
A
t

D
a

b

c

a

A

R

R

1

A

K

S

B

O

R

A

1

O
p
c
e
c
b
t
t

0
d

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 8 (2 0 1 0) 191–203

journa l homepage: www. int l .e lsev ierhea l th .com/ journa ls /cmpb

IBench: A rapid application development framework for
ranslational research in biomedicine

. Glez-Peñaa,∗, M. Reboiro-Jatoa, P. Maiab, M. Rochab, F. Díazc, F. Fdez-Riverolaa

Dept. Informatics, University of Vigo, Campus Universitario As Lagoas s/n, 32004 Ourense, Spain
Dept. Informatics, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal
Computer Science Dept., University of Valladolid, Escuela Universitaria de Informática, Plaza Santa Eulalia 9-11, 40005 Segovia, Spain

r t i c l e i n f o

rticle history:

eceived 13 June 2009

eceived in revised form

1 November 2009

ccepted 10 December 2009

eywords:

cientific software development

iomedical informatics

pen software

eusable component model

pplication framework

a b s t r a c t

Applied research in both biomedical discovery and translational medicine today often

requires the rapid development of fully featured applications containing both advanced

and specific functionalities, for real use in practice. In this context, new tools are demanded

that allow for efficient generation, deployment and reutilization of such biomedical applica-

tions as well as their associated functionalities. In this context this paper presents AIBench,

an open-source Java desktop application framework for scientific software development

with the goal of providing support to both fundamental and applied research in the domain

of translational biomedicine. AIBench incorporates a powerful plug-in engine, a flexible

scripting platform and takes advantage of Java annotations, reflection and various design

principles in order to make it easy to use, lightweight and non-intrusive. By following a

basic input–processing–output life cycle, it is possible to fully develop multiplatform appli-

cations using only three types of concepts: operations, data-types and views. The framework
automatically provides functionalities that are present in a typical scientific application

including user parameter definition, logging facilities, multi-threading execution, experi-

ment repeatability and user interface workflow management, among others. The proposed

framework architecture defines a reusable component model which also allows assembling

the re
new applications by

. Introduction

ver the last few years, numerous authors have discussed
otential and critical needs regarding the application of
omputing to biomedicine, emphasizing the necessity of
xploiting the synergies between both disciplines to address
urrent limitations and to promote relevant developments in

oth biomedical discovery and translational medicine [1]. In
his context, an interesting summary of computing oppor-
unities and challenges motivated by biomedical research

∗ Corresponding author. Tel.: +34 988 387015; fax: +34 988 387001.
E-mail address: dgpena@uvigo.es (D. Glez-Peña).
URL: http://sing.ei.uvigo.es/ (D. Glez-Peña).

169-2607/$ – see front matter © 2009 Elsevier Ireland Ltd. All rights res
oi:10.1016/j.cmpb.2009.12.003
use of libraries from past projects or third-party software.

© 2009 Elsevier Ireland Ltd. All rights reserved.

and healthcare needs was summarized in the CRA-NIH 2006
Computing Research Challenges in Biomedicine Workshop
Recommendations.1 This report revealed a significant need to
support both the development of new software tools and to
provide the necessary support for software infrastructure and
software engineering for biomedical researchers and health-
care professionals.
In response to these challenges, the clinical and transla-
tional research informatics domain is rapidly evolving from
sparse and unrelated initiatives to two major well-established
areas: (i) clinical research informatics (CRI), dedicated to

1 http://www.bisti.nih.gov/docs/CRA-NIH-Workshop-
Recommendations-Final.pdf.
erved.

mailto:dgpena@uvigo.es
http://www.bisti.nih.gov/docs/CRA-NIH-Workshop-Recommendations-Final.pdf
dx.doi.org/10.1016/j.cmpb.2009.12.003

s i n
192 c o m p u t e r m e t h o d s a n d p r o g r a m

the development, use and evaluation of standards, mod-
els, processes and systems to improve the design, conduct
and dissemination of clinical research [2], and (ii) transla-
tional research informatics (TRI), more concerned with the
application of informatics theory and methods to transla-
tional research [3]. Although both areas overlap considerably,
the former is more focused on developing practical applica-
tions for computer-aided medicine while the main goal of
the latter is to provide fundamental support to translational
research.

However, the rapid development of successful feature-
rich applications containing advanced functionalities in the
field of biomedical and clinical research still remains a major
demand for smaller institutions lacking both human and
financial resources. The situation worsens if we consider the
software development effort required to deliver highly spe-
cialized applications usually demanding sophisticated user
interfaces. Moreover, developing applications in an interdis-
ciplinary and applied research context also presents a large
number of particular requisites ranging from computational
requirements to usability. Specific issues include (i) sharing of
heterogeneous data, (ii) integrating third-party or previously
developed algorithms, (iii) cross-platform compatibility, (iv)
ability to repeat workflows while changing a few parameters
or input data, (v) extensive use of logging messages to moni-
tor the progress of long processes, (vi) establishing values for a
high and variable number of parameters before running exper-
iments and (vii) taking the maximum advantage of multi-
threading capabilities in highly demanding tasks, among
others.

