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ABSTRACT 
 

Precipitation processes are widely used in chemical industry for the production of particulate 

solids. In these processes, the chemical and physical nature of synthesized particles is of key 

importance. The traditional stirred tank batch reactors are affected by non-uniform mixing of 

reactants, often resulting in broad particle size distribution.  

 

The main objective of this thesis was to apply meso and microreactors for the synthesis of 

hydroxyapatite (HAp) nanoparticles under near-physiological conditions of pH and 

temperature, in order to overcome the limitations associated with stirred tank batch reactors. 

Meso and microreactors offer unique features in comparison with conventional chemical 

reactors. Their high surface-to-volume ratio enables enhanced heat and mass transfer, as well 

as rapid and efficient mixing. In addition to low consumption of reagents, meso and 

microreactors are usually operated in continuous flow, making them attractive tools for high 

throughput experimentation.  

 

Precipitation of HAp was first studied in a stirred tank batch reactor, mixing being assured by 

a novel metal stirrer. HAp was synthetized by mixing diluted aqueous solutions of calcium 

hydroxide and orthophosphoric acid at 37 °C. After process optimization, a suspension of 

HAp nanoparticles with pH close to 7 was obtained for a mixing molar ratio Ca/P=1.33. The 

precipitation process was characterized by three stages: precipitation of amorphous calcium 

phosphate, transformation of amorphous calcium phosphate into HAp and growth of HAp 

crystals. The reaction system was further characterized based on equilibrium equations. The 

resolution of the system, which was possible with the knowledge of three process variables 

(temperature, pH and calcium concentration), allowed identifying and quantifying all the 

chemical species present in solution. The proposed model was validated by comparing the 

experimental and theoretical conductivity. 

 

Precipitation of HAp was then investigated in a meso oscillatory flow reactor (meso-OFR). 

The mesoreactor was first operated batchwise in a vertical tube and experiments were 

performed under the same conditions of temperature, reactants concentration and power 

density applied in the stirred tank batch reactor. Despite hydrodynamic conditions being not 

directly comparable, it was possible to assess the effectiveness of both reactors in terms of 
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mixing and quality of the precipitated particles. The experimental results show the 

advantages of the meso-OFR over the stirred tank due to the production, about four times 

faster, of smaller and more uniform HAp nanoparticles. Afterwards, continuous-flow 

precipitation of HAp was carried out in one meso-OFR and in a series of eight meso-OFRs. 

Experiments were carried out using fixed frequency (f) and amplitude (x0), varying only the 

residence time. HAp nanoparticles were successfully obtained in both systems, mean particle 

size and aggregation degree of the prepared HAp particles decreasing with decreasing 

residence time.  

 

In the present work continuous-flow precipitation of HAp was also investigated in two 

ultrasonic microreactors. Initially, the process was carried out in a tubular microreactor 

immersed in an ultrasonic bath, where single-phase (laminar) and gas-liquid flow 

experiments were both performed. Continuous-flow precipitation of HAp in single-phase 

flow was then done in a Teflon microreactor with integrated piezoelectric actuator. Rod-like 

shape HAp nanoparticles were yielded in both reactors under near-physiological conditions 

of pH and temperature. Further, particles showed improved characteristics, namely in terms 

of size, shape, particle aggregation and crystallinity.  

 

In summary, scale-down of the HAp precipitation process has resulted in the formation of 

HAp nanoparticles with improved characteristics when compared with HAp particles 

prepared in a stirred tank batch reactor. Therefore, we believe that the work developed can be 

a useful contribution to the development of a platform for the continuous production of high 

quality HAp nanoparticles.  
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RESUMO 
 

Os processos de precipitação são amplamente usados na indústria química para a produção de 

partículas sólidas. Neste tipo de processo, a natureza química e física das partículas 

sintetizadas é fundamental. Os tradicionais reatores descontínuos tipo tanque agitado 

apresentam problemas na homogeneização da mistura dos reagentes, resultando geralmente 

numa larga distribuição de tamanho de partículas. 

 

O principal objetivo desta tese consistiu no uso de meso e microreatores na síntese de 

nanopartículas de hidroxiapatite (HAp) sob condições próximas das condições fisiológicas de 

pH e temperatura, de forma a ultrapassar as limitações associadas aos reatores descontínuos 

tipo tanque agitado. Os meso e microreatores possuem características únicas em comparação 

com os reatores químicos convencionais. A sua elevada razão superfície/volume possibilita 

uma melhor transferência de calor e massa, assim como uma mistura rápida e eficiente. Para 

além do baixo consumo de reagentes, os meso e microreatores são geralmente operados em 

fluxo contínuo, tornando-os uma ferramenta atrativa para a experimentação de alto 

rendimento.  

 

Em primeiro lugar, a precipitação de HAp foi estudada num reator descontínuo tipo tanque 

agitado, sendo a mistura assegurada por um novo agitador de metal. A HAp foi sintetizada a 

37 ° C, a partir da mistura de soluções aquosas diluídas de hidróxido de cálcio e de ácido 

ortofosfórico. Após a otimização do processo, uma suspensão de nanopartículas de HAp com 

um pH próximo de 7 foi obtida para uma razão molar Ca/P inicial de 1.33. O processo de 

precipitação foi caracterizado por três fases: a precipitação de fosfato de cálcio amorfo, a 

transformação de fosfato de cálcio amorfo em HAp e crescimento de cristais de HAp. O 

sistema reacional foi caracterizado recorrendo a equações de equilíbrio. A resolução 

numérica do sistema foi possível com o conhecimento de três variáveis de processo 

(temperatura, pH e concentração de cálcio) possibilitando, deste modo, a identificação e 

quantificação de todas as espécies químicas presentes em solução. O modelo proposto foi 

validado comparando os valores de condutividade experimental e teórico. 

 

De seguida, investigou-se a precipitação de HAp num mesoreator de fluxo oscilatório (meso-

OFR). O mesoreator foi primeiramente operado em descontínuo num tubo vertical sob as 
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mesmas condições de temperatura, concentração de reagentes e densidade de potência usadas 

no reator descontínuo tipo tanque agitado. Apesar das condições hidrodinâmicas não serem 

diretamente comparáveis, foi possível avaliar a eficácia de ambos os reatores em termos de 

mistura e qualidade das partículas precipitadas. Segundo os resultados experimentais, as 

nanopartículas de HAp são menores e mais uniformes quando obtidas no meso-OFR, acresce 

ainda o facto de a sua produção ser quatro vezes mais rápida neste tipo de reator. 

Posteriormente, a precipitação em contínuo de HAp foi realizada usando um meso-OFR e 

uma série de oito meso-OFRs. As experiências foram realizadas usando uma frequência (f) e 

uma amplitude (x0) fixas, variando apenas o tempo de residência. Nanopartículas de HAp 

foram obtidas com sucesso em ambos os sistemas, sendo que o tamanho médio e o grau de 

agregação das partículas de HAp preparadas diminui com a diminuição do tempo de 

residência. 

 

No decorrer da presente investigação foi tambéem estudada a precipitação em contínuo de 

HAp usando dois microreatores ultra-sónicos. Inicialmente, realizou-se o processo num 

microreator tubular imerso num banho de ultra-sons, usando fluxo laminar e segmentado. A 

precipitação de HAp em fluxo laminar foi posteriormente estudada num microreator de 

Teflon com um atuador piezoeléctrico integrado. Em ambos os reatores geraram-se 

nanopartículas de HAp em forma de bastonete, em condições próximas das condições 

fisiológicas de pH e de temperatura. Além disso, as partículas apresentaram características 

melhoradas, nomeadamente em termos de tamanho, forma, grau de agregação e 

cristalinidade.  

 

Em resumo, a redução da escala do processo de precipitação de HAp resultou na formação de 

nanopartículas de HAp com características melhoradas quando comparadas com as partículas 

obtidas num reator descontínuo tipo tanque agitado. Desta forma, acreditamos que o trabalho 

desenvolvido pode ser um importante contributo para o desenvolvimento de uma plataforma 

para a produção contínua de nanopartículas de HAp de elevada qualidade. 
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1 INTRODUCTION 
 

 

This chapter presents the topics addressed in this PhD thesis, especially the importance of the 

unit operation of precipitation in the chemical industry for particulate solids production. A 

particular emphasis will be done to the hydroxyapatite (HAp) system precipitation. This first 

approach aims at demonstrating the scientific, technological and economic interests of the 

topics studied and that motivated the development of this thesis. Finally, the general 

objectives are listed and a summary of the organization of the thesis is presented, including 

identification of the general contents of each chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 1 – INTRODUCTION 

2 
 

1.1 Crystallization/Precipitation in the chemical industry 
 

Crystallization is one of the oldest chemical engineering operations to have been exploited 

commercially (Stanley 2006; Söhnel and Garside 1992). In particular, crystallization by 

precipitation, also defined as reactive crystallization (Demopoulos 2009), where the 

formation of the solid product is via a chemical reaction, is of considerable industrial 

importance (Söhnel and Garside 1992). It has been widely used for the formation of 

particulate solids of magnetic and electronic materials, catalysts, ceramics and 

pharmaceutical powders (Rodríguez-clemente et al. 1999; Jones et al. 2005; Oliveira 2007; 

Demopoulos 2009). Precipitation also stands out because of its simplicity, low cost, and easy 

application in industrial production (Kawase and Miura 2007; Liu et al. 2001; Ying et al. 

2008).  

 

However, the science of reactive precipitation still remains poorly understood (Sultana 2010). 

During reactive precipitation, high levels of supersaturation are generated (Wang and Fox 

2003). In this case, fast or very fast chemical reactions and very fast nucleation kinetics are 

often involved, leading to the simultaneous occurrence of nucleation and growth as well as 

the presence of secondary processes such as ageing and agglomeration (Söhnel and Garside 

1992). Therefore, mixing effects are significant in determining the distribution of 

supersaturation and subsequently the product properties, namely phase purity, morphology, 

size, and particle size distribution (Aimable et al. 2011; Stanley 2006; Wang and Fox 2003).  

 

Stirred tank batch reactors are conventionally used for solid particulate synthesis (Khan et al. 

2004). Several disadvantages are associated with the implementation of wet chemical 

synthesis in stirred tank reactors, namely in terms of the reproducibility of the process and 

product quality. The resulting product often has wide size distribution due to non-uniform 

reaction conditions in the reactor (Mersmann 1999; Ying et al. 2008). Stirred tank batch 

reactors are usually characterized by heterogeneous spatial and temporal distributions of 

process parameters such as temperature and concentration, and thus a variable supersaturation 

environment (Demopoulos 2009). Those are intrinsically related to mixture quality and 

intensity achieved in stirred tanks. The problem becomes magnified as the scale of operation 

increases since the control of mixing is very difficult in large vessels (Jones et al. 2005; 
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Jongen et al. 2003), and can be particularly pronounced in fast precipitation systems owing to 

the very fast reaction kinetics (Jones et al. 2005).  

 

1.2 Calcium phosphate system 
 

Calcium phosphates are widely used in biomedical applications, since their chemical 

composition is roughly equivalent to that of the inorganic matrix of human bone. Among 

them, special attention has been paid to HAp, Ca5(PO4)3OH, due to its exceptional 

biocompatibility, bioactivity and osteoconductivity (He and Huang 2007). Actually, 

difficulties have been encountered in producing stoichiometric HAp at body temperature and 

normal pH, principally nanoparticles with a precise control size (Wang et al. 1998). This can 

be explained by the complexity of the calcium phosphate system, the structure of HAp 

particularly prone to ion substitution and the role of kinetic factors, which, depending on the 

experimental conditions, prevail over thermodynamic factors (Koutsopoulos 2002). One of 

the most important properties of calcium phosphate salts is solubility. It is solubility that 

determines the direction of many reactions that involve calcium phosphates, like dissolution, 

precipitation, hydrolysis and phase transformation. The quantity of calcium phosphates 

dissolved in a unit volume of solution varies with changes in the synthesis parameters, 

namely changes in the pH (Chow and Eanes 2001). At body temperature and pH between 4 

and 12, HAp is the most stable calcium phosphate salt, this is, the least soluble calcium 

phosphate salt (Elliot 1994). However, other calcium phosphate phases may form, given that 

they possess much higher crystallization rate compared to HAp (Oliveira 2007). 

 

1.3 Thesis motivation and aim 
 

The systems available for HAp production at the moment do not guarantee the 

stoichiometrical equilibrium, mainly due to the way reagents are mixed, leading to 

hydrodynamic characteristics that impede the creation of optimal conditions for the 

production of HAp with controlled properties. Even small differences in stoichiometry, 

morphology or size may affect the chemical, biological and physical behavior of the material 

(Tadic et al. 2002). This calls for the development of a system that provides an efficient and 

intense mixing, and in particular micromixing, essential to obtain HAp crystals with specific 

properties.  
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Meso and microreactors offer several advantages over traditional stirred tank batch reactors, 

namely reduced capital, energy costs and exposure to toxic or hazardous materials (Jähnisch 

et al. 2004), making them interesting tools for high throughput and screening 

experimentation. Scaled-down reactors present high surface to volume ratio that enhances 

heat and mass transfer, and vastly improves fluid mixing, allowing a better control over the 

reaction steps that govern particle size distribution, i.e., nucleation and growth, and thereby 

improving the monodispersity of synthesized nanoparticles (Jähnisch et al. 2004; Hessel 

2009). In that way, scaled-down reactors appear as good candidates to promote ideal 

conditions for the controllability of HAp particles properties. 

 

The problem addressed in this project is finding out how to obtain HAp crystals with a 

precise controlled size, a controlled and narrow size distribution and a high purity. HAp 

particles shall be produced with high specific surface area, narrow crystal size distribution 

and low concentration of secondary products, providing a matrix with the best conditions for 

bone related cells growth. Thus, in addition to the main objective stated above, the following 

specific objectives can be identified: 

 Understanding of the HAp precipitation process mechanism; 

 Physico-chemical characterization of the HAp precipitation process; 

 Adaptation of smaller reaction systems compared to conventional ones for the 

production of HAp crystals that: 

 minimize mass transfer and hydrodynamics limitations to obtain HAp with high 

yields;  

 allow better product consistency and reproducibility;  

 reduce energy and operating costs;  

 allow easy scale-up procedures.  

 

 

1.4 Thesis outline 
 

This thesis is organized in eight chapters. In this first chapter motivation, research aims and 

thesis outline are described. Chapter 2 presents a summary of the basic principles of the 

crystallization/precipitation process, and the particular case of the HAp system. It also 

summarizes the current methods and reactors employed for the production of HAp via 
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precipitation. Furthermore, an overview of the main advantages of miniaturization is outlined. 

The main experimental results are presented from Chapter 3 to Chapter 7. Chapter 3 presents 

the study of the HAp precipitation at 37 °C for different mixing Ca/P molar ratios in a stirred 

tank batch reactor. It describes the process adopted to synthesize HAp via the chemical 

precipitation technique, by mixing a saturated calcium hydroxide aqueous solution with an 

orthophosphoric acid aqueous solution. The mechanism of the optimized HAp precipitation 

process is studied and HAp powders characteristics are compared with a commercial HAp. In 

Chapter 4, the reaction system of the optimized HAp precipitation process is modeled based 

on mass balance and equilibrium equations. In the following chapters, the same HAp 

precipitation system is studied in different scaled-down reactors. Chapter 5 and Chapter 6 

explore the feasibility of a meso oscillatory flow reactor (meso-OFR) to improve the 

precipitation process of HAp, operated in both batch and in continuous modes, respectively. 

The meso reactor consists in a glass tube provided with smooth periodic cavities, operating 

under oscillatory flow mixing (OFM), where mixing intensity is controlled by oscillation 

frequency (f) and amplitude (x0). Chapter 5 refers to the HAp precipitation process in the 

mesoreactor operated in batch at constant power density. Experiments were performed under 

the same conditions of temperature (37 °C), reactants concentration and power density 

applied in the stirred tank batch reactor studied in Chapter 3. The constant power density 

applied to both reactors was used as the reference criterion. The effectiveness of both mixing 

methods for a given power input is investigated in terms of reaction time and characteristics 

of the precipitated particles. The prepared HAp particles are also compared with a 

commercial HAp. Concerning Chapter 6, it investigates the continuous-flow HAp 

precipitation under near-physiological conditions of pH and temperature in the meso-OFR 

and in the scaled-up meso-OFR, being the throughput of the mesoreactor increased by 

associating in series eight vertical meso-ORFs. The influence of residence time on HAp 

particles characteristics is also studied and HAp particles characteristics are compared with 

HAp particles prepared in the stirred tank batch reactor and in the meso-OFR operated in 

batch, as well as with a commercial HAp. Chapter 7 shows the ability of two ultrasonic 

microreactors for continuous-flow HAp precipitation under the same conditions used in the 

meso-OFR. Precipitation of HAp was first carried out in a tubular microreactor immersed in 

an ultrasonic bath, where single-phase (laminar) and segmented gas-liquid flow were both 

evaluated. The single-phase flow study was then conducted in a novel microfluidic device. It 

consists of a Teflon stack microreactor with an integrated piezoelectric element, thereby 

allowing the direct transmission of ultrasound to the reactor. HAp particles prepared in this 
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system were compared with HAp particles obtained in the previous reactors studied and a 

commercial HAp. Finally, Chapter 8 is dedicated to the main conclusions of the thesis, 

recommendations and suggestions for future work. 
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2 LITERATURE REVIEW 
 

 

In this chapter the basic concepts considered to pursuit this doctoral dissertation are reviewed. 

Firstly, fundamental aspects related to the crystallization/precipitation processes are 

discussed, namely mechanisms and physical and chemical aspects of precipitation. Then, the 

target system, HAp, is characterized in terms of its structure, its composition and chemical 

properties with respect to solubility in aqueous solutions and reactions. Finally, 

methodologies commonly used for the production of HAp, as well as the current reactors 

used and their limitations are reviewed. 
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2.1 Crystallization/Precipitation processes 
  

2.1.1 Definition 

 

Crystallization consists in converting a substance or several substances from amorphous, 

gaseous or liquid state to crystalline state, being chemical potential difference the driving 

force of the process (Oliveira 2007). As to the term ‘precipitation’, it commonly refers to fast 

crystallization (Mullin 2001) (Table 2.1). Sometimes, it also implies an irreversible process, 

i.e. supersaturation is obtained by a chemical reaction between two soluble components, 

leading to a very sparingly soluble specie that precipitates directly (Oliveira 2007; Mersmann 

1995). Another distinguishing feature of precipitation processes is that they are generally 

initiated at high supersaturation, resulting in rapid nucleation and growth of solid phases and 

the consequent creation of large numbers of very small primary crystals (Mullin 2001) (see 

Table 2.1). Finally, precipitation processes, as all crystallization processes, consist of three 

basic steps (supersaturation, nucleation and growth) usually followed by secondary steps such 

as ripening, ageing or agglomeration that can cause major changes on the final product 

(Mullin 2001; Söhnel and Garside 1992).  
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Table 2.1. Comparison between crystallization and precipitation processes (adapted from 

Oliveira, 2007). 

 Crystallization Precipitation 

Definition Solid phase formation Fast crystallization 

Solubility Great extent, from medium to high Low 

Achievement of 

supersaturation 
Various ways Dilution and reaction 

Relative supersaturation Low High 

Product morphology Well-defined 

Not well-defined 

(generally amorphous 

material) 

Size of the crystalline 

product 
Big Small 

Nucleation mechanism Secondary Primary 

Nucleation rate Low High 

Nucleation order Low High 

Growth rate 
Variable in a large range 

(0.005 – 0.5 µm.s-1) 

Low 

(0.005 – 0.05 µm.s-1) 

Controllability Controllable Difficult to control 

 

 

2.1.2 Modes of crystallization 

 

The driving force for any crystallization/precipitation process is the development of 

supersaturation (Söhnel and Garside 1992). The main techniques used to achieve 

supersaturation include changing solution temperature (cooling), evaporation of solvent 

(evaporation), addition of antisolvent and chemical reaction (reactive crystallization) (Mullin 

2001). These processes are described below (Pedrosa 1995; Sultana 2010): 

 Cooling: it is commonly used in systems whose solubility increases with rising 

temperature. The solution temperature is lowered below the saturation temperature for 

that solution leading to the formation of the solid phase. The end product usually 

exhibits high purity.  
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 Evaporation: it is used in systems whose solubility values are not influenced by 

temperature or whose solubility decreases with increasing former. Supersaturation is 

achieved by evaporation of the solvent which results in an increase in concentration. 

This can be done by heating a solution to its boiling point. This technique is slow and 

has been the first to be applied. 

 Addition of antisolvent: a solution of the compound to be crystallized is mixed with 

an antisolvent. The solubility of the compound is lower in the mixed solvent system 

compared to that in the original solution and so supersaturation is created. Efficient 

mixing is essential in this technique, since antisolvent crystallization involves the 

mixing of a solution with an antisolvent. Another important feature of this method lies 

on the fact that one can operate at ambient temperature. 

 Chemical reaction: supersaturation can be achieved by chemical reaction, by adding 

one reactant solution to a stirred solution of another. The end product is formed in 

concentrations exceeding the solubility, i.e. supersaturation is generated, and so 

precipitation of the desired product occurs. The characteristics of the resulting product 

depend essentially on the way reactants are mixed.  

 

2.1.3 Crystallization/Precipitation mechanisms 

 

2.1.3.1 Role of supersaturation 

A saturated solution is in thermodynamic equilibrium with the solid phase, at a specified 

temperature. As to the term supersaturation, it refers to a solution that contains more of the 

dissolved material than could be dissolved by the solvent under normal circumstances 

(Mullin 2001).   

 

The state of supersaturation is an essential requirement for all crystallization operations 

(Söhnel and Garside 1992; Mullin 2001; Oliveira 2007; Sultana 2010). The relationship 

between supersaturation and spontaneous crystallization has been represented on a solubility-

supersolubility diagram (Figure 2.1). 

 

The diagram (see Figure 2.1) can be described in terms of three distinct zones (Mullin 2001):  

 the stable zone of an undersaturated solution where no nucleation or crystal  

      growth is possible. Existing crystals will simply dissolve; 
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 the supersaturated metastable zone where growth may occur but spontaneous  

      nucleation does not, and; 

 the labile supersaturated zone of spontaneous and rapid nucleation. 

 

 

 

Figure 2.1. The solubility-supersolubility diagram. 

 

In thermodynamic terms, the fundamental driving force for crystallization can be defined as 

the difference between the chemical potential of the given substance in solution (state 1) and 

the crystal (state 2) (Mullin 2001): 

 

                                                                                                                           (2.1) 

 

writing the chemical potential, µ, in terms of the standard potential, µ0, and the activity, a: 

                                                                                                                               (2.2) 

 

where R is the gas constant and T is the absolute temperature.  

 

The fundamental dimensionless driving force for crystallization may therefore be expressed 

as: 
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   (

 

  
)                                                                                                                    (2.3) 

 

where a* is the activity of a saturated solution and S is the fundamental supersaturation.  

 

Supersaturation, σ, can also be expressed in terms of solution concentrations, since the values 

of activity are generally not known. Among the most common expressions of supersaturation, 

σ, are the concentration driving force, ∆c, the supersaturation ratio, S, and the relative 

supersaturation ∆c/c*: 

 

                                                                                                                             (2.4) 

  

     
 

  
                                                                                                                            (2.5) 

 

  
  

  
                                                                                                                          (2.6) 

 

where c is the concentration of the solute in solution and c* is the equilibrium saturation 

concentration at the given temperature. 

 

Supersaturation is the key variable among all the factors that affect crystal nucleation and 

growth (Figure 2.2), directly influencing both physical (crystal size distribution) and 

chemical (purity) properties of the final products (Söhnel and Garside 1992). 
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Figure 2.2. The role os supersaturation in precipitation processes (adapted from Söhnel and 

Garside 1992). 

 

2.1.3.2 Nucleation and crystal growth 

In the following paragraph, nucleation and crystal growth are reviewed and treated as 

independent processes. However, it must be highlighted that both events take place 

simultaneously during precipitation, at least for a part of the overall process (Söhnel and 

Garside 1992).  

 

 Nucleation 

The condition of supersaturation is per se not sufficient to initiate crystallization in a given 

system. Before crystals can develop there must exist in the solution a number of minute solid 

bodies, known as nuclei, that act as centers of crystallization (Mullin 2001). The conditions 

that are favorable for nucleus formation, as well as the kinetics of their formation, are the 

subject of nucleation theory. The various mechanisms are schematically represented in 

Figure 2.3: 
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Figure 2.3. Mechanisms of nucleation (adapted from Mullin, 2001). 

