An acid-stable laccase from *Sclerotium rolfsii* with potential for wool dye decolourization

S. Ryan a,c, W. Schnitzhofer b, T. Tzanov b, A. Cavaco-Paulo b, G.M. Gübitz a,c,∗

a Sucher & Holzer GmbH, Alberstrasse 4, A-8010 Graz, Austria
b Department of Textile Engineering, University of Minho, 4800 Guimaraes, Portugal
c Department of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, A-8010 Graz, Austria

Received 17 July 2002; received in revised form 30 April 2003; accepted 3 May 2003

Abstract

The plant pathogen basidiomycete *S. rolfsii* secretes two laccases (SRL1 and SRL2) with molecular weights of 55 and 86 kDa, respectively. Laccase production was shown to be inducible by the addition of 2,5-xylidine to the cultural media. After treatment with a combination of chitinase and β-1,3-glucanase, two different laccases were isolated from the sclerotia depending on the stage of sclerotia development. The more prominent laccase, SRL1, was purified and found to decolourize the industrially important wool azo dye Diamond Black PV 200 without the addition of redox mediators. The enzyme (pI 5.2) was active in the acidic pH range, showing an optimal activity at pH 2.4, with ABTS as substrate. The optimum temperature for activity was determined to be 62 °C. Enzyme stability studies revealed that SRL1 was notably stable at 18 °C and pH 4.5, retaining almost full activity after a week. Oxidation of tyrosine was not detectable under the reaction conditions but the enzyme did oxidize a variety of the usual laccase substrates. SRL1 was strongly inhibited by sodium azide and fluoride. Dye solutions decolourized with the immobilized laccase were successfully used for redyeing.

© 2003 Elsevier Inc. All rights reserved.

Keywords: Laccase; *Sclerotium rolfsii*; Purification; Characterization

1. Introduction

Laccases (benezenediol:oxygen oxidoreductase, EC 1.10.3.2) are multinuclear copper-containing enzymes that catalyse the oxidation of a variety of phenolic and inorganic compounds, with the concomitant reduction of oxygen to water [1]. Although primarily originating from fungi [2,3], laccases are widely distributed in nature and have also been detected in plants [4], insects [5] and bacteria [6]. These oxidative enzymes are particularly abundant in white-rot basidiomycete fungi, which are capable of degrading lignin in vivo. Accordingly, this class of fungi has been extensively researched as potential producers of laccase activity. To date, extracellular laccases have been purified from numerous fungal sources such as *Pleurotus eryngii* [7], *Coriolus hirsutus* [8] and *Pycnoporus cinnabarinus* [9].

Due to their wide substrate specificity laccases have gained much attention over the last number of years in many industrial and environment fields. Of particular commercial interest is the potential use of these enzymes to decolourize dyes. By means of enzymatic catalyzed oxidative reactions, laccase can detoxify phenolic contaminants, such as aromatic amines, to harmless/less harmful products [10]. The suitability of laccases for such processes has been known for some time [11] and successful results achieved have been well documented by our group [12] and others [13,14]. These being of primary importance to the textile industry, dyes and dyestuffs are commonly used in the pharmaceutical, food, cosmetic and leather industries. Stringent environmental legislation imposed to control the release of dyestuffs in wastewater poses particular problems for the textile industry. Up to 20% of dye is lost into the wastewater during the dyeing process although this figure depends on the class of dye application. It is known that 90% of reactive textile dyes entering activated sludge sewage treatment plants will pass through unchanged and be discharged to rivers [15]. Laccases, especially when used immobilized on carrier materials, are seen as attractive options in the development of an effective strategy for the biological treatment of wastewater. In particular, the reuse of enzymatically treated dyeing effluents could help to reduce water consumption [16].
The process of wool dyeing, carried out in the acidic pH range from pH 3.8 to 4.4 uses primarily acid dyes which promote the adhesion of the dye through ionic interactions between the dye and the wool. Acid dyes have hydroxyl, carboxyl or sulphonic groups with an overall negative charge. The enzymatic elimination of these dyes from the dyeing effluent requires an acid-stable laccase. The phytopathogenic fungus, Sclerotinia rolfsii, which secretes an acid-stable laccase has been investigated in this study in terms of purification, biochemical characterization and for the ability of its laccase to decolourize acidic dyes. Although S. rolfsii has been extensively studied as a producer of cellulolytic and hemicellulolytic enzymes [17,18], its capacity to produce oxidative enzymes has been explored to a lesser extent [19]. Furthermore, until now there is no information available on whether the laccases produced during the formation of sclerotia are different to those secreted by the mycelium of S. rolfsii [20].

