT


u−

w − u− 1
M

(
m4

√
µ12

µ34
− 2QR

µ34‖L‖2
−m2

)
L

1
M

(
m4

√
µ12

µ34
−m2

) − L




2

− m4

2kT

(
u+

1

M

(
−m3

√
µ12

µ34

− 2QR

µ34‖L‖2
−m2

)
L

− 1

M

(
m3

√
µ12

µ34
+m2

) w − u− 1
M

(
m4

√
µ12

µ34
− 2QR

µ34‖L‖2
−m2

)
L

1
M

(
m4

√
µ12

µ34
−m2

)




2


×Θ(‖L‖ − Γ12)

∥∥∥∥∥∥∥

1
M

(
m4

√
µ12

µ34
−m2

)

w − u− 1
M

(
m4

√
µ12

µ34
− 2QR

µ34‖L‖2
−m2

)
L

∥∥∥∥∥∥∥
‖L‖2 sin θ,

with

L = (‖L‖ cos θ, ‖L‖ sin θ cosϕ, ‖L‖ sin θ sinϕ),

cos θ =
1

M

(
m4

√
µ12

µ34

− 2QR

µ34‖L‖2
−m2

)
‖L‖

‖w − u‖ ,

sin θ =
√
1− cos2 θ.
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B2) For i = 2, the kernel is

N(R
(2)
2 )(u, w) =

∫ 2π

0

[∫ ‖w−u‖M
m1

0

∆
(2)
2 d‖L‖+

∫ ‖L‖+
22b

‖L‖+
22

∆
(2)
2 d‖L‖ (4.119)

×Θ




√√√√
(
−m2

1 +m2
3

µ12

µ34

)
2QR

M2µ12

(
m2m3

m1m4
− 1
)−‖w − u‖




+

∫ ‖L‖+
22b

0

∆
(2)
2 d‖L‖Θ


‖w − u‖−

√√√√
(
−m2

1 +m2
3

µ12

µ34

)
2QR

M2µ12

(
m2m3

m1m4
− 1
)







×


 M

m1 −m3

√
µ12

µ34




3

dϕ,

where ‖L‖+22 and ‖L‖+22b are defined by

‖L‖+22 =
−m1‖w − u‖M +

√(
m2

3
µ12

µ34
−m2

1

)
2QRm2

3

µ34
+m2

3
µ12

µ34
‖w − u‖2M2

−m2
1 +m2

3
µ12

µ34

,

‖L‖+22b =
m1‖w − u‖M +

√(
m2

3
µ12

µ34
−m2

1

)
2QRm2

3

µ34
+m2

3
µ12

µ34
‖w − u‖2M2

−m2
1 +m2

3
µ12

µ34

,
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and ∆
(2)
2 is given by

∆
(2)
2 = β21σ

2
21(n1n3)

2

(
m1m3

(2πkT )2

)3/4
µ12

µ34

× exp


− m1

2kT


w +

u− w − 1
M

(
m1 −m3

√
µ12

µ34
− 2QR

µ34‖L‖2

)
L

m1 −m3

√
µ12

µ34

+ L




2

− m3

2kT

(
w +

1

M

(
m1 +m4

√
µ12

µ34

− 2QR

µ34‖L‖2

)
L

1

M

(
m1 +m4

√
µ12

µ34

) u− w − 1
M

(
m1 −m3

√
µ12

µ34
− 2QR

µ34‖L‖2

)
L

m1 −m3

√
µ12

µ34




2



×Θ(‖L‖ − Γ21)

∥∥∥∥∥∥

m1 −m3

√
µ12

µ34

u− w − 1
M

(
m1 −m3

√
µ12

µ34
− 2QR

µ34‖L‖2

)
L

∥∥∥∥∥∥
‖L‖2 sin θ,

with

L = (‖L‖ cos θ, ‖L‖ sin θ cosϕ, ‖L‖ sin θ sinϕ),

cos θ =
1

M

(
m1 −m3

√
µ12

µ34

− 2QR

µ34‖L‖2

)
‖L‖

‖w − u‖ ,

sin θ =
√
1− cos2 θ.
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B3) For i = 3 the kernel is

N(R
(2)
3 )(u, w) =

∫ 2π

0

[∫ ‖L‖+
32

‖L‖−
32

∆
(2)
3 d‖L‖ (4.120)

×Θ

(
‖w − u‖−

√(
m2

2

µ34

µ12
−m2

4

)
2QR

µ34M2

)
Θ



√

2QRm
2
2

µ12M2
− ‖w − u‖




+

∫ ‖L‖+
32

0

∆
(2)
3 d‖L‖Θ



‖w − u‖−
√

2QRm2
2

µ12M2







×



 M

m2

√
µ34

µ12
−m4




3

dϕ,

where ‖L‖−32 and ‖L‖+32 are defined by

‖L‖+32 =
m4‖w − u‖M +

√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2

µ12
+m2

2
µ34

µ12
‖w − u‖2M2

m2
2
µ34

µ12
−m2

4

‖L‖−32 =
m4‖w − u‖M −

√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2

µ12
+m2

2
µ34

µ12
‖w − u‖2M2

m2
2
µ34

µ12
−m2

4
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and ∆
(2)
3 is given by

∆
(2)
3 = β34σ

2
34(n2n4)

1/2

(
m2m4

(2πkT )2

)3/4
µ34

µ12

× exp


−

m4

2kT


u−

w − u− 1
M

(
m2

√
µ34

µ12
+ 2QR

µ12‖L‖2
−m4

)
L

1
M

(
m2

√
µ34

µ12
−m4

) − L




2

− m2

2kT

(
u+

1

M

(
−m1

√
µ34

µ12

+
2QR

µ12‖L‖2
−m4

)
L

+
1

M

(
−m1

√
µ34

µ12
−m4

) w − u− 1
M

(
m2

√
µ34

µ12
+ 2QR

µ12‖L‖2
−m4

)
L

1
M

(
m2

√
µ34

µ12
−m4

)




2


×Θ(‖L‖ − Γ34)

∥∥∥∥∥∥∥

1
M

(
m2

√
µ34

µ12
−m4

)

w − u− 1
M

(
m2

√
µ34

µ12
+ 2QR

µ12‖L‖2
−m4

)
L

∥∥∥∥∥∥∥
‖L‖2 sin θ,

with

L = (‖L‖ cos θ, ‖L‖ sin θ cosϕ, ‖L‖ sin θ sinϕ),

cos θ =
1

M

(
m2

√
µ34

µ12

− 2QR

µ12‖L‖2
−m4

)
‖L‖

‖w − u‖ ,

sin θ =
√
1− cos2 θ.
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B4) For i = 4 the kernel is

N(R
(2)
4 )(u, w) =

∫ 2π

0



∫ ‖L‖+

42

‖L‖+
42b

∆
(2)
4 d‖L‖Θ



√

2QRm
2
1

µ12M2
−‖w − u‖


 (4.121)

+

∫ ‖L‖+
42

0

∆
(2)
4 d‖L‖Θ


‖w − u‖−

√
2QRm2

1

µ12M2






 M

m3 −m1

√
µ34

µ12




3

dϕ,

where ‖L‖+42 and ‖L‖+42b are defined by

‖L‖+42 =
m3‖w − u‖M +

√(
m2

1
µ34

µ12
+m2

3

)
2QRm2

1

µ12
+m2

1
µ34

µ12
‖w − u‖2M2

m2
3 −m2

1
µ34

µ12

,

‖L‖+42b =
−m3‖w − u‖M +

√(
−m2

1
µ34

µ12
+m2

3

)
2QRm2

1

µ12
+m2

1
µ34

µ12
‖w − u‖2M2

m2
3 −m2

1
µ34

µ12

,
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and ∆
(2)
4 is given by

∆
(2)
4 = β43σ

2
43(n1n3)

1/2

(
m1m3

(2πkT )2

)3/4
µ34

µ12

× exp


−

m3

2kT


w +

u− w − 1
M

(
m3 −m1

√
µ34

µ12
+ 2QR

µ12‖L‖2

)
L

1
M

(
m3 −m1

√
µ34

µ12

) + L




2

− m1

2kT

(
w +

1

M

(
m3 +m2

√
µ34

µ12

+
2QR

µ12‖L‖2

)
L

+
1

M

(
m3 +m2

√
µ34

µ12

) u− w − 1
M

(
m3 −m1

√
µ34

µ12
+ 2QR

µ12‖L‖2

)
L

1
M

(
m3 −m1

√
µ34

µ12

)




2


×Θ(‖L‖ − Γ34)

∥∥∥∥∥∥∥

1
M

(
m3 −m1

√
µ34

µ12

)

u− w − 1
M

(
m3 −m1

√
µ34

µ12
+ 2QR

µ12‖L‖2

)
L

∥∥∥∥∥∥∥
‖L‖2 sin θ,

with

L = (‖L‖ cos θ, ‖L‖ sin θ cosϕ, ‖L‖ sin θ sinϕ),

cos θ =
1

M

(
−m1

√
µ34

µ12

+
2QR

µ12‖L‖2
+m2

)
‖L‖

‖w − u‖ ,

sin θ =
√
1− cos2 θ.
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C) Kernel of R
(3)
i

The kernel of R
(3)
i , i = 1, ..., 4, has been obtained for

each value of the index i as follows.

C1) For i = 1 we have two different situations.

Situation 1. If m2 > m3 the kernel of R
(3)
1 has the form

N(R
(3)
1 )(u, w) =

∫ 2π

0

[∫ ‖w−u‖M
m2

0

∆
(3)
1 d‖L‖ (4.122)

×Θ

(√(
m2

2 −m2
3

µ12

µ34

)
2QR

M2
−‖w − u‖

)
+

∫ ‖w−u‖M
m2

0

∆
(3)
1 d‖L‖

×Θ

(
‖w − u‖−

√(
m2

2 −m2
3

µ12

µ34

)
2QR

M2

)
Θ



√

2m2
2QR

M2µ12
−‖w − u‖




+

∫ ‖L‖−
13

0

∆
(3)
1 d‖L‖Θ


‖w − u‖−

√
2m2

2QR

M2µ12






 M

−m3

√
µ12

µ34
−m2




3

dϕ,

where

‖L‖−13 =
m2‖w − u‖M −

√(
m2

3
µ12

µ34
−m2

2

)
2QRm2

3

µ34
+m2

3
µ12

µ34
‖w − u‖2M2

m2
2 −m2

3
µ12

µ34
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and

∆
(3)
1 = β12σ

2
12(n2n3)

1/2

(
m2m3

(2πkT )2

)3/4
µ12

µ34

× exp


− m2

2kT


u−

w − u− 1
M

(
−m3

√
µ12

µ34
− 2QR

µ34‖L‖2
−m2

)
L

1
M

(
−m3

√
µ12

µ34
−m2

) − L




2

− m3

2kT

(
u+

1

M

(
m4

√
µ12

µ34
− 2QR

µ34‖L‖2
−m2

)
L

+
1

M

(
m4

√
µ12

µ34
−m2

) w − u− 1
M

(
−m3

√
µ12

µ34
− 2QR

µ34‖L‖2
−m2

)
L

1
M

(
−m3

√
µ12

µ34
−m2

)




2


×Θ(‖L‖ − Γ12)

∥∥∥∥∥∥∥

1
M

(
−m3

√
µ12

µ34
−m2

)

w − u− 1
M

(
−m3

√
µ12

µ34
− 2QR

µ34‖L‖2
−m2

)
L

∥∥∥∥∥∥∥
‖L‖2 sin θ,

with

L = (‖L‖ cos θ, ‖L‖ sin θ cosϕ, ‖L‖ sin θ sinϕ),

cos θ =
1

M

(
−m3

√
µ12

µ34
− 2QR

µ34‖L‖2
−m2

)
‖L‖

‖w − u‖ ,

sin θ =
√
1− cos2 θ.
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Situation 2. If m2 < m3 the kernel of R
(3)
1 has the form

N(R
(3)
1 )(u, w)=

∫ 2π

0




∫ ‖w−u‖M

m2

0

∆
(3)
1 d‖L‖Θ




√

2m2
2QR

M2µ12
−‖w − u‖



 (4.123)

+

∫ ‖L‖−
13

0

∆
(3)
1 d‖L‖Θ


‖w − u‖−

√
2m2

2QR

M2µ12






 M

−m3

√
µ12

µ34
−m2




3

dϕ,

where ‖L‖−13 and ∆
(3)
1 are already defined in Situation 1.