 

In primary nucleation, formation of the new solid phase is not influenced by the presence of 

the solid phase being formed. Primary nucleation can be either homogeneous nucleation, 

where formation of the solid phase is not brought about the presence of any solid phase, or 

heterogeneous nucleation, where formation of new solid phase particles is triggered by the 

presence of a foreign solid phase. Secondary nucleation is the mechanism by which formation 

of the solid phase is initiated by the presence of solid phase of the crystallizing material itself 

(Mullin 2001).  

 

Homogeneous nucleation 

Primary nucleation is believed to be initiated in a series of bimolecular collisions that forms 

an aggregate of a small number of molecules, “embryos”, of the dissolved material. Embryos 

below a critical cluster size (rc), are unstable and may disintegrate, whereas embryos that 

exceed this critical cluster size will become stable nuclei and will grow (Figure 2.4): 

 

 
Figure 2.4. The process of nucleation. 

 

The classical nucleation theory states that the change in the Gibbs free energy (ΔG) required 

to form a nucleus of radius r is given by the equation: 
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  ( )  (
    

  
)      (   )     

                                                                               (2.7) 

 

where r is the size of the cluster, Ω is the specific volume of a growth unit, γ is the solid-

liquid interfacial energy, kB is the Boltzmann constant and σ is the relative supersaturation.  

 

Consequently, the free energy, ΔG, increases with the cluster size, r, until a maximum is 

reached at rc, which marks the nucleation event. As the new phase grows larger than rc, the 

free energy decreases without bound (Figure 2.5). 

 

 
Figure 2.5. Gibbs free energy change of nucleation as a function of the cluster size. 

 

The rate of nuclei formation, J, defined as the number of clusters that grow further than the 

critical size and so become crystals, is given by the equation: 

 

       (
   

   
)                                                                                                                   (2.8) 

 

Since the activation energy is a decreasing function of the supersaturation, the rate of 

nucleation increases with the increase of the supersaturation.  
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Heterogeneous nucleation 

The nucleation process is usually enhanced by the presence of impurity particles, ions or 

foreign surfaces. These lower the nucleation energy barrier. The Gibbs free energy of the 

critical nucleus that forms through heterogeneous nucleation, ΔGhet, is expressed by: 

 

                                                                                                                               (2.9) 

 

where ΔGhom is the Gibbs free energy of the critical nucleus in the homogeneous process and 

fc is a geometric correction factor.   

 

Secondary nucleation 

During precipitation, secondary nucleation may occur by different mechanisms. These were 

summarized in Söhnel and Garside (1992). However, in precipitation of sparingly soluble 

substances, the contribution of secondary nucleation is overshadowed by primary 

mechanisms, thereby in most cases secondary nucleation needs not to be considered during 

precipitation (Söhnel and Garside 1992).  

 

Induction time 

In the case of unseeded crystallization, the kinetics of nucleation can be measured with the 

induction time τi. It corresponds to the time that passes until the first nucleus is formed in the 

supersaturated solution. The induction time decreases rapidly with the increase of the degree 

of relative supersaturation. The higher the relative supersaturation, the sooner the 

crystallization will start.  

 

 Crystal growth  

Once an ordered structure is formed by nucleation, crystal growth occurs through a 2-

dimensional molecular self-assembling, where the solute molecules from the supersaturated 

solution are added to the solid phase. Solute molecules migrate from the bulk solution to the 

crystal surface, adsorb, diffuse around the surface to find a suitable site, and are finally 

integrated into the crystal lattice. According to the Kossel model (Figure 2.6), adsorption of 

growth units may occur at three possible sites: 

 ledge sites – incorporation at a flat surface (terrace) having only one site of 

intermolecular interaction available; 
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 step sites – incorporation at a surface having two sites of intermolecular interaction 

available; 

 kink sites – three possible sites of intermolecular interactions. 

 

 

Figure 2.6. Kossel’s model of a growing crystal surface. 

 

If crystal size is characterized by a characteristic dimension, L, its linear growth rate, RG, can 

be defined as: 

 

    
  

  
                                                                                                                            (2.10) 

 

    
 

 
 
  

  
     (   

 )                                                                                             (2.11) 

 

where m is the mass of solid deposited in time t, A is the surface area of the crystal, c is the 

concentration of the solute in solution (supersaturated), c* is the equilibrium saturation 

concentration, KG is an overall crystal growth coefficient and g is usually referred as the 

“order” of the overall crystal growth process.  

 

When the mass transfer is not limiting, surface integration is the rate limiting step of crystal 

growth. In this case, the growth mechanism can be classified into three main categories: 

continuous growth mechanism, birth and spread mechanism and screw dislocation 

mechanism. These have been thoroughly reviewed by Mullin (2001).  
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2.1.4 Chemical aspects of precipitation  

 

Chemical reactions taking place during precipitation are frequently more complex than is 

implied by a simple stoichiometric equation. Product formation can result from a number of 

consecutive reactions in solution, each having a different rate (Mersmann 1995). For 

example, according to the Ostwald’s law of stages, the formation of a thermodynamically 

stable phase will be preceded by that of a number of less stable (metastable) phases 

possessing greater energy than the stable phase provided that the formation of solid proceeds 

sufficiently quickly (Söhnel and Garside 1992). This has been confirmed by the behavior of 

several systems, including the formation of HAp, which is generally preceded by the 

formation of a metastable phase such as amorphous calcium phosphate or octacalcium 

phosphate, depending upon the prevailing reaction conditions (van Kemenade and de Bruyn 

1987).  

It is important to develop a full kinetic description of precipitation and to ensure that kinetic 

equations refer to the controlling reaction. Further, it is imperative to control the purity of a 

product that is applied as bone substitute. In this case, it is intended to obtain a low 

concentration of secondary products from the HAp formation reaction, once those products 

may be detrimental for cell growth. 

 

2.1.5 Physical aspects of precipitation 

 

2.1.5.1 Particle size distribution 

Particle size distribution is a critical quality parameter for many industrial processes. The 

efficiency of any process for the production of crystals relies on the size, shape and size 

distribution, as they affect downstream processes such as filtration and drying and determine 

the product quality (Sultana 2010). Particle size distribution obtained during precipitation is 

influenced by many processes, including rates of nucleation and growth, and secondary steps 

such as agglomeration (Söhnel and Garside 1992; Mullin 2001).   

The physical properties of the HAp particles play an important role in interacting with the 

cells in the human body (Bystrov et al. 2011). Therefore, it is important to control particle 

size distribution and achieve as narrow a distribution as possible, once it allows a better 

uniformity of cell growth around the HAp particles (Wang et al. 1998; Cai and Tang 2008; 

Dorozhkin 2010).  
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2.1.5.2 Influence of mixing 

Both nucleation and growth processes are greatly influenced by mixing conditions. Many 

parameters depend on stirring intensity, such as the induction period, the number and 

morphology of the particles being formed. Besides, the manner and rate at which the 

reactants are mixed together influences precipitation rate, average size and width of the size 

distribution of particles being formed. Several processes need to be considered when 

precipitation results from mixing of two separate reacting solutions (Söhnel and Garside 

1992): 

 mixing of  reactants, which takes place at different scales, ranging from macroscopic 

scale (macromixing - acts at the scale of the whole vessel) to microscopic scale 

(micromixing – acts at the molecular level) (Zauner and Jones 2002); 

 formation of the precipitated substance by chemical reaction between the reactants; 

 nucleation of the solid phase and crystal growth of the particle formed. 

 

Although in many cases the first two steps are assumed to be fast enough not to limit the 

kinetics of nucleation and crystal growth, their influence cannot be neglected. Because of 

very fast nucleation, mixing becomes particularly important in precipitation processes 

(Shekunov and York 2000) and particularly micromixing once it regulates the mixing 

phenomena at the molecular level, which is the scale where reactions occur (Silva et al. 

2008). Besides, at very high supersaturations the characteristic reaction time is of the same 

order of magnitude or even smaller than mixing time. When this situation prevails, the course 

of the mixing process helps to determine the course of supersaturation. This explains why 

mixing conditions affect crystal shape, purity, crystallinity, and in some cases, even the phase 

modification (e.g., polymorph) that is formed. 

 

2.1.6 Secondary steps  

 

Various processes can further affect the physical and chemical properties of the precipitate 

phase during contact with the mother liquor. According to Nývlt et al. (1985), these processes 

are: recrystallization, isothermal recrystallization (also ripening or Ostwald ripening), ageing 

and agglomeration.  

Secondary processes are of particular importance for the formation of the final product size 

distribution, particularly the agglomeration phenomenon. It arises if crystals stick together to 
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generate new, larger particles (Mersmann 1995). Among agglomeration types, one generally 

observes aggregation without supersaturation, i.e. formation of a cluster of crystals linked by 

weak cohesion forces (van der Waals), or agglomeration in the presence of supersaturation, 

i.e. collision then aggregation between crystals followed by the formation of crystalline 

bridges (Figure 2.7).  

 

 
Figure 2.7. Schematic representation of aggregation and agglomeration phenomena. 

 

As mentioned above, precipitation processes are characterized by rapid nucleation and 

growth, resulting thus in the formation of a large number of primary particles that remain in 

the submicron range. The behavior of colloidal particles in this size range is governed by 

interfacial forces, which result from the balance between attractive van der Waals forces and 

repulsive electrostatic forces of the charged particles (Kind 2002). These forces can result in 

an overall repulsion or attraction between particles. In precipitation processes, the resulting 

particles are usually secondary particles, i.e. particles built by the agglomeration of the fine 

primary ones. Key parameters in particle agglomeration phenomenon include the 

hydrodynamic conditions, the size of the particles and the nature of the surrounding liquid 

(Kind 2002; Mersmann 1995). 

 

2.2 Hydroxyapatite (HAp) system 
 

2.2.1 Calcium phosphates 

 

Calcium phosphates are widely used as bone substitute materials due to their chemical 

similarity to the mineral component of bones and teeth (Viswanath and Ravishankar 2008; 

Dorozhkin 2010; Wang and Nancollas 2008). By definition, all calcium phosphates consist of 

three major chemical elements: calcium (oxidation state +2), phosphorus (oxidation state +5), 
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and oxygen (oxidation state -2). They are mostly sparingly soluble in water, but all dissolve 

in acids.  

 

Table 2.2 presents some of the known calcium phosphates, including their standard 

abbreviation and their major properties. In general, the lower the Ca/P molar ratio, the more 

acidic and soluble the calcium phosphate phase (Wang and Nancollas 2008).  
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Table 2.2. Calcium phosphate salts, name, standard abbreviation, chemical formula, Ca/P 

molar ratio and solubility. 

Name 
Standard 

abbreviation 

Chemical 

formula 
Ca/P molar ratio 

Solubility 

at 37 °C, 

-log (Ksp) 

Dicalcium 

phosphate 

dehydrate 

DCPD CaHPO4.2H2O 1.00 6.73 

Dicalcium 

phosphate 

anhydrous 

DCPA CaHPO4 1.00 6.04 

Octacalcium 

phosphate 
OCP Ca8H2(PO4)6.5H2O 1.33 98.6 

Amorphous 

calcium 

phosphate 

ACP CaxHy(PO4)z.nH2O 1.20 – 2.20 

Cannot be 

measured 

precisely 

α-Tricalcium 

phosphate 
α-TCP α-Ca3(PO4)2 1.50 28.5 

β-Tricalcium 

phosphate 
β-TCP β-Ca3(PO4) 2 1.50 29.6 

Hydroxyapatite 
HAp, HA or 

OHAp 
Ca5(PO4)3OH 1.67 117.2 

 

Among existing calcium phosphates, hydroxyapatite (HAp) remains the most intensely 

studied bioceramic owing to its similarity to natural bone (Kumta et al. 2005; Wang and 

Nancollas 2008; Oliveira 2007). In addition to being non-toxic, HAp is biocompatible, i.e. 

not recognized as foreign material in the body and, most importantly, it exhibits both 

bioactive behavior and integrates into living tissue by the same processes active in 

remodeling healthy bone. More to the point, HAp is also known to be osteoconductive (able 

to provide a scaffold or template for new bone formation) and support osteoblast adhesion 

and proliferation (Dorozhkin 2010). 
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2.2.2 HAp properties (structure, composition and phase stability) 

 

2.2.2.1 Structure 

Crystals of HAp may have either monoclinic or hexagonal unit cells. From the 

thermodynamic aspect, the monoclinic form is more stable and corresponds to stoichiometric 

HAp (Leventouri 2006). In the monoclinic phase (space group P21/b, lattice parameters a = 

9.4214, b = 2a, c = 6.8814 Å, γ = 120°), the OHs occur in columns on the screw axis, 

pointing upward and downward in alternate, nearest-neighbor columns (Figure 2.8) (Wang 

and Nancollas 2008; Corno et al. 2006).  

 

 
Figure 2.8. Monoclinic P21/b HAp structure. P, O and Ca atoms not relevant for the scheme 

have been omitted for clarity. Ca atoms are at the vertices of triangles around each hydroxyl 

group (adapted from Corno et al., 2006). 

 

The hexagonal form of HAp (space group P63/m, lattice parameters a = 9.4176, b = a, c = 

6.8814 Å, β = 120°) (Figure 2.9), generally atributed to nonstoichiometric HAp (Leventouri 

2006) and found in biological apatites, has a structure similar to the monoclinic form, but 

with columns of calcium and hydroxide groups located in parallel channels. Ion substitution 

can readily occur in these channels, and this may account for the high degree of substitution 

found in natural apatites (Wang and Nancollas 2008; Elliot 1994).  
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Figure 2.9. Hexagonal P63/m HAp structure. P, O and Ca atoms not relevant for the scheme 

have been omitted for clarity. Ca atoms are at the vertices of triangles around each hydroxyl 

group (adapted from Corno et al., 2006). 

 

2.2.2.2 Composition 

HAp, Ca5(PO4)3OH, is a compound with a variable composition existing over Ca/P molar 

ratios from 1.67 for stoichiometric to ≈1.5 for fully calcium deficient HAp (Wang and 

Nancollas 2008), and sometimes even outside this range (Elliot 1994). As to biological 

apatites, they have multiple substitutions and deficiencies at all ionic sites. Of particular 

importance is the carbonate substitution in B-type carbonate HAp, where carbonate 

substitutes for the phosphate ion (Leventouri 2006).  

 

2.2.2.3 Phase stability 

The stability of calcium phosphate (CaP) phases in contact with aqueous solutions can be 

understood in terms of a typical solubility phase diagram in which solubility isotherms are 

expressed as plots of log [Ca] as a function of pH (Figure 2.10). According to this diagram, 

for a given pH value, any salt whose isotherm lies below another, will be relatively more 

stable and so less soluble (Fernández et al. 1999). One can also observe that at 37 °C, HAp is 

the least soluble salt down to a pH 4.2, e.g. it is the most stable calcium phosphate for pH 

between 4.2 and 12 at body temperature (Elliot 1994). However, kinetic factors are also 

important in determining the likelihood of the formation of preferred crystal phases in 

solutions supersaturated with respect to several different phases (Wang and Nancollas 2008; 

Koutsopoulos 2002). The formation of HAp is much slower than that of either OCP or 

DCPD, and during simultaneous phase formation, a larger portion of the kinetically favored 

phase may be observed, even though it has a much smaller thermodynamic driving force. The 
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balance between kinetic and thermodynamic factors is, therefore, very important in 

discussing the likelihood of precursor formation during calcium phosphate precipitation. 

 

 
Figure 2.10. Solubility isotherms of calcium phosphates in the system Ca(OH)2-H3PO4-H2O 

at 37 ºC (Fernández et al., 1999). 

 

2.3 Processes for HAp synthesis 
 

2.3.1 Methods  

 

Many methods have been reported for HAp synthesis, including solid state reactions, sol-gel 

crystallization, hydrothermal processing, layer hydrolysis of other calcium phosphate salts 

and wet chemical reactions (Koutsopoulos 2002; Ferraz et al. 2004; Saeri et al. 2003). The 

synthesis of HAp from the precipitation route stands out because of its simplicity, low cost, 

and easy application in industrial production (Liu et al. 2001). 

Depending on the precipitation conditions, like stirring speed, reactants addition rate, Ca/P 

molar ratio, reaction temperature and pH, one can obtain HAp particles with different 

morphology, size and purity (Elliot 1994; Ferreira et al. 2003). In most of the works, 

precipitation of HAp is carried out at high temperature and high pH (Gomez-Morales et al. 

2001; Liu et al. 2001; Koutsopoulos 2002). Investigations on the precipitation of HAp at low 
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temperatures (Bernard et al. 1999; Afshar et al. 2003; Saeri et al. 2003) and at physiological 

conditions of temperature and pH (Koutsoukos and Nancollas 1981; Inskeep and Silvertooth 

1988; Ishikawa et al. 1994; Ashok et al. 2003; Kumta et al. 2005) have also been reported. 

Besides, HAp synthesis is generally conducted at high supersaturations, resulting most of the 

times in the formation of non-stoichiometric products (van Kemenade and de Bruyn 1987; 

Koutsopoulos 2002; Clarkin et al. 2007). Direct precipitation of HAp has only been observed 

for low reactants concentrations, that is, slightly supersaturated or undersaturated aqueous 

solutions with respect to precursor phase (Seckler et al. 1999; Boskey and Posner 1976). 

 

2.3.2 Reactors 

 

Conventionally, precipitation processes are achieved in stirred tank batch reactors for both 

production, research and development (Sultana 2010; Shirure et al. 2005). Several 

disadvantages are associated with the implementation of precipitation in such system, namely 

in terms of the reproducibility of the process and product quality (Silva et al. 2008). Such 

system is characterized by heterogeneous spatial and temporal distributions of process 

parameters such as temperature and concentration, giving rise to a variable supersaturation 

environment (Demopoulos 2009; Sultana 2010) and affecting thus the final product 

properties. Actually, mixing problems have been encountered in stirred tank batch reactors 

(Silva et al. 2008; Sultana 2010; Jones et al. 2005; Jongen et al. 2003). Macromixing is 

achieved by intensive stirring, but micromixing is not at all controlled. Micromixing regulates 

mixing phenomena at the molecular level, which is the scale at which the reactions occur, and 

it is thus a key factor for the production of HAp particles with controlled characteristics. 

Besides, the product from batch precipitation often has wide size distribution due to 

inhomogeneous mixing and broad residence time distribution (Kawase and Miura 2007; 

Jones et al. 2005).  

Due to the limitations of stirred tank batch reactors, various systems have been used for the 

precipitation of HAp in order to obtain a better control over reaction conditions. Among 

them, semi-batch configuration (Gomez-Morales et al. 2001)has been used to overcome 

homogeneity problems in the distribution of supersaturation in the vessel. Indeed, the 

precipitant is added in a controlled manner to ensure constant supersaturation (Demopoulos 

2009). Continuous stirred tank reactors (CSTR) have also been used (Gomez-Morales et al. 

2001), since they offer a stable supersaturation due to their steady state operation 

(Demopoulos 2009). Such system usually results in fine particles of wide size distribution 
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(Demopoulos 2009). Recently, micro devices have been applied for the continuous-flow 

precipitation of HAp in order to solve the mixing problems associated to stirred tank batch 

reactors. Various configurations have been applied, ranging from a simple tubular reactor 

(Fujii et al. 2011), to which a mixing part is sometimes added that is generally T-shaped 

(Yang et al. 2010), to more complex systems (Yang et al. 2010; Silva et al. 2008; Kandori et 

al. 2011; Shum et al. 2009). The use of tubular microreactors is very interesting because of 

the relative easy use, but the problems of parabolic velocity profile or channel clogging limit 

its use at the industrial level (Jongen et al. 2003). Yang et al. (2010) studied a microporous 

tube-in-tube microchannel reactor that in addition to promote better mixing conditions also 

aims at obtaining a high throughput method, essential to the transition of microreactor 

technology from lab-scale to industrial-scale chemical processes. Silva et al. (2008) work also 

attempts to implement an industrial technology for the preparation of HAp nanoparticles. The 

reactor developed, the NETmix reactor, is a static mixer, consisting of a network of 

interconnected chambers and channels. Its main advantages include the ability to control 

mean residence time and mixing intensity. 

 

2.4 Process intensification  
 

2.4.1 Definition 

 

Process intensification (PI) is commonly mentioned as one of the most promising 

development paths for the chemical processing industry and one of the most important 

progress areas for chemical engineering research (Górak and Stankiewicz 2011). PI can be 

defined as “any chemical engineering development that leads to a substantially smaller, 

cleaner, safer and more energy efficient technology” (González-Bello et al. 2011). It aims at 

adapting the process to chemical reaction that is to obtain: higher yields and better product 

consistency and repeatability; energy savings and decreased operating costs; reduced capital 

expenditure; flexible production capacity and safer processes. Through PI it should be 

possible to make the most efficient use of the process environment; to reduce waste by-

product formation; to use smaller reaction systems compared to conventional ones; to obtain 

easy scale-up or scale-down systems just by adjusting the number of reaction units. The goal 

is to reach intrinsic kinetics of phenomena by minimizing heat and mass transfer, and 



CHAPTER 2 – LITERATURE REVIEW 

30 
 

hydrodynamic limitations. For that, four main strategies can be used (Bakker and Dekker 

2003), as shown in Figure 2.11. 

 

 
 

Figure 2.11. Strategies for process intensification. 

 

These strategies aim at: 

 combining in a single unit several unit operations (Multifunctionality), namely 

through the use of multi-functional reactors; 

 using alternative solvents (Thermodynamics) such as ionic liquids; 

 using alternative energy resources such as microwaves or acoustic fields (Energetics) 

 using micro and meso-scale systems (Miniaturization).  

 

2.4.2 Miniaturization 

 

Miniaturization is a relatively young research field, in which micro and meso-scale systems 

are included. The first microchannel device was described in a German patent from 1986 

(González-Bello et al. 2011). A microstructured reactor is generally defined as a reactor with 

three-dimensional structures, the inner dimensions of which are under a millimeter in size 

(Jähnisch et al. 2004), while meso systems are under a millimeter to centimeter in size (Li 

and Ananthasuresh 2002). 

 

Scaling down offers several advantages (Figure 2.12), namely reduced capital, energy costs 

and exposure to toxic or hazardous materials (Jähnisch et al. 2004; Pohar and Plazl 2009), 

making micro- and mesoreactors interesting tools for high throughput and screening 



Castro, F. (2013) 

31 
 

experimentation. Their high surface to volume ratio enhances heat and mass transfer 

(Jähnisch et al. 2004; Pohar and Plazl 2009; González-Bello et al. 2011; Hessel 2009). 

Besides, mixing times in micromixers (down to several milliseconds) are generally smaller 

than in conventional systems (Jähnisch et al. 2004). Therefore, miniaturization allows for a 

precise control of reaction with improved conversions, selectivities and yields of desired 

products. It also provides an opportunity to integrate heat transfer, fluid mixing and chemical 

reaction in the same unit and thereby reducing the number of other components. Further, 

scalability and optimization are also significantly easier (González-Bello et al. 2011; Jongen 

et al. 2003).  

 

 
Figure 2.12. Main advantages of miniaturization. 
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3 CHARACTERIZATION OF INTERMEDIATE STAGES IN 

THE PRECIPITATION OF HAp AT 37 °C IN A STIRRED 

TANK BATCH REACTOR  
 

 

Precipitation of HAp was carried out by mixing a saturated calcium hydroxide aqueous 

solution with an orthophosphoric acid aqueous solution at 37 ºC. In order to promote optimal 

conditions for the production of HAp with high yields, mixing of the reaction medium was 

assured by a novel metal stirrer. Different experimental conditions were studied varying the 

mixing Ca/P molar ratio from 1.00 to 1.67. After process optimization, a suspension of HAp 

particles with pH close to 7 was obtained for a mixing molar ratio Ca/P = 1.33. The 

precipitation process was then characterized as a function of pH and calcium concentration, 

revealing the existence of three different stages. The precipitate formed in each stage was 

characterized by scanning electron microscopy and X-ray diffraction. 
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3.1 Introduction 
 

Several methods have been used for the preparation of HAp by precipitation, namely using 

nitrate, ammonium and phosphate ions. Beyond the use of polluting agents, these methods 

also require additional experimental steps to eliminate by-products resulting from the 

reaction. This section refers to a simple and non-polluting method. It consists in preparing 

HAp from neutralization between calcium hydroxide with orthophosphoric acid:  

 

   (  )                (   )                                                                    (3.1) 

 

However, it is difficult to control the reaction conditions necessary to obtain a powder with 

the desired characteristics, since calcium hydroxide is slightly soluble in water and the state 

of the orthophosphate ions depends on pH (Figure 3.1). 

 

 
Figure 3.1. pH variation of ionic concentrations in triprotic equilibrium for phosphoric acid 

solutions (Lynn and Bonfield 2005). 