Sclerotia are small, compact, usually spherical reproductive bodies, comprising of a cell wall containing three layers; and ranging in size from 100 mm (plant pathogens) to 1 cm in omnivorous types. Sclerotia have a high resistance to chemical and biological degradation and play a vital role in the survival of the organism for extended periods of time [21]. Two types of germinating patterns exist: Carpogenic sclerotia, which produces a sexual fruiting body, as seen in the species Claviceps, and the second form of sclerotia production, called Myceliogenic sclerotia, characteristic of S. rolfsii, develop from repeated localized hyphal branching followed by adhesion of the branches. Outer hyphae are crushed to form the rind of thick-walled melanized cells while the inner tissue stores nutrient reserves and become swollen, with extended vacuoles [21]. Laccases can be involved in pigment synthesis (polymerization of melanin) in differentiated fungal structures as shown for Aspergillus nidulans [22]. Laccases produced by S. rolfsii during formation of sclerotia and secreted by the mycelium could have different specificities and stabilities and thus, show a different behavior in dye degradation.

2. Materials and methods

2.1. Organism and culture conditions

S. rolfsii (CBS 350.80) was obtained from the University of Agriculture Science, Vienna, Austria. The culture was maintained on PDA-agar plates grown at 30°C, stored at 4°C and subcultured monthly. For laccase production S. rolfsii was grown in 1000 ml Erlenmeyer flasks at 30 ± 1°C on an orbital shaker at 150 rpm using 300 ml culture medium containing the following ingredients: 42.6 g cellulose, 40 g meat peptone, 2.5 g NH4NO3, 1.5 g MgSO4·7H2O, 1.0 g KH2PO4, 0.5 g KCl, and 300 μl trace element solution [23] in 11 distilled water. The initial pH was adjusted to 5.5 and the growth medium was sterilized at 121°C for 15 min prior to inoculation with 1 cm2 discs of fungus growing on agar plates.

In order to induce laccase activity various phenolic agents (1 g l−1) were added through sterile filters to the fermentation broth at the point of inoculation. These included caffeic acid, ferulic acid, gallic acid and pectin. 2,5-Xyline in concentrations ranging from 10 to 100 μM was added to the culture medium after three days of cultivation. For the purpose of enzyme purification 10 μM of 2,5-xylene plus 1% pectin was used to stimulate laccase activity. The fermentation continued for a total of 9 days after which the culture supernatant was harvested by centrifugation at 10,000 × g for 10 min.

2.2. Production of sclerotia

On agar plates, sclerotia development was visible after 9 days of growth. These structures were white (W) in appearance and matured to a light brown (LB) colour within another 6 days. The final stage of maturity was attained on approximately day 20 of growth when the sclerotia developed into a dark brown (DB) colour, characteristic of the mature sclerotia of the species. This process of sclerotia formation was continuous and at various stages of growth all forms were simultaneous present on the plate.

Sclerotia were harvested at the white (W), light (LB) and dark brown (DB) stages of development. To achieve this they were gently picked from their stems to detach them from the mycelial bed. Sclerotia were subsequently placed in a sieve and washed repeatedly with distilled water to remove any mycelia that remained attached. The wet weight (g) of the sclerotia was determined. Samples were ground using a mortar and pestle after which they were transferred to centrifuge tubes. Centrifugation at 8000 rpm and for 10 min was used to separate the insoluble material. The supernatant containing the enzyme of interest was decanted. The pellet was subsequently washed with 50 mM sodium-acetate buffer (pH 4.0) and re-centrifuged. The supernatant was added to that collected after the first centrifugation step. This sample was kept at 4°C for future analysis and the pellet discarded. After some weeks of growing on agar plates a brown/yellow liquid was secreted onto the surface. This liquid (L) was also harvested, assayed for laccase activity and developed on SDS non-denaturing gels.