C2) For i = 2 we have two situations.

Situation 1. If m2 > m3 the kernel of R
(3)
2 has the form

N(R
(3)
2 )(u, w) =

∫ 2π

0

[∫ ‖w−u‖M
m1

0

∆
(3)
2 d‖L‖Θ

(√
2QRm1

M2µ12
−‖w − u‖

)
(4.124)

+

∫ ‖L‖+
23

0

∆
(3)
2 d‖L‖Θ

(
‖w − u‖−

√
2QRm1

M2µ12

)]
 M

m4

√
µ12

µ34
+m1




3

dϕ,

where ‖L‖+23 is defined by

‖L‖+23 =
−m1‖w − u‖M +

√(
m2

4
µ12

µ34
−m2

1

)
2QRm2

4

µ34
+m2

4
µ12

µ34
‖w − u‖2M2

−m2
1 +m2

4
µ12

µ34
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and

∆
(3)
2 = β12σ

2
12(n1n4)

1/2

(
m1m4

(2πkT )2

)3/4
µ12

µ34

× exp


− m1

2kT


w +

u− w − 1
M

(
m1 +m4

√
µ12

µ34
− 2QR

µ34‖L‖2

)
L

1
M

(
m1 +m4

√
µ12

µ34

) + L




2

− m4

2kT

(
w +

1

M

(
m1 −m3

√
µ12

µ34
− 2QR

µ34‖L‖2

)
L

+
1

M

(
m1 −m3

√
µ12

µ34

) u− w − 1
M

(
m1 +m4

√
µ12

µ34
− 2QR

µ34‖L‖2

)
L

1
M

(
m1 +m4

√
µ12

µ34

)




2


×Θ(‖L‖ − Γ12)

∥∥∥∥∥∥∥

1
M

(
m1 +m4

√
µ12

µ34

)

u− w − 1
M

(
m1 +m4

√
µ12

µ34
− 2QR

µ34‖L‖2

)
L

∥∥∥∥∥∥∥
‖L‖ sin θ,

with

L = (‖L‖ cos θ, ‖L‖ sin θ cosϕ, ‖L‖ sin θ sinϕ),

cos θ =
1

M

(
m1 +m4

√
µ12

µ34
− 2QR

µ34‖L‖2

)
‖L‖

‖w − u‖ ,

sin θ =
√
1− cos2 θ.
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Situation 2. If m2 < m3 the kernel of R
(3)
2 has the form

N(R
(3)
2 )(u, w) =

∫ 2π

0

[∫ ‖w−u‖M
m1

0

∆
(3)
2 d‖L‖Θ

(√
2QRm1

M2µ12
−‖w − u‖

)
(4.125)

+

∫ ‖L‖−
23b

0

∆
(3)
2 d‖L‖Θ

(
‖w − u‖−

√
2QRm1

M2µ12

)]

 M

m4

√
µ12

µ34
+m1




3

dϕ,

where ‖L‖−23b is defined by

‖L‖−23b =
m1‖w − u‖M −

√
−
(
−m2

4
µ12

µ34
+m2

1

)
2QRm2

4

µ34
+m2

4
µ12

µ34
‖w − u‖2M2

m2
1 −m2

4
µ12

µ34

and ∆
(3)
2 is already defined in Situation 1.

C3) For i = 3 we have

N(R
(3)
3 )(u, w) =

∫ 2π

0

∫ ‖L‖+
33

0

∆
(3)
3 d‖L‖ (4.126)

×Θ


‖w − u‖ −

√
2QRm2

1

µ12M2




 M

−m1

√
µ34

µ12
−m4




3

dϕ,

where

‖L‖+33 =
−m4‖w − u‖M +

√
−
(
m2

1
µ34

µ12
−m2

4

)
2QRm2

1

µ12
+m2

1
µ34

µ12
‖w − u‖2M2

m2
1
µ34

µ12
−m2

4
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and ∆
(3)
3 is defined by

∆
(3)
3 = β34σ

2
34(n1n4)

1/2

(
m1m4

(2πkT )2

)3/4
µ34

µ12

× exp


−

m4

2kT


u−

w − u− 1
M

(
−m1

√
µ34

µ12
+ 2QR

µ12‖L‖2
−m4

)
L

1
M

(
−m1

√
µ34

µ12
−m4

) − L




2

− m1

2kT

(
u+

1

M

(
m2

√
µ34

µ12

+
2QR

µ12‖L‖2
−m4

)
L

+
1

M

(
m2

√
µ34

µ12
−m4

) w − u− 1
M

(
−m1

√
µ34

µ12
+ 2QR

µ12‖L‖2
−m4

)
L

1
M

(
−m1

√
µ34

µ12
−m4

)




2


×Θ(‖L‖ − Γ34)

∥∥∥∥∥∥∥

1
M

(
−m1

√
µ34

µ12
−m4

)

w − u− 1
M

(
−m1

√
µ34

µ12
+ 2QR

µ12‖L‖2
−m4

)
L

∥∥∥∥∥∥∥
‖L‖2 sin θ,

with

L = (‖L‖ cos θ, ‖L‖ sin θ cosϕ, ‖L‖ sin θ sinϕ),

cos θ = − 1

M

(
m1

√
µ34

µ12

+
2QR

µ12‖L‖2
+m4

)
‖L‖

‖w − u‖ ,

sin θ =
√
1− cos2 θ.
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C4) For i = 4 we have

N(R
(3)
4 )(u, w)=

∫ 2π

0



∫ ‖w−u‖M

m3

0

∆
(3)
4 d‖L‖Θ



√

2QRm
2
3

µ34M2
− ‖w − u‖


 (4.127)

+

∫ ‖L‖+
43

0

∆
(3)
4 d‖L‖Θ


‖w − u‖ −

√
2QRm2

3

µ34M2






 M

m2

√
µ34

µ12
+m3




3

dϕ.

where ‖L‖+43 is defined by

‖L‖+43 =
−m3‖w − u‖M +

√(
m2

2
µ34

µ12
−m2

3

)
2QRm2

2

µ12
+m2

2
µ34

µ12
‖w − u‖2M2

−m2
3 +m2

2
µ34

µ12

and ∆
(3)
4 is defined by

∆
(3)
4 = β43σ

2
43(n2n3)

1/2

(
m2m3

(2πkT )2

)3/4
µ34

µ12

× exp


− m3

2kT


w +

u− w − 1
M

(
m2

√
µ34

µ12
+ 2QR

µ12‖L‖2
+m3

)
L

1
M

(
m2

√
µ34

µ12
+m3

) + L




2

− m2

2kT

(
w +

1

M

(
−m1

√
µ34

µ12

+
2QR

µ12‖L‖2
+m3

)
L

+
1

M

(
−m1

√
µ34

µ12
+m3

) u− w − 1
M

(
m2

√
µ34

µ12
+ 2QR

µ12‖L‖2
+m3

)
L

1
M

(
m2

√
µ34

µ12
+m3

)




2


×Θ(‖L‖ − Γ43)

∥∥∥∥∥∥∥

1
M

(
m2

√
µ34

µ12
+m3

)

u− w − 1
M

(
m2

√
µ34

µ12
+ 2QR

µ12‖L‖2
+m3

)
L

∥∥∥∥∥∥∥
‖L‖2 sin θ,
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with

L = (‖L‖ cos θ, ‖L‖ sin θ cosϕ, ‖L‖ sin θ sinϕ),

cos θ =
1

M

(
m2

√
µ34

µ12

+
2QR

µ12‖L‖2
+m3

)
‖L‖

‖w − u‖ ,

sin θ =
√
1− cos2 θ.

Kernels of the “hybrid” operators

We split the operator Ti of Eq. (4.96) in the form

Ti(ĥ) = νiĥi + T
(1)
i (ĥ)− T

(2)
i (ĥ)− T

(3)
i (ĥ), (4.128)

where

νiĥi = ĥiβijσ
2
ij

∫

R3

∫

S2+

MjΘ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj, (4.129)

T
(1)
i (ĥ) = βijσ

2
ij

∫

R3

∫

S2
+

M
1/2
i Mj ĥjΘ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj , (4.130)

T
(2)
i (ĥ) = βijσ

2
ij

∫

R3

∫

S2
+

M
1/2
i MjM

′
i
−1/2

ĥi
′
Θ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj , (4.131)

T
(3)
i (ĥ) = βijσ

2
ij

∫

R3

∫

S2
+

M
1/2
i MjM

′
j
−1/2

ĥj
′
Θ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj. (4.132)

Now using 1) of Lemma 4.6.1, T
(2)
i (ĥ) simplifies to

T
(2)
i (ĥ) = βijσ

2
ij

∫

R3

∫

S2
+

M
1/2
j M ′

j
1/2
ĥi

′
Θ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj, (4.133)

141



while T
(3)
i (ĥ) simplifies to

T
(3)
i (ĥ) = βijσ

2
ij

∫

R3

∫

S2
+

M
1/2
j M ′

i
1/2
ĥj

′
Θ(〈ǫ, ξi〉 − Γij) 〈ǫ, ξi〉 dǫ dcj. (4.134)

The factor νi can be identified as a collisional operator. The operator T
(1)
i (ĥ)

of Eq. (4.130) coincides with the operator R
(1)
i (ĥ) of Eq. (4.112), so that its

kernel is equal to the one of R
(1)
i (ĥ) given in Eq. (4.117). Moreover, the

representation of the kernels of the operators T
(2)
i (ĥ) and T

(3)
i (ĥ) is obtained

with a procedure similar to the one used for the elastic operators Q
(2)
i (ĥ) and

Q
(3)
i (ĥ). The kernels are the following.

N(T
(1)
i )(u,w) = βijσ

2
ij‖u− w‖(ninj)

1/2

(
mimj

(2πkT )2

)3/4

exp

[
−miu

2 +mjw
2

4kT

]

×
∫ π

2

0

cos θ sin θΘ(‖u− w‖ cos θ − Γij)dθ, (4.135)

N(T
(2)
i )(u, w) = βijσ

2
ij nj

(
mi

2µij

)2(
mj

2πkT

)1/2
1

‖u− w‖ exp

[
− ms

8kT

(u2 − w2)2

‖u− w‖2

− ms

4kT

(
mi

2µis

− 1

2

)
(u− w)2

]
Θ
(mi‖u− w‖

2µij

− Γij

)
, (4.136)
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If mj < mi then

N(T
(3)
i )(u, w) (4.137)

= βijσ
2
ij(ninj)

1/2

(
mimj

(2πkT )2

)3

4
∫

D
L
−
2

∫

D
L
−
1

1√
‖u− w‖2 − (

2µij

mj
− 1)2‖L‖2

× exp

[
− 1

4kT

{
mj

(
w − 2µij

mj

L

)2

+mi

(
u

(
1− 2µij

mi

)

+
2µij

mi

w − 2µij

mi

(
2µij

mj

− 1

)
L

)2
}]

×Θ



√

‖u− w‖2 −
(
2µij

mj

− 1

)2
‖L‖2 − Γij


 dL1dL2.