 

To overcome this limitation, most of the works have focused on the control of pH to favor the 

presence of the PO4
3- ions and thus avoid the formation of other calcium phosphates. In  

Osaka et al. (1991) and Bernard et al. (2000) works, the authors studied the influence of the 
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acid addition rate on the HAp powder properties and on the calcium hydroxide dissolution 

rate, respectively, demonstrating that maintenance of an alkaline reaction medium is 

fundamental to favor the formation of stoichiometric HAp. Nevertheless, for the synthesis of 

HAp for medical purposes, there is a concern in preparing HAp under conditions that are 

more conductive to the survival of cells. The preparation has to follow specific criteria, 

namely about pH and temperature conditions (Kumta et al. 2005).  

 

In this section, a simple methodology for the synthesis of HAp from diluted solutions at 37 ºC 

is reported. For that, a saturated calcium hydroxide aqueous solution was mixed with an 

orthophosphoric acid aqueous solution, without maintaining a fixed pH. In this way, a 

homogeneous solution of hydroxide and calcium ions shall be obtained, avoiding the 

formation of local concentration gradients, while maximizing HAp precipitation process. 

Further, reagents were mixed by a novel metal stirrer, designed in order to obtain an efficient 

and intense mixing of the reaction medium. The influence of the mixing Ca/P molar ratio on 

the powder properties and on the final pH value was studied, the optimum conditions being 

derived for obtaining stable HAp nanoparticles under near-physiological conditions of 

temperature and pH, i.e., HAp particles suitable for bone substitution application. Finally, the 

intermediate stages for the optimized HAp precipitation process were described. 

 

3.2 Material and methods 
 

3.2.1 HAp preparation 

 

HAp precipitation was carried out in a cylindrical batch reactor (Figure 3.2) made of glass, 

with 100 mm in diameter and 250 mm in height, where temperature was regulated by a water 

jacket and a thermostatic bath maintained at 37 ºC. The agitation was assured by a novel 

metal stirrer (see Figure 3.2) and kept at 270 rpm. The designed stirrer is provided by 16 

agitators along its length in order to obtain an efficient and intense mixing of the reaction 

medium. 
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Figure 3.2. Experimental precipitation apparatus. 

 

HAp was synthesized by the mixing of equal volumes (0.5 dm3) of a saturated calcium 

hydroxide (Riedel-de Haën, 96%) aqueous solution and an orthophosphoric acid (Pronalab, 

85%) aqueous solution, with different mixing Ca/P molar ratios (1.00, 1.33 and 1.67). 

 

A 19.3 mmol.dm-3 calcium hydroxide aqueous solution, that is, a saturated calcium hydroxide 

aqueous solution at T = 37 ºC (Perry and Green 1997) was prepared. To facilitate the 

dissolution of calcium hydroxide, the solution was agitated in a closed vessel for 24 hours at 

500 rpm, and at 25 ºC, as its solubility decreases with the increase of temperature (Johannsen 

and Rademacher 1999). Calcium concentration was then confirmed by EDTA (Riedel-de 

Haën, 99%) titration. Both saturated calcium hydroxide aqueous solution and 

orthophosphoric acid aqueous solution were prepared with ultra pure water, and ionic force 

was adjusted by the addition of 6 mL of KCl (Panreac, 99.5%) 4 mol.dm-3 solution.  

Precipitation started by the quick addition (≈ 26 mL.s-1) of the orthophosphoric acid aqueous 

solution to the saturated calcium hydroxide aqueous solution. The concentration of the 
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orthophosphoric acid aqueous solution varied from 11.5 mmol.dm-3 to 19.3 mmol.dm-3, so as 

to obtain different mixing Ca/P molar ratios.  

 

Calcium concentration, pH, temperature and conductivity were continuously measured 

(inoLab pH/cond level 3, WTW) and recorded for about 6 hours. The different electrodes 

were calibrated with buffer solutions. pH calibration was made with two buffer solutions 

(Hanna Instruments) with pH=7.01 and pH=10.01 at 25 ºC. Regarding calcium electrode 

(inolab Ca 800, WTW), its calibration was done using standard solutions of 5 and 50 ppm of 

calcium. Those were prepared from CaCl2 (Merck proanalysis, 98%) and ionic force was 

adjusted by the addition of 6 mL of KCl (Panreac, 99.5%) 4 mol.dm-3 solution per 500 mL of 

standard solution. 

 

3.2.2 Powder characterization 

 

Samples were withdrawn at different time intervals, filtered (membrane of 0.2 µm pore size, 

Gelman Sciences, USA), washed twice with ultra-pure water and dried at T = 60 ºC during 24 

h. The particles obtained were then characterized by XRD (PanAlytical X’Pert PRO Alfa-1 

diffractometer with λCuKα=1.54056 Å), FTIR (Bomem MB-154S) and SEM (FEI Quanta 

400FEG ESEM/EDAX Genesis X4M with an accelerating voltage of 15 kV and 20 kV), 

where samples were covered by a 10 nm layer of gold. For particle size distribution (LS 230, 

Beckman Coulter), cryo-SEM (JEOL JSM 6301F/Oxford INCA Energy 350/Gatan Alto 2500 

with an accelerating voltage of 15 kV) and zeta potential measurements (Malvern Nano 

ZetaSizer), suspensions were collected at the end of each experiment and directly analyzed. 

As to the Ca/P molar ratio of the final product, total phosphorus was quantified by the 

ascorbic acid method (spectrophotometer PG Instruments Ltd. T60 UV/VIS) and calcium was 

measured by atomic absorption spectroscopy (spectrometer GBC 932Plus).  
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3.3 Results and Discussion  
 

3.3.1 HAp precipitation process 

 

From a thermodynamic point of view, the existing conditions favor the spontaneous 

precipitation of HAp, since it is the most stable calcium phosphate for pH between 4 and 12 

at body temperature (Elliot 1994). But considering the kinetics it does not mean that HAp is 

the only calcium phosphate to precipitate (Koutsopoulos 2002). Thus, to reduce the influence 

of the kinetic factors, precipitation of HAp was performed from diluted solutions so as to 

obtain low supersaturations. Indeed, at low supersaturations homogeneous formation of the 

most stable phase is to be expected as the solution would be saturated or even undersaturated 

with respect to the other phases (van Kemenade and de Bruyn 1987). As it was referred 

above, calcium hydroxide is slightly soluble in water and generally a suspension with 

aggregates of undissolved calcium hydroxide is obtained. Therefore, through the use of 

diluted solutions it is intended to get a homogeneous solution of hydroxide and calcium ions 

in order to avoid the formation of local concentration gradients, so allowing a better control 

of the reaction conditions.  

 

3.3.2 HAp precipitation process for mixing molar ratios Ca/P = 1.00, 1.33 and 1.67 

 

The pH of the reaction medium was continuously measured during the precipitation process 

for all operating conditions (Figure 3.3). Initial pH, corresponding to the pH of the saturated 

aqueous solution of calcium hydroxide, was high (>12) and similar to the expected value 

(Safavi and Nakayama 2000). After the addition of the orthophosphoric acid aqueous 

solution, pH decreased and reached a plateau at approximately 10.8, 8.2 and 6.2 for Ca/P = 

1.67, 1.33 and 1.00, respectively. Then, pH decreased slowly and stabilized, showing that the 

majority of the reaction is completed after, approximately, 10000 s. Further, for Ca/P = 1.33, 

pH stabilized near 7, as intended. 
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Figure 3.3. Variation of pH with time during HAp precipitation at T = 37 ºC for different 

mixing Ca/P molar ratios. 

 

XRD patterns of the final products are shown in Figure 3.4. Formation of single-phased HAp 

was verified, since characteristic peaks of HAp are evidenced in diffraction patterns. 

Moreover, XRD patterns exhibit broad diffraction peaks, namely at 26 º2θ and 30 to 34 º2θ, 

suggesting the presence of amorphous phase or considerably small particles (Tadic et al. 

2002). Besides, XRD patterns obtained are similar to XRD patterns of biological apatites, 

which also present broad diffraction peaks, characteristic of small crystallites (Marković et al. 

2011). 
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Figure 3.4. XRD patterns of the products formed during HAp precipitation at T = 37 ºC for 

different mixing Ca/P molar ratios. 

 

Functional groups of HAp were confirmed by FTIR analysis (Figure 3.5). Bands for the 

hydroxyl group, OH–, and for the phosphate group, PO4
3–, although not well resolved, are 

exhibited. Moreover, spectra exhibit a broad band from approximately 3700 to 3000 cm-1 and 

a peak at 1643 cm-1, revealing the existence of adsorbed water on the HAp particles, which 

can be justified by the low drying temperature (60 ºC) and the absence of a ripening (ageing) 

treatment (Koutsopoulos 2002; Osaka et al. 1991; Zhou et al. 2008). The peak assigned to 

stretching mode of OH- (around 3571 cm-1) is weak in the spectra of the products obtained 

with the mixing Ca/P molar ratios 1.33 and 1.00, and is not visible in the spectrum of the 

precipitate formed with the mixing Ca/P molar ratio 1.67. This can be due to the overlap with 

the broad peak of the adsorbed water on HAp particles (Ma and Zhu 2009). The peak related 

to vibrational mode of OH- (around 630 cm-1) is difficult to detect due to the quality of the 

signal in this region of the spectra. Concerning peaks assigned to vibrations of the phosphate 

group, PO4
3-, the broadening of the phosphate characteristic bands at 900-1200 cm-1 and at 

580-603 cm-1 may be explained by the small dimensions of HAp particles precipitated 

(Venkateswarlu et al. 2010). FITR spectra also exhibit carbonate bands, which can be 

explained by the absorption of CO2 from air or water, once the reaction system was open to 

air. Carbonate bands were mainly observed in the spectra of the precipitate obtained for the 

larger mixing Ca/P molar ratio, since alkaline solutions readily absorb CO2 (Osaka et al. 
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1991). In addition, carbonate band positions at approximately 1459, 1422 and 875 cm-1 for 

Ca/P = 1.33 and Ca/P = 1.00, and at 1424 and 875 cm-1 for Ca/P = 1.67, seem to indicate that 

the HAp formed is carbonated HAp of B-type, where the carbonate ions occupy the 

phosphate ions sites (Landi et al. 2003). Further, presence of peaks assigned to the hydrogen 

phosphate group, HPO4
2- (Koutsopoulos 2002) are visible in all the spectra. This also may 

indicate the formation of calcium deficient HAps. 

 

 
Figure 3.5. FTIR spectra of the products formed during HAp precipitation at T = 37 ºC for 

different mixing Ca/P molar ratios. 
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Precipitates were also characterized in terms of their final Ca/P molar ratio.  

 

Table 3.1. Ca/P molar ratio of the final products formed for different mixing Ca/P molar 

ratios. 

Mixing Ca/P Final Ca/P 

1.00 1.16 ± 0.02 

1.33 1.78 ± 0.05 

1.67 1.33 ± 0.04 

Commercial HAp 1.811 ± 0.0025 

 

According to Table 3.1 precipitates obtained exhibit a Ca/P molar ratio different from the 

Ca/P molar ratio of stoichiometric HAp. Indeed, from XRD and FTIR analysis, HAps 

obtained are calcium-deficient and/or carbonated. For mixing Ca/P molar ratios of 1.00 and 

1.67, it seems that the HAp obtained is calcium deficient, since their Ca/P molar ratio is 

lower than the stoichiometric value. Actually, HAp is a compound with a variable 

composition existing over Ca/P molar ratios from 1.67 for stoichiometric to ≈1.5 for fully 

calcium deficient HAp (Wang and Nancollas 2008), and sometimes even outside this range 

(Elliot 1994). The final Ca/P molar ratio of the precipitate obtained for a mixing Ca/P molar 

ratio of 1.00 is too low to be considered HAp. However, XRD and FTIR results show that the 

product formed is HAp.  As to the Ca/P molar ratio of the final product obtained with a 

mixing Ca/P molar ratio of 1.33, it is higher than the stoichiometric value, showing thus the 

formation of a carbonated HAp of B-type (Landi et al. 2003; Kumta et al. 2005).  

 

Based on the results presented above, the most promising experiment from the point of view 

of the objectives mentioned is the one with a mixing molar ratio Ca/P=1.33, as stable HAp 

nanoparticles were obtained under near-physiological conditions of temperature and pH. 

 

3.3.3 Characterization of the HAp precipitation process for a mixing molar ratio Ca/P 

= 1.33 

 

Supersaturation with respect to HAp, octacalcium phosphate (OCP) and beta-tricalcium 

phosphate (β-TCP) was calculated based on the ratio between the calcium concentration 

measured and the calcium concentration at equilibrium (Figure 3.6). The equilibrium 
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concentration of calcium was determined using published solubility isotherms of the different 

calcium phosphate salts for the system Ca(OH)2–H3PO4–H2O at 37 ºC  (Fernández et al. 

1999). According to the existing conditions of pH and supersaturation (see Figure 3.3 and 

Figure 3.6), the calcium phosphate to precipitate should be HAp. 

 

 

Figure 3.6. Variation of supersaturation with time with respect to HAp, OCP and β-TCP. 

 

From Figure 3.7, three stages can be observed during HAp precipitation with a mixing molar 

ratio Ca/P=1.33.  
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Figure 3.7. pH and [Ca2+] variation with time during HAp precipitation for a mixing molar 

ratio Ca/P=1.33. 

 

 

 

Figure 3.8. XRD patterns of the products formed in the different stages of HAp precipitation for a 

mixing molar ratio Ca/P=1.33. 
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Figure 3.9. SEM image of the product formed in stage 1 of HAp precipitation for a mixing 

molar ratio Ca/P=1.33. 

 

 

Figure 3.10. SEM image of the product formed in stage 2 of HAp precipitation for a mixing 

molar ratio Ca/P=1.33. 
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Figure 3.11. SEM image of the product formed in stage 3 of HAp precipitation for a mixing 

molar ratio Ca/P=1.33. 

 

In stage 1, there is a decrease in pH (from approximately 12 to 8.2) followed by a period of 

stabilization, and a decrease in calcium concentration. Particles formed seem to be spherical 

with a diameter of approximately 20 nm and in an amorphous state (Figure 3.9). According 

to XRD results (Figure 3.8), precipitation of amorphous calcium phosphate Ca3(PO)2 (ACP) 

occurs, which can be described by the following equation: 

 

    (  )                (   )                                                                      (3.2) 

 

During stage 2, it seems that transformation of ACP to HAp occurs. In fact, XRD results (see 

Figure 3.8) confirmed the presence of HAp. Regarding SEM images (Figure 3.10), particles 

with two distinguished forms are shown, one spherical with a diameter around 20 nm and 

similar to the particles observed in stage 1, and one more elongated, with approximately 20 

nm width and 100 nm long. According to Equation 3, transformation of ACP to HAp causes 

consumption of calcium and hydroxide ions, which is experimentally verified (see Figure 

3.7): 

 

    (   )      
                      (   )          

                             (3.3) 
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In stage 3, pH and [Ca2+] stabilize, meaning that the majority of the growth process is 

completed and that the product formed is stable. Figure 3.8 confirms that the product formed 

is HAp, the XRD curves of stage 2 and stage 3 being overlapped. In terms of morphology and 

size, Figure 3.11 shows rod-like particles of about 20 nm width and 100 nm long. 

 

Based on the results presented above, it seems that the precipitation process is characterized 

by formation of ACP and its subsequent conversion to HAp. Nevertheless and despite not 

being verified experimentally, formation of octacalcium phosphate Ca4H(PO4)3 (OCP) could 

be expected, since the system is supersaturated with respect to OCP at the beginning of the 

experiment (see Figure 3.6). According to Equation (3.4), transformation of ACP into OCP 

requires an uptake of phosphate and hydrogen ions and a release of calcium into solution. 

 

    (   )        
                (   )      

                                                (3.4) 

                                 

But this is not confirmed by the experimental data, where a decrease of both calcium 

concentration and pH is observed. However, the possibility of OCP being a precursor 

remains, but it is so unstable that it is rapidly converted to HAp (Equation 3.5).   

 

     (   )      
               (   )          

                              (3.5) 

 

Finally, final suspensions were characterized in terms of their behavior in solution (cryo-

SEM) and in terms of size distribution (laser diffraction). From cryo-SEM image (Figure 

3.12), it can be seen that HAp particles have the tendency to aggregate in solution, forming 

micrometric-size clusters, while based on SEM images (see Figure 3.10 and Figure 3.11) 

HAp crystals have a size close to 100 nm. It also can be seen that the structures formed by 

those clusters have a porous nature.  
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Figure 3.12. Cryo-SEM image of the final suspension obtained from  HAp precipitation for a 

mixing molar ratio Ca/P=1.33. 

 

It was chosen to present particle size distribution results as both volume and number 

distributions, allowing thus to detect the presence of aggregates and to study the size of the 

majority of the particles, respectively. Aggregates of HAp particles with sizes of several 

microns were also observed by Saeri et al. (2003). The granulometric analysis of HAp 

particles in volume (Figure 3.13a) revealed the formation of aggregates with an average 

equivalent diameter around 39.5 μm. From the laser analysis in number (Figure 3.13b), HAp 

crystals range in size from 0.052–0.229 μm and have a mean equivalent diameter of 0.128 

μm, presenting a narrow size distribution curve, similar to the one presented in Gomes et al. 

(2009) work.  
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Figure 3.13. Particle size distribution of HAp particles obtained from HAp precipitation for a 

mixing molar ratio Ca/P=1.33: a) in volume; and b) in number. 

 

Based on zeta potential measurements (Table 3.2), suspensions obtained are unstable. In the 

case of the product formed in stage 1, the agglomeration phenomenon can be justified by its 

amorphous state and particles dimensions, since they possess a high surface area to volume 

ratio, resulting in a high surface tension which they tend to lower by adhering to one another. 

The suspension seems to stabilize during the precipitation, as zeta potential value increases 

from stage 1 to stage 3. In fact, as crystals grow larger and become more stable, the surface 

tension decreases. However, zeta potential remains low indicating that the final suspension 

continues unstable. According to Bouyer et al. (2000), the isoelectric point (IEP) of HAp 

varies between 4 and 6, and the pH of the final suspension is approximately equal to 7, which 

is close to the IEP of HAp and can thus explain the instability of the suspension. It is 

important to mention that zeta potential values are widely dispersed, which is mainly due to 

the presence of aggregates with different sizes. 
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Table 3.2. Zeta potential measurements for the suspensions collected in stages 1 and 3 from 

HAp precipitation for a mixing molar ratio Ca/P=1.33. 

 
Suspension collected 

in stage 1 

Suspension collected 

in stage 3 

Zeta potential (mV) 2.99 ± 2.06 18.9 ± 4.1 

 

3.4 Conclusion 
 

This study describes a simple approach for the precipitation of HAp nanoparticles at 37 ºC. 

Experiments with different mixing Ca/P molar ratios (1.00, 1.33 and 1.67) were investigated. 

Formation of HAp single-phased was confirmed by XDR and FTIR, for all the experimental 

conditions used. Further, the resulting HAps were proved to be calcium-deficient and/or B-

type carbonated. It also has been shown that for the mixing molar ratio Ca/P=1.33, stable 

HAp nanoparticles were obtained at a pH close to 7, which is particularly important in the 

preparation of HAp for medical purposes. The precipitation process was characterized, 

revealing the existence of three stages: precipitation of ACP, transformation of ACP to HAp, 

and growth of HAp. In addition, it was shown that the final product was composed of 

aggregates formed by nanoparticles with a rod-like shape of about 20 nm with and 100 nm 

long.  

 

It is important to highlight that HAp particles produced in this work have characteristics 

(morphology, size and crystallinity) similar to particles already available in the market. But 

unlike other works, HAp precipitation was carried out at low temperature and without 

maintaining a fixed pH, so avoiding the use of additional chemical compounds and 

experimental steps. Finally, this work can be a useful contribution to other studies, namely 

because precipitation of HAp was studied in a reaction medium where pH is changing and 

also because the process was fully characterized, which is important for the understanding of 

the mechanism of HAp formation. 
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4 MODELING OF THE PRECIPITATION OF HAp AT 37 ºC 

IN A STIRRED TANK BATCH REACTOR  
 

 

In this chapter, the precipitation process of HAp studied in the previous chapter was modeled. 

For that, the reaction system was defined based on mass balance and equilibrium equations 

and calcium supersaturation. The resolution of the system of equations was possible due to 

the knowledge of three process variables: calcium concentration, pH and temperature. The 

resolution of the system allowed identifying and quantifying all the chemical species present 

in solution during the process. The proposed model was further validated with experimental 

conductivity data. 
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4.1 Introduction 
 

It is generally recognized that the crystallization of many calcium phosphates involves the 

formation of metastable precursor phases that subsequently dissolve as the precipitation 

reaction proceeds (Wang and Nancollas 2008). Thus, complex intermediate phases can 

participate in the crystallization process. Indeed, by mixing a calcium hydroxide aqueous 

solution with an orthophosphoric acid aqueous solution for a mixing Ca/P molar ratio 1.33, 

the precipitation of HAp occurs after the initial precipitation of an intermediate metastable 

phase, amorphous calcium phosphate (ACP) (see 3.3.3). Although it was not experimentally 

verified, precipitation of HAp, under the present reaction conditions, generally involves the 

formation of one more precursor phase, octacalcium phosphate (OCP) (Wang and Nancollas 

2008). Further, the results obtained show that the Ostwald rule of stages, which states that the 

least stable (most soluble phase) forms preferentially in a sequential precipitation (Wang and 

Nancollas 2008), is likely to be obeyed for the system studied. However, pH is another 

important parameter in determining the likelihood of the formation of calcium phosphate 

phases, once at high pH the precipitation of more acidic phases, such as DCPD and OCP, can 

be ruled out.  

 

According to the results presented in the previous chapter, three stages were identified in the 

precipitation process of HAp at 37 °C in a stirred tank batch reactor, obtained from mixing of 

diluted aqueous solutions of calcium hydroxide and orthophosphoric acid with a mixing Ca/P 

molar ratio 1.33: 

 spontaneous precipitation of ACP; 

 transformation of ACP to HAp; 

 growth of HAP. 

 

Due to the complexity of the system, chemical species present in the solution over the 

precipitation process must be characterized and quantified. These determinations are based, 

typically, on electrochemical measurements or quantitative analysis data, with the lowest 

possible number of measurements for the determination of the composition and properties of 

the system.  
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Concentrations of the solutions may be determined directly or indirectly by measuring certain 

solution properties that are dependent upon concentration. Usually, density, viscosity, 

refractive index, and electrical conductivity are properties chosen for this purpose (Oliveira 

2007). They can be measured with high accuracy, especially when measurements are made 

under controlled conditions. 

 

The definition of the reaction system and the resolution of the system of equations resulting 

from mass balance and equilibrium equations, as well as calcium supersaturation, allowed 

identifying and quantifying all the chemical species present in solution during the process. 

Therefore, it allowed identifying the composition of the precipitate and its evolution with 

time. 

 

4.2 Materials and Methods 
 

4.2.1 Experimental procedure 

 

Precipitation of HAp was performed at 37 °C in a 1 dm3 stirred tank batch reactor, being the 

apparatus already described in the previous chapter. As mentioned in Chapter 3, HAp was 

synthesized by the mixing of equal volumes (0.5 dm3) of a saturated calcium hydroxide 

(Riedel-de Haën, 96%) aqueous solution and an orthophosphoric acid (Pronalab, 85%) 

aqueous solution. Reactants solutions were prepared according to the protocol described in 

3.2.1. Calcium concentration, pH, temperature and conductivity were continuously measured 

(inolab pH/cond level 3, WTW) and recorded. The initial Ca/P molar ratio used was 1.33 and 

the duration of the run varied according to the final conditions pretended. The maximum 

duration was about 6 h. At the end of each experiment, suspension samples were withdrawn, 

filtered and dried in order to determine the type of precipitate. Crystals were characterized in 

terms of composition (XRD) and morphology (SEM) (see 3.2.2).  

 

4.2.2 Description of the system 

 

Precipitation of HAp follows complex mechanisms of formation and growth involving 

numerous chemical species such as phosphate ions, and various calcium and phosphate 
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complexes. The Ca(OH)2-H3PO4-H2O system, in accordance with the literature (Oliveira 

2007; Tsuge et al. 1996; Lazić 1995), is defined by the following reactions: 
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  (  ) ↔     (  )        
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     (  ) ↔     (  )      (  )                                                                                 (4.8) 

 

   (   )    ( ) ↔       (  )      
   (  )      (  )                                            (4.9) 

 

The concentration of each chemical species involved in the reaction system presented above 

was calculated from a system of equations comprising: 

- mass balance equations; 

- equilibrium equations; 

- supersaturation with respect to HAp (supersaturation of calcium). 