In the global context of computer science and software
development, a typical approach to cope with these kinds of
problems is to make use of an application framework, which
can be seen as a semi-finished application and a reusable
architecture design [4]. Therefore, in recent years frame-
works have become very popular, especially in web application
development where Ruby on Rails,2 Symfony,3 Spring,4 JSF5

or Apache Struts6 are examples of some of the most suc-
cessful alternatives for deploying scientific applications as
web services [5]. Nowadays, there are general frameworks
for almost any kind of software including object-oriented

desktop applications (MFC,7 Netbeans,8 Eclipse9), software
testing (JUnit10), compiler generation (Bison,11 Javacc12), mul-
timedia (WindowsMedia,13 ffmpeg,14 GStreamer15), virtual

2 http://rubyonrails.org/.
3 http://www.symfony-project.org/.
4 http://www.springframework.org/.
5 http://java.sun.com/javaee/javaserverfaces/.
6 http://struts.apache.org/.
7 http://msdn.microsoft.com/en-us/library/d06h2x6e(VS.80).

aspx.
8 http://platform.netbeans.org/.
9 http://wiki.eclipse.org/.

10 http://junit.org/.
11 http://www.gnu.org/software/bison.
12 https://javacc.2dev.java.net/.
13 http://www.microsoft.com/windowsmedia/.
14 http://ffmpeg.mplayerhq.hu/.
15 http://gstreamer.freedesktop.org/.
b i o m e d i c i n e 9 8 (2 0 1 0) 191–203

reality (Vega Prime,16 VR Juggler,17 CAVELib18) and mid-
dleware (CORBA,19 EJB20). Nevertheless, the actual benefits
of applying such general scalable software environments
to the development of specific biomedical applications are
clearly insufficient, mainly due to the special requirements
of computer-assisted biomedical and clinical research areas.

With the aim of giving a more adequate support to the
particular needs of several areas belonging to the theoretical
and clinical biomedicine domain, different focused frame-
works were also successfully developed in the C++ language
during the last few years. This endeavour was particularly
evident in the area of medical imaging. In this context,
the Medical Imaging Interaction Toolkit (MITK) implements
a free open-source software system for the development
of interactive medical image processing software [6]. MITK
combines the Insight Toolkit (ITK21) and the Visualization
Toolkit (VTK22) for currently offering functionalities for data
visualization, processing and interaction. In the same line,
MeVisLab [7], a development environment for medical image
processing and visualization, as well as IGstk [8], a high-level
component-based framework providing common function-
ality for image-guided surgery applications, make use of
ITK and VTK toolkits (among others) for giving support
to specific biomedical applications. Another example of a
successful software platform in this area is JULIUS [9], an
extensible framework for medical data processing and visu-
alization. From a different perspective, and more focused in
the development of research based image-guided navigation
software, is the SIGN framework [10], which provides the
developer with a platform specifically designed for image-
guided therapy and aids the rapid development of new
applications.

From a broader perspective, but also related with the goal
of giving support to the development of software techniques
and processes used to manage images of the human body for
clinical purposes, there are two successful application frame-
works: the Multimod Application Framework (OpenMAF) [11]
and MARVIN [12]. OpenMAF implements an open-source
framework for rapid development of multimodal applications
coded in the C++ language. OpenMAF supports several types of
biomedical data where its interactive visualization approach
helps the user to interpret complex datasets. In addition, the
framework supports different input–output hardware devices
being based on a collection of portable libraries. A different
approach, but also coded in the C++ language, is the MARVIN
project. MARVIN implements a medical research application
framework where different modules can be plugged together
in order to provide the functionality required for a specific sce-

nario. In the MARVIN framework, application modules work
on a common patient database that is used to store and
organize medical data. As in the case of OpenMAF, MARVIN

16 http://www.multigen.com/products/runtime/vega prime/.
17 http://www.vrjuggler.org/.
18 http://www.mechdyne.com/integratedSolutions/software/

products/CAVELib/CAVELib.htm.
19 http://www.corba.org/.
20 http://java.sun.com/products/ejb/.
21 http://www.itk.org/.
22 http://www.vtk.org/.

http://rubyonrails.org/
http://www.symfony-project.org/
http://www.springframework.org/
http://java.sun.com/javaee/javaserverfaces/
http://struts.apache.org/
http://msdn.microsoft.com/en-us/library/d06h2x6e(VS.80).aspx
http://msdn.microsoft.com/en-us/library/d06h2x6e(VS.80).aspx
http://platform.netbeans.org/
http://wiki.eclipse.org/
http://junit.org/
http://www.gnu.org/software/bison
https://javacc.2dev.java.net/
http://www.microsoft.com/windowsmedia/
http://ffmpeg.mplayerhq.hu/
http://gstreamer.freedesktop.org/
http://www.multigen.com/products/runtime/vega_prime/
http://www.vrjuggler.org/
http://www.mechdyne.com/integratedSolutions/software/products/CAVELib/CAVELib.htm
http://www.corba.org/
http://java.sun.com/products/ejb/
http://www.itk.org/
http://www.vtk.org/

i n b

s
d

w
b
d
t
v
c
s
t
v
h
a
i
w
d
s
c
d
s
f
g
s
t
A
i
c
n

w
w
p
f
m
t
s
d
e
m
W
p
d
t
s
m
m

t
d
t
b

2

T
t
b
f

c o m p u t e r m e t h o d s a n d p r o g r a m s

upports many standard file formats as well as interfaces to
ifferent tracking hardware.

Taking into consideration the current state of the art,
e conclude that it is characterized by the availability of
oth (i) very general software architectures for large-scale
evelopments (including object-oriented desktop applica-
ions, software testing, compiler generation, multimedia,
irtual reality and middleware) and (ii) more specific appli-
ation frameworks offering biomedical-related libraries and
pecific hardware handlers coded in the C++ language (some of
hem including ITK and VTK toolkits for image processing and
isualization and others supporting standard file formats and
ardware drivers). As a consequence, there is no general and
daptable framework able to directly cope with the specific
ssues of the broad and particular nature of developing soft-
are for research applications in a translational biomedical
omain. In particular, existing frameworks do not give central
upport to dynamic graphical user interface (GUI) generation,
ustomization of default behaviour and application aspect,
esign of a clear application workflow, automatic script con-
truction for supporting workflow repeatability, update service
or automatically deploying software upgrades and automatic
eneration of technical documentation. In parallel with this
ituation, Java has found increased adoption in the scien-
ific community due to the huge amount of freely available
PIs and open-source scientific developments, regardless of

ts other native benefits such as language inter-operability,
ross-platform nature, built-in support for multi-threading,
etworking, etc.