If mj > mi then

N(T
(3)
i )(u, w) (4.138)

= βijσ
2
ij(ninj)

1/2

(
mimj

(2πkT )2

)3

4
∫

D
L
+
2

∫

D
L
+
1

1√
‖u− w‖2 − (

2µij

mj
− 1)2‖L‖2

× exp

[
− 1

4kT

{
mj

(
w − 2µij

mj

L

)2

+mi

(
u

(
1− 2µij

mi

)

+
2µij

mi

w − 2µij

mi

(
2µij

mj

− 1

)
L

)2
}]

×Θ



√

‖u− w‖2 −
(
2µij

mj

− 1

)2
‖L‖2 − Γij


 dL1dL2.
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If mj = mi then

N(T
(3)
i )(u, w) =

βijσ
2
is

‖u−w‖ (nins)
1/2
( ms

2πkT

)1/2
Θ
(
‖u−w‖ − Γij

)

× exp

[
− ms

8kT
(u− w)2 − ms

8kT

(u2 − w2)
2

‖u− w‖2

]
. (4.139)

In the above expression (4.137) the integration domains DL−
1
and DL−

2
are

characterized by

w1−u1−
√

(u1−w1)2+(u3−w3)2−4

(
2µij

mj
−1

)
L2

(
u2−w2+L2

(
2µij

mj
−1

))

2
(

2µij

mj
− 1
)

≤ L1 ≤ (4.140)

w1−u1+
√
(u1−w1)2+(u3−w3)2−4

(
2µij

mj
−1

)
L2

(
u2−w2+L2

(
2µij

mj
−1

))

2
(

2µij

mj
− 1
)

w2 − u2 − ‖u− w‖
2
(

2µij

mj
− 1
) ≤ L2 ≤

w2 − u2 + ‖u− w‖
2
(

2µij

mj
− 1
) (4.141)

In expression (4.138) the integration domains DL+

1
and DL+

2
are characterized
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by

w1−u1+
√
(u1−w1)2+(u3−w3)2−4

(
2µij

mj
−1

)
L2

(
u2−w2+L2

(
2µij

mj
−1

))

2
(

2µij

mj
− 1
)

≤ L1 ≤ (4.142)

w1−u1−
√

(u1−w1)2+(u3−w3)2−4

(
2µij

mj

−1

)
L2

(
u2−w2+L2

(
2µij

mj

−1

))

2
(

2µij

mj
− 1
)

w2 − u2 + ‖u− w‖
2
(

2µij

mj
− 1
) ≤ L2 ≤

w2 − u2 − ‖u− w‖
2
(

2µij

mj
− 1
) (4.143)

4.7 Discussion

In this chapter we have presented the theory of simple reacting spheres (SRS),

to describe the evolution of a chemically reactive mixture in the kinetic theory

of gases. The model is a natural extension of the well-known hard-sphere col-

lisional model within inert gases, see [69]. The particles behave as if they

were single mass points and both elastic and reactive collisions are of hard-

sphere type. In particular, reactive collisions modify the internal state of the

particles and occur when the kinetic energy of the colliding particles exceeds

the activation energy.

We did not take into consideration the particles shape and the intermolecular

forces are considered to be instantaneous. Notwithstanding, these choices al-

low the construction of a consistent kinetic model verifying the fundamental

basic properties from both the mathematical and physical point of view.

The Boltzmann collisional operators are nonlinear and therefore the task of

finding solutions or analyzing the SRS equations is extremely difficult. It
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is important to proceed with some simplifications to obtain more handling

mathematical problems. The linearized formulation of the SRS equations

arises as a simplification of the full system, which is valid when the reactive

mixture is close to the thermodynamical equilibrium. Although simpler, the

linearized SRS system retains the more relevant properties and information

of the original equation. Regarding the Boltzmann equation for a single com-

ponent gas, Cercignani [17], stated that the linearized Boltzmann equation

is important since, under specific conditions, its results are appropriate to

properly describe physical conditions and may constitute a preliminary step

in the resolution of the full Boltzmann equation.

There are several works on the linearized Boltzmann equation, in particular

[12, 18, 39, 40, 41], and on linear integral operators in general [48, 88]. In this

chapter, we presented some properties of the linearized collisional operators

such as their symmetry and non-positivity. In addition, the representation

of the kernels and the expressions of the collisional frequency were compu-

ted, for the first time in literature, in the case of a chemically reactive gas

mixture. Notice that, for a one component gas, the explicit expressions of

the kernels and collisional frequencies of the linearized collisional operator,

as well as the techniques to compute them, are presented in many works,

namely in [12, 18, 40, 80]. However, this is not the case for a reactive gas

mixture. Some of the adopted procedures are similar to those used in the case

of one constituent gas. Since these computations are long and very technical,

we decided to present only two representative cases. The complete results

and the detailed calculations will be published in a detailed paper about this

subject.

We would like to finish this chapter by discussing interesting developments

for future works. We are interested in studying existence and asymptotic sta-

bility of close to equilibrium solutions for the simple reacting spheres system,

within the kinetic theory of reactive mixtures. The properties of the lineari-
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zed collisional operators around the thermodynamical equilibrium state and

the explicit representation of the kernels play a crucial role in this study.

Another interesting subject is the spectral analysis of the linearized collisio-

nal operator. As it is known, this can be used to characterize the solutions

of the linearized Boltzmann equations and, under specific conditions [41],

obtain approximations for the full Boltzmann equation solutions.
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Conclusions

Since the first time it was presented, the Boltzmann equation has been the

subject of several works. Some of the contents we studied here, have already

been treated by other authors. However, considering the nature of this work,

we think that it is of the utmost importance to present explicitly our main

contributions to the kinetic theory.

The goal of Chapter 1 was to explain, in general, both the concepts and main

properties of the Boltzmann equation. Although this chapter did not present

any new contribution to the theme, we consider it of great importance on

understanding the work presented thereafter.

In Chapter 2, we described the steady detonation wave on one space di-

mension. Again, other authors have studied the wave propagation in kinetic

theory and the detonation wave, in particular. Our main contribution lies on

the inclusion of the reaction heat effect on the detonation wave’s profile. In

classical theory, the results concerning this influence are already known, but

in this work they were presented for the first time from a microscopic point

of view.

The hydrodynamic stability of the detonation wave was studied in Chapter

3. It is a rather complex subject. This is not the first work which studies it

on the scope of the kinetic theory. Nevertheless, we consider that our study

is more complete as it includes certain non-equilibrium effects, such as the

contribution of the reaction heat and the activation theory on the stability

spectrum.
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The search for the stability solutions is often a complex and slow process.

To overcome these difficulties we developed a numerical method which takes

into account the ideas of several authors. With this method we were able

to reduce significantly the time required to find the stability solutions. We

firmly believe that this method can be applied on other problems and that

there is room for improving it. The results presented in Chapter 3 gave the

first detailed investigation of the stability problem, obtained on the kinetic

theory context, and were in qualitative accordance with the previous results

known from the classical theory.

Finally, in Chapter 4, we constructed the so called SRS model, step by step,

starting from basic mechanical and chemical concepts. The development of

the model was described in such a detail that is not frequent in literature.

We chose to do so in order to allow a greater understanding of the model.

Since both the kinetic modeling and its properties are well known, besides the

detail we used in describing the models’ development, we stress our contri-

bution on how we organized concepts and properties scattered throughout

the literature. In addition, we also deduced the collisional frequency and the

kernels’ of the integral operator of the Boltzmann linearized equation explicit

representation.
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Appendix A

Calculation of an elastic kernel

In this appendix we include the detailed computations of the kernels of the

linearized elastic integral operators Q
(2)
i . Let us re-write the integral operator

Q
(2)
i defined by expression (4.102), namely

Q
(2)
i (ĥ) =

4∑

s=1

σ2
is

∫

R3

∫

S2
+

M1/2
s M ′

s
1/2
h′i〈ǫ, ci − cs〉 dǫ dcs, (A.1)

We introduce a new notation ci = u, cs = w and perform the transformation

w 7→ ξ, with ξ = u − w, in the external integral of expression (A.1). The

Jacobian of this transformation is given by J(ξ;w) = −1. Since

c3 = u− 2µis

mi

〈ǫ, ξ〉ǫ and c4 = w +
2µis

ms

〈ǫ, ξ〉ǫ,

we get

Q
(2)
i (ĥ) =

4∑

s=1

σ2
is

∫

R3

∫

S2
+

ĥi

(
u− 2µis

mi
〈ǫ, ξ〉ǫ

)
(A.2)

×M1/2
s

(
u− ξ +

2µis

ms
〈ǫ, ξ〉ǫ

)
M1/2

s (u− ξ)〈ǫ, ξ〉 dǫ dξ.
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Now, in Eq. (A.2), we first change the order of integration. Then we split

the vector ξ in the form ξ = l + L, with l and L such that l//ǫ and L ⊥ ǫ.

Therefore, we have

〈ǫ, ξ〉 = 〈ǫ, l〉+ 〈ǫ, L〉 = ‖l‖,

and

l = 〈ǫ, ξ〉ǫ = ‖l‖ǫ and L = ξ − 〈ǫ, ξ〉ǫ = ξ − ‖l‖ǫ.

Finally, we observe that the integration in expression (A.2), for ǫ∈ S2
+ and

ξ ∈ R
3, can be transformed to an integration over (L, ‖l‖, ǫ), with L ⊥ ǫ,

‖l‖ ∈ [0,+∞[ and ǫ ∈ S2. Consequently, from Eq. (A.2), we obtain

Q
(2)
i (ĥ) =

4∑

s=1

σ2
is

∫

S2

∫ +∞

0

∫

L⊥ǫ

ĥi

(
u− 2µis

mi

l
)

(A.3)

×M1/2
s

(
u− L+

(
2µis

ms

− 1

)
l

)
M1/2

s (u− l − L) dL ‖l‖ d‖l‖ dǫ.

Now, we transform the external integral to spherical coordinates, getting

Q
(2)
i (ĥ) =

4∑

s=1

σ2
is

∫ 2π

0

∫ π

0

∫ +∞

0

∫

L⊥ǫ

hi

(
u− 2µis

mi
l
)

(A.4)

×M1/2
s

(
u− L+

(
2µis

ms
− 1

)
l

)
M1/2

s (u− l − L) dL ‖l‖ d‖l‖ sin θ dθ dϕ.

Then, we express the vector l in spherical coordinates, that is

l = (‖l‖ cos θ, ‖l‖ sin θ cosϕ, ‖l‖ sin θ sinϕ),

and transform the triple integral over [0,+∞[×[0, π] × [0, 2π[ according to

(‖l‖, θ, ϕ) 7→ l. The corresponding Jacobian is given by J(l; ‖l‖, θ, ϕ) =
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1

‖l‖2 sin θ and Eq. (A.4) becomes

Q
(2)
i (ĥ) =

4∑

s=1

σ2
is

∫

R3

1

‖l‖

∫

L⊥l

hi

(
u− 2µis

mi

l
)

(A.5)

×M1/2
s

(
u− L+

(
2µis

ms
− 1

)
l

)
M1/2

s (u− l − L) dL dl.