 

Supersaturation with respect to HAp was estimated from the calculation of the 

supersaturation of calcium, i.e from the ratio between the calcium concentration in the 

reaction medium and the equilibrium concentration of calcium for the existing conditions. 

The equilibrium concentration of calcium was determined from the solubility isotherm of 
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HAp (see 2.2.2.3, Figure 2.10), which relates the solubility of HAp (in terms of calcium 

concentration) in function of pH at a fixed temperature (37 °C) in the system Ca(OH)2-

H3PO4-H2O.  

 

The result is a system of non-linear algebraic equations, which can be solved iteratively 

making successive approximations of the ionic strength: 
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[    ]

   (        
                                            )

                                         (4.19) 

 

TCA = [Ca2+] + [CaHPO4] + [CaH2PO4+] + [CaOH+] + [CaPO4-]                                               

(4.20) 

 

TPO = [H3PO4] + [H2PO4-] + [HPO42-] + [PO43-] + [CaHPO4] + [CaPO4-] + [CaH2PO4+]   

(4.21) 
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pH = -log(y1[H+])                                                                                                                             (4.26) 

 

 

The activity coefficients were determined from the Debye-Huckel equation proposed by 

Davies (1962): 

log y = -B zi2 log
√ 

  √ 
 – 0.3I                                                                                                          (4.27) 

 

with B = 0.52 at T = 37 ºC 
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Table 4.1. Equilibrium constants for the chemical reactions of the Ca(OH)2-H3PO4-H2O 

system and solubility product for HAp. 

Equilibrium constant, T (K) Reference 

       
    (Song et al. 2002) 

     
 (
      
 

                     ) (Song et al. 2002)  

     
 (
      
 

                    ) (Song et al. 2002) 

     
        (Matsuya et al. 1996) 

     
(
      
 

                   ) (Song et al. 2002) 

     
       (Matsuya et al. 1996) 

     
(
       

 
                    ) (Song et al. 2002) 

     
       (Matsuya et al. 1996) 

         
 (
       
 

                  ) (Song et al. 2002) 

 

Looking at the system of equations presented above (Equations (4.10) to (4.26)) one can 

conclude that this system is defined by 17 equations and 20 unknowns, containing therefore 

three degrees of freedom. As 3 process variables were continuously measured (temperature, 

pH and calcium concentration), a determinate system with 17 equations and 17 unknowns is 

thereby achieved. It is possible to manipulate Equations (4.10)-(4.26) to obtain a sequential 

resolution of the system and thus to describe the dynamics of all the chemical species present 

in solution in the stirred tank batch reactor. An application in MATLAB was developed to 

solve and monitor the process (see Appendix A.1).  

To evaluate if the system of equations (Equations (4.10) to (4.26)) represents correctly the 

precipitation process studied, the solution conductivity was measured and compared with the 

conductivity, K (S.cm-1), calculated using the estimated concentration of the chemical 

species, by the formula: 

   
  

    
                                                                                                             (4.28) 

 

where Ci is the concentration of each species (mol.dm-3), λi the correspondent molar ionic 

conductivity (S.cm2.mol-1) and 1.2356 a correction factor. 
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The values of λi used (Oliveira 2007) are presented in Table 4.2. These values are for 25 °C, 

as it was not possible to find these values for 37 °C. Therefore, a correction factor (Equation 

(4.28)) was used for the calculation of the conductivity. This factor was estimated based on 

the existing difference between the ionic activity of KCl at 25 and 37 °C (Haynes 2012), 

since KCl has a preponderant weight in the estimation of the conductivity.  Further, it was not 

possible to find the ionic conductivity for some species (CaPO4
-, CaH2PO4

+ and CaOH+). The 

concentration of these ions is very small, so the error in the calculation of the conductivity 

will not be very relevant. It should however be underlined that these ionic conductivities are 

ionic conductivities at infinite dilution. Typically, the ionic conductivities of highly 

concentrated solutions have lower values. 

 

The use of KCl for the adjustment of ionic strength has to be considered in solving the system 

of equations. The amount added to each reactant solution (see 3.2.1) interferes significantly in 

the calculation of the conductivity. The concentration of KCl in the resulting solutions (0.048 

mol.dm-3) was obtained by measuring its conductivity. KCl concentration was estimated 

using tabulated values of the conductivity of KCl for different concentration (Haynes 2012). 
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Table 4.2. Equivalent ionic activities at 25 ºC (Oliveira, 2007). 

Ion λi (S.cm2.mol-1) 

H+ 349.65 

OH- 198 

H2PO4
- 36 

1/2HPO4
2- 57 

1/3PO4
3- 92.8 

CaPO4
-  

CaH2PO4
+  

CaOH+  

1/2Ca2+ 59.47 

K+ 73.48 

Cl- 76.31 

 

 

4.3 Results and Discussion 
 

The variation with time of the continuously measured process variables (pH, [Ca2+], and T) as 

well as the supersaturation with respect to HAp, σHAp or [Ca2+]/[Ca2+]*, are presented below. 
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Figure 4.1. pH and [Ca2+] variation with time during HAp precipitation. 

 

The first instants are characterized by a pH drop (Figure 4.1) due to the addition of the 

orthophosphoric acid aqueous solution and to the consumption of OH- ions for the formation 

of ACP, which was verified in the previous chapter. After, it reaches a first plateau at 

approximately 8.3, corresponding to the maturation of ACP (Uskoković and Uskoković 

2011). Then, the pH value decreases again owing to the conversion of ACP to HAp and HAp 

growth, once both steps involve the consumption of OH- ions (see 3.3.3). Finally, pH reaches 

a value close to 7 and stabilizes, suggesting the stabilization of the phase transformation. As 

to the calcium concentration, it initially decreases due to the addition of the orthophosphoric 

acid aqueous solution, and thereby due to the dilution of the calcium hydroxide solution. 

Then, for a short time, calcium concentration increases, which may be due to local 

concentration gradients and dissolution of the solid calcium hydroxide that remains in 

solution (see 3.2.1). Afterwards, [Ca2+] decreases with two different slopes, the first stage 

corresponding to the precipitation of ACP and the second stage corresponding to the 

transformation of ACP to HAp and HAp growth.  

 



Castro, F. (2013) 
 
 

67 
 

 
Figure 4.2. Variation of supersaturation and temperature with time with respect to HAp. 

 

From Figure 4.2, one can see that the reaction medium keeps supersaturated with respect to 

HAp throughout the precipitation system. Indeed, σHAp remains above 1 that corresponds to 

the solubility of HAp. Below this limit, dissolution takes place (Uskoković and Uskoković 

2011). However, one must take into account the fact that the solubility data, i.e. the calcium 

equilibrium concentration, was obtained from the literature (Fernández et al. 1999) for the 

system Ca(OH)2-H3PO4-H2O. Thereby, this value may be slightly different from the calcium 

equilibrium concentration in the system studied, since the presence of KCl in the reaction 

medium may influence the solubility of HAp (Chen et al. 2004; Oliveira 2007). As to the 

temperature, Figure 4.2 shows that the reaction is exothermic since the temperature increases 

from approximately 36.7 to 37.9 °C during the precipitation process.  
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The results obtained from the resolution of the system of equations are presented below. 

 

 
Figure 4.3. Variation of TCA and TPO with time. 

 

Figure 4.3 shows that the total calcium in solution (TCA) decreases over the precipitation 

process, once calcium ions are consumed for the formation of calcium phosphates. In relation 

to TPO (see Figure 4.3), it increases in the first instants owing to the addition of 

orthophosphoric acid and its respective dissociation. Then, it decreases as phosphate ions are 

consumed during ACP precipitation (see 3.3.3). After, the total phosphate in solution 

increases due the conversion of ACP to HAp, since the transformation proceeds with the shift 

in the Ca/P molar ratio of the precipitate from 1-1.5 (Ca/P values for ACP) to 1.67 and 

therefore implying a release of PO4
3- ions into the reaction medium (Uskoković and 

Uskoković 2011). Finally, TPO decreases due to the growth of HAp.  
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Figure 4.4. Variation of [H+] and [OH-] with time. 

 

The value of [OH-] decreases during HAp precipitation process once it is consumed, first for 

the formation of ACP, then during ACP transformation to HAp and finally for HAp growth 

(Figure 4.4). As to hydrogen ions, Figure 4.4 shows that their concentration increases during 

the precipitation. Indeed, phosphate ions are necessary for the formation of calcium 

phosphate phases and these are obtained from orthophosphoric acid dissociation, which in its 

turn results in the release of H+ ions.   
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Figure 4.5. Variation of [H3PO4] and [H2PO4

-] with time. 

 

The value of [H3PO4] is initially low as it is immediately dissociated for the release of 

phosphate ions, needed for the precipitation of ACP (Figure 4.5). Then, it increases due to 

the release of hydrogen phosphate ions (HPO4
2-) during the transformation of ACP to HAp. 

Finally, it decreases, since phosphate ions are consumed for HAp growth. In relation to 

[H2PO4
-], it follows the same evolution as [H3PO4] (see Figure 4.5), for the same reasons 

mentioned above.  
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Figure 4.6. Variation of [HPO4

2-] and [PO4
3-] with time. 

 

The value of [HPO4
2-] increases at the beginning of the precipitation process (Figure 4.6) due 

to the addition of orthophosphoric acid and its subsequent dissociation. Then, it decreases as 

it is dissociated for the consumption of phosphate ions during the precipitation of ACP. After, 

it increases since it is released from the transformation of ACP to HAp (see 3.3.3). Finally, 

the concentration of hydrogen phosphate ions decreases once phosphate ions are consumed 

for the growth of HAp. [PO4
3-] increases in the first instants owing to the addition of 

orthophosphoric acid and its subsequent dissociation (see Figure 4.6). Then, it decreases 

once it is consumed during ACP precipitation and HAp growth.  
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Figure 4.7. Variation of [CaOH+] and [CaH2PO4

+] with time.  

 

The value of [CaOH+] decreases over the precipitation process (Figure 4.7), since calcium 

and hydroxyl ions are both consumed for the formation of ACP, transformation of ACP to 

HAp and HAp growth. As to [CaH2PO4
+], it increases at the beginning (see Figure 4.7) due 

to release H2PO4
- ions from the dissociation of orthophosphoric acid. Afterwards, it decreases 

owing to the fact that calcium and phosphate ions are consumed for the formation of ACP. 

Then, it increases since hydrogen phosphate ions are released from the transformation of 

ACP to HAp. Finally, it decreases as phosphate ions are consumed for the growth of HAp. 
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Figure 4.8. Variation of [CaPO4

-] and [CaHPO4] with time. 

 

From Figure 4.8 one can see that [CaPO4
-] decreases during HAp precipitation once both 

calcium and phosphate ions are consumed. In relation to [CaHPO4], it mainly decreases over 

the precipitation process (see Figure 4.8), although at approximately 2000 s an increase in 

[CaHPO4] is observed. This is due to the release of hydrogen phosphate ions during the 

transformation of ACP to HAp.  

 

 

 

 

 

 

 

 

 

 



CHAPTER 4 – MODELING OF THE PRECIPITATION OF HAP AT 37 °C IN A STIRRED TANK BATCH REACTOR  

74 
 

After the estimation of the conductivity over time, the following graphic representation was 

obtained: 

 

 
Figure 4.9. Variation of K with time. 

 

Figure 4.9 shows that the conductivity obtained by solving the system of equations is 

relatively close to the experimental, proving that the system of equations represents well the 

precipitation process. The agreement in the early instants (until approximately 2000 s) is not 

as good, suggesting that the proposed system does not correctly apply in this situation. This 

can be explained by the fact that the system of equations used only assumes the formation of 

HAp from the beginning of the precipitation process. However, it was verified that the first 

phase that precipitates is ACP (see 3.3.3). Some of the equations of the proposed system 

could be replaced by others, including the definition of supersaturation of HAp by the 

equation defining the corresponding supersaturation of ACP, in order to set up a system of 

equations representative of the chemical system in the reaction medium. Nevertheless, it is 

important to refer that ACP composition is not easily known because of its metastable state.  
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The difference observed between the measured and the estimated value of the conductivity 

can be due to the fact that the ionic conductivities used are at infinite dilution. This fact may 

have a significant effect on the estimated conductivity and so, the calculated conductivity is 

higher than the measured one (Figure 4.9).  

 

4.4 Conclusion 
 

Precipitation of hydroxyapatite (HAp) at 37 °C for a mixing Ca/P molar ratio of 1.33 in a 

stirred tank batch reactor was modeled. The definition of the reaction system leads to a 

system of 17 equations (mass balance and equilibrium equations, and supersaturation of 

calcium) and 20 unknowns, whose resolution was possible with the knowledge of three of the 

process variables (temperature, pH and calcium concentration). The system allowed 

describing the dynamics of all the chemical species present in solution in the stirred tank 

batch reactor. Further, the results are consistent with the study conducted in the previous 

chapter, where the precipitation process of HAp was characterized by the precipitation of a 

metastable phase, ACP, its conversion to HAp and HAp growth.  

 

The proposed model was validated with the measurement of the conductivity of the reaction 

medium and its comparison with the conductivity calculated from the estimated concentration 

of the chemical species, yielding a satisfactory agreement between the predicted value by the 

model and experimental data. However, the agreement is not as good in the early instants of 

the precipitation process, thereby the system cannot be correctly applied in this situation.   

 

Therefore, the resolution of the system of equations gives a rather approximate indication of 

the precipitation process chemistry over time. Hence, this approach may be of particular 

interest for further study, i.e. the study of the whole mechanism of precipitation and growth.  
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5 PRECIPITATION OF HAp AT 37 °C IN A MESO 

OSCILLATORY FLOW REACTOR OPERATED IN 

BATCH AT CONSTANT POWER DENSITY 
 

 

A meso oscillatory flow reactor (meso-OFR) was successfully applied for the precipitation of 

HAp nanoparticles. The reactor consists in a glass tube provided with smooth periodic 

cavities, operating under oscillatory flow mixing (OFM), where mixing intensity is controlled 

by the oscillation frequency (f) and amplitude (x0). Mixing efficiency of the mesoreactor 

operated batchwise in a vertical tube was evaluated at constant power density. For that, 

variation of the hue values upon mixing was monitored both spatially and temporally. The 

best operating conditions for fast mixing and a more homogeneous reaction medium were 

verified for f = 0.83 Hz and x0 = 4.5 mm. HAp precipitation was then carried out under these 

conditions at 37 °C for different mixing Ca/P molar ratios. HAp nanoparticles with a mean 

size of about 67 nm and a narrow size distribution were obtained. The prepared HAp 

nanoparticles were also compared with the HAp nanoparticles produced in the stirred tank 

batch reactor. Apart from hydrodynamics, the external conditions such as reactants 

concentration, temperature and power density were kept constant in both reactors. The 

obtained results show the advantages of the meso-OFR over the stirred tank due to the 

production, about four times faster, of smaller and more uniform HAp nanoparticles. 
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5.1 Introduction 
 

Oscillatory flow reactors (OFRs) have been developed over the past two decades and proven 

to provide effective and uniform mixing (Phan and Harvey 2011). OFRs have been 

extensively studied in chemical engineering processes such as crystallization (Chew and 

Ristic 2005; Ristic 2007), polymerization (Ni et al. 1999; Ni et al. 2001), fermentation (Ni et 

al. 1995) and dispersion (Harvey et al. 2003; Ni et al. 2002a). The basic concept of the OFR 

is the application of periodic fluid oscillations to a cylindrical column containing evenly 

spaced orifice baffles (Reis 2006). Figure 5.1 shows a schematic representation of a 

conventional OFR. 

 

 
Figure 5.1. Schematic representation of cross section in an OFR: di – reactor internal 

diameter, l – baffles spacing, d0 – orifice diameter, δ - baffle thickness (Reis 2006). 

 

The OFR can be operated batchwise or continuously in horizontal or vertical tubes. The 

liquid or multiphase fluid is typically oscillated in the axial direction by means of 

diaphragms, bellows or pistons, at one or both ends of the tube (Ni et al. 2002b). The sharp 

edged baffles are fixed and distributed along the tube at a regular spacing (l). Another system 

for generation of flow oscillations is also common and has already been described 
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(reciprocating plates column), which works by moving a set of baffles up and down from the 

top of the tube. 

 

The oscillatory flow mixing (OFM) is an efficient mechanism, where fluid moves from the 

walls to the center of the tube. Due to the oscillations, the flow direction is periodically 

reversing, and this motion interacts with the baffles, forming vortices (Figure 5.2). Those 

periodically formed vortices can be controlled by a combination of geometrical and 

operational parameters, such as, baffle diameter, baffle spacing, oscillation frequency and 

amplitude (Ni et al. 2002b; Reis 2006). The result is a highly uniform mixing in the zones 

between successive baffles, in which the rates of axial and radial mixing are similar. This 

provides precise control of mixing, from gentle mixing to the most intense, and efficient heat 

and mass transfer.  

 

 
Figure 5.2. Mechanism of oscillatory flow mixing (OFM) in an OFR (Fitch et al. 2005). (A) 

Start of Up Stroke. (B) Maximum velocity in Up stroke, i.e. flow reversal. (C) Start of Down 

stroke. (D) Maximum velocity in Down stroke. 

 

For a given baffle geometry, the fluid mechanical condition in an OFR operated in batch is 

controlled by the oscillatory Reynolds number, Reo, and the Strouhal number, St, defined as 

(Ni et al. 2002b): 
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                                                                                                                     (5.1) 

 

    
 

    
                                                                                                                           (5.2) 

  
where D is the tube diameter (m), xo the oscillation amplitude center-to-peak (m), ω the 

angular frequency of oscillation (=2πf), f the oscillation frequency (Hz), μ the dynamic 

viscosity of fluid (N.s.m-2) and ρ the density of the liquid (kg.m-3).  

 

The oscillatory Reynolds number describes the intensity of mixing applied to the column, 

while the Strouhal number is the ratio of tube diameter to stroke length, measuring the 

effective eddy propagation (Lawton et al. 2009).  

 

The “conventional” OFR geometry was redesigned by Reis et al. (2004) in order to be used in 

bioprocesses (Reis et al. 2004; Reis et al. 2005; Reis 2006). Aiming to reduce the high shear 

regions, that may be critical to some cell cultures, the sharp baffles were smoothed. The 

resulting reactor is composed by a straight tube and smooth periodic constrictions (SPCs) 

incorporated as a single piece, making it easy for sterilization (Reis 2006). Further, the meso 

OFR is a mesoscale (millilitre) device, reducing thus reagent requirements and waste. It can 

also be easily scaled up to the industrial scale (Lopes et al. 2011). In that way, the meso-

(OFR) appears as a good candidate to promote ideal conditions for the controllability of HAp 

particles properties. 

 

This section reports on the feasibility of a meso-OFR to improve the precipitation process of 

HAp under near-physiological conditions of temperature and pH, particularly important when 

preparing HAp for medical purposes (Kumta et al. 2005). First, mixing efficiency of the 

mesoreactor operated in batch in a vertical tube at a constant powder density (31.5 W.m-3) 

was evaluated by monitoring the hue. HAp precipitation process was then studied for 

different mixing Ca/P molar ratios (1.00, 1.33 and 1.67). Experiments were performed under 

the same conditions of temperature (37 °C), reactants concentration and power density 

applied in the stirred tank batch reactor (see 3.2.1). The constant power density applied to 

both reactors was used as the reference criterion. The effectiveness of both mixing methods 
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for a given power input was investigated in terms of reaction time and characteristics of the 

precipitated particles.  

 

5.2 Materials and methods 
 

5.2.1 Description of the experimental set-ups 

 

5.2.1.1 The meso-OFR 

The mesoreactor consists of a 35 cm long and 4.4 mm internal diameter glass jacketed tube 

(Figure 5.3) provided with smooth periodic cavities (SPC) (Figure 5.4), with an averaged 

baffle spacing of 13 mm and a baffle thickness of 6 mm. The diameter on the constricted 

zone (baffle internal diameter) is 1.6 mm, leading to a baffle free area of 13 % (Reis 2006). 

The reactor has an approximate volume of 4 mL.  

 

 
Figure 5.3. Geometry of the SPC tube composing the micro-bioreactor (Reis 2006). 
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Figure 5.4. SPC tube geometry. All dimensions are in mm (Reis 2006). 

 

5.2.1.2 The oscillating system 

The fluid was oscillated using a novel oscillating system designed at LEPAE (Laboratory for 

Process, Environmental and Energy Engineering, Faculty of Engineering of the University of 

Porto). Oscillation amplitudes and frequencies were ranging from 1 to 4.5 mm and 0.83 to 

3.67 Hz. The upper part of the oscillating system works, also, as a mixing chamber, 

minimizing by this way dead volume and thus enhance mixing of the reactants at the entrance 

of the mesoreactor.  

 

5.2.1.3 Experimental apparatus for evaluation of mixing and HAp precipitation 

The experimental set-up used for studying the mixing efficiency of the meso-OFR and HAp 

precipitation is presented in Figure 5.5. 
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Figure 5.5. Experimental set-up for the mixing study and HAp precipitation. 

 

The reactants were quickly (3 to 4 s) fed into the set-up one at a time by means of syringes of 

5 mL (BD Plastipak). Temperature inside the meso-OFR was regulated by a thermostatic bath 

maintained at 37 ºC. 

 

5.2.1.4 Experimental apparatus for pH monitoring 

As pH is a crucial parameter in HAp precipitation and given the small dimensions of the 

reactor, monitoring of pH was done with an optical fiber. It allows monitoring pH variation 

over time during HAp precipitation process. It must be pointed out that the resulting HAp 

crystals cannot be used for characterization due to the use of a chemical pH indicator in this 

process. So, this apparatus was only used to obtain the pH profile during HAp precipitation.  

 

In order to validate this methodology, the pH of the final suspensions was measured using a 

pH microelectrode (SenTix Mic-D, WTW) and compared with the final values obtained using 

an optical fiber system. The experimental set-up used for pH monitoring is presented below 

(Figure 5.6). 
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Figure 5.6. Experimental set-up for pH monitoring. 

 

In-line pH value was obtained from the absorbance measured via an optical microprobe 

(reflection probe, tip 1.5 mm, FCR–7UV200–1.5x100-2, Avantes, Eerbeek, The Netherlands) 

connected to a multi-channel optic spectrometer system (Avantes, Eerbeek, The 

Netherlands). The probe was installed at the outlet of the meso-OFR, perpendicularly to the 

flow direction into a 4 mm internal diameter in-line flow cell with white walls (Swagelok) 

covered by black adhesive tape (see Figure 5.6). Readings were taken every 2 s.  

The meso-OFR was completely covered by an aluminum foil to reduce the noise due to 

ambient light. 
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5.2.2 Study of the mixing efficiency in the meso-OFR operated in batch mode for a 

power density of 31.5 W.m-3 

 

Mixing efficiency of the meso-OFR operated in batch was evaluated under the same 

conditions of power density (31.5 W.m-3) applied in the stirred tank batch reactor. For that, 

power density of the stirred tank batch reactor was estimated through the following equation 

(Ni et al. 1995): 

 

 

 
 
    

   
 

   
 (
 

 
)

                                                                                                                       (5.3) 

 

where 
 

 
 is the power density (W.m-3), ρ is the fluid density (kg.m-3), N is the speed of the 

stirrer (s-1), Ds is the diameter of the stirrer (m), Dt is the diameter of the tank (m) and h is the 

height of the tank (m) and NP is the dimensionless power number of the stirrer. The final 

power density was determined multiplying the power density by the number of agitators that, 

according to the configuration of the stirrer used is 16 (see 3.2.1.).  

 

Regarding the power density of the meso-OFR, it was estimated from Ni et al. (2002): 

 

 

 
  

    

    
  
    

  
   
                                                                                          (5.4) 

 

where NB is the number of constrictions per unit length (m-1), α the baffle free area ratio 

(=(D0/D)2) where D0 is the constriction diameter (m) and D is the tube diameter (m), x0 the 

oscillation amplitude (m), ω the angular frequency of oscillation (=2πf) and CD the baffle 

discharge coefficient.  

 

The parameters needed to determine the power density of both reactors are present in Table 

5.1. The fluid density of water was used since the solutions employed are low concentrated 

aqueous solutions. As to the power number of the stirrer (NP), it was estimated based on the 

stirrer design and on the relationship between the power number (NP) and the Reynolds 

number (Re) for Newtonian liquids (Haynes 2012). Concerning the parameters of the meso-

OFR, values are based on Reis (2006).  
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Table 5.1. Parameters for the estimation of the power density of the stirred tank batch reactor 

and of the meso-OFR. 