In this context, we present AIBench (Artificial Intelligent
orkBench), an open-source Java desktop application frame-
ork, specifically intended to improve both quality and
roductivity in the development of specialized applications
or computer-assisted biomedical and clinical research. The

ain objective is to cover the gap between general desk-
op application frameworks and the specific requirements of
cientific software development, by allowing the rapid pro-
uction of high quality application prototypes with minimum
ffort into problem-unrelated functionalities and with the
aximum reusability level of previously coded algorithms.
e believe that whenever the core algorithms for solving a

roblem become available, it should be almost mandatory to
eliver an acceptable application prototype without affecting
he code of the domain specific routines. This prototype may
ubsequently evolve to a real final application by the use of
ore advanced capabilities of our rapid application develop-
ent (RAD) framework.
The aim of this article is to provide an in-depth descrip-

ion about the AIBench framework architecture, present the
evelopment infrastructure and demonstrate its application
o different unrelated example problems belonging to the
road scope of biomedical research.

. The AIBench application framework
he AIBench platform was particularly conceived to facili-
ate the development of a wide range of research applications
ased on general input–processing–output cycles where the
ramework acts as the glue between each executed task. In
i o m e d i c i n e 9 8 (2 0 1 0) 191–203 193

order to provide the basis for supporting rapid application
development, our framework manages the three key concepts
that are present in every AIBench application: operations, data-
types and views. The developer only needs to concentrate on
how to divide and structure the problem-specific code into
objects of these three entities. The framework will carry out
the rest of the work to generate a completely runnable final
application. These tasks include:

• Producing a GUI under which the user is allowed to select
and execute the implemented functionality.

• Automatically retrieving the user parameters of a given
operation whenever it is needed. The parameters could be
both primitive values (numbers, strings, booleans) or any
complex data-type previously created by an operation.

• Running operations, gathering the results and keeping them
available for further use.

• Displaying the results through custom (or default) views.
• Keeping track of all executed operations together with the

information needed to repeat the same (or modified) work-
flow in the future.

2.1. Framework architecture

In order to accomplish the final goal of covering the gap
between final-user applications and internal algorithms man-
aged by research developers, AIBench incorporates two
advanced internal modules: the Clipboard and the History. The
Clipboard is a complex data structure repository which con-
tains the outputs of the executed operations classified by their
type (class). This structure allows the final user to examine
what was produced during the current session and the pos-
sibility of forwarding these objects to subsequent operations.
The History keeps track of what operations were executed and
which objects were used as inputs. This structure allows the
framework to entirely reconstruct the current session in order
to re-execute it in the future. Fig. 1 shows a screenshot of an
example AIBench application. Although applications devel-
oped with AIBench do not necessarily have a GUI, it is the
most common layout.

By default, the main window of any AIBench application
contains five zones (see Fig. 1). All the implemented opera-
tions are located in the menu bar of the application. A Clipboard
tree displays the AIBench Clipboard contents, that is, all the
objects generated by the executed operations. A History tree
shows the AIBench History, that is, all the operations executed
together with their inputs and generated outputs. The central
panel of the application is used to display the contents of the
objects using the AIBench views (default or custom). Finally,
the bottom area is used to arrange available tools or add-ins.
One tool included by default with the framework is the Shell,
which can be used to run previously generated scripts in order
to automate the execution of preconfigured operations.

From an architectonical perspective, AIBench is structured
in several layers, as shown in Fig. 2. Our AIBench framework
runs over a plug-in engine able to define a straightforward

reusable component model where both, the framework native
components and the application-specific functionalities, are
divided and packaged into plug-ins. AIBench plug-ins are
isolated by default, increasing the modularity and ensuring

194 c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 8 (2 0 1 0) 191–203

Fig. 1 – Visual appearance of an AIBench application with default layout showing five active areas. This main window
esen
layout can be adapted by defining which components are pr

that accidental coupling is not introduced, but they can also
interact by establishing dependencies or extension points. A
dependency between plug-ins allows one plug-in to require
other plug-ins to be present at runtime and to be allowed
to access their classes and/or resources. An extension point
declares a place where some plug-in can be extended by
another plug-in (extension), usually providing a specific inter-
face implementation.

The Core layer contains two native plug-ins: the Core and
the Workbench. The AIBench Core detects and registers the
application-specific operations, executes them upon request,
keeps the results in the Clipboard structure and stores the
session workflow in the History. The graphical user interface
aspects are implemented in the Workbench plug-in, which
creates the main application window, composes a menu bar
with all the implemented operations, generates input dialogs
when some operation is requested for execution, instanti-
ates the registered results viewers, etc. All additional services

bundled with AIBench belong to the Services layer and are
also implemented via independent plug-ins that can be eas-
ily removed to meet application-specific needs. The Core and
Services layers are maintained by the AIBench team and consti-
t in the main window and specifying their relative position.

tute all the code built-in and distributed with the framework,
being the starting point of every development.