Trichoderma harzianum was cultivated and the major chitinase and β-1,3-glucanase purified as previously described [24]. Mature sclerotia were harvested and incubated overnight with chitinase and/or endoglucanase enzymes at 30°C. After 24h the samples were centrifuged and the pellet removed while the supernatant was assayed to determine if the added hydrolytic activities successfully degraded the sclerotia cell wall and released the laccase activity. Control samples were run in parallel with buffer instead of enzyme.

2.3. Enzyme and protein assay

Laccase activity was measured at 25°C by following the change in optical density at 436 nm using ABTS as substrate.
In the preparation of the enzyme, proteins were precipitated from the culture supernatant by the gradual addition of ammonium sulphate up to 85% saturation. The resultant pellet was resuspended in 10 mM sodium acetate buffer, pH 4.75 and (NH₄)₂SO₄ was added to a final concentration of 1.1 M. It was then loaded onto a Phenyl Sepharose CL-4B (Pharmacia) column (70 ml, pre-equilibrated with 1.1 M (NH₄)₂SO₄. Laccase active fractions were pooled, concentrated and dialysed against 10 mM sodium acetate buffer, pH 4.75. The active fractions that remained bound to the column after the wash were eluted by a linear gradient of 1.1–0.0 mM (NH₄)₂SO₄. Laccase active fractions were pooled, concentrated and dialysed against 10 mM sodium acetate buffer, pH 4.75 and applied to a Q-Sepharose FF (Pharmacia) column (10 ml) pre-equilibrated with 10 mM sodium acetate buffer, pH 4.75. The active fractions that remained bound to the column after the wash were eluted by a linear gradient of 0–0.5 M NaCl. The fractions were subsequently pooled, concentrated and dialysed against 1.0 mM sodium phosphate buffer pH 6.8. The active fractions were pooled, concentrated and dialysed against 10 mM sodium acetate buffer, pH 4.75 and applied to a mini-PROTEAN 3 cell from Bio-Rad using IEF Ready Gels (pH 3–10, Bio-Rad). Protein was visualized using Coomassie Blue.

2.6. Determination of temperature and pH optima and stabilities

Optimum temperature for the activity of the laccase was determined by carrying out the standard laccase assay at selected constant temperatures ranging from 25 to 65 °C. In each case the substrate was preincubated at the required temperature. The pH optimum was determined at a fixed assay temperature of 30 °C at various pH values between pH 2.2 and 7.0 using McIlvaine-type constant ionic strength citrate-phosphate buffer. In order to study the thermal stability, diluted enzyme samples (100 mM succinate buffer, pH 4.5) were incubated for fixed time periods at 30, 60, 80 °C. At time intervals, the pH of the incubation mixture was measured and aliquots were withdrawn and cooled on ice before assaying to determine the residual enzyme activity, using the normal assay procedure. The stability of the enzyme at various pH values was determined by preincubating the enzyme at the desired pH for a fixed period at 30 °C. Residual enzyme activity was determined using the standard assay procedure.

2.7. Kₘ and Vₘₐₓ determination

Kₘ and Vₘₐₓ constants were determined using various concentrations of ABTS (0.05–20 mM) and syringaldazine (4-hydroxy-3,5-dimethoxybenzaldehyde azine; 2–85 μM) as substrate using the normal assay procedures. The experimental data were analyzed according to the Michaelis–Menten assay temperature of 30 °C at various pH values between pH 2.2 and 7.0 using McIlvaine-type constant ionic strength citrate–phosphate buffer. In order to study the thermal stability, diluted enzyme samples (100 mM succinate buffer, pH 4.5) were incubated for fixed time periods at 30, 60, 80 °C. At time intervals, the pH of the incubation mixture was measured and aliquots were withdrawn and cooled on ice before assaying to determine the residual enzyme activity, using the normal assay procedure. The stability of the enzyme at various pH values was determined by preincubating the enzyme at the desired pH for a fixed period at 30 °C. Residual enzyme activity was determined using the standard assay procedure.