Stirred tank 

batch reactor 
NP ρ (kg.m-3) N (s-1) Ds (m) Dt (m) L (m) 

 1.25 993.329 4.5 0.029 0.1 0.15 

Meso-OFR NB (m-1) ρ (kg.m-3) α CD x0 (m) ω (rad.s-1) 

 76.92 993.329 0.13 0.6 - - 

 

Through Equation (5.4) it is possible to obtain a relation between the oscillation amplitude 
(x0) and the frequency of oscillation (f) for a given power input. One of the parameters (x0 or 

f) was fixed in order to determine the other one. Values of the amplitude and the frequency 

are however limited by the experimental set-up. Indeed, in the case of the amplitude, this one 

cannot be too high to prevent breaking of the membrane. According to this, three different 

mixing conditions were defined (Table 5.2).  

 

Table 5.2. Operating conditions for a power density of 31.5 W.m-3. 

f (Hz) x0 (mm) 

3.67 1.00 

1.67 2.25 

0.83 4.50 

 

Values of the amplitudes correspond to the center-to-peak amplitude and these measurements 

were performed in the tube without constrictions.  

 

The mixing performance was evaluated using a colorimetric technique employing the hue, 

enabling thus the use of multiple colors. This method has been developed by Rezk et al. 

(2012) to evaluate the mixing performance of paper-based microfluidic systems. They 

proposed the hue instead of the intensity (or brightness) as an independent means to quantify 

mixing. In fact, each color is characterized by a base hue value (Figure 5.7), independently 

of intensity, and hence independently of the method and consistency of the illumination 

(Rezk et al., 2012). While traditional colorimetric methods are based on grayscale or a 

specific color channel, for example, the red component of the RGB color space (Rezk et al., 

2012), this technique enables the use of multiple colors. In addition, the method provides the 
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ability to dynamically track the progression of the color change both in space and time 

without requiring a large color contrast as required when using grayscale analysis. Moreover, 

the hue values vary linearly with the color scale, turning it a robust method under different 

lighting conditions.  

 
Figure 5.7. Hue values for different colors (Rezk et al. 2012). 

 

A camera (SONY Cyber-shot DSC-H10) was used to photograph the fluid inside the meso-

OFR at different time intervals. Hue of the fluid was determined at four specific locations 

(Figure 5.8) by specific software (NIS-Elements) for the different mixing conditions 

presented in Table 5.2. 

 

Two buffer solutions, (NH4)H2PO4 (0.2 mol.dm-3) (Merck) and NH3 (0.1 mol.dm-3) 

(Pronalab), were prepared. A pH indicator, bromothymol blue 1g.L-1 (Panreac), was added to 

both solutions (2mL per 100 mL of solution), resulting in two solutions of different colors, 

one yellow corresponding to the acidic solution, and one blue corresponding to the basic 

solution. The average hue of each buffer solution, as well as of the resulting solution of the 

mixture in equal amounts of the two buffer solutions, were estimated. For that, the solutions 

were fed into the meso-OFR (see Figure 5.5) and their corresponding hue was estimated 

based on the average of the hue values measured at different locations (see Figure 5.8). The 

yellow solution has a hue of approximately 33.52 and the blue solution has a hue around 

142.06. The solution resulting from the mixture in equal amounts of the two buffer solutions 

has a hue of approximately 70.95, corresponding to a green solution and will be referred as 

“Green Hue” in the rest of the text. Mixing efficiency of the meso-OFR operated in batch was 

then evaluated by the mixing of equal amounts (2.8 mL) of the buffer solutions under 

different operating conditions (see Table 5.2). The basic solution was first injected slowly, to 

avoid the formation of bubbles inside the mesoreactor, and then the acidic solution injected 

rapidly (3 to 4 s), in order to simulate the HAp precipitation process studied. 
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Figure 5.8. Picture of the meso-OFR. The numeric label indicates the locations at which the 

quantification of the hue was carried out. 

 

5.2.3 Monitoring of pH 

 

Monitoring of pH was performed in the experimental apparatus presented in Figure 5.6. The 

optical response of the microprobe was calibrated by running several solutions with different 

pH values. For that, 0.5 dm-3 of equimolar (0.01926 mol.dm-3) calcium hydroxide (Riedel-de 

Haën, 96%) and orthophosphoric acid (Pronalab, 85%) aqueous solutions were prepared, 1 

mL of bromothymol blue (1g.L-1) (Panreac) being added to each solution. Then, several 
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solutions with different pH were prepared by mixing the dyed calcium hydroxide and 

orthophosphoric acid aqueous solutions in different proportions (see Appendix A.2).   

Afterwards, the resulting solutions were injected in the meso-OFR for the measurement of the 

absorbance.  

The addition of bromothymol blue allows monitoring the changes of pH through the 

measurement of the absorbance. Bromothymol blue has two peaks of absorption, one at 430-

435 nm for acidic solutions, and one at 615-618 nm for basic solutions (Table 5.3). 

 

Table 5.3. Transition range of Bromothymol blue. 

 Acidic solutions Transition range Basic solutions 

pH 5.8 5.8 - 7.6 7.6 

Solution color yellow green blue 

 

In this study, the pH varies between approximately 6 and 12, therefore it was only used the 

information relative to the blue absorption peak (615-618 nm).Three parameters were 

measured simultaneously: 

 Spectrum in the visible λ = 400 – 700 nm; 

 F1 = ∫ 

620 nm
 A(λ)dλ, which corresponds to the blue absorption peak; 

                        
610 nm  

 

 F2 = ∫ 

700 nm
 A(λ)dλ, which corresponds to a “neutral” zone; 

                        
690 nm  

  

where λ is the wavelength and A(λ) is the light absorbance.  

F2 was measured in order to monitor the noise. F1-F2 (Abs) corresponds to the parameter used 

for the construction of the calibration curve. The experiments were carried out at 37 °C and 

repeated three times. The reference blank used was ultra-pure water.  

 

Experiments showed that the relation between absorbance (Abs) and pH is linear only for pH 

between 6.3 and 8 (Figure 5.9 and Figure 5.10). 
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Figure 5.9. Absorbance (Abs = F1-F2) versus pH. 

 
Figure 5.10. Relation between absorbance (Abs = F1-F2) and pH. 

 

Error bars show the standard deviation of the absorbance values measured. 

 

The pH of the final suspension was also measured by a pH electrode (SenTix Mic-D, WTW) 

in order to compare with the final values obtained from the absorbance measurement.  

 

It is important to mention that this methodology was used exclusively for pH monitoring. 

Due to the use of the pH indicator, bromothymol blue, crystals obtained cannot be used for 

characterization. Indeed, bromothymol blue can affect the composition of the resulting 

precipitated HAp particles. 
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5.2.4 Precipitation of HAp 

 

5.2.4.1 Powder preparation 

HAp was synthesized by the mixing of a saturated calcium hydroxide (Riedel-de Haën, 96%) 

aqueous solution and an orthophosphoric acid (Pronalab, 85%) aqueous solution. 0.5 dm3 of 

both reactants were prepared with ultra-pure water (Milli Q water, resistivity of 18.2 MΩ.cm-
1 at 25 ºC) and their ionic force adjusted by the addition of 6 mL of potassium chloride 

(Mallinckrodt, 99.8%) 4 mol.dm-3 solution. To facilitate the dissolution of calcium hydroxide, 

the solution was agitated in a closed vessel for 24 h at 500 rpm and at 25 ºC, as its solubility 

decreases with temperature increase (Johannsen and Rademacher 1999). Then, both reactants 

were heated and kept at 37 ºC. 

The precipitation process was carried out under the same conditions of temperature (37 °C), 

reactants concentration and power density (31.5 W.m-3) used in the stirred tank batch reactor 

(see 3.2.1). Further, HAp precipitation was studied for three different mixing Ca/P molar 

ratios, 1.00, 1.33 and 1.67 (Table 5.4). Equal volumes (2.8 mL) of reactant solutions were 

injected. The calcium hydroxide aqueous solution was first injected slowly in the mesoreactor 

(see Figure 5.5) in order to avoid the formation of bubbles in the system. The 

orthophosphoric acid aqueous solution was then injected rapidly (3 to 4 s). 

 

Table 5.4. Operating conditions for the precipitation of HAp. 

[CaOH2] (M) [H3PO4] (M) Mixing Ca/P molar ratio 

0.01926 

0.01926 1.00 

0.01448 1.33 

0.01154 1.67 

 

5.2.4.2 Powder characterization  

Samples were withdrawn at the outlet of the mesoreactor, centrifuged (at 1500 rpm for 5 

min), washed twice with ultra-pure water and conserved in pure ethanol (Koptec 200 proof 

pure), which stops the solid-liquid reaction (Bernard et al. 2000). X-ray diffraction (XRD), 

scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), 

particle size distribution and determination of the final Ca/P molar ratio were performed. 

Preparation of the samples for each characterization technique and equipment used are 

described in 3.2.2.   
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5.3 Results and Discussion 
 

5.3.1 Mixing study in the meso-OFR operated in batch mode 

 

Hue was measured over time at different locations in the meso-OFR (see Figure 5.8) and at 

different operating conditions (see Table 5.2). The average values are presented below, being 

the “Green Hue” the hue value that corresponds to the hue of the solution when the two 

buffer solutions employed are completely mixed. 

 

 
Figure 5.11. Hue values for different locations in the meso-OFR over time for f = 3.67 Hz 

and x0 = 1 mm. 
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Figure 5.12. Hue values for different locations in the meso-OFR until 300 s for f = 3.67 Hz 

and x0 = 1 mm. 
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Figure 5.13. Hue values for different locations in the meso-OFR over time for f = 1.67 Hz 

and x0 = 2.25 mm. 
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Figure 5.14. Hue values for different locations in the meso-OFR until 300 s for f = 1.67 Hz 

and x0 = 2.25 mm. 
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Figure 5.15. Hue values for different locations in the meso-OFR over time for f = 0.83 Hz 

and x0 = 4.5 mm. 
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Figure 5.16. Hue values for different locations in the meso-OFR until 300 s for f = 0.83 Hz 

and x0 = 4.5 mm. 

 

The results obtained (Figure 5.11 to 5.16) allow evaluating the mixing efficiency inside the 

meso-OFR for the different experimental conditions studied, although in some cases the error 

bars (corresponding to the standard deviation of each measurement) associated to the hue 

values are significant, particularly at the bottom of the reactor. Based on Figure 5.15 and 

Figure 5.16, it is possible to verify that for f = 0.83 Hz and x0 = 4.5 mm, hue values measured 

at each location rapidly converge to the “Green Hue” value and remain close to this value 

over time. In relation to the two other cases, it takes longer for the two buffer solutions to mix 

completely. For f = 3.67 Hz and x0 = 1 mm (see Figure 5.11 and Figure 5.12) the solutions 

remain almost unmixed, since hue values at each location except at the bottom of the reactor, 

practically do not change. Therefore, the best conditions for fast mixing and a more 

homogeneous reaction medium were assumed to be obtained for f = 0.83 Hz and x0 = 4.5 mm. 
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5.3.2 Precipitation of HAp  

 

Precipitation of HAp was carried out in the meso-OFR operated in batch under the same 

conditions of temperature (37 °C), reactants concentration and power density (31.5 W.m-3) 

applied in the stirred tank batch reactor. The mixing conditions (f and x0) were defined based 

on the mixing study results presented above, best mixing being achieved for f = 0.83 Hz and 

x0 = 4.5 mm.  

 

5.3.2.1 Monitoring of pH 

pH is an important parameter in determining the likelihood of the formation of calcium 

phosphate phases (Wang and Nancollas 2008). The influence of pH in the formation of 

calcium phosphates is linked to the properties of phosphate containing solutions. Due to the 

triprotic equilibrium in these systems, variations in pH alter the relative concentrations of the 

four protonated forms of phosphoric acid and thus both the chemical composition and the 

amount of the CaP formed by direct precipitation (Lynn and Bonfield 2005). Therefore, pH 

variation over time during HAp precipitation was monitored (Figure 5.17). 
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Figure 5.17. Variation of pH with time during HAp precipitation in the meso-OFR operated 

in batch for different mixing Ca/P molar ratios. 

 

It is important to mention that pH values (see Figure 5.17) can only be considered for pH < 

8, as calibration curve Abs versus pH was only linear for pH values between 6.3 and 8 (see 

Figure 5.17). Figure 5.17 shows that for the mixing Ca/P molar ratios 1.00 and 1.33, pH 

starts to decrease from approximately 500 s and stabilizes at approximately 2000 s and 2500 

s, respectively, reaching 6.3 and 6.5, respectively. As to the mixing molar ratio Ca/P = 1.67, 

pH decreases slowly over time and approaches 7 at approximately 5000 s. Variation of pH 

over time allows to follow the precipitation reaction, being pH stabilization an indication of 

the completion of the majority of the reaction. Figure 5.17 shows that reaction time increases 

with Ca/P molar ratio.  

 

According to Table 5.5, the agreement between final pH values obtained in Figure 5.17 and 

final pH values measured by the microelectrode is quite good. 
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Table 5.5. pH of the product suspensions. 

Mixing Ca/P Final pH measured by the pH 

microelectrode 

Final pH obtained from the 

absorbance measurements 

1.00 5.89 6.3 

1.33 6.38 6.5 

1.67 7.15 7.3 

 

 

5.3.2.2 Phase identification 

 

 
Figure 5.18. XRD patterns of the particles produced in the meso-OFR operated in batch for 

different mixing Ca/P molar ratios. 

 

According to Figure 5.18, single-phased HAp was synthetized for the mixing Ca/P molar 

ratios 1.33 and 1.67. Diffraction patterns of the prepared powders match well with the 

diffraction pattern of a reference HAp (JCPDS 9-0432) and a commercial HAp (Spectrum, 

minimum 40 meshes). However, broader peaks are exhibited, suggesting the presence of 

amorphous phases or considerably smaller size particles (Wang and Nancollas 2008; Lynn 

and Bonfield 2005), which is similar to natural bone (Meskinfam et al. 2012). Concerning the 
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XRD pattern of the particles that were obtained for the mixing molar ratio Ca/P = 1.00, one 

can notice the presence of peaks assigned to other calcium phosphates, namely dicalcium 

phosphate dihydrate (DCPD or brushite) (JCPDS 9-0077). In fact, under weakly acidic 

aqueous environments (pH 4–6), equilibrium conditions can lead to the formation of the 

brushite phase (Lee and Kumta 2010). Further, brushite grows faster than HAp (Ferreira et al. 

2003), the kinetic factors prevailing over the thermodynamics. Sharp and high intensity peaks 

at 28 º2θ and 40.5 º2θ, assigned to potassium chloride, are observed in the diffraction patterns 

of the products obtained with the mixing Ca/P molar ratios 1.00 and 1.67. This may be 

explained by the occlusion of KCl. Indeed, part of the mother liquor could have been trapped 

between the aggregates, and the KCl contained in the mother liquor crystallized at the drying 

step. 

 

 
Figure 5.19. FTIR spectra of the particles produced in the meso-OFR operated in batch for 

different mixing Ca/P molar ratios.  

 

Based on peaks identified (Figure 5.19), the synthesis products have a typical apatite 

structure. Bands of ν3 PO4
3- mode (around 1037 cm-1) and ν1 PO4

3- mode (around 962 cm-1) 
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are clearly exhibited in all the spectra, although it is difficult to detect the peak related to ν4 

bending mode of PO4
3-. The broad peak, from approximately 3700 to 3000 cm-1, and the peak 

at 1643 cm-1 (bending mode, υ2) are assigned to the adsorbed water. This may be justified by 

the low drying temperature (60 ºC) and the absence of a ripening (ageing) treatment (Osaka et 

al. 1991; Koutsopoulos 2002; Zhou et al. 2008). The peaks assigned to the vibrational mode 

of OH- (around 630 cm-1) and to the stretching mode of OH- (around 3571 cm-1) are also 

present, although not well resolved. In the case of the peak assigned to the stretching mode of 

OH-, this is due to an overlap with the broad band of the adsorbed water (around 3700 to 

3000 cm-1) (Panda et al. 2003). Regarding the vibrational mode of OH-, the reason why the 

peak is not clearly visible may be explained by the presence of carbonate ions (Nelson and 

Featherstone 1982). Bands at 1454 and 1428 cm-1 are indicative of the carbonate ion 

substitution (Koutsopoulos 2002) and are especially observed in the spectrum of the 

precipitate obtained for the mixing Ca/P molar ratio 1.67, since alkaline solutions readily 

absorb CO2 (Osaka et al. 1991). The presence of these bands is characteristic of a carbonated 

HAp of B-type, where the carbonate ions occupy the phosphate ions sites (Osaka et al. 1991; 

Zhou et al. 2008). The small band around 875 cm-1 can be attributed to the vibrational 

frequencies of carbonate ions or HPO4
2- group (Koutsopoulos 2002), which is consistent with 

a carbonated HAp or calcium-deficient HAp. The noise observed in the commercial HAp 

spectrum (1800 to 1400 cm-1) is due to water vapor.   

 

Precipitates were also characterized in terms of their final Ca/P molar ratio.  

 

Table 5.6. Ca/P molar ratio of the final products formed for different mixing Ca/P molar 

ratios. 

Mixing Ca/P molar ratio Final Ca/P molar ratio 

1.00 1.36 ± 0.02 

1.33 2.10 ± 0.02 

1.67 1.46 ± 0.03 

Commercial HAp 1.811 ± 0.0025 

 

According to Table 5.6, precipitates are non-stoichiometric HAp, since their molar ratio is 

different from the stoichiometric value. The product obtained for the mixing Ca/P molar ratio 

1.67 seems to be calcium deficient HAp, once its Ca/P molar ratio is lower than 1.67. 
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Actually, HAp is a compound with a variable composition existing over Ca/P molar ratios 

from 1.67 for stoichiometric to ≈1.5 for fully calcium deficient HAp (Wang and Nancollas 

2008), and sometimes even outside this range (Elliot 1994). Regarding the Ca/P molar ratio 

of the final product obtained for the mixing Ca/P molar ratio 1.33, it is higher than the 

stoichiometric value, showing therefore the formation of a carbonated HAp of B-type (Kumta 

et al. 2005; Nelson and Featherstone 1982).  

 

5.3.2.3 Particle size, size distribution and morphology 

 

 
Figure 5.20. Particle size distribution in volume of the particles produced in the meso-OFR 

operated in batch mode for different mixing Ca/P molar ratios.  
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Table 5.7. Parameters of the particle size distribution in volume of the powders produced in 

the meso-OFR operated in batch for different mixing Ca/P molar ratios. d10: 10% of the 

particles are smaller than this value, d50: 50% of the particles are smaller than this value; d90: 

90% of the particles are smaller than this value; span: width of the distribution based on the 

10%, 50% and 90% quantile. 

Reactor Mixing Ca/P molar ratio 
Particles size (μm) 

Span 
d10 d50 d90 

Meso-OFR 

operated in 

batch 

1.00 14.20 40.38 228.2 5.30 

1.33 13.25 38.96 207.3 4.98 

1.67 13.26 40.64 239.7 5.57 

Stirred tank 

batch reactor 
1.33 15.48 36.22 68.11 1.45 

Commercial 

HAp 
- 1.29 3.72 10.19 2.39 
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Figure 5.21. Particle size distribution in number of the particles produced in the meso-OFR 

operated in batch for different mixing Ca/P molar ratios. 
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Table 5.8. Parameters of the particle size distribution in number of the powders produced in 

the meso-OFR operated in batch for different mixing Ca/P molar ratios. d10: 10% of the 

particles are smaller than this value, d50: 50% of the particles are smaller than this value; d90: 

90% of the particles are smaller than this value; span: width of the distribution based on the 

10%, 50% and 90% quantile. 

Reactor Mixing Ca/P molar ratio 
Particles size (μm) 

Span 
d10 d50 d90 

Meso-OFR 

operated in 

batch 

1.00 0.046 0.066 0.125 1.18 

1.33 0.047 0.067 0.123 1.23 

1.67 0.047 0.068 0.134 1.29 

Stirred tank 

batch reactor 
1.33 0.047 0.074 0.209 2.18 

Commercial 

HAp 
- 0.19 0.40 1.22 3.03 

 

According to Figure 5.20, Figure 5.21 (obtained from the conversion of the particle size 

distribution in volume), Table 5.7 and Table 5.8 (obtained from the conversion of the 

particle size distribution in volume), particle size distributions for all the mixing molar ratios 

studied are similar. The particles formed seem to consist in two types of populations, particles 

formed by aggregates at the micrometer range and nanometer-sized primary particles. 

However, based on Figure 5.21 and Table 5.8, the as-prepared HAp particles are mainly at 

the nanometer range with a mean size (d50) of  about 67 nm, being smaller than the 

commercial HAp particles (Spectrum, minimum 40 meshes), originally submitted to 

granulometric separation. It is very important to underline that particles produced were 

directly obtained from the system without thermal treatment and without granulometric 

separation. Besides, the parameters of the particle size distribution in number (see Table 5.8) 

reveal that the size distribution of the particles formed in the meso-OFR is narrower than the 

size distribution of the commercial powder.  
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Figure 5.22. SEM images of the particles obtained in the meso-OFR operated in batch for 

different mixing Ca/P molar ratios. 
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SEM images (Figure 5.22) corresponding to particles obtained for the mixing molar ratio 

Ca/P = 1.00 show two types of crystals: crystals that exhibit well defined platelet morphology 

and a smooth surface, with an average crystallite size around 10 to 20 µm, and aggregated 

plate-shaped crystals with crystallites at the nanometer range. The well-defined platelet 

morphology is characteristic of DCPD (Panda et al. 2003; Siddharthan et al. 2005) and the 

nanocrystallites are characteristic of HAp (Zhuang et al. 2012). As mentioned before, DCPD 

could also be precipitated in the present operating conditions. DCDP, which easily forms a 

plate-shaped crystal morphology (Zhuang et al. 2012), could then be transformed into HAp 

by maintaining the plate-shaped particle morphology. Concerning the mixing Ca/P molar 

ratios 1.33 and 1.67, powders mostly consist of crystals exhibiting a plate-like (predominant) 

and rod-like morphology with typical sizes in the nanometer range, being in agreement with 

the literature. According to Neira et al. (2009), phase-pure HAp products can be characterized 

as either rod-like (whiskers, needles, wires, fibers, etc.) or plate-like. Further, the precipitated 

particles for the mixing molar ratio Ca/P = 1.67 seem slightly bigger and have a well-defined 

morphology when compared to the precipitated particles for the mixing molar ratio Ca/P = 

1.33.  

 

Based on the results presented above, the mixing molar ratio Ca/P = 1.33 was chosen for the 

continuation of the work, once stable HAp nanoparticles were generated faster and under 

near-physiological conditions of temperature and pH. This is particularly important when 

preparing HAp for medical purposes. Indeed, it is important to follow specific criteria for pH 

and temperature in order to promote more conductive conditions for the survival of bone-

related cells (Kumta et al. 2005).  

 

5.3.2.4 Comparison between the powder produced in the meso-OFR operated in batch and 

the powder produced in the stirred tank batch reactor 

HAp nanoparticles prepared under the optimized experimental conditions in a stirred tank 

batch reactor (Castro et al. 2012) and in the meso-OFR operated in batch were compared. 

HAp precipitation process was carried out in both reactors under the same conditions of 

temperature (37 °C), mixing Ca/P molar ratio (Ca/P = 1.33) and power density (31.5 W.m-3). 

The constant power density applied to both reactors was used as the reference criterion in this 

comparative study. Despite mixing mechanisms being different in each system, and thereby 

hydrodynamic conditions being not directly comparable, this criterion is quite informative, 
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because it enables assessing the effectiveness of both reactors for a given power input, in 

terms of quality of the precipitated particles. 

 

According to Figure 5.17, pH stabilizes at approximately 2500 s in the meso-OFR, while in 

the stirred tank batch reactor pH stabilizes around 10000 s, meaning that the majority of the 

precipitation reaction is completed about four times faster in the meso-OFR.  

 

The diffraction patterns (see Figure 5.18) indicate that the HAp prepared in the stirred tank 

batch reactor is single phased HAp with low crystallinity degree compared with the 

diffraction pattern of the HAp prepared in the meso-OFR operated in batch. This result is also 

confirmed by the FTIR spectra. Based on Figure 5.19, HAp prepared in the stirred tank is 

more amorphous, since its spectrum exhibits broader peaks, especially phosphate 

characteristic bands at 900-1200 cm-1. Besides, carbonate contamination seems to be 

minimized in the meso-OFR, as carbonate bands at approximately 1454 and 1428 cm-1 are 

barely detected in the spectrum of the powder obtained in the meso-OFR (see Figure 5.19). 