Introducing, in the external integral, the transformation l 7→ η with η =

u− 2µis

mi
l, whose Jacobian is J(η; l) = −

(
mi

2µis

)3
, we obtain

Q
(2)
i (ĥ) =

4∑

s=1

σ2
is

∫

R3

∣∣∣
∣∣∣

2µis

mi(u− η)

∣∣∣
∣∣∣
(
mi

2µis

)3 ∫

L⊥u−η

M1/2
s

(
u− mi(u− η)

2µis
− L

)

×M1/2
s

(
u− L+

(
2µis

ms
− 1

)(
mi

2µis

)
(u− η)

)
ĥi(η) dL dη

=
4∑

s=1

σ2
is

∫

R3

1

‖u− η‖

(
mi

2µis

)2
ĥi(η) ns

( ms

2πkT

)3

2

(A.6)

×
∫

L⊥u−η

exp

[
− ms

4kT

{(
u− mi(u− η)

2µis

− L

)2

+

(
u− L+

(
2µis

ms

− 1

)(
mi

2µis

)
(u− η)

)2
}]

dLdη.

Taking into account that

(
u− mi(u− η)

2µis

− L

)2

+

(
u− L+

(
2µis

ms

− 1

)(
mi

2µis

)
(u− η)

)2

= 2

(
L− u+ η

2

)2

+

(
mi

2µis

− 1

2

)
(u− η)2,
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the expression (A.6) takes the form

4∑

s=1

σ2
is

∫

R3

ns

‖u− η‖

(
mi

2µis

)2
ĥi(η)

( ms

2πkT

)3

2

exp

[
− ms

2kT

(
mi

2µis
− 1

2

)
(u− η)2

]

×
∫

L⊥u−η

exp

[
− ms

2kT

(
L− u+ η

2

)2
]
dLdη.

Now we consider the vector ϕ = u+η
2

and split it in the form ϕ = ϕp + ϕn,

with ϕp//L and ϕn ⊥ L. With these transformations we obtain

∫

L⊥u−η

exp

[
− ms

2kT

(
L− u+ η

2

)2
]
dL

= exp
[
− ms

2kT
ϕ2
n

] ∫

L⊥u−η

exp
[
− ms

2kT
(L− ϕp)

2
]
dL,

where

ϕ2
n =

〈
ϕ,

l

‖l‖

〉2

=
(u2 − η2)

2

4‖u− η‖2 .

Finally, coming back to the expression (A.7) of the integral operator Q
(2)
i we

have

Q
(2)
i (ĥ) =

∫

R3

4∑

s=1

σ2
is

ns

‖u− η‖

(
mi

2µis

)2(
ms

2πkT

)1/2

ĥi(η) (A.7)

× exp

[
− ms

8kT

(u2 − η2)2

‖u− η‖2 − ms

4kT

(
mi

2µis

− 1

2

)
(u− η)2

]
dη.
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Therefore the kernel of the operator Q
(2)
i can be identified as

N(Q
(2)
i )(u, w)=

4∑

s=1

σ2
is

ns

‖u− w‖

(
mi

2µis

)2(
ms

2πkT

)1/2

× exp

[
− ms

8kT

(u2 − w2)2

‖u− w‖2 − ms

4kT

(
mi

2µis
− 1

2

)
(u− w)2

]

and this is the expression listed in Eq. (4.105) of Subsection 4.6.2.
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Appendix B

Calculation of a reactive kernel

In this appendix we include the detailed computations of the kernel of the

linearized elastic integral operators R
(2)
3 . The integral operator R

(2)
3 defined

by expression (4.115) for the case i = 3 (j = 4, k = 1, l = 2) is given by

R
(2)
3 (ĥ) = β34σ

2
34

∫

R3

∫

S2
+

µ34

µ12
M

1/2
4 M

1/2
2 ĥ1Θ(〈ǫ, ξ′〉 − Γ34) 〈ǫ, ξ′〉 dǫ dc4, (B.1)

where

c1 =
1

M

[
m3c3 +m4c4 +m2

√
µ34

µ12

{
ξ′ − ǫ〈ǫ, ξ′〉+ ǫα+

}]
(B.2)

and

c2 =
1

M

[
m3c3 +m4c4 −m1

√
µ34

µ12

{
ξ′ − ǫ〈ǫ, ξ′〉+ ǫα+

}]
. (B.3)

Above, α+ =
√
(〈ǫ, ξ′〉)2 + 2QR/µ12.

In order to simplify further calculations, we introduce the new variable β

defined as follows

β =
ξ′ − 〈ξ′, ǫ〉ǫ
‖ξ′ × ǫ‖ .

The following properties hold

157



(a) ‖β‖ = 1;

(b) 〈β, ǫ〉 = 0;

(c) 〈β, ξ′〉 = ‖ǫ× ξ′‖ (assuming 〈β, ξ′〉 ≥ 0);

(d) 〈ǫ, ξ′〉 = ‖β × ξ′‖ (assuming 〈ǫ, ξ′〉 ≥ 0);

(e) ǫ =
ξ′ − 〈ξ′, β〉β
‖ξ′ × β‖ .

We introduce a new notation c3 = u, c4 = w and write the vectors c1 and

c2 in expressions (B.2) and (B.3) in terms of the variable β in the form

c1 =
1

M

[
m3u+m4w+m2

√
µ34

µ12

{
〈ξ′, β〉β +

ξ′ − 〈ξ′, β〉β
‖ξ′ × β‖

√
‖β × ξ′‖2 + 2QR

µ34

}]

(B.4)

and

c2 =
1

M

[
m3u+m4w−m1

√
µ34

µ12

{
〈ξ′, β〉β +

ξ′ − 〈ξ′, β〉β
‖ξ′ × β‖

√
‖β × ξ′‖2 + 2QR

µ34

}]

(B.5)

respectively. Now we consider the transformation (ǫ, w) 7→ (β, ξ′). The

corresponding Jacobian is given by

J(β, ξ′; ǫ, w) =
〈ξ′, β〉

‖ξ′ × β‖ .
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Accordingly, the integral in expression (B.1) transforms to

R
(2)
3 =

∫

R3

∫

S2
+

β34σ
2
34

µ34

µ12

M
1/2
4 (u− ξ′)M

1/2
2

(
1

M
[m3u+m4w (B.6)

−m1

√
µ34

µ12

{
〈ξ′, β〉β +

ξ′ − 〈ξ′, β〉β
‖ξ′ × β‖

√
‖β × ξ′‖2 + 2QR

µ34

}])

×h1
(

1

M

[
m3u+m4w+m2

√
µ34

µ12
{〈ξ′, β〉β

+
ξ′ − 〈ξ′, β〉β
‖ξ′ × β‖

√
‖β × ξ′‖2 + 2QR

µ34

}])
Θ
(
‖ξ′ × β‖ − Γ34

)
〈β, ξ′〉 dβ dξ′.

We now split the vector ξ′ in the form ξ′ = l + L, with l and L such that

l//β and L ⊥ β. Therefore, we have

〈β, ξ′〉 = 〈β, l〉+ 〈β, L〉 = ‖l‖,

l = 〈β, ξ′〉β = ‖l‖β, L = ξ′ − 〈β, ξ′〉β = ξ′ − ‖l‖β,

ξ′ − 〈ξ′, β〉β
‖ξ′ × β‖ =

L

‖L‖ .

Using this decomposition, we can compute the vector appearing in the argu-

ment of h1 in the previous integral of expression (B.6), as follows

u+
1

M

[
−m4ξ

′ +m2

√
µ34

µ12

{
〈ξ′, β〉β +

ξ′ − 〈ξ′, β〉β
‖ξ′ × β‖

√
‖β × ξ′‖2 + 2QR

µ34

}]

= u+
1

M

[
−m4(l + L) +m2

√
µ34

µ12

{
l +

L

‖L‖

√
‖L‖2 + 2QR

µ34

}]

= u+
1

M

(
m2

√
µ34

µ12

−m4

)
l +

1

M

(
m2

√
µ34

µ12

√
1 +

2QR

µ34‖L‖2
−m4

)
L

=u+
1

M

(
m2

√
µ34

µ12
−m4

)
l+

1

M

(
m2

√
µ34

µ12
+

2QR

µ12‖L‖2
−m4

)
L. (B.7)
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Finally, we observe that the integration in expression (B.6), for ǫ∈ S2
+ and

ξ′∈R3, can be transformed into an integration over (L, ‖l‖, β), with L⊥ β,

‖l‖∈ [0,+∞[ and β∈S2. Consequently, from Eq. (B.6), we obtain

R
(2)
3 =

∫

S2

∫ +∞

0

∫

L⊥β

β34σ
2
34

µ34

µ12
M

1/2
4 (u− l − L) (B.8)

×M1/2
2

(
u− 1

M

(
m1

√
µ34

µ12
−m4

)
l +

1

M

(
−m1

√
µ34

µ12
+

2QR

µ12
−m4

)
L

)

×h1
(
u+

1

M

(
m2

√
µ34

µ12

−m4

)
l +

1

M

(
m2

√
µ34

µ12

+
2QR

µ12‖L‖2
−m4

)
L

)

×Θ(‖L‖ − Γ34) ‖l‖ dL d‖l‖ dβ.

Now, we transform the external integral in expression (B.8) to spherical

coordinates, getting

R
(2)
3 =

∫ 2π

0

∫ π

0

∫ +∞

0

∫

L⊥β

β34σ
2
34

µ34

µ12
M

1/2
4 (u− l − L) (B.9)

×M1/2
2

(
u− 1

M

(
m1

√
µ34

µ12

−m4

)
l +

1

M

(
−m1

√
µ34

µ12

+
2QR

µ12

−m4

)
L

)

×h1
(
u+

1

M

(
m2

√
µ34

µ12
−m4

)
l +

1

M

(
m2

√
µ34

µ12
+

2QR

µ12‖L‖2
−m4

)
L

)

×Θ(‖L‖ − Γ34) ‖l‖ dL d‖l‖ sin θdθdϕ.

Then, we express the vector l in spherical coordinates, that is

l = (‖l‖ cos θ, ‖l‖ sin θ cosϕ, ‖l‖ sin θ sinϕ),

and transform the triple integral, over [0,+∞[×[0, π] × [0, 2π[, according

to (‖l‖, θ, ϕ) 7→ l, with l ∈ R3. The corresponding Jacobian is given by
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J(l; ‖l‖, θ, ϕ)= 1

‖l‖2 sin θ . Thus, Eq. (B.9) becomes

R
(2)
3 =

∫

R3

∫

L⊥l

β34σ
2
34

µ34

µ12
M

1/2
4 (u− l − L) (B.10)

×M1/2
2

(
u− 1

M

(
m1

√
µ34

µ12
−m4

)
l +

1

M

(
−m1

√
µ34

µ12
+

2QR

µ12
−m4

)
L

)

×h1
(
u+

1

M

(
m2

√
µ34

µ12
−m4

)
l +

1

M

(
m2

√
µ34

µ12
+

2QR

µ12‖L‖2
−m4

)
L

)

×Θ(‖L‖ − Γ34)
1

‖l‖ dL dl.