The application layer is placed on the top of the architec-
ture and contains the application-specific code (operations,
data-types and views) provided by applications developers
(AIBench users). In this sense, when an applications devel-
oper starts using the framework, there are no operations,
data-types or views available, because these components are
problem-specific items. However, operations, data-types and
views can (and should) be shared among applications related
to the same area, especially when they are developed inside
the same team. These higher level components, along with
other third-party libraries, are also packaged in one or more
plug-ins. Finally, from the most abstract point of view, an
AIBench application can be seen as a collection of operations,
data-types and views, reusable in more than one final appli-
cation.

For the implementation of AIBench, some open-source

third-party libraries were used including the Platonos Plu-
gin Engine, BeanShell, Apache Log4J and Apache Ant. Table 1
shows a brief description of these libraries and their role in
AIBench.

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 8 (2 0 1 0) 191–203 195

Fig. 2 – Four-layer architecture of AIBench. The first three layers include the Runtime, the Core and the Services layer, which
are currently implemented in the framework. The application layer is context-dependent and contains the custom
operations, data-types and views as well as third-party libraries needed to obtain the final functionality.

Table 1 – Third-party open-source projects supporting AIBench.

Third-party library Description Role

Java SE 5.0+
http://java.sun.com/j2se/1.5.0

The Java Runtime Environment (JRE). AIBench is fully developed in Java language and
needs JRE 5.0 or later due to its strong
dependency on Java annotations.

Platonos Plugin Engine
http://platonos.sourceforge.net

A plug-in engine for Java. It allows
applications to be modularized via
packages containing code, resources and
a plug-in descriptor where relationships
between plug-ins can be established.

The main foundation of the AIBench runtime.
The Core, the Workbench, the built-in services as
well as the final application functionalities are
all plug-ins, running on top of the Platonos
Plugin Engine.

BeanShell
http://www.beanshell.org

A scripting language for the Java Virtual
Machine. It allows an application to
execute scripts without the need of
compiling them.

The Scripting service plug-in was implemented
using BeanShell which monitors the user
workflow and generates a script that can
reproduce all steps in a future session without
user interaction.

Apache Log4J
http://logging.apache.org/log4j

Library to manage log messages inside
Java applications.

AIBench includes this library to output its log
messages. In addition, the Workbench plug-in
contains a logging panel, placed by default in the
bottom of the main window. All logging
messages coming from the plug-ins are
displayed in this area. The log detail level can be
tuned in a standard Log4J configuration file.

Apache Ant
http://ant.apache.org

Utility to compile and package Java
applications.

The AIBench SDK includes an Ant script file
intended for developers using this tool instead of
Eclipse or any other IDE to build their
applications.

http://java.sun.com/j2se/1.5.0
http://platonos.sourceforge.net/
http://www.beanshell.org/
http://logging.apache.org/log4j
http://ant.apache.org/

s i n
196 c o m p u t e r m e t h o d s a n d p r o g r a m

2.2. AIBench programming concepts: operations,
data-types and views

As previously stated, every AIBench application is divided
into three kinds of components: operations, implementing the
algorithms and data processing routines, data-types, storing
relevant problem-related information and views, rendering
data-types obtained from executed operations.

AIBench operations define high-level problem-oriented pro-
cesses. Each operation is implemented through only one Java
class (which can delegate its internal behaviour to other
classes). Generally speaking, one operation is a unit of logic
with a well-defined input and output specified via a set of
ports. A port is a point where some data can be defined as
an input to the operation or can be defined as an output. A
method of the operation class is associated with each port.
There are three types of ports: IN (for input data, where the
associated method must have one parameter of the type of
the incoming data), OUT (for output data, where the associ-
ated method must not have any input parameter and its return
type must be of the type of the output data) and IN–OUT (for
both input and output data, where the method must have one
parameter for the input data and a return type for the out-
put data). Every time an operation is executed, one instance
of its class is allocated in memory and all the methods asso-
ciated to the ports are invoked in a predefined order, with the
parameters already retrieved from the user. The framework is
responsible for providing the input values, in the case of IN (or
IN–OUT) ports, and to gather the output values, in the case of
OUT (or IN–OUT) ports. To specify which methods of a given
class are ports, how they are ordered and some other specific
details, the class should be annotated with a set of predefined
annotations.

AIBench data-types are intended to support problem-
specific data structures (in-memory representation of some
stored data, models, results, etc.). Although they are as impor-
tant as operations, AIBench data-types are very simple to
implement. Any Java class can be a data-type without addi-
tional code, only the fact of being the input or output type of
some operation is required to be considered as an AIBench
data-type. However, to attain more extensive control over
data-types, the programmer can create explicit data-types.
These data-types are also classes, but with additional infor-
mation about their internal structure in order to enable
AIBench to use them for displaying their parts to the final user
in the GUI, or be selected as input in different operations.

Related to AIBench data-types and operations, the frame-
work also defines the concept of a transformer. These
abstractions are very useful when an AIBench application
invokes other third-party components (a typical task is the
need to adapt some data structures). A transformer is a
method of some class which takes an object of one type as
input and returns an object of another type. If such a method
is declared, AIBench can perform automatic data-type conver-
sions.

AIBench Views are intended to visualize the results of the

executed operations in a friendly way. In this sense, one view is
associated with a given data-type and is implemented through
a Java class ensuring two requisites: (i) it must extend the stan-
dard class JComponent and (ii) it must have a constructor with
b i o m e d i c i n e 9 8 (2 0 1 0) 191–203

only one parameter of the same type of the class it visual-
izes. Every time the framework needs to render a data-type,
AIBench automatically generates an instance of the view class
and passes the data through its constructor. Once the compo-
nent is rendered, it is displayed to the user. Views can be as
complex as needed in order to add extra interactivity in final
applications. AIBench views are not mandatory: a default view
is provided based on the standard toString method and also
including a bean property inspector.