 

Based on particle size distribution in volume (see Figure 5.20) and particle size distribution 

in number (see Figure 5.21) and in their respective parameters (see Table 5.7 and Table 

5.8), the as-prepared HAp particles are composed by primary particles at the nanometer range 

and micrometric-size aggregates in both the meso-OFR and the stirred tank. However, the 

particle size distribution in number shows that most of the as-prepared HAp particles are at 

the nanometer size (see Figure 5.21 and Table 5.8) for both reactors. Further, it is possible to 

confirm that smaller particles were prepared in the meso-OFR (see Table 5.8). On the other 

hand, particle size distribution in volume data (see Figure 5.20 and Table 5.7) evidences the 

presence of larger aggregates (around 200 μm) in the meso-OFR. This may be explained by 

the fact that smaller particles were formed in the meso-OFR, as verified, and have thus higher 

tendency to aggregate. It is also possible to confirm that the HAp particles prepared in the 

meso-OFR have a narrower size distribution compared with the size distribution of the HAp 

particles prepared in the stirred tank (see Table 5.8).  

 

Figure 5.22 revealed the characteristic morphology of the precipitated HAp particles in both 

reactors. It can be observed that HAp nanoparticles prepared in the stirred tank appear typical 

rod-like shaped, while the HAp nanoparticles prepared in the meso-OFR mostly consists in 

plate-shaped HAp particles, although some particles appear to be rod-like shaped.  
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In short, this work showed the feasibility of a meso-OFR for process intensification for HAp 

nanoparticles production. By comparison with a stirred tank reactor, the proposed meso-OFR 

has the capacity of yielding HAp nanoparticles in about four times faster.  Further, the 

mesoreactor yielded HAp particles with improved characteristics, namely higher crystallinity, 

smaller size and narrower size distribution. Moreover, the meso-OFR is a mesoscale 

(millilitre) device, thus reducing reagent requirements and waste generated. 

 

5.4 Conclusion 
 

Precipitation of HAp was investigated in a vertical meso-OFR operated batchwise under near 

physiological conditions of pH and temperature. Mixing efficiency of the meso-OFR under 

batch operation was first evaluated. Values of f = 0.83 Hz and x0 = 4.5 mm proved to be the 

best operating conditions for fast mixing and more homogeneous reaction environment, e.g. 

conditions that favor the formation of small and uniform HAp particles with consistent 

characteristics. Precipitation of HAp was carried out for different mixing Ca/P molar ratios, 

formation of single-phased calcium-deficient and/or B-type carbonated HAp being confirmed 

for the mixing Ca/P molar ratios 1.33 and 1.67. It also has been shown that for the mixing 

molar ratio Ca/P=1.33, stable HAp nanoparticles were obtained at a pH close to 7, which is 

particularly important in the preparation of HAp for medical purposes. Constant power 

density was used as the reference operation criterion and applied to the meso-OFR operated 

in batch and to a stirred tank batch reactor, thus enabling to compare the performance of both 

reactors, in terms of quality of the precipitated particles, for a given power input. Based on 

the aforementioned results, the reactor type affects the crystallinity, carbonate content, 

morphology, size and size distribution of the as-prepared HAp nanoparticles. In the proposed 

meso-OFR, operated under oscillatory flow, HAp nanoparticles were generated about four 

times faster than in the stirred tank batch reactor operated under a similar power density. 

Further, HAp particles formed showed improved characteristics, namely higher crystallinity, 

smaller size and narrower size distribution. Therefore, besides the meso-OFR proved to be 

more efficient in the production of HAp nanoparticles, it turns the process more clean and 

safe due to the reduction of waste generated and reagents requirements, making it an 

interesting tool for high throughput experimentation. 
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Finally, we believe that even if the reactor studied in this work does not represent a full-scale 

production unit, it may be a useful contribution to the development of a platform for the 

production of valuable and high-quality HAp nanoparticles. 
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6 CONTINUOUS-FLOW PRECIPITATION OF HAp AT 37 °C 

IN A MESO OSCILLATORY FLOW REACTOR 
 

 

Continuous-flow precipitation of HAp was investigated in a meso oscillatory flow reactor 

(meso-OFR). HAp precipitation was also studied in a scaled-up meso-OFR, obtained by 

associating in series eight vertical meso-ORFs. Experiments were carried out by mixing a 

calcium aqueous solution with phosphate aqueous solution under near-physiological 

conditions of temperature and pH, using fixed frequency (f = 0.83 Hz) and amplitude (x0 = 

4.5 mm). Further, HAp precipitation was studied at different residence times from 0.4 to 6.7 

min. It has been shown that the mean particle size and the aggregation degree of the prepared 

HAp particles decrease with decreasing residence time. HAp nanoparticles with a mean size 

(d50) of 77 nm, narrow size distribution and uniform morphology were obtained at a residence 

time τ of 0.4 and 3.3 min, in the meso-OFR and the scaled-up meso-OFR, respectively. These 

results show the capability of the meso-OFR and the scaled-up meso-OFR for continuous 

production of uniform HAp nanoparticles, while also confirming the possibility of OFR 

scale-up by in series association of individual OFRs. 
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6.1 Introduction  
 

Traditional stirred tank batch reactors for synthetic production of hydroxyapatite (HAp) 

provide only limited amounts of material and crystallization conditions may change during 

multiple syntheses (Lawton et al. 2009). The problem is magnified as the scale of operation 

increases since the control of mixing is very difficult in large vessels (Jongen et al. 2003), 

particularly in fast precipitation systems owing to the very fast reaction kinetics (Jones et al. 

2005).This can lead to problems in achieving consistent product specifications (Lawton et al. 

2009). Even small differences in stoichiometry, morphology or size may affect the chemical, 

biological and physical behavior of the material (Tadic et al. 2002). On one hand, scale up is 

necessary to increase production rate, and on the other hand the science of reactive 

precipitation makes it difficult to apply precipitations into industrial scale batch operations 

under well-defined and reproducible conditions.   

 

Continuous operation offers significant advantages in terms of process and costs (Lawton et 

al. 2009; Mcmullen and Jensen 2010; Lopes et al. 2011). It allows more efficient use of 

reagents, solvents, energy and space whilst minimizing the production of waste materials and 

reactor downtime for reactor maintenance and cleaning. Further, it affords the advantage of 

enhanced reproducibility of results because all material crystallizes under uniform conditions, 

resulting in the formation of crystals with consistent properties (Lawton et al. 2009). In 

addition, continuous operations allow higher productivity and permit the continuous variation 

of the chemical composition of the reaction medium. 

 

In this work, a simple apparatus for the continuous preparation of HAp nanoparticles under 

near-physiological conditions of temperature and pH is presented. Continuous-flow 

precipitation of HAp was performed in a meso-OFR presented in the previous section, and in 

a scaled-up meso-OFR, being suitable for continuous high throughput screening due to their 

small volume (millilitre). The fluid mechanics of the meso-OFR operated in continuous are 

governed by dimensionless dynamic groups (Chew and Ristic 2005; Reis 2006; Phan et al. 

2011): the Strouhal (St) and the oscillatory Reynolds (Reo), already described in the previous 

chapter, and the net flow Reynolds number (Ren). Ren can be defined as: 
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                                                                                                          (6.1) 

 

where u is the superficial velocity of the liquid (m.s-1).  

 

HAp precipitation was carried at 37 °C, for a mixing Ca/P molar ratio of 1.33, and at different 

residence times (τ = 0.9 and 0.4 min for the meso-OFR, and τ = 6.7 and 3.3 min for the 

scaled-up meso-OFR). Characteristics of the prepared powders (purity, size, size distribution 

and morphology) were evaluated for all the operating conditions. 

 

6.2 Materials and Methods  
 

6.2.1 Precipitation of HAp 

 

6.2.1.1 Description of the experimental set-ups 

Continuous-flow precipitation of HAp was carried out in the following experimental 

installation (Figure 6.1).  
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Figure 6.1. Experimental apparatus for the continuous-flow precipitation of HAp. 

 

HAp precipitation was then carried out in the scaled-up meso-OFR. For this, eight meso-

OFRs were positioned in series, each meso-OFR placed vertically (Figure 6.2).  
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Figure 6.2. Experimental apparatus for the scale-up of the continuous-flow precipitation of 

HAp. 

 

For both experimental apparatuses, the fluid was oscillated using a custom-built oscillating 

system. Oscillation amplitude (x0) and frequency (f) were fixed to 4.5 mm and 0.83 Hz, 

respectively. Reactants were fed into the set-ups by means of a peristaltic pump (ISMATEC 

IPS 8, Switzerland). Temperature of the reactants and temperature inside the meso-OFRs 

were regulated by a thermostatic bath maintained at 37 ºC.  

 

6.2.1.2 Powder preparation 

HAp synthesis was achieved by the mixing of a saturated calcium hydroxide (Riedel-de 

Haën, 96%) aqueous solution (0.01926 mol.dm-3) and an orthophosphoric acid (Pronalab, 
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85%) aqueous solution (0.01448 mol.dm-3), being reactant solutions prepared according to 

the protocol used in 3.2.1.  

 

Continuous-flow precipitation of HAp was performed under the same conditions of 

temperature (37 °C), mixing Ca/P molar ratio (1.33), and frequency (0.83 Hz) and amplitude 

(x0 = 4.5 mm) applied in the batch mode. Further, HAp precipitation was carried out at 

different residence times in one and eight vertical meso-OFRs. The operating conditions are 

presented in Table 6.1. 

 

Table 6.1. Operating conditions for the continuous-flow precipitation of HAp in the meso-

OFR and in the scaled-up meso-OFR. 

Reactor 
Liquid flow rate 

(mL/min) 

N° of meso-

OFRs 

Total Volume 

(mL) 
τ (min) 

Meso-OFR 
4.5 

1 ≈ 4 
0.4 

9.0 0.9 

Scaled-up 

meso-OFR 

4.5 
8 ≈ 30 

6.7 

9.0 3.3 

 

Temperature (inoLab, WTW) and pH (SenTix Mic-D, WTW) were measured at different 

time intervals at the outlet of the mesoreactor. The pH electrode was calibrated with two 

buffer solutions at pH=7.00 and pH=10.00 at 25 ºC.  

 

Samples were collected after approximately two residence times, until pH stabilization. 

 

6.2.2 Powder characterization 

 

Samples were withdrawn at the outlet of the mesoreactor, centrifuged (at 1500 rpm for 5 

min), washed twice with ultra-pure water and kept in pure ethanol (99.8%), which stops the 

solid-liquid reaction (Bernard et al. 2000). X-ray diffraction (XRD), scanning electron 

microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), particle size distribution 

and determination of the final Ca/P molar ratio were performed. Preparation of the samples 

for each characterization technique and equipment used are described in 3.2.2. The final 

precipitate was also dried and weighed for the estimation of the mass of the crystals obtained. 
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6.3 Results and Discussion  
 

6.3.1 Important parameters in the precipitation of HAp 

 

pH is an important parameter in determining the likelihood of the formation of calcium 

phosphate phases (Wang and Nancollas 2008). The influence of pH on the formation of 

calcium phosphates is linked to the properties of phosphate-containing solutions. Due to the 

triprotic equilibrium in these systems, variations in pH alter the relative concentrations of the 

four protonated forms of phosphoric acid (3.1) and thus both the chemical composition and 

the amount of the CaP that forms by direct precipitation (Lynn and Bonfield 2005).  

 

In this work, experiments were conducted under near-physiological conditions of temperature 

and pH (Table 6.2), which is particularly important when preparing HAp for medical 

purposes. As already mentioned, it is important to follow specific criteria for pH and 

temperature in order to promote more conductive conditions for the survival of bone-related 

cells (Kumta et al. 2005). Furthermore, from a thermodynamic point of view, these 

conditions favor the precipitation of HAp, since at body temperature and pH between 4 and 

12, HAp is the most stable calcium phosphate salt (Elliot 1994). Concerning the quantity of 

the precipitate obtained, results presented in Table 6.2 show that the mass of precipitate 

prepared per mL is similar for all the operating conditions.  
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Table 6.2. Parameters measured during continuous-flow precipitation of HAp in the meso-

OFR and in the scaled-up meso-OFR, for different operating conditions. 

Reactor Operation type 
Residence time τ 

(min) 
pH 

Precipitate 

(mg/mL) 

Meso-OFR Continuous-flow 
0.9 6.90 0.87 

0.4 7.10 0.93 

Scaled-up 

meso-OFR 
Continuous-flow 

6.7 6.63 0.80 

3.3 6.65 0.83 

Meso-OFR Batch 67 6.38a 0.81 

Stirred tank Batch 330 6.9a 0.91 
    a pH value corresponds to the final value  
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6.3.2 Continuous-flow HAp precipitation 

 

6.3.2.1 Phase identification 

 

 
Figure 6.3. XRD patterns of the particles produced in the meso-OFR and the scaled-up meso-

OFR operated in continuous for different operating conditions. 
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Figure 6.4. Magnified XRD patterns of the particles produced in the meso-OFR and the 

scaled-up meso-OFR operated in continuous for different operating conditions. 

 

The XRD analysis of the prepared powders revealed no secondary phases (Figure 6.3 and 

Figure 6.4) besides the apatitic phase, for all the operating conditions studied. XRD patterns 

of the different powders obtained match well the XRD pattern of the commercial HAp 

(Spectrum, minimum 40 meshes). However, broadening and overlap of the peaks are 

observed, being more pronounced in the diffraction pattern of the particles produced in the 

scaled-up meso-OFR. This may imply small crystallites and low crystallinity (Meskinfam et 

al. 2012). Peaks assigned to KCl (namely at 28 º2θ and 40.5 º2θ) are also exhibited, 

especially in the diffraction patterns of the particles prepared in the scaled-up meso-OFR. As 

already mentioned, this may be explained by the occlusion of KCl present in the mother 

liquor, which could have been trapped in the aggregates and crystallized at the drying step. 

KCl peaks are less detected for the lower residence times. 

It can also be seen that there is a slight shift between the XRD patterns of the prepared 

powders and the XRD reference pattern of HAp. This is probably due to the experimental 
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conditions under which XRD analyses were performed, since a slight shift is also visible in 

the diffraction pattern of commercial HAp.  

 

 
Figure 6.5. FTIR spectra of the particles produced in the meso-OFR and scaled-up meso-

OFR operated in continuous for different operating conditions.  

 

According to Figure 6.5, FTIR spectra exhibit stretching and bending vibrations of the 

phosphate, PO4
3-, and the hydroxyl, OH-, functional groups, characteristic of a typical apatite 

structure (Koutsopoulos 2002), although it is difficult to detect the peak related to ν4 bending 

mode of PO4
3-, and the peaks assigned to the vibrational mode (around 630 cm-1) and 

stretching mode (around 3571 cm-1) of OH- are not well resolved. Concerning the peak 

assigned to stretching mode of OH-, this can be due to the overlap with the broad peak (from 

approximately 3700 to 3000 cm-1) of the adsorbed water on HAp particles (Ma and Zhu 



CHAPTER 6 – CONTINUOUS-FLOW PRECIPITATION OF HAp AT 37 °C IN A MESO OSCILLATORY FLOW REACTOR  

126 
 

2009). A second peak assigned to adsorbed water is also observed at 1643 cm-1 (bending 

mode, υ2). Presence of adsorbed water on the HAp prepared particles can be explained by the 

low drying temperature (60 ºC) and the absence of a ripening (ageing) treatment (Osaka et al. 

1991; Koutsopoulos 2002; Zhou et al. 2008). In addition, presence of a peak (around 875 

cm1) assigned to the vibrational frequencies of carbonate ions or HPO4
2- group (Koutsopoulos 

2002), suggests the formation of a carbonated HAp or calcium-deficient HAp.  
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6.3.3 Particle size, size distribution and morphology 

 

 
Figure 6.6. Particle size distribution in volume of the particles produced in the meso-OFR 

and scaled-up meso-OFR operated in continuous for different operating conditions. 
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Table 6.3. Parameters of the particle size distribution in volume of the powders produced in 

the meso-OFR and scaled-up meso-OFR operated in continuous for different operating 

conditions. d10: 10% of the particles are smaller than this value, d50: 50% of the particles are 

smaller than this value; d90: 90% of the particles are smaller than this value; span: width of 

the distribution based on the 10%, 50% and 90% quantile. 

Reactor 
Operation 

type 

Residence time τ 

(min) 

Particles size (μm) 
Span 

d10 d50 d90 

Meso-OFR 
Continuous-

flow 

0.9 14.68 38.31 110.1 2.49 

0.4 12.75 32.88 93.98 2.47 

Scaled-up 

meso-OFR 

Continuous-

flow  

6.7 10.07 30.18 59.12 1.60 

3.3 9.62 27.60 62.74 1.92 

Meso-OFR Batch 67 13.25 38.96 207.3 4.98 

Stirred tank Batch 330 15.48 36.22 68.11 1.45 

Commercial 

HAp 
 - 1.29 3.72 10.19 2.39 
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Figure 6.7. Particle size distribution in number of the particles produced in the meso-OFR 

and scaled-up meso-OFR operated in continuous for different operating conditions. 
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Table 6.4. Parameters of the particle size distribution in number of the powders produced in 

the meso-OFR and scaled-up meso-OFR operated in continuous for different operating 

conditions. d10: 10% of the particles are smaller than this value, d50: 50% of the particles are 

smaller than this value; d90: 90% of the particles are smaller than this value; span: width of 

the distribution based on the 10%, 50% and 90% quantile. 

Reactor 
Operation 

type 

Residence time τ 

(min) 

Particles size (μm) 
Span 

d10 d50 d90 

Meso-OFR 
Continuous-

flow 

0.9 0.106 0.183 0.389 1.55 

0.4 0.050 0.077 0.171 1.57 

Scaled-up 

meso-OFR 

Continuous-

flow  

6.7 0.087 0.154 0.332 1.59 

3.3 0.049 0.077 0.172 1.60 

Meso-OFR Batch 67 0.047 0.067 0.123 1.23 

Stirred tank Batch 330 0.047 0.074 0.209 2.18 

Commercial 

HAp 
 - 0.19 0.40 1.22 3.03 

 

According to Figure 6.6 and Figure 6.7 (obtained from the conversion of the particle size 

distribution in volume), and Table 6.3 and Table 6.4 (obtained from the conversion of the 

particle size distribution in volume), the as-prepared powders consist of a population of 

primary particles in the nanometer range and a population of micrometric-sized aggregates 

that given the considerable difference in size, could be separated. Aggregates probably result 

from the aggregation of primary nanoparticles, since small particles possess a high surface 

area to volume ratio, resulting in a high surface tension which they tend to lower by adhering 

to one another (Luque de Castro and Priego-Capote 2007). Further, the peak observed at 1000 

μm (see Figure 6.6) is probably due to the presence of bubbles in the suspension analyzed. 

Results also show that the mean size and the aggregation degree of the as-prepared particles 

increase with increasing residence time. Based on Figure 6.7 and Table 6.4 (obtained from 

the conversion of the particle size distribution in volume), HAp particles with a mean size 

(d50) of 77 nm were obtained at the residence time τ = 0.4 and 3.3 min, for the meso-OFR and 

the scaled-up meso-OFR, respectively. Indeed, for higher liquid flow rates, Reynolds 

numbers are higher and mixing efficiency enhances. This results in a more homogeneous 

reaction medium and therefore in a more homogeneous distribution of supersaturation 

(Mersmann 1999; Günther and Jensen 2006; Wang et al. 2007), thus affecting size 
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distribution of the particles (Mersmann 1999; Ying et al. 2008). When compared with the 

commercial HAp particles, originally submitted to granulometric separation, the HAp 

particles prepared at the lowest residence times (τ = 0.4 min for the meso-OFR and τ = 3.3 

min for the scaled-up meso-OFR) have a smaller mean size (d50) and a narrower size 

distribution (see Table 6.4). However, it is very important to underline that particles 

produced were directly obtained from the system without thermal treatment and without 

granulometric separation. 

 

 
Figure 6.8. SEM images of the particles produced in the meso-OFR and scaled-up meso-

OFR operated in continuous for different operating conditions. 
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Figure 6.8 shows two types of particles for the residence time τ = 0.9 and 6.7 min, for the 

meso-OFR and the scaled-up meso-OFR, respectively: ones with a rod-like shape and others 

with a plate-shape. Regarding particles produced at τ = 0.4 and 3.3 min, morphology seem 

more uniform and particles apparent to be mostly rod-like shaped. As already said, mixing is 

more efficient for higher Reynolds numbers, providing more homogeneous reaction 

conditions (Mersmann 1999; Günther and Jensen 2006; Wang et al. 2007), and improving 

thus the monodispersity of synthesized nanoparticles (Jähnisch et al. 2004; Hung and Lee 

2007; Kockmann et al. 2008; Song et al. 2008).  

Based on the above-mentioned results, the feasibility of the meso-OFR and the scaled-up 

meso-OFR was demonstrated for the continuous production of uniform HAp nanoparticles. In 

both the meso-OFR and the scaled-up meso-OFR operated in continuous, single-phase HAp 

nanoparticles with a mean size (d50) of 77 nm and a narrow size distribution were obtained. 

 

6.3.4 Comparison between the HAp particles obtained in the different reactors studied  

 

According toTable 6.2, experiments carried out in the different reactors were all conducted 

under near-physiological conditions of temperature and pH. Besides, the mass of precipitate 

per mL obtained in the different reactors is similar. However, one can note that the meso-

OFR was operated at a shorter residence time when compared with the stirred tank batch 

reactor.  

 

Diffraction patterns (see Figure 6.3 and Figure 6.4) indicate that the HAp prepared in the 

meso-OFR operated in batch and in continuous is single phased HAp with a higher 

crystallinity degree compared with the HAp prepared in the stirred tank batch reactor.  

 

From Figure 6.5, there is no major difference between FTIR spectra of the particles obtained 

in the meso-OFR operated in both batch and continuous modes, and in the scaled-up meso-

OFR operated in continuous. On the other hand, FTIR spectrum of the particles prepared in 

the stirred tank batch reactor possess broader peaks, especially the phosphate characteristic 

bands at 900-1200 cm-1, suggesting the formation of a more amorphous phase. Besides, 

carbonate contamination seems to be minimized in the meso-OFR and the scaled-up meso-

OFR, as CO3
2- bands are barely detected in spectra of the particles produced in the meso-OFR 

and in the scaled-up meso-OFR. 
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Figure 6.6, Figure 6.7, Table 6.3 and Table 6.4 show that the as-prepared powders are 

mainly formed by particles at the nanometer range, for all the reactors and operating 

conditions studied. According to Table 6.4, the size distributions in number of the as-

prepared particles in the meso-OFR are narrower than the size distribution in number of the 

particles obtained in the stirred tank batch reactor, and even than the size distribution in 

number of the commercial HAp powder. It is important to underline that the particles 

produced were directly obtained from the system without thermal treatment and without 

granulometric separation, while commercial HAp was originally submitted to granulometric 

separation.  

 

As shown in Figure 6.8, the reactor type and the residence time affect the morphology of the 

as-prepared HAp nanoparticles. HAp particles obtained in the stirred tank batch reactor seem 

rod-like shaped and rather amorphous, while both plate-shaped and rod-like shaped HAp 

particles were produced in the meso-OFR and the scaled-up meso-OFR. However, the HAp 

particles precipitated in both the meso-OFR and the scaled-up meso-OFR operated in 

continuous mode for the lowest residence times (τ = 0.4 min for the meso-OFR and τ = 3.3 

min for the scaled-up meso-OFR), only exhibit a rod-like shape. Besides, particles seem to 

have a more defined shape compared with the particles prepared in the stirred tank batch 

reactor.  

 

Based on the aforementioned results, the reactor type affects the crystallinity, carbonate 

content, morphology, size, size distribution and aggregation degree of the as-prepared HAp 

nanoparticles. The proposed continuous reactors offer an alternative mixing mechanism 

(known as the oscillatory flow mixing) (Chew and Ristic 2005; Reis 2006), which provides 

intense and fast mixing, favoring thus the formation of small and uniform nanoparticles, as 

well as well-defined and reproducible conditions for the production of particles with 

consistent characteristics. Further, they provide an interesting platform for continuous high 

throughput screening due to their small volume (millilitre). 

 

6.4 Conclusion  
 

Continuous-flow precipitation of HAp was investigated in the meso-OFR and in the scaled-

up meso-OFR. Calcium-deficient and/or carbonated HAp nanoparticles were successfully 
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produced in both reactors. The influence of the residence time on HAp particles size and size 

distribution was also studied. For both reactors, it was found that the mean particle size and 

the aggregation degree of the particles decrease with the decrease of the residence time. In 

addition, HAp particles more uniform in size were precipitated for both the meso-OFR and 

the scaled-up meso-OFR at the lower residence times. Single-phase HAp nanoparticles with a 

mean size (d50) of 77 nm and a narrow size distribution were obtained in both the meso-OFR 

and the scaled-up meso-OFR. Furthermore, the precipitated HAp particles show improved 

quality, namely in terms of size and size distribution, when compared with a commercial 

HAp powder and HAp particles prepared in the stirred tank batch reactor. Thus, the proposed 

scaled-up meso-OFR may be useful as a high throughput screening tool, namely for 

performing reactions which require longer reaction times.  