Now we introduce the transformation l 7→ η, with η defined by

η=u+
1

M

(
m2

√
µ34

µ12
−m4

)
l+

1

M

(
m2

√
µ34

µ12
+

2QR

µ12‖L‖2
−m4

)
L, (B.11)

in the external integral. The corresponding Jacobian is

J(η; l) =


 M

m2

√
µ34

µ12
−m4



3

.
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Expression (B.10) takes the following form

R
(2)
3 =

∫

R3

∫

DL

β34σ
2
34

µ34

µ12



 M

m2

√
µ34

µ12
−m4




3

(B.12)

×M1/2
4


u −

η − u− 1
M

(
m2

√
µ34

µ12
+ 2QR

µ12‖L‖2
−m4

)
L

1
M

(
m2

√
µ34

µ12
−m4

) − L




×M1/2
2

(
u+

1

M

(
−m1

√
µ34

µ12

+
2QR

µ12

−m4

)
L

− 1

M

(
m1

√
µ34

µ12

−m4

) η − u− 1
M

(
m2

√
µ34

µ12
+ 2QR

µ12‖L‖2
−m4

)
L

1
M

(
m2

√
µ34

µ12
−m4

)




×h1(η)Θ(‖L‖ − Γ34)

∥∥∥∥∥∥∥

1
M

(
m2

√
µ34

µ12
−m4

)

η − u− 1
M

(
m2

√
µ34

µ12
+ 2QR

µ12‖L‖2
−m4

)
L

∥∥∥∥∥∥∥
dL dη.

In order to extract the kernel of R
(2)
3 from expression (B.12), we have to

specify the domain DL and simplify the expression in the integrand. In

order to do so, we transform the internal integral to spherical coordinates,

introducing the angle θ between L and η−u. Using condition 〈L, l〉 = 0 and

expression (B.11), we can write

〈
L,
η − u− 1

M

(
m2

√
µ34

µ12
+ 2QR

µ12‖L‖2
−m4

)
L

1
M

(
m2

√
µ34

µ12
−m4

)
〉

= 0

or 〈
L, η − u− 1

M

(
m2

√
µ34

µ12
+

2QR

µ12‖L‖2
−m4

)
L

〉
= 0,
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that is

〈L, η − u〉 = 1

M

(
m2

√
µ34

µ12
+

2QR

µ12‖L‖2
−m4

)
‖L‖2, (B.13)

and we obtain

cos θ =
1

M

(
m2

√
µ34

µ12

+
2QR

µ12‖L‖2
−m4

)
‖L‖

‖η − u‖ , (B.14)

provided that

−1 ≤ 1

M

(
m2

√
µ34

µ12
+

2QR

µ12‖L‖2
−m4

)
‖L‖

‖η − u‖ ≤ 1. (B.15)

The conditions (B.15) are crucial for the characterization of the domain DL.

First we consider the second inequality in condition (B.15), that is

1

M

(
m2

√
µ34

µ12

+
2QR

µ12‖L‖2
−m4

)
‖L‖

‖η − u‖ ≤ 1, (B.16)

or equivalently

m2

√
µ34

µ12
+

2QR

µ12‖L‖2
≤ ‖η − u‖M

‖L‖ +m4. (B.17)

Since the quantities in both sides of Eq. (B.17) are positive, we obtain

m2
2

(
µ34

µ12
+

2QR

µ12‖L‖2
)

≤ ‖η − u‖2M2

‖L‖2 +m2
4 + 2m4

‖η − u‖M
‖L‖ , (B.18)

that is

(
m2

2

µ34

µ12
−m2

4

)
‖L‖2−2m4‖η−u‖M‖L‖+2QRm

2
2

µ12
−‖η−u‖2M2 ≤ 0, (B.19)
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where the coefficient of ‖L‖2 is positive, thanks to the assumptions m1 < m2

and m4 < m3. In fact,

m2
2

µ34

µ12

−m2
4 = m2

2

m3m4

m1m2

−m2
4

=
m4

m1
(m2m3 −m1m4)

=
m4

m1

(
m2(M −m4)− (M −m2)m4

)

=
m4M

m1

(m2 −m4

)
> 0. (B.20)

Therefore, condition (B.19) is verified in a certain domain if, and only if, its

discriminant is positive, that is

4m2
4‖η − u‖2M2+4

(
m2

2

µ34

µ12

−m2
4

)(
−2QRm

2
2

µ12

+‖η − u‖2M2

)
> 0,

or simply

m2
2

µ34

µ12
‖η − u‖2M2 >

(
m2

2

µ34

µ12
−m2

4

)
2QRm

2
2

µ12
. (B.21)

Since the terms in both sides of this inequality are positive, see Eq. (B.20),

we get

‖η − u‖ >
√(

m2
2

µ34

µ12

−m2
4

)
2QR

µ34M2
. (B.22)

The two zeros of the quadratic polynomial on the left-hand side of (B.19) are

‖L‖+32 =
m4‖η − u‖M +

√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2

µ12
+m2

2
µ34

µ12
‖η − u‖2M2

m2
2
µ34

µ12
−m2

4

(B.23)
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and

‖L‖−32 =
m4‖η − u‖M −

√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2

µ12
+m2

2
µ34

µ12
‖η − u‖2M2

m2
2
µ34

µ12
−m2

4

,

(B.24)

where ‖L‖+32 > 0, and ‖L‖−32 > 0 if and only if ‖η−u‖ <
√

2QRm2
2

M2µ12
. Therefore,

it is convenient to compare

√(
m2

2
µ34

µ12
−m2

4

)
2QR

µ34M2 with
√

2QRm2
2

M2µ12
. It is

immediate that

√(
m2

2

µ34

µ12
−m2

4

)
2QR

µ34M2
<

√
2QRm

2
2

M2µ12
, (B.25)

since

√(
m2

2

µ34

µ12

−m2
4

)
2QR

µ34M2
<

√
2QRm2

2

µ12M2

⇔
(
m2

2

µ34

µ12
−m2

4

)
2QR

µ34M2
<

2QRm
2
2

µ12M2

⇔
(
m2

2

m3m4

m1m2
−m2

4

)
1

m3m4
<
m2

m1

⇔ m2
2

m1m2
− m4

m3
<
m2

m1

⇔ −m4

m3
< 0.

The previous analysis of the second inequality in condition (B.15) leads to

the following conclusion about the domain DL in the internal integral of

expression (B.12):
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(i) If

√(
m2

2

µ34

µ12

−m2
4

)
2QR

µ34M2
< ‖η − u‖ <

√
2QRm2

2

M2µ12

, then

|L‖−32 ≤ ‖L‖ ≤ ‖L‖+32, (B.26)

provided that condition (B.22) holds.

(ii) If ‖η − u‖ >
√

2QRm
2
2

M2µ12
, then

‖L‖−32 < 0 ≤ ‖L‖ ≤ ‖L‖+32, (B.27)

provided that condition (B.22) holds.

Observe that condition (B.27) is more restrictive than condition (B.26). Ho-

wever, in both cases (i) and (ii), condition (B.26) is verified. This fact is used

in the sequel.

The next step is to work on the first inequality in condition (B.15), and then

combine the resulting conclusions with those stated above in items (i) and

(ii) for the second inequality in condition (B.15). We consider two cases,

namely Case A and Case B, each one with four sub-cases, namely situations

first, second, third and fourth. The results obtained for these cases and sub-

cases are first combined with the above condition (B.26). In a further step,

the results of both Cases A and B are gathered and simplified. Finally, the

above restrictive condition (B.27) is taken into account and the analysis of

the domain DL is concluded.

Accordingly, let us consider the first inequality in condition (B.15), that is

1

M

(
m2

√
µ34

µ12

+
2QR

µ12‖L‖2
−m4

)
‖L‖

‖η − u‖ ≥ −1 (B.28)

166



or

m2

√
µ34

µ12
+

2QR

µ12‖L‖2
≥ m4 −

‖η − u‖M
‖L‖ . (B.29)

Now we consider two different cases.

Case A - If the term on the right-hand-side of condition (B.29) is non-

positive, that is

m4 −
‖η − u‖M

‖L‖ ≤ 0, (B.30)

or equivalently

‖L‖ ≤ ‖η − u‖M
m4

, (B.31)

then condition (B.28) is trivially verified. In this case, we have to com-

bine condition (B.31) with those previously obtained in items (i) and (ii),

see Eqs. (B.22), (B.26) and (B.27). We start with the comparison of the

quantities ‖L‖−32, ‖L‖+32 and ‖η−u‖M
m4

, considering the following situations.

First. m2m3 ≤ 2m1m4 and (m2m3 − 2m1m4)
2 < m1m2m3m4

In this situation we have

‖L‖+32 ≥
‖η − u‖M

m4
, (B.32)

since

‖L‖+32 =

m4‖η − u‖M +

√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2

µ12
+m2

2
µ34

µ12
‖η − u‖2M2

m2
2
µ34

µ12
−m2

4

≥ m4‖η − u‖M
m2

2
µ34

µ12
−m2

4

,
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where

m2
2

µ34

µ12
−m2

4=
m2m3m4

m1
−m2

4=
m4

m1
(m2m3−m1m4)≤

m4

m1
(2m1m4−m1m4)=m

2
4.

(B.33)

Therefore,

‖L‖+32 ≥
m4‖η − u‖M

m2
4

=
‖η − u‖M

m4
.

Moreover, for what concerns ‖L‖−32, we observe that

‖L‖−32 ≤
‖η − u‖M

m4
(B.34)

if and only if

m4‖η − u‖M−
√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2

µ12
+m2

2
µ34

µ12
‖η−u‖2M2

m2
2
µ34

µ12
−m2

4

≤ ‖η−u‖M
m4

,

that is,

−
√

−
(
m2

2

µ34

µ12
−m2

4

)
2QRm

2
2

µ12
+m2

2

µ34

µ12
‖η−u‖2M2 ≤ ‖η−u‖M

m4

(
m2

2

µ34

µ12
−2m2

4

)
,

where the term on the right hand side is non-positive. In fact, thanks to

condition (B.33), we have

m2
2

µ34

µ12
− 2m2

4 ≤ 0. (B.35)

Consequently, condition (B.34) holds if and only if

−
(
m2

2

µ34

µ12
−m2

4

)
2QRm

2
2

µ12
+m2

2

µ34

µ12
‖η−u‖2M2 ≥ ‖η−u‖2M2

m2
4

(
m2

2

µ34

µ12
−2m2

4

)2

,
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that is,

−
(
m2

2

µ34

µ12
−m2

4

)
2QRm

2
2

µ12
≥ ‖η − u‖2M2

m2
4

[(
m2

2

µ34

µ12
− 2m2

4

)2

−m2
4m

2
2

µ34

µ12

]
.