2.3. Main features

Given the singularity of developing software in a scientific
context, AIBench provides a set of key features that are
summarized and briefly described in this section. These are
organized in (i) native functionalities, (ii) additional services
and (iii) design principles.

AIBench’s native functionalities provide the programmer
with a set of core capabilities, which are summarized in the
following items:

• Dynamic GUI generation. This is one of the most productive
features, since AIBench implements not only a graphi-
cal user interface skeleton providing a basic workspace,
but also dynamically generates complex input dialogs for
every operation (see Fig. 3), giving a valuable aid in a
time-consuming task present in every desktop application
development cycle.

• Application workflow. Once all components are implemented,
AIBench gives a classic full-useable application, which
allows the user to execute operations, define the input
parameters when needed, analyze the results in the main
window and keep all the generated information in the Clip-
board in order to be forwarded to subsequent operations.

• Customization. Although AIBench provides a default
behaviour and application aspect, it can be deeply con-
figured to meet the requisites of final applications. Such
customizable aspects include main window layout (compo-
nent presence and placement), appropriate icons, toolbar
visibility for data and operations, splash screen, custom
input dialogs, application help files, etc.

In addition, the framework is also made available including
the following service plug-ins, which are specially useful in
scientific applications:

• Automatic script construction service. In order to support work-
flow repeatability, AIBench provides a scripting plug-in
which monitors the user workflow and generates a script
that can reproduce all steps in a future session without the
user interaction. This is a very valuable feature for scien-
tific applications allowing the user to transparently create
execution macros that can be easily modified and applied to
different input data. The generated scripts are implemented
in BeanShell and can also be modified by any text editor.

• Update Manager service. Since developed applications are

structured and distributed in one or more plug-ins, this ser-
vice gives the capability of managing a customizable remote
plug-in repository to any AIBench application, where the
final user can download or update the components needed.

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 8 (2 0 1 0) 191–203 197

Fig. 3 – Dynamically generated input dialog for a given operation. The source code of the operation can be seen on the left
s with

•

•

t
f
f
m

ide and the generated dialog with all input ports rendered

This functionality dramatically eases the software mainte-
nance task by allowing final users to download updates and
bug fixes directly from their desktop.
Serialization service. In order to facilitate saving and loading
of final application data structures, this service manages
all data-types which implement the standard java interface
Serializable by automatically providing operations to support
these functionalities from hard disk.
Documentor service. During the development cycle of any
application, technical documentation about the imple-
mented components should be also carried out. The Java
language natively provides this functionality via the javadoc
utility, but not at the AIBench abstraction level. By tak-
ing into account the separation in operations, views and
data-types, the Documentor service generates a full HTML
technical report with a detailed description of all compo-
nents currently coded inside the AIBench application. Fig. 4
shows an example of the technical documentation auto-
matically generated.

Finally, AIBench follows several design principles (in order

o ensure more development productivity), taking ideas
rom our previous Java developments such as geneCBR [13],
rom which we adopted the input–process–output application

odel, and some of the most successful web frameworks such
suitable components appears on the right-side.

as Struts, Spring, Ruby on Rails and others. These design prin-
ciples include:

• MVC design. The framework is based on three main con-
cepts (data-types, views and operations) following the
well-known Model-View-Controller design pattern, encour-
aging application developers to decouple visualization and
data processing code in every AIBench-based application.
AIBench operations (Controller) are automatically triggered
when the user requests them and define the code of the
algorithms along with their I/O interface. These operations
take as input, and produce as output, instances of AIBench
data-types (Model), which can be any kind of Java class,
carrying the problem’s specific data. Finally, data-types are
presented to the user through the AIBench views (View).

• Problem independence. Although AIBench is specially
intended to support scientific and biomedical software
workflows, the framework internal architecture does not
contain any concept related to any specific discipline
like Physics, Maths, Data Mining, Vision, etc. providing
developers with a general and flexible framework.
• Non-intrusive. The application-specific implementation
(algorithms, data structures and viewers) should contain
the minimum amount of framework-related code. This
allows the developer to keep his own application core

198 c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 8 (2 0 1 0) 191–203

Fig. 4 – HTML technical documentation generated by the Documentor plug-in for an example AIBench-based application
ion s
h a d

work with Eclipse23 IDE and detailed information explaining
how to start programming with AIBench framework is avail-
able through the project website.24 In addition to using Eclipse,
(described in Section 4.3). The screenshot shows an applicat
implemented operations, data-types and views together wit

functionality clean and subsequently, to easily reuse it in
other programming environments or applications.

• Smart defaults. In order to allow the developer to deploy
applications as quickly as possible, the framework requires
only minimum configuration to execute implemented
techniques. Whenever possible, AIBench makes a default
decision in the absence of a custom value for a given param-
eter using a preconfigured setup.

3. Application deployment process

The proposed AIBench development infrastructure consists
of three major components: (i) a framework development kit
(SDK), (ii) a version control system and (iii) a community plat-
form.

The AIBench SDK is the starting point of every application,
since the source code, the resources and the configuration files
are added and/or modified in its file folder structure until the
application is complete. Fig. 5 shows the file structure of the

SDK and describes the purpose of the most important config-
uration files and folders.

Developing an application with AIBench requires opera-
tions, data-types and views (with the essential classes and
ummary containing two plug-ins, a list with several
etailed description of an operation.

resources) to be bundled into a plug-in that can consist of
a folder or a .jar file stored in the plugin src directory. A spe-
cial XML file, named plugin.xml, must be included (see Fig. 5).
This file contains essential information and customization
parameters like operations, views, transformers, custom input
dialogs or icons distributed within the plug-in, dependencies
on other plug-ins, etc.