 

In summary, the present study demonstrates the capability of a meso-OFR and a scaled-up 

meso-OFR for the continuous production of HAp nanoparticles, taking advantage of both 

oscillatory flow mixing and continuous operation.  
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7 CONTINUOUS-FLOW PRECIPITATION OF HAp AT 37 °C 

IN TWO ULTRASONIC MICROREACTORS  
 

 

The present chapter investigates the continuous-flow precipitation of HAp in two ultrasonic 

microreactors. Precipitation of HAp was first carried out in a tubular microreactor immersed 

in an ultrasonic bath, where single-phase (laminar) flow and segmented gas-liquid flow were 

both evaluated. The single-phase flow study was then conducted in a novel microfluidic 

device developed at MIT. It consists of a Teflon stack microreactor with an integrated 

piezoelectric element (Teflon microreactor), thereby allowing the direct transmission of 

ultrasound to the reactor. Rod-like shape HAp nanoparticles were yielded in both 

microreactors under near-physiological conditions of pH and temperature. The as-prepared 

particles, especially particles prepared in the segmented-flow tubular microreactor and in the 

Teflon microreactor, show improved characteristics compared to commercial powder or 

powder obtained in the stirred tank batch reactor. Primary particles are smaller, particle shape 

is more homogeneous, and the aggregation degree of the particles is lower.  
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7.1 Introduction 
 

The application of microfluidic devices in chemical processes, namely in nanoparticles 

synthesis, is advantageous in many aspects, including enhanced transfer processes and 

mixing, high throughput experimentation, cost savings and safer operation. The main feature 

of the microreactors, in comparison to conventional chemical reactors, is their high surface-

area-to-volume ratio (Jähnisch et al. 2004). This implies that heat and mass transfer distances 

are significantly reduced (Hartman and Jensen 2009), improving considerably heat and mass 

transport. Further, mixing times (down to several milliseconds) are generally smaller than in 

conventional systems, resulting in an efficient and rapid mixing of the reactants. This 

provides homogeneous reaction environments and allows thus a better control of the reaction 

steps that govern particle size distribution, i.e., nucleation and growth, thereby improving the 

monodispersity of synthesized nanoparticles (Jähnisch et al. 2004; Hung and Lee 2007; 

Kockmann et al. 2008; Song et al. 2008). Further, microreactors have the ability to operate 

within continuous flow regimes, which besides being more productive and able to promote 

more homogeneous reaction conditions, also permits the continuous variation of the chemical 

composition of the reaction medium (Song et al. 2008; Marre and Jensen 2010; Zhao et al. 

2011). An additional advantage of continuous-flow synthesis is that scale-up is 

straightforward either by increasing the running time or by simply running reactions in 

parallel (Zhao et al. 2011). Finally, the intrinsic small volume of microreactors allows a 

reduction of energy costs, reagent consumption and waste generated, as well as improved 

safety from reduced consumption of hazardous chemicals and reagents (Hung and Lee 2007). 

 

However, there are difficulties accompanying the handling of solids in microfluidics, such as 

transport behaviour (Hung and Lee 2007; Leng and Salmon 2008; Song et al. 2008) and 

channel clogging (Poe et al. 2006; Kockmann et al. 2008). Microreactors are usually 

characterized by geometries with a low Reynolds number. In such channels, laminar flow is 

dominant and is characterized by a parabolic velocity profile, leading to wide residence time 

distribution and thus to wide particle size distribution (Figure 7.1a). In this context, 

segmented-flow microreactors have been proved to narrow the residence time distribution by 

carrying out reactions in segmented liquid slugs, gas-liquid segmented-flow reactors being 

particularly attractive due to the simple separation process of the gas from the liquid (Günther 

and Jensen 2006; Khan and Jensen 2007; Zhao et al. 2011). The segmented gas is used to 
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create recirculation and thus enhance mixing within an individual liquid slug (Figure 7.1b). 

In addition, in gas-liquid flow microreactors small liquid entities are separated from each 

other by gas bubbles (Figure 7.1b), hence reducing axial dispersion. These two effects 

provide a well-defined residence time, which in turn reduces particle size polydispersity 

(Zhao et al. 2011).  

 

 
Figure 7.1. a) Schematic of parabolic velocity profile in continuous-flow microreactors and 

b) schematic of the flow pattern in segmented flow microreactors. 

 

As to channel clogging, it is mainly caused by wall attachment of particles and by particle 

aggregation. In the first case, an accurate choice of the tube material and/or coating of the 

wall can solve the problem. In the case of particle aggregation, it can be significantly reduced 

by the use of ultrasound, as shock waves created by cavitation can shorten the contact time 

between particles and prevent their bonding together (Luque de Castro and Priego-Capote, 

2007). The application of ultrasound produces stable cavitation by degassing the solvent 

(Mason 1964). The so generated pressure waves cause the particles to collide into one 

another with great force, promoting faster nucleation and aggregates breakage (Luque de 

Castro and Priego-Capote 2007). Therefore, the use of ultrasound provides a non-invasive (no 

added chemicals or additional mechanical treatment) way of improving crystal properties and 

process control. 

 

In the present chapter, two ultrasonic microsystems were used for the synthesis of HAp 

nanoparticles. Initially, continuous-flow precipitation of HAp was carried out in a tubular 

microreactor immersed in an ultrasonic bath, where single-phase (laminar) flow and gas-
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liquid flow experiments were both performed. Continuous-flow precipitation of HAp in 

single-phase flow was then done in a novel microreactor made of Teflon plates, this time with 

the direct transmission of the ultrasound to the reactor through the integration of a 

piezoelectric actuator. Finally, the operating conditions, namely temperature, reactants 

concentration and mixing Ca/P molar ratio, were defined in order to promote spontaneous 

formation of HAp under near-physiological conditions of temperature and pH. 

 

7.2 Materials and Methods 
 

7.2.1 Description of the experimental set-ups 

 

7.2.1.1 Ultrasonic tubular microreactor 

Continuous-flow precipitation of HAp was carried out in a tubular microreactor (Figure 7.2 

and Figure 7.3a) immersed in an ultrasonic bath, where single-phase flow and gas-liquid 

flow studies were both performed. As it is exemplified in Figure 7.2 and Figure 7.3a, the 

reactor is constituted by two main parts: a mixing chamber (Upchurch Scientific), with two 

different configurations depending on the flow type, a T-mixer for the single-phase flow (see 

Figure 7.2) and a cross-mixer for the gas-liquid flow (see Figure 7.3a); and the tubular 

reactor (Teflon PFA, Upchurch Scientific) itself of 600 μL, that consists of a spiral tube with 

1.02 mm in inner diameter and 1.59 mm in external diameter. The function of the first part of 

the reactor is to mix thoroughly the reactants and in the case of the gas-liquid flow its 

function is also to segment the liquid mixture. The reaction progresses in the second part of 

the reactor. The segmented gas is used to separate the liquid phase in small entities (Figure 

7.3b).  
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Figure 7.2. Schematic representation of the ultrasonic single-phase flow tubular 

microreactor. 

 

 

 
Figure 7.3. a) Schematic representation of the ultrasonic gas-liquid flow tubular 

microreactor; b) picture of a section of the gas-liquid flow tubular microreactor. 

 

The reactants were fed into the set-up by means of a syringe pump (Harvard PHD 2000) and 

kept at 37 ºC through the use of thermal jackets (McMaster-Carr). With regard to the gas 

phase, the flow rate of nitrogen was adjusted by a mass flow controller (Sierra FlowBox). 

The microfluidic connections were provided by Teflon tubing (Upchurch Scientific) with 

1.02 mm in inner diameter. The reactor was immersed in an ultrasonic bath (VWR model 

50HT, frequency of 40 kHz and power input of 4-8 W) to minimize the potential for clogging 

the reactor and to enhance mixing. The experiments were started with a temperature of 37 ºC 

in the ultrasonic bath. 

 

7.2.1.2 Teflon reactor 

Continuous-flow precipitation of HAp was also carried out in a Teflon microreactor with 

integrated piezoelectric actuator developed at MIT (Massachusetts Institute of Technology) 

(Figure 7.4) (Kuhn et al. 2011). The microreactor is made of Teflon (PTFE) plates, with an 
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integrated piezoelectric element with a thickness of 1 mm. The channel width is 600 µm and 

the total volume is 1000 µL. The system has two inlets and one outlet. The microfluidic 

connections were made of Teflon tubing (Upchurch Scientific) with 1.02 mm inner diameter. 

Reactants were mixed in a T-mixer (same mixing chamber used in the tubular microreactor 

for the single-phase study) (Figure 7.5) before entering in the reactor, and thus only one inlet 

was used. As in the previous systems, the reactants were fed into the reactor by means of a 

syringe pump (Harvard PHD 2000), where syringes were kept at 37 ºC through the use of 

thermal jackets (Upchurch Scientific). 
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Figure 7.4. CAD representation of the microreactor assembly: The microreactor consists of 3 

PTFE plates, with the middle layer providing the microchannel structure, and the top layer 

the inlet and outlet holes. The piezoelectric actuator is integrated using PTFE housing for 

mechanical stability and a PTFE layer for electrical insulation. These plates are compressed 

using two stainless steel chucks, with holes for the insertion of cartridge heaters, and the top 

chuck providing the microfluidic connections (Kuhn et al. 2011). 

 



CHAPTER 7 – CONTINUOUS-FLOW PRECIPITATION OF HAP AT 37 °C IN TWO ULTRASONIC MICROREACTORS  

146 
 

 
Figure 7.5. Schematic representation of the Teflon microreactor with integrated piezoelectric 

actuator. 

 

7.2.2 Powder preparation 

 

HAp was synthesized by the mixing of a saturated calcium hydroxide (Sigma-Aldrich, 95%) 

aqueous solution and an orthophosphoric acid (Mallinckrodt, 85%) aqueous solution at 37 ºC, 

with a mixing molar ratio Ca/P=1.33. Reactant solutions were prepared according to the 

protocol used on Chapter 3, section. The operating conditions used are presented in Table 

7.1. Suspensions were collected after two to three residence times, until pH stabilization. 

 

Temperature (J-KEM Scientific) and pH (needle-like tip micro pH electrode, Thermo Fisher 

Scientific ORION) were continuously measured at different time intervals at the outlet of the 

microsystem. The pH electrode was calibrated with two buffer solutions with pH=7.00 and 

pH=10.00 at 25 ºC.  
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Table 7.1. Operating conditions for the continuous-flow precipitation of HAp. 

Sample 
Flow 

type  

Liquid 

flow rate 

(mL/min) 

Gas flow rate 

(standard 

mL/min) 

Liquid residence 

time 

τ (min) 

[Ca(OH)2] 

(M) 

[H3PO4] 

(M) 

Ca/P 

Molar 

ratio 

Ultrasound 

frequency 

and power 

input 

Tubular microreactor  

SPF 1 

Single-

phase 

flow 

0.152 - 3.94 

0.01926 0.01448 1.33 

40 kHz and 

4-8 W 

SPF 2 0.304 - 1.97 

SPF 3 0.608 - 0.99 

SPF 4 2.0 - 0.30 

SPF 5 4.0 - 0.15 

GLF 1 

Gas-

liquid 

flow 

0.152 1.2 0.43    

GLF 2 0.304 1.2 0.39 

0.01926 0.01448 1.33 

GLF 3 0.608 1.2 0.34 

GLF 4 2.0 1.2 0.19 

GLF 5 2.0 2.0 0.15 

GLF 6 4.0 1.2 0.12 

GLF 7  4.0 4.0 0.08  

Teflon microreactor  

SPF 6 

Single-

phase 

flow 

3.3 - 0.30 0.01926 0.01448 1.33 
50 kHz and 

30 W 

Stirred tank batch reactor  

Batch - - - 330 0.01926 0.01448 1.33 - 

 

 

7.2.3 Powder characterization 

 

Samples were withdrawn at the outlet of the microreactor, centrifuged (at 1500 rpm for 5 

min), washed twice with ultra-pure water and conserved in ethanol (Koptec 200 proof pure), 

which stops the solid-liquid reaction (Bernard et al. 2000). For X-ray diffraction (XRD) 

(PanAlytical X’Pert PRO MPD) and scanning electron microscopy (SEM) (FEI Quanta 

400FEG ESEM/EDAX Genesis X4M, with an accelerating voltage of 20 kV) and 

transmission electron microscopy (TEM) (HR-(EF)TEM JEOL, 2200FS / EDS Oxford, 

INCA Energy TEM 250) studies, suspensions were dried at T = 80 ºC during 24 h. As to 

SEM analysis, samples were covered by a 10 nm gold layer and for TEM analysis powders 

were suspended in ethanol and a small drop of the suspension was fixed on a support (Carbon 

film on 400 meshes, Monocomp). For FTIR spectroscopy (Bruker Vertex 70 with MCT 

detector), a small drop of the suspension was put on a 1 mm thick ZnSe support, dried (80 ºC) 



CHAPTER 7 – CONTINUOUS-FLOW PRECIPITATION OF HAP AT 37 °C IN TWO ULTRASONIC MICROREACTORS  

148 
 

to evaporate the ethanol and then analyzed. Finally, for particle size distribution analysis, 

suspensions were collected at the end of each experiment and directly analyzed using a 

Malvern Mastersizer 2000 apparatus. 

 

7.3 Results and Discussion 
 

7.3.1 Important parameters in the precipitation of HAp 

 

According to Table 7.2, experiments were conducted under near-physiological conditions of 

temperature and pH. An increase in the temperature value was however observed. This may 

be due to the continuous use of ultrasound. In fact, ultrasonic waves produce heat when 

passed through a substance due to the transfer of ultrasonic energy, making the maintenance 

of isothermal conditions difficult in the systems used. The problem is magnified in the Teflon 

microreactor, not only because of the higher power input but also because of the smaller area 

of irradiation (Pankaj and Ashokkumar 2010) as compared to the tubular microreactor 

immersed in the ultrasonic bath. In the case of the tubular microreactor, the emitted ultrasonic 

waves first need to cross the liquid inside the ultrasonic bath (e.g. water) before reaching the 

microreactor. Therefore, ultrasonication intensity inside the microreactor is lower than 

expected. In the Teflon microreactor, the acoustic waveform is directly transmitted to the 

reactor, being thus energetically more efficient and further allowing for a precise control of 

the operating frequency (Kuhn et al. 2011). A considerable increase in the temperature value 

was also observed in the tubular microreactor for the higher residence times. This is probably 

due to the longer exposition to ultrasound. Moreover, it should be noted that the precipitation 

reaction of HAp is exothermic, which also could explain the observed increase in the 

temperature. Thereby, the factors mentioned above may contribute to the temperature 

increase. Although the temperature variation may influence the characteristics of the final 

product (Martins et al. 2008), namely HAp solubility, no significant differences in the studied 

parameters are expected for most experimental conditions given the differences observed in 

the temperature. However, for some cases (SPF 1, GLF 1 and GLF 2) the increase in 

temperature is considerable and may affect the end product.  
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Table 7.2. Parameters measured during continuous-flow precipitation of HAp. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 

Liquid 

residence time  

τ (min) 

pH 
Precipitate 

(mg/mL) 

Initial 

T
 
(ºC) 

Final  

T (ºC) 

Tubular 
microreactor 

SPF 1 3.94 7.2 0.71 

37.0 

46 

SPF 2 1.97 6.7 1.34 42 

SPF 3 0.99 7.0 0.94 41 

SPF 4 0.30 7.2 1.13 38 

SPF 5 0.15 7.4 0.77 37.5 

GLF 1 0.43 7-7.5 0.81 52.6 

GLF 2 0.39 6.5-7 0.87 45.1 

GLF 3 0.34 6.5-7 1.30 41.3 

GLF 4 0.19 7-7.5 1.20 37.7 

GLF 5 0.15 7 1.22 37 

GLF 6 0.12 7-7.5 1.47 37 

GLF 7 0.08 7-7.5 1.39 37 

Teflon 
microreactor 

with integrated 
piezoelectric 

actuator 

Teflon-
SPF 

0.30 7.23 1.39 38.3 42.0 

Stirred tank Batch 330 6.9 a 0.91 36.7 37.9 
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7.3.2 Phase identification 

 

 

Figure 7.6. XRD patterns of the HAp particles produced in single-phase flow in the 

ultrasonic microreactors.  
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Figure 7.7. Magnified XRD patterns of the HAp particles produced in single-phase flow in 

the ultrasonic microreactors. 
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Figure 7.8. XDR patterns of the HAp particles produced in gas-liquid flow in the ultrasonic 

tubular microreactor.  
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Figure 7.9. Magnified XDR patterns of the HAp particles produced in gas-liquid flow in the 

ultrasonic tubular microreactor. 

 

XRD patterns of the as-prepared particles are shown in Figure 7.6 and Figure 7.8. Besides, 

magnified diffraction patterns (Figure 7.7 and Figure 7.9) show the dominant peaks. The 

diffraction patterns show characteristic peaks of HAp (JCPDS 9-0432), though GLF 2 pattern 

also exhibits peaks assigned to dicalcium phosphate dehydrate (DCPD) (JCPDS 9-77) and to 

beta-tricalcium phosphate (β-TCP) (JCPDS 9-169) (see Figure 7.7 and Figure 7.9). XRD 

patterns of the products formed show broader peaks when compared to the pattern of a 

commercial HAp (Spectrum, minimum 40 meshes). This can suggest the presence of 

amorphous phases or considerably small size particles (Victoria and Gnanam 2002; 

Siddharthan et al. 2005). Further, diffraction patterns show sharp and high intensity peaks at 

28 º2θ and 40.5 º2θ, unlike the commercial HAp pattern. Such peaks are characteristic of 

high crystallinity and large grain size. These peaks are assigned to potassium chloride and are 

observed in most of the samples’ patterns. This may be explained by the occlusion of KCl. 

Indeed, part of the mother liquor could have been trapped between the aggregates, and the 

KCl contained in the mother liquor crystallized at the drying step. Regarding experiments 

performed under laminar flow (see Figure 7.7), there is no major difference between 

diffraction patterns of the powders obtained. The only difference observed is in the pattern of 
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sample SPF-6, where KCl’s peaks are barely detected. This may due to a lower degree of 

particle aggregation, as it will be seen later, allowing thus a better removal of the mother 

liquor during the washing step. In relation to powders prepared under segmented-flow (see 

Figure 7.9), the main differences between the precipitates are due to the presence of KCl 

peaks, which in some cases are barely detected, and the presence of peaks assigned to other 

calcium phosphate phases. As mentioned before, peaks assigned to DCPD and β-TCP are 

visible in the diffraction pattern of sample GLF 2. Despite HAp being thermodynamically the 

most stable calcium phosphate at the existing conditions, other calcium phosphates grow 

faster and therefore may appear. In these conditions the kinetic factors can assume a decisive 

role and may thus explain the formation of other calcium phosphates. 
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Figure 7.10.  FTIR spectra of the HAp particles produced in single-phase flow in the 

ultrasonic microreactors.  
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Figure 7.11. FTIR spectra of the HAp particles produced in gas-liquid flow in the ultrasonic 

tubular microreactor.  

 

FTIR spectra of the as-prepared particles are given in Figure 7.10 and Figure 7.11. All 

spectra exhibit the stretching and bending vibration modes of the phosphate and the hydroxyl 

groups, characteristic of a typical apatite structure (Koutsopoulos 2002). The peaks at 603 

and 962 cm-1 indicate the presence of a ʋ4 phosphate bending mode and a ʋ1 phosphate 

stretching mode, respectively. The strong broad band around 1037 cm-1 confirms the presence 
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of the ʋ3 PO4 mode. The sharp peaks at 630 (vibrational mode, ʋL) and 3571 cm-1 (stretching 

mode, ʋs) belong to the stretching vibrations of the hydroxyl group, although the peak 

attributed to the vibrational mode of OH- is not clearly visible in most of the spectra. 

Presence of adsorbed water in the products formed is also verified, as a broad band from 

approximately 3700 to 3000 cm-1 and a peak at 1643 cm-1 are observed (Koutsopoulos 2002; 

Zhou et al. 2008). This may be justified by the low drying temperature (80 ºC) and the 

absence of a ripening (ageing) treatment (Osaka et al. 1991). The small band around 875 cm-1 

can be attributed to the vibrational frequencies of carbonate ions or HPO4
2- group 

(Koutsopoulos 2002), which is consistent with a carbonated HAp or calcium-deficient HAp. 

In some cases, spectra show a doublet at 1454 and 1428 cm-1 that confirms the CO3
2- 

carbonate mode of vibration. These bands are characteristic of a carbonated HAp of B-type, 

where the carbonate ions occupy the phosphate ions sites (Koutsopoulos 2002; Landi 2003). 

The presence of carbonate ions can be explained by the absorption of CO2 from air and water. 

Therefore, HAp formed seems to present characteristics similar to biological apatites, as they 

generally are considered calcium-deficient carbonated apatites (Kumta et al. 2005). In what 

concern sample GLF 2, a band attributed to DCPD (around 1110 cm-1) is detected. In 

addition, ʋs hydroxyl stretching mode and ʋ1 phosphate stretching mode are not clearly 

exhibited. Information on the crystallinity is also available by IR spectroscopy. It can be seen 

that the precipitates SPF 6 and GLF 7 are more crystalline when compared to the others 

precipitates, especially when observing the phosphate bands around 1000 cm-1, which are 

broad and unresolved in the other samples, indicating poor crystallinity (Tadic et al. 2002). 

Moreover, the broad band corresponding to the adsorbed water (3700 to 3000 cm-1) is much 

smaller than in the other spectra. The noise observed in almost all the spectra and especially 

in the commercial HAp spectrum (1800 to 1400 cm-1) is due to water vapor.   
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7.3.3 Particle size, particle morphology and particle size distribution  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.12. Size distribution in volume of the HAp particles produced in the ultrasonic 

microreactors. 
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Table 7.3. Parameters of the particle size distribution in volume of the powders produced in 

the ultrasonic microreactors and in the stirred tank batch reactor. d10: 10% of the particles are 

smaller than this value, d50: 50% of the particles are smaller than this value; d90: 90% of the 

particles are smaller than this value; span: width of the distribution based on the 10%, 50% 

and 90% quantile. 

Sample 
Particles size (μm) Span 

d10 d50 d90  

SPF 1 0.15 1.24 43.42 34.90 

SPF 2 0.14 16.96 54.20 3.19 

SPF 3 0.60 32.29 62.83 1.93 

SPF 4 22.59 38.30 62.70 1.05 

SPF 5 0.08 0.25 38.97 155.56 

SPF 6 0.09 0.33 136.67 413.88 

GLF 1 0.09 0.42 44.56 105.88 

GLF 2 0.13 12.23 53.00 4.32 

GLF 3 0.15 10.35 44.23 4.26 

GLF 4 0.14 13.90 40.94 3.96 

GLF 5 0.13 14.88 52.33 3.51 

GLF 6 0.09 0.35 87.26 249.06 

GLF 7 0.11 10.76 37.67 3.49 

Batch 15.48 36.22 68.11 1.45 

Commercial HAp 0.15 0.59 2.44 3.88 

 

As to particle size distribution in volume, for both segmented and laminar flows, a bimodal 

distribution (and in some cases trimodal distribution) has been obtained, except for powder 

SPF 4 (Figure 7.12 and Table 7.3). The as-prepared powders consist of a population of 

primary particles in the nanometer range and a population of micrometric-sized aggregates 

that given the considerable difference in size could be separated. When compared to 

commercial HAp particles, the as-prepared powders possess smaller primary particles (see 

Figure 7.12). It is also important to underline that particles produced were directly obtained 

from the system without thermal treatment and without granulometric separation. In the case 

of precipitates produced in the single-phase flow tubular microreactor, it is clear that as the 

liquid flow rate increases the aggregation phenomenon is more pronounced, except for the 

higher liquid flow rate (see Figure 7.12). Smaller particles would be expected for higher 

liquid flow rates, since Reynolds numbers are higher and mixture efficiency enhanced. This 

results in a high degree of supersaturation and a more homogeneous medium (Mersmann 
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1999; Günther and Jensen 2006; Wang et al. 2007), which in its turn results in rapid 

nucleation and growth, favoring the formation of small particles (Mersmann 1999; Ying et al. 