(B.36)

Here, the term on the right hand side is negative, since

(
m2

2

µ34

µ12
− 2m2

4

)2

−m2
4m

2
2

µ34

µ12

= m4
2

µ2
34

µ2
12

+ 4m4
4 − 5m2

4m
2
2

µ34

µ12

=
m4

2m
2
3m

2
4

m2
1m

2
2

+ 4m4
4 − 5m2

2m
2
4

m3m4

m1m2

=
m2

4

m2
1

(
m2

2m
2
3 + 4m2

1m
2
4 − 5m1m2m3m4

)

=
m2

4

m2
1

[
(m2m3 − 2m1m4)

2 −m1m2m3m4

]

< 0 (B.37)

thanks to the second hypothesis within this first situation. Thus, from condi-

tion (B.36), we obtain

−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2
m2

4

µ12M2

(
m2

2
µ34

µ12
− 2m2

4

)2
−m2

4m
2
2
µ34

µ12

≤ ‖η − u‖2

and finally

‖η − u‖ ≥

√√√√√√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2
m2

4

µ12M2

(
m2

2
µ34

µ12
− 2m2

4

)2
−m2

4m
2
2
µ34

µ12

. (B.38)

Then we conclude that condition (B.34) holds if and only if condition (B.38)

holds.
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Finally, we have to compare the quantities

√
−
(

m2
2

µ34
µ12

−m2
4

)

2QRm2
2
m2

4

µ12M
2

(

m2
2

µ34
µ12

−2m2
4

)2

−m2
4
m2

2

µ34
µ12

and

√(
m2

2
µ34

µ12
−m2

4

)
2QR

µ34M2 . We have

√(
m2

2

µ34

µ12
−m2

4

)
2QR

µ34M2
≤

√√√√√√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2
m2

4

µ12M2

(
m2

2
µ34

µ12
− 2m2

4

)2
−m2

4m
2
2
µ34

µ12

, (B.39)

since it is equivalent to

(
m2

2

µ34

µ12
−m2

4

)
2QR

µ34M2
≤

−2QR

M

(
m2

2
µ34

µ12
−m2

4

)

m2m2
3

m1
+

4m2
4
m1

m2
− 5m3m4

,

or to

(m2m3 − 2m1m4)
2 ≥ 0,

which is trivially verified. In this first situation, if

√(
m2

2

µ34

µ12
−m2

4

)
2QR

µ34M2
< ‖η − u‖ <

√√√√√√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2
m2

4

µ12M2

(
m2

2
µ34

µ12
− 2m2

4

)2
−m2

4m
2
2
µ34

µ12

,

then
‖η − u‖M

m4

< ‖L‖−32 < ‖L‖+32

which contradicts the fact that conditions (B.26) and (B.31) must be verified.
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On the other hand, if

‖η − u‖ >

√√√√√√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2
m2

4

µ12M2

(
m2

2
µ34

µ12
− 2m2

4

)2
−m2

4m
2
2
µ34

µ12

then

‖L‖−32 <
‖η − u‖M

m4
< ‖L‖+32,

and from conditions (B.26) and (B.31) we get ‖L‖−32 ≤ ‖L‖ ≤ ‖η−u‖M
m4

.

Second. m2m3 ≤ 2m1m4 and (m2m3 − 2m1m4)
2 ≥ m1m2m3m4

In this situation, conditions (B.33) and (B.35) still hold true. Moreover, we

now have (see condition (B.37))

(
m2

2

µ34

µ12

− 2m2
4

)2

−m2
4m

2
2

µ34

µ12

≥ 0. (B.40)

Consequently, we get

‖L‖−32 >
‖η − u‖M

m4

.
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In fact

‖L‖−32 >
‖η − u‖M

m4

⇔
m4‖η−u‖M−

√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2

µ12
+m2

2
µ34

µ12
‖η−u‖2M2

m2
2
µ34

µ12
−m2

4

>
‖η−u‖M

m4

⇔−
√

−
(
m2

2

µ34

µ12
−m2

4

)
2QRm2

2

µ12
+m2

2

µ34

µ12
‖η−u‖2M2

>
‖η−u‖M

m4

(
m2

2

µ34

µ12

−2m2
4

)

⇔−
(
m2

2

µ34

µ12
−m2

4

)
2QRm

2
2

µ12
+m2

2

µ34

µ12
‖η−u‖2M2

<
‖η−u‖2M2

m2
4

(
m2

2

µ34

µ12
−2m2

4

)2

⇔−
(
m2

2

µ34

µ12
−m2

4

)
2QRm

2
2

µ12
<
‖η−u‖2M2

m2
4

[(
m2

2

µ34

µ12
−2m2

4

)2

−m2
4m

2
2

µ34

µ12

]
,

which is trivially verified, since the left hand side is negative and the right

hand side is non-negative. However, condition ‖L‖−32 > ‖η−u‖M
m4

contradicts

the fact that conditions (B.26) and (B.31) must be verified.

Third. m2m3 > 2m1m4 and (m2m3 − 2m1m4)
2 < m1m2m3m4

In this situation, we have

m2
2

µ34

µ12

− 2m2
4 > 0 (B.41)

172



and (
m2

2

µ34

µ12

− 2m2
4

)2

−m2
4m

2
2

µ34

µ12

< 0. (B.42)

Consequently, we have

‖L‖+32 ≥
‖η − u‖M

m4
if and only if ‖η−u‖≥

√√√√√√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2
m2

4

µ12M2

(
m2

2
µ34

µ12
− 2m2

4

)2
−m2

4m
2
2
µ34

µ12

.

In fact,

‖L‖+32 ≥
‖η − u‖M

m4

⇔
m4‖η−u‖M+

√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2

µ12
+m2

2
µ34

µ12
‖η−u‖2M2

m2
2
µ34

µ12
−m2

4

≥ ‖η−u‖M
m4

⇔−
(
m2

2

µ34

µ12

−m2
4

)
2QRm

2
2

µ12

+m2
2

µ34

µ12

‖η − u‖2M2

≥ ‖η − u‖2M2

m2
4

(
m2

2

µ34

µ12

− 2m2
4

)2

⇔−
(
m2

2

µ34

µ12
−m2

4

)
2QRm

2
2

µ12
≥ ‖η−u‖2M2

m2
4

[(
m2

2

µ34

µ12
−2m2

4

)2

−m2
4m

2
2

µ34

µ12

]

⇔
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2m
2
4

µ12M2

(
m2

2
µ34

µ12
− 2m2

4

)2
−m2

4m
2
2
µ34

µ12

≤ ‖η − u‖2

⇔‖η − u‖ ≥

√√√√√√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2
m2

4

µ12M2

(
m2

2
µ34

µ12
− 2m2

4

)2
−m2

4m
2
2
µ34

µ12

. (B.43)

Moreover, the term on the right hand side verifies condition (B.39), as before.
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For what concerns ‖L‖−32, we have

‖L‖−32 ≤
‖η − u‖M

m4
, (B.44)

since

‖L‖−32 ≤
‖η − u‖M

m4

⇔
m4‖η−u‖M−

√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2

µ12
+m2

2
µ34

µ12
‖η−u‖2M2

m2
2
µ34

µ12
−m2

4

≤ ‖η−u‖M
m4

⇔−
√

−
(
m2

2

µ34

µ12

−m2
4

)
2QRm2

2

µ12

+m2
2

µ34

µ12

‖η − u‖2M2

≤ ‖η − u‖M
m4

(
m2

2

µ34

µ12
− 2m2

4

)
,

where the left hand side is negative and the right hand side is positive.

In this third situation, the conclusion is the following.

If

√(
m2

2

µ34

µ12
−m2

4

)
2QR

µ34M2
< ‖η − u‖ <

√√√√√√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2
m2

4

µ12M2

(
m2

2
µ34

µ12
− 2m2

4

)2
−m2

4m
2
2
µ34

µ12

then we have, see conditions (B.43) and (B.44),

‖L‖−32 < ‖L‖+32 <
‖η − u‖M

m4
,

and from conditions (B.26) and (B.31) we get ‖L‖−32 ≤ ‖L‖ ≤ ‖L‖+32.
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On the other hand, if

‖η − u‖ >

√√√√√√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2
m2

4

µ12M2

(
m2

2
µ34

µ12
− 2m2

4

)2
−m2

4m
2
2
µ34

µ12

then

‖L‖−32 <
‖η − u‖M

m4
< ‖L‖+32,

and from conditions (B.26) and (B.31) we get ‖L‖−32 ≤ ‖L‖ ≤ ‖η−u‖M
m4

.

Fourth. m2m3 > 2m1m4 and (m2m3 − 2m1m4)
2 ≥ m1m2m3m4

In this situation, we have

m2
2

µ34

µ12
− 2m2

4 > 0 (B.45)

and (
m2

2

µ34

µ12
− 2m2

4

)2

−m2
4m

2
2

µ34

µ12
≥ 0. (B.46)

Consequently,

‖L‖+32 ≤
‖η − u‖M

m4
, (B.47)
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since

‖L‖+32 ≤
‖η − u‖M

m4

⇔
m4‖η−u‖M+

√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2

µ12
+m2

2
µ34

µ12
‖η−u‖2M2

m2
2
µ34

µ12
−m2

4

≤ ‖η−u‖M
m4

⇔
√

−
(
m2

2

µ34

µ12
−m2

4

)
2QRm2

2

µ12
+m2

2

µ34

µ12
‖η − u‖2M2

≤ ‖η − u‖M
m4

(
m2

2

µ34

µ12

− 2m2
4

)

⇔−
(
m2

2

µ34

µ12
−m2

4

)
2QRm

2
2

µ12
+m2

2

µ34

µ12
‖η − u‖2M2

≤ ‖η − u‖2M2

m2
4

(
m2

2

µ34

µ12
− 2m2

4

)2

⇔−
(
m2

2

µ34

µ12
−m2

4

)
2QRm

2
2

µ12
≤ ‖η−u‖2M2

m2
4

[(
m2

2

µ34

µ12
−2m2

4

)2

−m2
4m

2
2

µ34

µ12

]
,

which is trivially verified, since the left hand side is negative and the right

hand side is non-negative. Thus, we conclude that

‖L‖−32 < ‖L‖+32 ≤
‖η − u‖M

m2

,

and from conditions (B.26) and (B.31), we get

‖L‖−32 ≤ ‖L‖ ≤ ‖L‖+32.

Case B - If the term on the right-hand-side of condition (B.29) is positive,
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that is

m4 −
‖η − u‖M

‖L‖ > 0, (B.48)

or equivalently

‖L‖ > ‖η − u‖M
m4

, (B.49)

then, from condition (B.29), we may write

m2
2

(
µ34

µ12

+
2QR

µ12‖L‖2
)

≥ m2
4 +

‖η − u‖2M2

‖L‖2 − 2m4
‖η − u‖M

‖L‖ , (B.50)

or

(
m2

2

µ34

µ12

−m2
4

)
‖L‖2+2m4‖η−u‖M‖L‖+2QRm

2
2

µ12

−‖η−u‖2M2 ≥ 0, (B.51)

where the coefficient of ‖L‖2 is positive, see Eq. (B.20). Thus, if the discri-

minant of the quadratic polynomial on the left hand side of Eq. (B.51) is

non-positive, then condition (B.51) is verified for an arbitrary L. Conversely,

if it is positive, then L must satisfy certain constraints in order to condition

(B.51) be verified. Let us analyze this case. We have

4m2
4‖η − u‖2M2+4

(
m2

2

µ34

µ12
−m2

4

)(
−2QRm

2
2

µ12
+‖η − u‖2M2

)
> 0,

that is

m2
2

µ34

µ12
‖η − u‖2M2 >

(
m2

2

µ34

µ12
−m2

4

)
2QRm

2
2

µ12
(B.52)

where the terms in both sides are positive, see again Eq. (B.20). Thus

‖η − u‖ >
√(

m2
2

µ34

µ12
−m2

4

)
2QR

µ34M2
. (B.53)

The two zeros of the quadratic polynomial on the left-hand side of Eq. (B.51)
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are given by

‖L‖+32B =

−m4‖η − u‖M +

√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2

µ12
+m2

2
µ34

µ12
‖η − u‖2M2

m2
2
µ34

µ12
−m2

4

(B.54)

and

‖L‖−32B =

−m4‖η − u‖M −
√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2

µ12
+m2

2
µ34

µ12
‖η − u‖2M2

m2
2
µ34

µ12
−m2

4

.