There must be at least one plug-in developed by the pro-
grammer in every AIBench application, but it is also possible
to split the application into more than one plug-in and,
especially, reuse other plug-ins by establishing dependencies
between them. In terms of plug-ins, the operations extend
the Core plug-in while the views extend the Workbench
plug-in.

The AIBench SDK is distributed by periodically making
available stable releases and also by nightly builds automati-
cally generated with Apache Ant. The framework is ready to
23 http://www.eclipse.org/.
24 http://www.aibench.org/.

http://www.eclipse.org/
http://www.aibench.org/

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 8 (2 0 1 0) 191–203 199

Fig. 5 – AIBench SDK build environment directory structure. There are five main directories containing both framework base
fi

fi
e

t
n
t
i
c
e
t
b
I
c
b

4

T
b
e
T

les and developer oriented documentation.

nal applications can be built and deployed in a script-based
nvironment by using Apache Ant.

The AIBench project is maintained and distributed using
he concurrent CVS version control system.25 The commu-
ity platform is based on Joomla26 and provides wiki support

hrough MediaWiki,27 forum assistance by phpBB,28 bug track-
ng facilities using Bugzilla29 and an interface to the version
ontrol system. Using such a highly integrated development
nvironment, it is straightforward for the AIBench Core Team
o add more built-in plug-ins and services to the common code
ase, thereby making it directly available to other researchers.
n addition, plug-ins developed by AIBench users are also wel-
omed, especially reusable data-types and views related to any
iomedical field.

. Examples of AIBench applications
his section presents several successful applications that have
een implemented using AIBench in the field of metabolic
ngineering, biomedical text mining and functional genomics.
hese examples show real final applications, all providing

25 http://www.nongnu.org/cvs/.
26 http://www.joomla.org/.
27 http://www.mediawiki.org/.
28 http://www.phpbb.com/.
29 http://sing.ei.uvigo.es/cgi-bin/bugzilla/.
full featured user interfaces that were rapidly developed by
exploiting different framework capabilities.

4.1. In silico metabolic engineering with OptFlux

The Metabolic Engineering (ME) field is devoted to the design
of microorganisms with enhanced capabilities, regarding the
production of a target compound or any other relevant indus-
trial goal [14]. The challenge is to design strains by reaching
the ideal set of genetic modifications to apply to the wild type
in order to optimize a given objective function.

In these tasks, distinct strategies are employed to make use
of available models of metabolism together with mathemati-
cal tools to identify targets for genetic engineering. However,
the application of such optimization algorithms and even the
use of metabolic models for phenotype simulation is currently
limited to the developers of the techniques or experienced pro-
grammers, since a computational open-source platform that
provides a user standard interface is not available.

The OptFlux application (available at http://www.
optflux.org) aims to become a reference for the commu-
nity, including a number of tools to support in silico ME. The
user can load a genome-scale model (for instance using the
standard format SBML) that will serve as a basis to simulate

the wild type and mutant strains (i.e., with a set of selected
gene deletions). The simulation of these strains will be
conducted using a number of approaches (e.g. Flux-Balance
Analysis, Minimization of Metabolic Adjustment or Regula-

http://www.nongnu.org/cvs/
http://www.joomla.org/
http://www.mediawiki.org/
http://www.phpbb.com/
http://sing.ei.uvigo.es/cgi-bin/bugzilla/
http://www.optflux.org/
http://www.optflux.org/

200 c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 8 (2 0 1 0) 191–203

Fig. 6 – Screenshot of the OptFlux application. In the image some tests using the Saccharomyces cerevisiae genome-scale
model iND750 are represented. Several simulation results as well as predefined environmental conditions can be observed
in the Clipboard area. On the right-side, a graphical representation of pyruvate metabolism is shown along with the

overlapped EA optimization operation GUI.

tory On/Off Minimization of metabolic fluxes) that allow the
set of fluxes in the organism’s metabolism to be determined,
given a specific set of environmental conditions.

OptFlux also includes a number of methods for strain
optimization (i.e. metabolic target identification), includ-
ing metaheuristics such as Evolutionary Algorithms and
Simulated Annealing. These are used to reach the best
set of gene deletions that optimize a given objective (e.g.
the Biomass-Product Coupled Yield). OptFlux incorporates a
visualization tool for analyzing the model structure and sim-
ulation results that is compatible with the layout information
of CellDesigner.30 An illustration of the main OptFlux func-
tionalities developed in the AIBench framework is given in
Fig. 6.

4.2. Biomedical Text Mining support with @Note

The field of Biomedical Text Mining (BTM) has been growing
rapidly over the last few years, providing a number of valuable

methods for the automated extraction of useful knowledge
from the biomedical literature. A number of new algorithms
have been recently proposed for the main BTM tasks and
those were evaluated over several benchmarks. However, we

30 http://www.celldesigner.org/.
are still far from achieving an acceptable level regarding
the transfer of this knowledge to the biomedical research
community.

@Note [15] is a Biomedical Text Mining platform that
aims to bridge this gap. It copes with the major Informa-
tion Retrieval and Information Extraction tasks and promotes
multi-disciplinary research, providing support to three dif-
ferent usage roles: biologists, text miners and application
developers.

The workbench is meant for both BTM research and cura-
tion. On one hand, it supports regular curation activities,
providing an intuitive interface requiring no prior knowledge
of the specific technique’s implementation. On the other hand,
it is also meant for people with programming skills who might
wish to extend the workbench capabilities.