2.7.1. Enzyme immobilization

Alumina pellets were silanized at 45 °C for 24 h in a 2.5% (v/v) solution of 3-aminopropyltriethoxy silane in acetone. The silanized pellets were washed with distilled water and immersed in 2% (v/v) aqueous glutaraldehyde for 2 h at 20 °C. Thereafter, the pellets were incubated with 60 mg l⁻¹ of the crude enzyme preparation (obtained after ammonium sulphate precipitation of the culture filtrate) for 5 h at 20 °C. The immobilized enzyme pellets were washed with potassium phosphate buffer (100 mM, pH 7.0) and kept refrigerated until further use.

2.8. Decolourization experiments

The reaction mixture consisted of a final volume of 1 ml and contained 50 μl enzyme (3.3 nkat ml⁻¹ final activity), buffer (50 mM sodium acetate, pH 4.5) and Diamond Black (DB) (Dye Star, maximum absorption 536 nm) dye solution at a specified concentration. The reaction was carried out at 40 °C and the colour change monitored spectrophotometrically from 700 to 400 nm. Control samples, containing denatured enzyme, were run in parallel under identical conditions. Alternatively, the dye solution was continuously pumped (0.1 ml⁻¹ min, dual-piston-pump) through a column.
(15 mm × 300 mm) filled with immobilized laccase corresponding to about 30 nkat total laccase activity. Both column reactors and the flow cell were kept at 30 °C. Decolourization was monitored on a spectrophotometer equipped with a flow cell.

2.9. Dyeing in enzymatically decolourised textile effluents

100% wool fabrics (samples of 0.5 g) were dyed with C.I. Acid Blue 113 and C.I. Acid Yellow 49 (0.5, 1 and 1.5% o.w.f. depth of shade) using an Ahiba Spectradye dyeing apparatus (Datacolor International, Luzern, Switzerland). The dyebaths were prepared with enzymatically decolourised liquors. Since starting concentrations of dyes in decolourization experiments were higher than in industrial effluents (to facilitate spectrophotometric monitoring) the decolourized solutions were diluted appropriately (1:3) with 0.1 M sodium acetate buffer, pH 5. The dye was added at 50 °C, and the temperature was raised to 100 °C with 1 °C min−1; at 100 °C the dyeing continued for 1 h. Colour differences of the dyed fabrics were determined using a reflectance measuring apparatus (Spectraflash 600 from Datacolor, Luzern, Switzerland) according to the CIELAB colour difference concept at standard illuminant D65 (LA V/Spec. Excl., d/8, D 65 /10°) with a colour tolerance interval of one CIELAB unit.

3. Results and discussion

3.1. Induction of laccase in liquid culture

Although laccase activity is apparently constitutive in most basidiomycetes, inducers such as aromatic substances have been reported to enhance activity [9,26–28]. To investigate the effect of some known laccase inducers, the growth medium of S. rolfsii was supplemented with different phenolic compounds. Growth was monitored using caffeic acid, ferulic acid, gallic acid, pectin, 2,5-xylidine and 2,5-xylidine plus pectin as inducers. The time course of laccase production revealed a steady increase in activity detectable in the extracellular fluid. A selection of the data is presented in Fig. 1. A moderate increase in specific activity was detected after the addition of xylidine alone. However, a combination of both xylidine and pectin (day 3) resulted in a dramatic increase in activity on day 9 and then decreased sharply towards the end of the experiment.

Interestingly, polygalacturonase (PG) activity was also increased by the inclusion of xylidine in the culture media (data not shown). It has been previously reported that pectin acts as a second inducer of extracellular laccase formation by Botrytis cinerea, in the presence of a phenolic substance as a first inducer, but pectin alone failed to induce enzyme formation [29]. Similar findings were noted when S. rolfsii was cultivated on a pectin induced medium without the phenolic inducer, xylidine. Experiments to determine if xylidine was toxic to the fungi at higher concentrations revealed that similar levels of activity were reached regardless of the concentration over a test range of 1.0–0.1 mM. The other inducers assessed resulted in a significant decrease in the level of laccase activity.