(B.55)

It is immediate that ‖L‖−32B < 0. Let us study the sign of ‖L‖+32B . We have

‖L‖+32B > 0 if and only if ‖η − u‖ >
√

2QRm2
2

µ12M2
. (B.56)

In fact,

‖L‖+32B > 0

⇔
−m4‖η − u‖M +

√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2

µ12
+m2

2
µ34

µ12
‖η − u‖2M2

m2
2
µ34

µ12
−m2

4

> 0

⇔ m4‖η − u‖M <

√
−
(
m2

2

µ34

µ12

−m2
4

)
2QRm2

2

µ12

+m2
2

µ34

µ12

‖η − u‖2M2

⇔
(
m2

2

µ34

µ12
−m2

4

)
‖η − u‖2M2 >

(
m2

2

µ34

µ12
−m2

4

)
2QRm

2
2

µ12

⇔ ‖η − u‖2M2 >
2QRm

2
2

µ12

⇔ ‖η − u‖ >
√

2QRm2
2

µ12M2
.
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Having in mind condition (B.22), remember that the term
√

2QRm2
2

µ12M2 of Eq. (B.22)

and the term

√(
m2

2
µ34

µ12
−m2

4

)
2QR

µ34M2 , above, are such that

√
2QRm

2
2

µ12M2
>

√(
m2

2

µ34

µ12
−m2

4

)
2QR

µ34M2
.

Since this Case B is characterized by condition (B.49), it is also convenient

to compare ‖L‖+32B with the term ‖η−u‖M
m4

that figures in Eq. (B.49). We have

‖L‖+32B <
‖η − u‖M

m4
, (B.57)

since

‖L‖+32B <
‖η − u‖M

m4

⇔
−m4‖η−u‖M+

√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2

µ12
+m2

2
µ34

µ12
‖η−u‖2M2

m2
2
µ34

µ12
−m2

4

<
‖η−u‖M

m4

⇔
√

−
(
m2

2

µ34

µ12
−m2

4

)
2QRm

2
2

µ12
+m2

2

µ34

µ12
‖η − u‖2M2 <

‖η − u‖M
m4

m2
2µ34

µ12

⇔−
(
m2

2

µ34

µ12
−m2

4

)
2QRm

2
2

µ12
+m2

2

µ34

µ12
‖η − u‖2M2 <

‖η − u‖2M2m4
2µ

2
34

µ2
12m

2
4

⇔−
(
m2

2

µ34

µ12

−m2
4

)
2QRm

2
2

µ12

< ‖η − u‖2M2m2
2

µ34

µ12

(
m2

2µ34

m2
4µ12

− 1

)

⇔−
(
m2

2

µ34

µ12
−m2

4

)
2QRm

2
2

µ12
< ‖η − u‖2M2m2

2

µ34

µ12

(
m2m3 −m1m4

m1m4

)
,

where the left hand side is negative and the right hand side is positive.

Consequently, as we explain in the following, in this Case B we conclude that
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condition (B.28) is verified only if ‖L‖ is such that

‖η − u‖M
m4

< ‖L‖ < +∞. (B.58)

In fact, if

‖η − u‖ <
√(

m2
2

µ34

µ12
−m2

4

)
2QR

µ34M2

then the discriminant of the quadratic polynomial on the left hand side of

Eq. (B.51) is negative and the solution of condition (B.51), together with

condition (B.49), lead to ‖η−u‖M
m4

< ‖L‖ < +∞. On the other hand, if

√(
m2

2

µ34

µ12
−m2

4

)
2QR

µ34M2
< ‖η − u‖ <

√
2QRm2

2

µ12M2

then the discriminant of the quadratic polynomial on the left hand side of

Eq. (B.51) is positive, and the two zeros of such polynomial, ‖L‖−32B and

‖L‖+32B, are such that ‖L‖−32B < ‖L‖+32B < 0. Thus, the solution of condition

(B.51), together with condition (B.49), lead to ‖η−u‖M
m4

< ‖L‖ < +∞.

Finally, if

‖η − u‖ >
√

2QRm2
2

µ12M2

then the discriminant of the quadratic polynomial on the left hand side of

Eq. (B.51) is positive, and the two zeros of the polynomial are such that

‖L‖−32B < 0 < |L‖+32B < ‖η−u‖M
m4

. Thus, the solution of condition (B.51),

together with condition (B.49), lead to ‖η−u‖M
m4

< ‖L‖ < +∞.

Now we have to combine condition (B.58) of this Case B with the one ob-

tained in Eq. (B.26) for the specification of the domain DL. To this end,

we first compare the quantities ‖L‖−32 and ‖L‖+32 with ‖η−u‖M
m4

, in the four

different situations considered before in Case A.
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Moreover we underline that, see Eq. (B.22),

‖η − u‖ >
√(

m2
2

µ34

µ12

−m2
4

)
2QR

µ34M2

in the four considered situations.

First. m2m3 ≤ 2m1m4 and (m2m3 − 2m1m4)
2 < m1m2m3m4

In this situation, if

√(
m2

2

µ34

µ12

−m2
4

)
2QR

µ34M2
< ‖η − u‖ <

√√√√√√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2
m2

4

µ12M2

(
m2

2
µ34

µ12
− 2m2

4

)2
−m2

4m
2
2
µ34

µ12

then conditions (B.32) and (B.38) give

‖η − u‖M
m4

< ‖L‖−32 < ‖L‖+32,

and from conditions (B.26) and (B.58) we get the following condition for the

domain DL

‖L‖−32 ≤ ‖L‖ ≤ ‖L‖+32

On the other hand, if

‖η − u‖ >

√√√√√√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2
m2

4

µ12M2

(
m2

2
µ34

µ12
− 2m2

4

)2
−m2

4m
2
2
µ34

µ12

then

‖L‖−32 <
‖η − u‖M

m4
< ‖L‖+32,

181



and from conditions (B.26) and (B.58) we get

‖η − u‖M
m4

≤ ‖L‖ ≤ ‖L‖+32

Second. m2m3 ≤ 2m1m4 and (m2m3 − 2m1m4)
2 ≥ m1m2m3m4

In this situation we have ‖L‖−32 > ‖η−u‖M
m4

and from conditions (B.26) and

(B.58) we get

‖L‖−32 ≤ ‖L‖ ≤ ‖L‖+32

Third. m2m3 > 2m1m4 and (m2m3 − 2m1m4)
2 < m1m2m3m4

In this situation, if

√(
m2

2

µ34

µ12
−m2

4

)
2QR

µ34M2
< ‖η − u‖ <

√√√√√√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2
m2

4

µ12M2

(
m2

2
µ34

µ12
− 2m2

4

)2
−m2

4m
2
2
µ34

µ12

then conditions (B.43) and (B.44) give

‖L‖−32 < ‖L‖+32 <
‖η − u‖M

m4
,

and this contradicts conditions (B.26) and (B.58).

On the other hand, if

‖η − u‖ >

√√√√√√
−
(
m2

2
µ34

µ12
−m2

4

)
2QRm2

2
m2

4

µ12M2

(
m2

2
µ34

µ12
− 2m2

4

)2
−m2

4m
2
2
µ34

µ12

then

‖L‖−32 <
‖η − u‖M

m4
< ‖L‖+32,
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and from conditions (B.26) and (B.58) we get

‖η − u‖M
m4

≤ ‖L‖ ≤ ‖L‖+32.

Fourth. m2m3 > 2m1m4 and (m2m3 − 2m1m4)
2 ≥ m1m2m3m4

In this situation we have ‖L‖−32 < ‖L‖+32 < ‖η−u‖M
m4

, which contradicts condi-

tions (B.26) and (B.58). For the situations already described, the results

obtained in both cases lead to the following conclusions.

The analysis of Case B is complete. The next step consists in combining the

results obtained in Case B with those previously obtained in Case A. For

the sub-cases described in the four situations, the results can be summarized

as follows.

First. m2m3 ≤ 2m1m4 and (m2m3 − 2m1m4)
2 < m1m2m3m4

(i) If ‖η − u‖ <
√(

m2
2
µ34

µ12
−m2

4

)
2QR

µ34M2

then DL = ∅;

(ii) If

√(
m2

2
µ34

µ12
−m2

4

)
2QR

µ34M2 < ‖η − u‖ <
√

−
(

m2
2

µ34
µ12

−m2
4

)

2QRm2
2
m2

4

µ12M
2

(

m2
2

µ34
µ12

−2m2
4

)2

−m2
4
m2

2

µ34
µ12

then ‖L‖−32 ≤ ‖L‖ ≤ ‖L‖+32;

(iii) If ‖η − u‖ >
√

−
(

m2
2

µ34
µ12

−m2
4

)

2QRm2
2
m2

4

µ12M
2

(

m2
2

µ34
µ12

−2m2
4

)2

−m2
4
m2

2

µ34
µ12

then ‖L‖−32 ≤ ‖L‖ ≤ ‖η−u‖M
m4

∨ ‖η−u‖M
m4

≤ ‖L‖ ≤ ‖L‖+32,
or, equivalently, ‖L‖−32 ≤ ‖L‖ ≤ ‖L‖+32.

Second. m2m3 ≤ 2m1m4 and (m2m3 − 2m1m4)
2 ≥ m1m2m3m4
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(i) If ‖η − u‖ <
√(

m2
2
µ34

µ12
−m2

4

)
2QR

µ34M2

then DL = ∅;

(ii) If ‖η − u‖ >
√(

m2
2
µ34

µ12
−m2

4

)
2QR

µ34M2

then ‖L‖−32 ≤ ‖L‖ ≤ ‖L‖+32.

Third. m2m3 > 2m1m4 and (m2m3 − 2m1m4)
2 < m1m2m3m4

(i) If ‖η − u‖ <
√(

m2
2
µ34

µ12
−m2

4

)
2QR

µ34M2

then DL = ∅;

(ii) If

√(
m2

2
µ34

µ12
−m2

4

)
2QR

µ34M2 < ‖η − u‖ <
√

−
(

m2
2

µ34
µ12

−m2
4

)

2QRm2
2
m2

4

µ12M
2

(

m2
2

µ34
µ12

−2m2
4

)2

−m2
4
m2

2

µ34
µ12

then ‖L‖−32 ≤ ‖L‖ ≤ ‖L‖+32;

(iii) If ‖η − u‖ >
√

−
(

m2
2

µ34
µ12

−m2
4

)

2QRm2
2
m2

4

µ12M
2

(

m2
2

µ34
µ12

−2m2
4

)2

−m2
4
m2

2

µ34
µ12

then ‖L‖−32 ≤ ‖L‖ ≤ ‖η−u‖M
m4

∨ ‖η−u‖M
m4

≤ ‖L‖ ≤ ‖L‖+32,
or, equivalently, ‖L‖−32 ≤ ‖L‖ ≤ ‖L‖+32.

Fourth. m2m3 > 2m1m4 and (m2m3 − 2m1m4)
2 ≥ m1m2m3m4

(i) If ‖η − u‖ <
√(

m2
2
µ34

µ12
−m2

4

)
2QR

µ34M2

then DL = ∅;
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(i) If ‖η − u‖ >
√(

m2
2
µ34

µ12
−m2

4

)
2QR

µ34M2

then ‖L‖−32 ≤ ‖L‖ ≤ ‖L‖+32.

The results summarized above show that the condition obtained for the spe-

cification of the domain DL is the same for the considered situations.