Regarding its main functionalities, @Note provides the
ability to process both abstracts and full-texts; an informa-
tion retrieval module enabling PubMed search and journal
retrieval; a pre-processing module with PDF to text conversion,
tokenisation and stopword removal; a named entity recog-
nizer based on dictionaries; a manual curation environment
and a data mining module specific for BTM tasks. Therefore,

@Note sustains the general workflow of BioTM, fully cover-
ing the main activities performed. The main functionalities of
@Note are illustrated in Fig. 7. The complete software is freely
available in http://sysbio.di.uminho.pt/anote/wiki.

http://www.celldesigner.org/
http://sysbio.di.uminho.pt/anote/wiki

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 8 (2 0 1 0) 191–203 201

Fig. 7 – Screenshot of the @Note application. Multi-project capabilities are shown in the Clipboard area. The expanded
project represents a full cycle of operations using the @Note application including: PubMed search, Information Retrieval,
D utom
p men

4
w

B
i

F
r
c

ocument Structuring and Named Entity Recognition with a
rocess is being applied to an automatically annotated docu

.3. Retrieve and manage Gene Ontology annotations

ith GOABench

iologists currently spend a lot of time and effort in search-
ng for all the available information about each small area of

ig. 8 – Screenshot of the GOABench (GO Annotations for AIBench)
endered graph together with a fully generated annotation proce
lipboard tree showed on the right-side of the main window.
atic annotation. On the right-side, a manual curation
t by using an advanced and interactive custom view.

research. This fact is hampered further by the wide variations

in terminology that may be common usage at any given time.
This inhibits effective searching by both computers and peo-
ple. For example, one database can associate a gene product
with the term ‘translation’, whereas another could use the

application. The screenshot shows a results view with a
ss dialog. Annotation results and graphs are indexed by the

s i n

r

202 c o m p u t e r m e t h o d s a n d p r o g r a m

phrase ‘protein syntheses’, making it difficult for researchers
and even harder for a computer to find functionally equivalent
terms.

In order to address these terminological issues, the Gene
Ontology (GO) project provides a controlled vocabulary to
describe gene and gene product attributes in any organism
[16]. In this context, GO defines three sub-ontologies (cellu-
lar component, biological process and molecular function)
with a direct acyclic graph structure, where the main rela-
tionships belong to the type ‘is a’. A gene product might be
associated with or located in one or more cellular compo-
nents being active in one or more biological processes, during
which it performs one or more molecular functions. Collabo-
rating databases annotate their genes or gene products with
GO terms, providing reliable references and indicating what
kind of evidence is available to support existing annotations.

The GOABench tool implements a user-friendly desktop
application with the goal of facilitating the retrieval and
automatic annotation of custom gene lists obtained by the
wet-lab users during their experiments. GOABench software
allows the user to perform several tasks including (i) retrieve
and download an up-to-date version of the Gene Ontology
database, (ii) render the ontology via interactive direct acyclic
graphs, (iii) highlight relevant terms in the ontology given a
gene list of interest and (iv) export both the graphs and the
annotation results to external formats. An example of the
GOABench software is illustrated in Fig. 8.

5. Conclusions

This paper has presented AIBench, a new Java desktop appli-
cation framework oriented to the scientific and biomedical
domain which was born inside a research group interested
in increasing its software development productivity.

AIBench provides the programmer with a proven design
and architecture. Following the MVC (model-view-controller)
design pattern, the applications developed with AIBench are
divided into three types of well-defined objects: operations,
data-types and views, which identify units of work with a very
high coherence that can be easily combined and thus reused.
This common programming model has also a direct benefit in
the application maintenance carried out by other developers
in a research team, especially by those programmers who are
familiar with AIBench.

Every AIBench-based application automatically inherits
several functionalities which are independent of the prob-
lem scope, but useful for every application like input dialog
generation, application context management, experiment
repeatability, concurrent execution of operations, etc. The
programmer can spend more time in the problem-specific
requirements rather than in the low level details. These built-
in capabilities are also highly customizable in order to meet
the final application needs. Custom input dialogs, views, icons,
and components can replace defaults without changing the
AIBench code base. In addition AIBench incorporates many

configuration options, such as component placement in the
main window, operations visibility, optional toolbar, etc.

The plug-in based architecture of AIBench allows applica-
tions to be easily developed by adding new modules, each
b i o m e d i c i n e 9 8 (2 0 1 0) 191–203

one containing a set of AIBench objects. The coarse-grained
integration between functionalities is carried out by establish-
ing dependencies between these plug-ins. This also facilitates
reusing and integrating functionalities of past and future
developments based on this framework.

The main limitation of AIBench is related to its native
input–process–output application model. In this sense, the
proposed design approach could be sometimes very coarse-
grained in order to develop highly interactive applications. In
this context, coding a new operation able to handle every user
interaction does not seem to be the best design decision. How-
ever, for most final applications the user interactive work to
be done is related to results rendering, such as sort tables,
manipulate graphs, etc. In these situations, and given the fact
that AIBench allows the programmer to provide any Java com-
ponent in order to render a specific data-type, views are the
best place to handle these minor events, and thus, to provide
the final application with more interactivity. In addition, we
have cleaned and made public many methods of the Core and
Workbench plug-ins. Through their API, the programmer can
interact with the AIBench kernel in order to trigger operations,
listen to operation start and finish events, directly fetch data
from the Clipboard, etc. The so-called Service plug-ins make
extensive use of the Core and Workbench API.

AIBench is free software (under the terms of the GNU Lesser
General Public License) and both the source code and the SDK
can be downloaded from its website. Recently we have opened
the CVS access to the source code and installed some other
collaborative tools such as a wiki and a discussion forum.

6. Mode of availability

The AIBench SDK and source code are freely available from
the project homepage on http://www.aibench.org and licensed
under the terms of the GNU Lesser General Public License.