As previously noted with other fungal species which included P. cinnabarinus [30], Rigidoporus lignosus [31], Trametes pubescens [32] and Phanerochaete chrysosporium [33] more than one extracellular laccase isoform is often produced during cultivation. S. rolfsii secreted two electrophoretically distinct proteins displaying laccase activity. Their molecular masses were 55 and 86 kDa, respectively, as determined by SDS–PAGE with activity staining (Fig. 2). In general, after Coomassie Blue staining the same pattern of bands on SDS–PAGE gels was obtained regardless the temperature used for sample pretreatment (boiling or 50 °C for activity staining).

3.2. Laccases from sclerotia

Sclerotia grew increasingly dense as they reached maturity and a liquid, yellow in colour was secreted from the sclerotia.

![Fig. 1. Time course of laccase production by S. rolfsii in response to inducers added on day 3.](image1)

![Fig. 2. Coomassie Blue and ABTS stained SDS–PAGE gel. Lane 1—LB (light brown), lane 2—DB (dark brown), lane 3—W (white), lane 4—L (liquid), lane 5—purified laccase, lane 6—crude extracellular laccases and lane 7—molecular weight standards (kDa).](image2)
<table>
<thead>
<tr>
<th>Stage of development</th>
<th>Weight of sclerotia harvested (mg)</th>
<th>Total laccase activity (nkat)</th>
<th>Protein (μg·ml⁻¹)</th>
<th>Laccase activity per wet weight (nkat/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White (W)</td>
<td>50</td>
<td>0.156</td>
<td>16</td>
<td>3.1</td>
</tr>
<tr>
<td>Light brown (LB)</td>
<td>110</td>
<td>0.378</td>
<td>17</td>
<td>3.5</td>
</tr>
<tr>
<td>Dark brown (DB)</td>
<td>50</td>
<td>0.346</td>
<td>12</td>
<td>6.9</td>
</tr>
<tr>
<td>Liquid n.a.</td>
<td>0.384</td>
<td>17</td>
<td>n.a.</td>
<td></td>
</tr>
</tbody>
</table>

n.a.: not applicable.

apparently at the DB stage of development. This was assayed for laccase activity which was detected. Laccase activity, although present in all stages of sclerotia development, was slightly more predominant in the DB sclerotia (Table 1).

In order to determine if the mycelial and sclerotial laccases had different molecular masses samples harvested from the various stages of growth were separated on SDS-gels. From the activity stain (ABTS) it was clear that the sclerotial laccases had identical Mᵣ to those of the extracellular laccases secreted by the fungi when grown on liquid media, i.e. 55 and 86 kDa, respectively (Fig. 2). It appears that the higher molecular weight laccase is present in the white sclerotia, as the development continues the second laccase appears. It is thought that the laccases are involved in the pigmentation of the sclerotia.

Since only low amounts of laccase could be isolated from sclerotia, an enzymatic method for the hydrolysis of sclerotia was developed. The fungal wall usually consists of layers of chitin, a linear polysaccharide polymer of N-acetylglucosamine, embedded in and often covered by glucans, branched polymers of glucose and other sugars. It was supposed that the action of chitinase together with β-1,3-glucanase could act to hydrolyse the chitin and β-1,3-glucan from the cell walls of the sclerotia structure and release the laccase activity. The 43 kDa chitinase and 74 kDa β-1,3-glucanase were purified from the Trichoderma harzianum T24 culture filtrate as described previously [24].

When the harvested sclerotia were incubated separately with either of the two purified hydrolases, the laccase activity detectable in the supernatant was higher than that of the control (Table 2). When β-1,3-glucanase was applied directly to the sclerotia, an increase of 36% in laccase activity was observed compared to the buffer alone. The combined treatment of chitinase and β-1,3-glucanase resulted in a substantial increase in the laccase activity detectable, 4.5 times greater than the control sample. This result suggests that when loaded together the enzymes acted in a synergistic manner leading to an increase in the laccase levels present in the supernatant. Synergistic interactions between chitinase and β-1,3-glucanase during biocontrol of S. rolfsii have previously been described [24].