Finally, we consider the more restrictive condition (B.26) in order to comple-

tely specify the domain DL. Since the results of the combination of Case A

and Case B lead to the unique condition ‖L‖−32 ≤ ‖L‖ ≤ ‖L‖+32 , the conclu-

sion for DL is the following:

(a) If

√(
m2

2
µ34

µ12
−m2

4

)
2QR

µ34M2 < ‖η − u‖ <
√

2QRm2
2

M2µ12

then DL is specified by

‖L‖−32 ≤ ‖L‖ ≤ ‖L‖+32; (B.59)

(b) If ‖η − u‖ >
√

2QRm2
2

M2µ12

then DL is specified by

0 ≤ ‖L‖ ≤ ‖L‖+32. (B.60)

Conditions (B.59) and (B.60) define the lower and upper bounds for the

internal integral defining the operator R
(2)
3 , whereas conditions (a) and (b)

on ‖η − u‖ are traduced in terms of suitable Heaviside step functions.

Now we come back to the expression (B.12) of the operator R
(2)
3 . As pre-

viously anticipated, our idea is to express L in spherical coordinates, with

θ being the angle between L and η − u, and use the appropriate conditions

to specify the domain DL in the new coordinate system. Before writing the
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detailed expression of the operator R
(2)
3 , we introduce the following notation,

for sake of simplicity.

∆
(2)
3 = β34σ

2
34(n2n4)

1/2

(
m2m4

(2πkT )2

)3/4
µ34

µ12

× exp


− m4

2kT


u−

w − u− 1
M

(
m2

√
µ34

µ12
+ 2QR

µ12‖L‖2
−m4

)
L

1
M

(
m2

√
µ34

µ12
−m4

) − L




2

− m2

2kT

(
u+

1

M

(
−m1

√
µ34

µ12
+

2QR

µ12‖L‖2
−m4

)
L

+
1

M

(
−m1

√
µ34

µ12
−m4

) w − u− 1
M

(
m2

√
µ34

µ12
+ 2QR

µ12‖L‖2
−m4

)
L

1
M

(
m2

√
µ34

µ12
−m4

)




2


×Θ(‖L‖ − Γ34)

∥∥∥∥∥∥∥

1
M

(
m2

√
µ34

µ12
−m4

)

w − u− 1
M

(
m2

√
µ34

µ12
+ 2QR

µ12‖L‖2
−m4

)
L

∥∥∥∥∥∥∥
‖L‖2 sin θ,

with

L = (‖L‖ cos θ, ‖L‖ sin θ cosϕ, ‖L‖ sin θ sinϕ),

cos θ =
1

M

(
m2

√
µ34

µ12
− 2QR

µ12‖L‖2
−m4

)
‖L‖

‖w − u‖ ,

and since θ ∈ [0, π], we have sin θ ≥ 0, so that

sin θ =
√
1− cos2 θ. (B.61)

Finally, we are able to re-write the operator R
(2)
3 of expression (B.12) with
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DL explicitly defined. We get

R
(2)
3 (ĥ) =

∫

R3

∫ 2π

0

[∫ ‖L‖+
32

‖L‖−
32

∆
(2)
3 d‖L‖ĥ1(η)

×Θ

(
‖η − u‖−

√(
m2

2

µ34

µ12
−m2

4

)
2QR

µ34M2

)
Θ




√

2QRm2
2

µ12M2
− ‖η − u‖





+

∫ ‖L‖+
32

0

∆
(2)
3 d‖L‖Θ


‖η − u‖−

√
2QRm

2
2

µ12M2






 M

m2

√
µ34

µ12
−m4




3

dϕdη.

Thus, the kernel of R
(2)
3 can be extracted in the form

N(R
(2)
3 )(u, w) =

∫ 2π

0

[∫ ‖L‖+
32

‖L‖−
32

∆
(2)
3 d‖L‖

×Θ

(
‖w − u‖−

√(
m2

2

µ34

µ12
−m2

4

)
2QR

µ34M2

)
Θ




√

2QRm2
2

µ12M2
− ‖w − u‖





+

∫ ‖L‖+
32

0

∆
(2)
3 d‖L‖Θ


‖w − u‖−

√
2QRm

2
2

µ12M2






 M

m2

√
µ34

µ12
−m4




3

dϕ,

and this leads to the expression of Eq. (4.120) of Subsection 4.6.2.
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1999.

192



[37] Gorchkov, V., Kiyanda, C. B., Short, M. and Quirk, J. J., A detona-

tion stability formulation for arbitrary equations of state and multi-step

reaction mechanisms. Proc. Combust. Instit 31 (2007) 2397-2405.

[38] Grad, H., On the kinetic theory of rarefied gases. Communications on

Pure and Applied Mathematics 2 (1949) 331-407.

[39] Grad, H., Theory of rarefied gases. Rarefied Gas Dynamics (1960) 100-

138.

[40] Grad, H., Asymptotic Theory of the Boltzmann Equation II. In Rarefied

Gas Dynamics 1 (Paris, 1962) Edited by J.A. Laurmann. New York:

Academic Press, 26-59.

[41] Grad, H., Asymptotic Theory of the Boltzmann Equation. The Physics

of Fluids 6 (1963) 147-181.

[42] Groppi, M. and Spiga, G., Kinetic approach to chemical reactions and

inelastic transitions in a rarefied gas. J. Math. Chem. 26 (2000) 197-219.

[43] Groppi, M. and Polewczak, J., On Two Kinetic Models for Chemical

Reactions: Comparisons and Existence Results. Journal of Statistical

Physics 117 (2004) 211-241.

[44] He, L. and Lee, J. H. S., The dynamical limit of one-dimensional deto-

nations. Phys. Fluids 7 (1995) 1151-1158.

[45] Kasimov, A. and Stewart, D. S., Spinning instability of gaseous detona-

tions. J. Fluid Mech. 466 (2002) 179-203.

[46] Kasimov, A. and Stewart, D. S., On the dynamics of self-sustained one-

dimensional detonations: a numerical study in the shock-attached frame.

Phys. Fluids 16 (2004) 3566-3578.

[47] Kasimov, A. and Stewart, D. S., Theory of detonation with an embedded

sonic locus. SIAM J. Appl. Math. 66 (2005) 384-407.

193



[48] Kato, T., Perturbation Theory of Linear Operators. Springer, New York,

1966.

[49] Kremer, G. and Soares, A. J., Effect of reaction heat on Maxwellian dis-

tribution functions and rate of reactions. J. Stat. Mech P12003 (2007)

1-16.

[50] Kremer, G., Oliveira, F. and Soares, A. J., H-Theorem and Trend to

Equilibrium of Chemically Reacting Mixtures of Gases Kinetic and Re-

lated Models 2 (2009) 333-343.

[51] Kremer, G., Introduction to the Boltzmann Equation and Transport Pro-

cesses in Gases. Springer, Berlin, 2010.

[52] Kuo, K. K., Principles of Combustion. New York, Wiley, 2005.

[53] Lee, H. I. and Stewart, D. S., Calculation of linear detonation stabi-

lity: one dimensional instability of plane detonation. J. Fluid Mech.

216 (1990) 103-132.

[54] Lee, J. H. S., The Detonation Phenomenon. Cambridge University Press,

Cambridge, 2008.

[55] Liang, Z., Khastoo, B. and Bauwens, L., Effect of reaction order on

stability of planar detonation. Int. J. Comput. Fluid Dyn. 19 (2004)

131-142.

[56] Majda, A. J. and Rosales, R., A Theory for Spontaneous Mach Stem

Formation in Reacting Shock Fronts, I. The Basic Perturbation Analysis.

SIAM J. Appl. Math. 43 (1983) 1310-1334.

[57] Marron, M. T., Simple Collision Theory of Reactive Hard Spheres. Jour-

nal of Chemical Physics 52 (1970) 4060-4061.

194



[58] Mazaheri, K., Hashemi, S. S. and Lee, J. H., Numerical study of detona-

tion instability for a two-step kinetics model. Scientia Iranica 11 (2004)

292-301.

[59] Moreau, M., Formal study of a chemical reaction by Grad expansion of

the Boltzmann equation. Physica A 79 (1975) 18-51.

[60] Müller, I., Flame Structure in ordinary and extended thermodynamics.

Proc. Asymptotic Methods in Nonlinear Wave Phenomena, Singapore,

World Scientific (2007) 144-153.

[61] Papalexandris, M. V., Numerical simulation of detonations in mixtures

of gases and solid particles. J. Fluid Mech. 507 (2004) 95-142.

[62] Pintgena, F., Ecketta, C. A., Austin, J. M. and Shepher, J. E., Di-

rect observations of reaction zone structure in propagating detonations.

Combustion & Flame 133 (2003) 211-229.

[63] Polak, L. S. and Khachoyan, A.V., Generalization of Boltzmann’s H-

theorem for a reacting gas mixture. Soviet J. Chem. Phys. 2 (1985)

1474-1485.

[64] Polewczak, J., The Kinetic Theory of Simple Reacting Spheres: I. Global

Existence Result in a Dilute-Gas Case. Journal of Statistical Physics 100

(2000) 327-362.

[65] Polewczak, J., Soares, A. J. and Carvalho F., Work in preparation about

the linearized systems of simple reacting spheres.

[66] Present, R. D., On the velocity distribution in a chemically reacting gas.

J. chem. Phys. 31 (1959) 747-797.

[67] Present, R. D., Chapman-Enskog Method in Chemical Kinetics. The

Journal of Chemical Physics 48 (1968) 4875-4877.

195



[68] Prigogine, I. and Xhrouet, E., On the perturbation of Maxwell distribu-

tion function by chemical reaction in gases. Physica XV (1949) 913-932.

[69] Resibois, P. and Leener, M., Classical Kinetic Theory of Fluids. Wiley-

Interscirnce Puplications, 1977.

[70] Ross, J. and Mazur, P., Some deductions from a formal statistical me-

chanical theory of chemical kinetics. J. Chem. Phys. 35 (1961) 19-28.

[71] Rossani, A. and Spiga, G., A note on the kinetic theory of chemically

reacting gases. Physica A 272 (1999) 563-573.

[72] Sharpe, G. J., Linear stability of idealized detonations. R. Soc. Lond. A

(1997) 2623-2605.

[73] Sharpe, G. J., Linear stability of pathological detonations. J. Fluid

Mech. 401 (1999) 311-338.

[74] Sharpe, G. J. and Falle, S. A. E. G., One-dimensional numerical si-

mulations of idealized detonations. Proc. R. Soc. Lond. A 455 (1999)

1203-1214.

[75] Sharpe, G. J. and Falle, S. A. E. G., One-dimensional nonlinear stability

of pathological detonations. J. Fluid Mech. 414 (2000) 339-366.

[76] Sharpe, G. J. and Falle, S. A. E. G., Numerical simulations of pulsa-

ting detonations: I. Nonlinear stability os steady detonations. Combust.

Theory Modelling 4 (2000) 557-574.

[77] Shizgal, B. and Karplus, M., Nonequilibrium contributions to the Rate

of Reaction. I. Perturbation of the Velocity Distribution Function. The

Journal of Chemical Physics 52 (1970) 4262-4278.

[78] Short, M. and Stewart, D. S., Cellular detonation stability. Part 1. A

normal-mode linear analysis. J. Fluid Mech. 368 (1998) 229-262.

196



[79] Short, M., Theory and modeling of detonation wave stability: a brief

look at the past and toward the future. 20th Int. Colloq. Dyn. Expl.

React. Syst. (2005) 1-19.

[80] Sone, Y., Molecular Gas Dynamics, Theory, Techniques and Applica-

tions. Birkhäuser, 2007.
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