2008; Yang et al. 2010). However, smaller particles are more susceptible to aggregation than 

bigger particles at the same conditions, namely at the same ionic strength and pH conditions 

(He et al. 2007). In this case, smaller particles may have formed as the liquid flow rate 

increases, but aggregate later on given their small size. In what concerns flow segmentation, 

results show a larger primary particles population, when compared to the powders formed in 

single-phase flow (see Figure 7.12 and Table 7.3). Analyzing parameters of the particle size 

distributions (see Table 7.3), one can see that d10 and d50 decrease with segmentation of the 

flow, approximating to the particle size distribution of the commercial HAp. A third 

population appears in some cases, consisting in large aggregates of about 200 µm, probably 

because primary particles are smaller and thus have higher tendency to aggregate.  
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Figure 7.13. Size distribution in number of the HAp particles produced in the ultrasonic 

microreactors. 
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Table 7.4. Parameters of the particle size distribution in number of the powders produced in 

the ultrasonic microreactors and in the stirred tank batch reactor. d10: 10% of the particles are 

smaller than this value, d50: 50% of the particles are smaller than this value; d90: 90% of the 

particles are smaller than this value; span: width of the distribution based on the 10%, 50% 

and 90% quantile. 

Sample 
Particles size (μm) Span 

d10 d50 d90  

SPF 1 0.034 0.056 0.118 1.50 

SPF 2 0.033 0.056 0.108 1.37 

SPF 3 0.031 0.051 0.097 1.30 

SPF 4 11.26 17.65 30.42 1.09 

SPF 5 0.031 0.048 0.091 1.25 

SPF 6 0.031 0.049 0.095 1.31 

GLF 1 0.031 0.637 2.07 3.20 

GLF 2 0.038 0.057 0.107 1.22 

GLF 3 0.031 0.050 0.099 1.37 

GLF 4 0.041 0.061 0.113 1.18 

GLF 5 0.041 0.061 0.111 1.16 

GLF 6 0.031 0.049 0.096 1.32 

GLF 7 0.039 0.058 0.107 1.17 

Batch 0.047 0.074 0.209 2.18 

Commercial HAp 0.034 0.058 0.130 1.64 

 

However, it is possible to observe from the particle size distribution in number (Figure 7.13 

and Table 7.4) that the powders prepared are mostly constituted by nanoparticles. Table 7.4 

also shows that the parameters of the size distribution of the as-prepared particles are really 

close to the parameters of the particle size distribution of the commercial HAp. Besides, most 

of the powders present a narrow particle size distribution and in some cases even narrower 

than the particle size distribution of the commercial HAp.  
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Figure 7.14. SEM images of the powders produced in the ultrasonic microreactors. 

 

According to Figure 7.14, the powders prepared consist of rod-like shape and nanometric-

sized particles. Primary particles are more easily seen for the powders prepared in the gas-
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liquid flow tubular microreactor (GLF 4 and GLF 5), when compared to commercial HAp 

particles and particles prepared in the single-phase flow tubular microreactor (SPF 4). 

Particles produced under segmented flow seem to have a more defined shape, while particles 

produced under laminar flow seem to be more amorphous and hence have higher tendency to 

form aggregates (see Figure 7.14). Indeed, using gas to create a segmented flow results in the 

formation of small reacting entities separated from each other by gas bubbles, which reduces 

particle-to particle interactions, and thus the formation of aggregates (Kuhn et al. 2011). 

Besides, the introduction of the gas phase creates recirculation and thus enhances mixing 

within the individual liquid slugs. This leads to a narrow residence time and reduced axial 

dispersion, resulting thereby in a high degree of supersaturation and a more homogeneous 

medium, favouring the formation of small and uniform particles (Günther and Jensen 2006; 

Mersmann 1999; Wang et al. 2007). 

 

 

Figure 7.15. TEM images of the particles produced in the ultrasonic microreactors. 

 

The microstructure of the HAp particles was also observed by TEM analysis (Figure 7.15). 

Primary particles seem uniform in size and shape, presenting less than 100 nm in length and 

around 20 nm in width, and a rod-like shape. 

 

The as-prepared particles present therefore interesting characteristics for biomedical 

applications. Actually, nanocrystalline HAp powders exhibit greater surface area 

(Mobasherpour et al. 2007) when compared to microscale HAp. Moreover, it is desirable that 

the HAp for use in implants be bioresorbable so that it can be replaced, over a period of time, 

with regenerated bone upon implantation. In this context, nanoparticles of HAp have shown 

higher rates of bioresorbability than micrometric HAp and close to biological apatite 
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(Murugan and Ramakrishna 2005). Further, the resorbability of HAp can be developed with 

improving its crystallinity degree similar to biological HAp (60–70%) (Fathi et al. 2008). 

 

7.3.4 Comparison between HAp particles prepared in a stirred tank batch reactor and 

in the ultrasonic microreactors 

 

Particles synthesized in the stirred tank batch reactor appear to be less crystalline than the 

particles formed in the ultrasonic microreactors, since its XRD pattern and its FTIR spectrum 

exhibit broader peaks when compared to XRD patterns and FTIR spectra of the powders 

prepared in the microreactors (see Figure 7.6 and Figure 7.11). Carbonate contamination 

seems to be minimized in the ultrasonic microreactors, as carbonate bands at approximately 

1454 and 1428 cm-1 are clearly exhibited in the spectrum of the HAp powder prepared in 

batch and in most cases are not present in the spectra of the powders obtained in the 

microsystems (see Figure 7.10 and Figure 7.11). Indeed, systems were not open to air and 

carbonate ions could only come from the water used in the preparation of the reagents.  

 

According to Figure 7.12 and Figure 7.13, the powder formed in the stirred tank batch 

reactor has higher primary particle size and wider particle size distribution when compared to 

HAp particles produced in the ultrasonic microreactors. Regarding morphology and size of 

the HAp particles, in all the reactors rod-like shape particles of about 100 nm long and 20 to 

50 nm width were formed (see Figure 7.14). 

 

7.4 Conclusion 
 

Continuous-flow precipitation of HAp was studied in two ultrasonic microreactors, a tubular 

microreactor immersed in an ultrasonic bath and a Teflon microreactor with integrated 

piezoelectric actuator. All the samples prepared, irrespective of the system used, consisted of 

nano-size calcium-deficient carbonated HAp particles, thus approaching biological apatites. 

Moreover, particles were obtained under near-physiological conditions of pH and 

temperature, making them promising compounds for bone substitution application.  

 

Several configurations were tested in the tubular microreactor (single-phase flow and gas-

liquid flow), and segmentation of the flow was successful in reducing particle aggregation. 
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Control of particle aggregation was however best achieved in the Teflon microreactor, 

primarily due to the higher intensity of the ultrasound.  

 

Synthesis products were also compared to the product obtained in the stirred tank batch 

reactor. The HAp particles formed have proved to be more crystalline and less carbonate 

contaminated than the HAp particles obtained in the stirred tank batch reactor. Moreover, 

microreactors used yielded HAp particles in a very short residence time and at a constant pH.  

 

Finally, we believe that even if the reactor studied in this section does not represent a full 

scale production unit, it can be a useful contribution to the development of a platform for the 

continuous production of high quality HAp nanoparticles. 
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8 CONCLUSION 
 

This chapter presents the major conclusions of this thesis and recommendations for further 

research in this field. 
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8.1 Conclusions 
 

The problem that was addressed in this thesis was finding out how to obtain hydroxyapatite 

(HAp) crystals with a precise controlled size, with a controlled (and narrow) size distribution 

and with high purity, rendering them suitable for bone substitution. Experimental studies 

conducted, as well as modeling of the HAp precipitation process, allow drawing some 

important conclusions. Firstly, this thesis refers to a simple and non-polluting method for the 

precipitation of nano-sized HAp particles with a narrow size distribution, under near-

physiological conditions of temperature and pH. It provides an understanding of the 

mechanism of HAp formation and gives a good indication of the precipitation process 

chemistry over time. This thesis also explores the advantages of scaled-down reactors for 

process intensification and optimization of HAp nanoparticles production. To sum up, the 

work developed may be a valuable contribution for the development of a cost-effective 

platform for the continuous production of high quality HAp nanoparticles.  

 

This work proposes a simple approach for the synthesis of HAp nanoparticles. It consists in 

preparing HAp from neutralization between diluted aqueous solutions of calcium hydroxide 

and orthophosphoric acid. Furthermore, HAp particles were produced under near-

physiological conditions of pH and temperature, which is particularly relevant for the 

preparation of HAp for medical purposed. Indeed, it is important to follow specific criteria 

for pH and temperature in order to promote more conductive conditions for the survival of 

bone-related cells.  

 

HAp precipitation was first carried out in a “conventional” stirred tank reactor provided with 

a new metal stirrer. The study provided information on the composition of the precipitate 

formed and on the precipitation process chemistry over time. Characterization of the HAp 

precipitation process, based on the variation of pH and calcium concentration with time, 

revealed the existence of three stages: spontaneous precipitation of amorphous calcium 

phosphate (ACP); transformation of ACP to HAp; and growth of HAp. The definition of the 

reaction system, based on mass balance and equilibrium equations, and calcium 

supersaturation, provided information on the chemical species present in solution over time. 

A satisfactory agreement between the predicted conductivity value by the proposed model 
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and the experimental conductivity value was obtained, at the exception of the early moments 

of the precipitation process, where the proposed system was not adequate. 

 

The advantages of a meso oscillatory flow reactor (meso-OFR) operated in batch over the 

stirred tank batch reactor for the production of uniform HAp nanoparticles under near-

physiological conditions of pH and temperature were demonstrated. A constant power density 

was applied to both reactors and used as the reference criterion. The effectiveness of both 

mixing methods, for a given power input, was evaluated in terms of reaction time and 

characteristics of the precipitated particles. Based on the aforementioned results, the reactor 

type affects the crystallinity, carbonate content, morphology and size distribution of the 

prepared HAp nanoparticles. In the proposed meso-OFR, the alternative mixing mechanism 

(oscillatory flow mixing) generates intense eddy mixing, hence intensifying micromixing and 

promoting the formation of small and uniform HAp nanoparticles about four times faster 

when compared with the stirred tank batch reactor operated under a similar power density. 

 

The capability of the meso-OFR and two ultrasonic microreactors for the continuous 

production of HAp nanoparticles under near-physiological conditions of pH and temperature 

was illustrated. Regarding the meso-OFR and the scaled-up meso-OFR, calcium-deficient 

carbonated HAp nanoparticles were successfully produced in both reactors. For both cases, it 

was found that the mean particle size and the aggregation degree of the particles decrease 

with the decrease of the residence time. In addition, particles more uniform in size were 

precipitated for both the meso-OFR and the scaled-up meso-OFR at lower residence times. 

The obtained results confirm the possibility of OFR scale-up by in series association of 

individual OFRs. 

In relation to the two ultrasonic microreactors (a tubular microreactor immersed in an 

ultrasonic bath and a Teflon microreactor with integrated piezoelectric actuator), the prepared 

particles consisted of nano-size calcium-deficient carbonated HAp particles. Several 

configurations were tested in the tubular microreactor (single-phase flow and gas-liquid 

flow), and segmentation of the flow was successful in reducing particle aggregation. Control 

of aggregation was however best achieved in the Teflon microreactor, primarily due to the 

higher intensity of the ultrasound. Moreover, microreactors used yielded HAp particles in a 

very short residence time and at a constant pH. Finally, particle aggregation and primary 

particle size were significantly reduced in the segmented-flow tubular microreactor and 

especially in the Teflon microreactor. 



CHAPTER 8 - CONCLUSION  

174 
 

Despite mixing mechanisms being different in all the reactors studied, and thereby 

hydrodynamic conditions being not directly comparable, the effectiveness of each reactor 

type was evaluated in terms of the characteristics (purity, size, size distribution, morphology) 

of the precipitated particles. In general, the microreactors used yielded HAp nanoparticles 

with improved characteristics, smaller primary particles, more homogeneous particle shape, 

lower aggregation degree, higher crystallinity and less carbonate contamination, when 

compared with the HAp nanoparticles produced in the stirred tank batch reactor, as well with 

a commercial HAp powder. Furthermore, they were operated in continuous, thus offering 

significant advantages in terms of process and costs, namely more uniform reaction 

environment, reduced costs and wasted materials. Although numerous advantages are 

associated with microreactors, going down also creates difficulties in product analysis. In this 

context, the meso-OFR offers advantages over the microreactors. The passage from μL to mL 

is useful for subsequent product evaluations. Besides, the aforementioned results show the 

capability of the meso-OFR in both batch and continuous operations for the production of 

uniform HAp nanoparticles.  

 

Finally, we believe that even if the reactors studied do not represent a full-scale production 

unit, they may be a useful contribution to the development of a cost-effective platform for the 

production of high quality HAp nanoparticles. 

 

8.2 Future work 
 

The results documented in this research are significant and provide the basis for several 

research opportunities. The present thesis has dealt with reactive crystallization for HAp 

nanoparticles formation under near-physiological conditions of pH and temperature, and the 

importance of mixing in the determination of the size and size distribution of the HAp 

particles. It provides fundamental information on the mechanism of HAp formation and 

showed the feasibility of scaled-down reactors for the production of HAp particles with small 

size, narrow size distribution and uniform morphology, rendering them suitable for bone 

substitution application. Thus, this thesis provides a good background to go to the next steps 

and obtain more information about the characteristics of the prepared HAp particles and test 

different operating conditions to study how they affect particle size and size distribution.  
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Firstly, further product characterization, namely to evaluate the “biological” properties of the 

HAp particles, is recommended. The determination of the specific surface area of the 

prepared HAp nanoparticles could give an indication of the surface area that is available for 

the attachment of bone-related cells. It would also be interesting to evaluate the 

“biocompatibility” of the prepared HAp powders, by first investigating the cytotoxicity of the 

prepared powders over bone-related cells (osteoblasts) and then studying their ability for 

stimulating bone-related cells activity (cell adhesion/proliferation). 

 

HAp precipitation was studied in the presence of KCl, added to adjust the ionic strength. 

Although apparently KCl does not significantly affect the process or the characteristics of the 

particles, it would be interesting to study the process without the presence of KCl and thus 

assess the characteristics of the obtained particles. In fact, it is known that the presence of 

KCl in the reaction medium can affect the solubility of HAp. Also, it would be important to 

assess the solubility of HAp in the operating conditions studied with and without the presence 

of KCl.  

 

The influence of some of the operating parameters (initial Ca/P molar ratio, residence time, 

mixing conditions) on purity, size, size distribution and morphology of HAp particles was 

investigated. The initial insights aforementioned can be extended by studying the influence of 

other operating parameters such as the concentration of reagents and different hydrodynamic 

conditions. For instance, in the case of the stirred tank, the influence of stirring speed and the 

way reagents are mixed together can be investigated. Concerning the meso-OFR operated in 

batch, other amplitudes and frequencies can be studied. In relation to the meso-OFR and the 

microreactors operated in continuous, the study can be extended to other residence times.  

 

Finally, once the meso-OFR was developed to suit some of the bioprocess applications 

requirements, namely reduce the high shear regions that may be crucial to some cell cultures, 

and once HAp particles were obtained under near-physiological conditions of pH and 

temperature, it would be interesting to apply the meso-OFR for bone-related cells growth in 

the presence of HAp particles. As further tasks, we recommend the optimization of the meso-

OFR operating parameters, frequency (f) and amplitude (x0), during bone-related cells 

growth. We also suggest assessing the functionality of the meso-OFR containing previously 

produced HAp particles in order to investigate the combined effect of dynamic conditions 

with the chemistry of the environment in the resulting cell function.  
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A.1 - Modeling of the HAp precipitation process at 37 °C in a stirred tank 

batch reactor – MATLAB application 
 

The resolution of the system of equations resulting from the mass balance and equilibrium 

equations, as well as the calcium supersaturation, presented in Chapter 4, was done through 

the following MATLAB application:  
 

clear all; 

  
%*****************  PARAMETROS PARA CADA FICHEIRO  ********************* 
runi=input('Initial run:'); 
runf=input('Final run:'); 

  
for iei=runi:runf 

     
%---------- LOAD THE DATA FILE -------- 

  
filenamein=['run', num2str(iei),'.txt']; 
disp(['reading ' filenamein]) 
fid=fopen(filenamein,'r'); 
%z=[velocd Kla errorb Texp Tgas sat];    
    [n1,n2,n3,n4,n5] = textread(filenamein,'%f %f %f %f %f',-1); 
  m=1; 
  k1=1e-14; 
  k4=10.^(-11.984); 
  k6=10.^(-6.337); 
  k8=10.^(-1.288); 
  CKCl=0.048; %KCl concentration, mol dm-3 

  
 for i=1:size(n1); 
 if n2(i,1)> 0 && n2(i,1)< 20 && n3(i,1)> 0 && n4(i,1)> 0 && n4(i,1)< 40 && 

n5(i,1)> 0 && n5(i,1)< 14 

     
     n1a(m,1)=n1(i,1);%t(s) 
     n2a(m,1)=n2(i,1)*.001;%k(S cm-1) 
     n3a(m,1)=n3(i,1)/(1000*40.082);%[ca2+]mol/dm3 
     n4a(m,1)=n4(i,1);%T(ºC) 
     n5a(m,1)=n5(i,1);%pH 

      
     %Equilibrium constant, mol dm-3 

      
     %k1(m,1)=10.^-(4471.33/(273.15+n4a(m,1))+.017053*(273.15+n4a(m,1))-

6.0846);   
     k2(m,1)=10.^-(799.31/(273.15+n4a(m,1))-

4.5535+0.013486*(273.15+n4a(m,1))); 
     k3(m,1)=10.^-(1979.5/(273.15+n4a(m,1))-

5.3541+0.019840*(273.15+n4a(m,1))); 
     k5(m,1)=10.^(148.15-22188/(273.15+n4a(m,1))-0.2554*(273.15+n4a(m,1))); 
     k7(m,1)=10.^(53.335-8413.5/(273.15+n4a(m,1))-

0.08660*(273.15+n4a(m,1))); 
     ksp(m,1)=10.^-

(8219.41/(273.15+n4a(m,1))+1.6657+0.098215*(273.15+n4a(m,1))); 
     %HAP Solubility - [Ca2+](ppm)      
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      SOL(m,1)=10.^(-0.0067*n5a(m,1)^4+0.2237*n5a(m,1)^3-

2.4647*n5a(m,1)^2+10.18*n5a(m,1)-15.545); 

        
     %Supersaturation 

      
     S(m,1)=((n3a(m,1)))/(SOL(m,1)); 

     
     m=m+1; 
 end 

  
 end  

  

  

  
  for in=1:size(n1a); 
      Y1(in,1)=1; Y2(in,1)=1; Y3(in,1)=1; 
      for ji=1:20; 
          %[H+] 
          Ar(in,1)=10^(-n5a(in,1)); 
          %[OH-] 
          Br(in,1)= k1/((Y1(in,1))^2*Ar(in,1)); 
          %[PO43-] 
          

Fr(in,1)=((ksp(in,1)*(S(in,1))^9)/(n3a(in,1)^5*Y2(in,1)^5*Y1(in,1)*Br(in,1)

*Y3(in,1)^3))^(1/3); 
          %[HPO42-] 
          Er(in,1)=(Y3(in,1)*Y1(in,1)*Ar(in,1)*Fr(in,1))/(Y2(in,1)*k4); 
          %[H2PO4-] 
          Cr(in,1)= (Y2(in,1)*Ar(in,1)*Er(in,1))/k3(in,1); 
          %[H3PO4] 
          Dr(in,1)=((Y1(in,1))^2*Ar(in,1)*Cr(in,1))/k2(in,1);    
          %[CaHPO4] 
          Gr(in,1)=((Y2(in,1))^2*n3a(in,1)*Er(in,1))/k5(in,1); 
          %[CaPO4-] 
          Hr(in,1)=(Y2(in,1)*Y3(in,1)*n3a(in,1)*Fr(in,1))/(Y1(in,1)*k6); 
          %[CaH2PO4+] 
          Ir(in,1)=(Y2(in,1)*n3a(in,1)*Cr(in,1))/k7(in,1); 
          %[CaOH] 
          Jr(in,1)=(Y2(in,1)*n3a(in,1)*Br(in,1))/k8; 
          %TCA 
          Kr(in,1)= n3a(in,1)+Gr(in,1)+Hr(in,1)+Ir(in,1)+Jr(in,1); 
          %TPO 
          

Lr(in,1)=Cr(in,1)+Dr(in,1)+Er(in,1)+Fr(in,1)+Gr(in,1)+Hr(in,1)+Ir(in,1); 
          %Ionic strength, mol dm-3 
          

ION(in,1)=0.5*(Br(in,1)+Cr(in,1)+9*Fr(in,1)+4*Er(in,1)+Hr(in,1)+4*n3a(in,1)

+Ir(in,1)+Jr(in,1)+Ar(in,1)+2*CKCl); 
          F1(in,1)=-(0.51*(ION(in,1))^(1/2))/(1+(ION(in,1))^(1/2)); 
          Y1(in,1)=10^(F1(in,1)); 
          Y2(in,1)=10^(4*F1(in,1)); 
          Y3(in,1)=10^(9*F1(in,1));  
          %Conductivity, Scm-1          

kcond(in,1)=(349.65*(Ar(in,1)*Y1(in,1))/1000+198*(Br(in,1)*Y1(in,1))/1000+3

6*(Cr(in,1)*Y1(in,1))/1000+2*57*(Er(in,1)*Y2(in,1))/1000+3*92.8*(Fr(in,1)*Y

3(in,1))/1000+2*59.47*(n3a(in,1)*Y2(in,1))/1000+73.48*CKCl/1000+76.31*CKCl/

1000)*1.2356; 

   
      end 
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 end  
end 

  

  
%---------- Plotting -------- 

  
xmin=100; 

  
for pl=xmin:size(n1a); 
    ml=pl-xmin+1; 
     n1pl(ml,1)=n1a(pl,1);%t(s) 
     n2pl(ml,1)=n2a(pl,1);%k(S cm-1) 
     n3pl(ml,1)=n3a(pl,1);%[ca2+]mol/dm3 
     n4pl(ml,1)=n4a(pl,1);%T(ºC) 
     n5pl(ml,1)=n5a(pl,1);%pH 
     kcondpl(ml,1)=kcond(pl,1);%Conductivity, Scm-1 
end 

      

  

  
subplot (2,1,1);[haxes, hline1, hline2]= plotyy(n1pl, n5pl, n1pl, n3pl); 
xlabel('t(s)','Fontsize',8) 
axes(haxes(1)) 
ylabel('pH','Fontsize',8) 
axes(haxes(2)) 
ylabel('Ca2+(mol dm-3)','Fontsize',8) 
%set(get(gca,'YLabel'),'Rotation',0.0) 
title('\it{pH and Ca2+ variation}','Fontsize',12) 

  
subplot (2,1,2); plot(n1pl, n2pl, n1pl, kcondpl) 
legend ('Measured','Estimated') 
xlabel('t(s)','Fontsize',8) 
ylabel('k(S cm-1)','Fontsize',8) 
title('\it{k variation}','Fontsize',12) 

  
%---------- Save Data -------- 

  
z1=[n1a n2a n3a n4a n5a]; 
save(['CleanData_', num2str(runi),'.txt'],'z1','-ascii') 
z2=[Ar Br Cr Dr Er Fr Gr Hr Ir Jr Kr Lr ION kcond SOL S]; 
save(['results_', num2str(runi),'.txt'],'z2','-ascii') 
% clear all 

  

 

A.2 - Calibration curve Abs versus pH 
 

For the construction of the calibration curve Abs versus pH presented in Chapter 5, the 

following solutions with different pH were prepared: 
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Table A.1. Solutions with different pH prepared from equimolar aqueous solutions of 

Ca(OH)2 and H3PO4. 
Solution 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

V CaOH2 

0,01926 

M (mL) 

10 8 6.7 6.3 6.2 6.1 6 5.9 5.8 5.7 5.5 5.3 5 4.5 4 3.5 

V H3PO4 

0.01926 

M (mL) 

0 2 3.3 3.7 3.8 3.9 4 4.1 4.2 4.3 4.5 4.7 5 6.5 6 6.5 

pH 

(average) 
12.30 

± 0.01 

11.93 

± 

0.01 

11.40 

± 

0.01 

10.86 

± 

0.03 

10.38 

± 

0.09 

9.53 

± 

0.17 

8.51 

± 

0.14 

7.96 

± 

0.03 

7.62 

± 

0.01 

7.34 

± 

0.02 

7.06 

± 

0.03 

6.82 

± 

0.03 

6.59 

± 

0.02 

6.32 

± 

0.02 

5.95 

± 

0.04 

5.50 

± 

0.02 
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