3.3. Purification and molecular properties

The lower molecular weight laccase SRL1, which was secreted in much higher amounts than the higher molecular weight laccase SRL2, was purified to homogeneity from the culture filtrate of S. rolfsii cells cultivated on liquid media. The purified enzyme was found to have an Mᵣ of 55 kDa, which is in agreement with the molecular mass reported for many fungal laccases [2,3]. A purification of 183 fold was achieved with a final yield of 12%. The isoelectric point of the pure enzyme was determined to be 4.7 using IEF. Some properties of SRL1 are shown in Table 3. The 55 kDa enzyme was very active in the acidic pH range, showing a peak at pH 2.4 and a rapid decline in activity above pH 6.0, with ABTS as substrate. This property of SRL1 could potentially be exploited in the textile industry where acidic conditions predominate in wool dyeing. It should be noted however that the optimal pH for laccase activity is substrate dependent [34]. The optimum temperature for activity was determined to be 62 °C. Enzyme stability studies revealed that SRL1 was highly stable at 18 °C and pH 4.5, retaining almost full activity after a week.

3.4. Kinetic properties and substrate specificity

The apparent Kₘ and Vₘₙₐₓ values of SRL1 were determined to be 2.2 ± 0.03 mM and 1.70 ± 0.04 nkat ml⁻¹, respectively, with ABTS as substrate. When using

Table 2
Enzymatic treatment of sclerotia from S. rolfsii

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sclerotia weight (g)</th>
<th>Laccase activity (nkat·ml⁻¹)</th>
<th>Volume of sample (ml)</th>
<th>Total activity (nkat)</th>
<th>Activity/mg sclerotia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chitinase + β-1,3-glucanase</td>
<td>0.76</td>
<td>0.56</td>
<td>1.20</td>
<td>0.67</td>
<td>0.87</td>
</tr>
<tr>
<td>β-1,3-Glucanase</td>
<td>0.72</td>
<td>0.31</td>
<td>0.60</td>
<td>0.19</td>
<td>0.26</td>
</tr>
<tr>
<td>Chitinase</td>
<td>0.68</td>
<td>0.26</td>
<td>0.60</td>
<td>0.16</td>
<td>0.23</td>
</tr>
<tr>
<td>Buffer</td>
<td>0.71</td>
<td>0.23</td>
<td>0.60</td>
<td>0.14</td>
<td>0.19</td>
</tr>
</tbody>
</table>
syringaldazine as substrate, the apparent \(K_m \) and \(V_{\text{max}} \) values were estimated to be 0.087 ± 0.005 mM and 3.18 ± 0.02 nkat ml\(^{-1}\), respectively. When compared with other fungal laccases, SRL1 has high \(K_m \) values with 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and syringaldazine as substrates. Using syringaldazine as the substrate, laccases purified for both \(T. villosa \) and \(R. vernicifera \) have \(K_m \) values of 0.058 and 0.043 mM, respectively [35].

The purified laccase was able to oxidize a diverse range of phenolic substrates as indicated by the increase in optical density measured at the appropriate wavelength (Table 5). While several of the compounds tested were oxidised by the laccase, syringaldazine appeared to be the best substrate.