Acknowledgements

This work was partially supported by the Integrated Action
Development of computational tools for cancer diagnosis using gene
expression data (HP2006-0125) between Portugal (University of
Minho) and Spain (University of Vigo), the project Development
of biomedical applications (09VIB10) from University of Vigo and
the project MEDICAL-BENCH: Platform for the development
and integration of knowledge-based data mining techniques
and their application to the clinical domain (TIN2009-14057-
C03-02) from Ministry of Science and Innovation. D. Glez-Peña
acknowledges Xunta de Galicia (Spain) for the program María
Barbeito. We would also like to thank all those involved in the
implementation of the OptFlux, @Note and GOABench appli-
cations referred to in Section 4, namely: Isabel Rocha, Anália
Lourenço, Eugénio Ferreira, Pedro Evangelista, Rafael Carreira,
José P. Pinto, Rubén Romero, Pablo Ferreiro and José R. Méndez.

e f e r e n c e s
[1] J.C. Wooley, H.S. Lin, Catalyzing Inquiry at the Interface of
Computing and Biology, The National Academies Press,
Washington, DC, 2005.

http://www.aibench.org/

i n b
c o m p u t e r m e t h o d s a n d p r o g r a m s

[2] P.J. Embi, P.R. Payne, Clinical research informatics:
challenges, opportunities and definition for an emerging
domain, Am. Med. Inform. Assoc. 16 (2009) 316–327.

[3] J. Nakaya, The Translational Research Informatics (TRI), Int.
J. Comput. Sci. Netw. Secur. 6 (2006) 7A.

[4] M.E. Fayad, D.C. Schmidt, R.E. Johnson, Building Application
Frameworks: Object-Oriented Foundations of Framework
Design, John Wiley & Sons, New York, 1999.

[5] G. Benson, Web server issue, Nucleic Acids Res. 36 (2008),
doi:10.1093/nar/gkn381, W1.

[6] I. Wolf, M. Vetter, I. Wegner, T. Böttger, M. Nolden, M.
Schöbinger, M. Hastenteufel, T. Kunert, H.P. Meinzer, The
medical imaging interaction toolkit, Med. Image Anal. 9 (6)
(2005) 594–604.

[7] J. Rexilius, W. Spindler, J. Jomier, M. Koenig, H. Hahn, F. Link,
H. Peitgen, A framework for algorithm evaluation and
clinical application prototyping using ITK, in: MICCAI
Workshop on Open Science (MICCAI’05), The Insight Journal,
2005.

[8] A. Enquobahrie, P. Cheng, K. Gary, L. Ibanez, D. Gobbi, F.
Lindseth, Z. Yaniv, S. Aylward, J. Jomier, K. Cleary, The
Image-Guided Surgery Toolkit IGSTK: an open source C++
software toolkit, J. Digit Imaging 20 (Suppl. 1) (2007)
21–33.
[9] B. von Rymon-Lipinski, T. Jansen, Z. Król, L. Ritter, E. Keeve,
JULIUS—an extendable application framework for medical
visualization and surgical planning, in: Computer Assisted
Radiology and Surgery (CARS’01), International Congress
Series, Elsevier, 2001, pp. 184–189.
i o m e d i c i n e 9 8 (2 0 1 0) 191–203 203

[10] E. Samset, A. Hans, J. von Spiczak, S. DiMaio, R. Ellis, N. Hata,
F. Jolesz, The SIGN: a dynamic and extensible software
framework for image-guided therapy, in: MICCAI workshop
on Open Source and Data for Medical Image Computing and
Computer-Assisted Intervention (MICCAI’06), The Insight
Journal, 2006.

[11] M. Viceconti, C. Zannoni, D. Testi, M. Petrone, S. Perticoni, P.
Quadrani, F. Taddei, S. Imboden, G. Clapworthy, The
multimod application framework: a rapid application
development tool for computer aided medicine, Comput.
Methods Programs Biomed. 85 (2) (2007) 138–151.

[12] T. Rudolph, M. Puls, C. Anderegg, L. Ebert, M. Broehan, A.
Rudin, J. Kowal, MARVIN: a medical research application
framework based on open source software, Comput.
Methods Programs Biomed. 91 (2) (2008) 165–174.

[13] D. Glez-Peña, F. Díaz, J.M. Hernández, J.M. Corchado, F.
Fdez-Riverola, geneCBR: a translational tool for
multiple-microarray analysis and integrative information
retrieval for aiding diagnosis in cancer research, BMC
Bioinformatics 10 (2009) 187.

[14] G. Stephanopoulos, A. Aristidou, J. Nielsen, Metabolic
Engineering, Academic Press, San Diego, 1998.

[15] A. Lourenço, R. Carreira, S. Carneiro, P. Maia, D. Glez-Peña, F.
Fdez-Riverola, E.C. Ferreira, I. Rocha, M. Rocha, @Note: A

workbench for biomedical text mining, J. Biomed. Inform. 42
(4) (2009) 710–720.

[16] Gene Ontology Consortium, The Gene Ontology (GO)
database and informatics resources, Nucleic Acids Research
32 (Database issue) (2004) D258–261.

	AIBench: A rapid application development framework for translational research in biomedicine
	Introduction
	The AIBench application framework
	Framework architecture
	AIBench programming concepts: operations, data-types and views
	Main features

	Application deployment process
	Examples of AIBench applications
	In silico metabolic engineering with OptFlux
	Biomedical Text Mining support with @Note
	Retrieve and manage Gene Ontology annotations with GOABench

	Conclusions
	Mode of availability
	Acknowledgements
	References