Table 3

<table>
<thead>
<tr>
<th>Purification step</th>
<th>Total protein (mg)</th>
<th>Total activity (nkat)</th>
<th>Specific activity (nkat mg(^{-1}))</th>
<th>Yield (%)</th>
<th>Purification factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture extract</td>
<td>362</td>
<td>720</td>
<td>1.9</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>75% (NH(_4))SO(_4)</td>
<td>308</td>
<td>616</td>
<td>2.0</td>
<td>85</td>
<td>1.02</td>
</tr>
<tr>
<td>Phenyl-Sepharose</td>
<td>33.8</td>
<td>431</td>
<td>12.8</td>
<td>60</td>
<td>7</td>
</tr>
<tr>
<td>QFF</td>
<td>3.04</td>
<td>209</td>
<td>68.8</td>
<td>29</td>
<td>42</td>
</tr>
<tr>
<td>Hydroxapatite</td>
<td>0.35</td>
<td>86</td>
<td>245</td>
<td>12</td>
<td>183</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight</td>
<td>59 kDa</td>
</tr>
<tr>
<td>Isoelectric point (pI)</td>
<td>5.2</td>
</tr>
<tr>
<td>Specific activity</td>
<td>245 nkat mg(^{-1})</td>
</tr>
<tr>
<td>pH optimum</td>
<td>2.4</td>
</tr>
<tr>
<td>T optimum</td>
<td>62 °C</td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Concentration (mM)</th>
<th>Wavelength (nm)</th>
<th>Percentage activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syringaldazine</td>
<td>0.5</td>
<td>525</td>
<td>100</td>
</tr>
<tr>
<td>ABTS</td>
<td>5</td>
<td>420</td>
<td>82</td>
</tr>
<tr>
<td>2,6-DMP</td>
<td>5</td>
<td>470</td>
<td>60</td>
</tr>
<tr>
<td>Guaiacol</td>
<td>5</td>
<td>436</td>
<td>21</td>
</tr>
<tr>
<td>Catechol</td>
<td>5</td>
<td>450</td>
<td>11</td>
</tr>
<tr>
<td>Lignin sulfonic acid</td>
<td>3</td>
<td>570</td>
<td>0.9</td>
</tr>
<tr>
<td>Pyrogallol</td>
<td>5</td>
<td>450</td>
<td>7</td>
</tr>
<tr>
<td>1,4-Fenilenediamine</td>
<td>5</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>Fumic acid</td>
<td>5</td>
<td>287</td>
<td>0</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>3</td>
<td>280</td>
<td>0</td>
</tr>
</tbody>
</table>

Values are given in percentage of activity in nkat ml\(^{-1}\) measured at standard conditions.

Typical of fungal laccases, this enzyme was unable to oxidize the simple phenolic compound, tyrosine [36,37].

3.5. Effect of inhibitors

The effects of a number of possible laccase inhibitors are shown in Table 6. As expected the most potent of the inhibitors assessed was sodium azide (NaN\(_3\)), requiring the presence of 9.0 \(\mu \)M to effect a 50% drop in laccase activity. The binding of NaN\(_3\) to the types 2 and 3 copper sites effects internal electron transfer, thus inhibiting the activity of the laccase. The sensitivity of SRL1 to this inhibitor is demonstrated by the fact that enzyme activity was inhibited by approximately 30% by the presence of 3.3 \(\mu \)M NaN\(_3\).

These findings are in keeping with the general properties of laccase from a diverse range of fungal sources [38,39]. Addition of a water miscible solvent, such as ethanol or methanol, effected a decrease in enzyme activity, similar to those reported for the \(C. unicolor \) laccase where ABTS was also used as the substrate [39]. However, organic solvents change the pH of aqueous solutions and hence, more factors could be contributing to the experimental data obtained [40]. Laccases are inhibited by metal chelators such as EDTA and more strongly by the copper chelators diethyldithiocarbamate (DDC) [2,41]. Type 1 copper can be easily removed by forming a complex since it is exposed to solvents [42]. EDTA up to a concentration of 300 mM showed no effect on SRL1. DDC (I\(_{50}\) = 1.2 mM) strongly inhibited the enzyme like many other fungal laccases such as those from \(C. unicolor \).
NaO3S
OH
OH
Fig. 3. Chemical structure of Diamond Black PV 200 (2-amino-1-phenol-4-sulfonic acid → 1,5-naphthalenediol).

as from \textit{P. cinnabarinus} [43], from \textit{B. cinerea} [44], from \textit{Pleurotus ostreatus}, from \textit{Trametes versicolor} [2] and \textit{T. hirsuta} [45] where the \textit{I}_{50} values were below 1 mM. Among the halogens tested, fluoride was the strongest inhibitor as shown previously in the literature [46].

3.6. Dye decolourization

A number of textile dyes was decolourized by SRL1 including, Remazol Brilliant Red, Indigo and Lancet Marine Blue (data not shown). Decolourization of Diamond Black PV 200 (MW 350.26), otherwise known as Mordant Black 9 or Eriochrome Black PV was investigated in more detail in this study since this dye is used in much higher quantities than any other dye in a collaborating German wool company. This acid-aniline dye contains a sulfonic group that imparts water solubility on the dye (Fig. 3). The dye was found to be a suitable substrate for the purified laccase and the addition of redox mediators was not necessary. Within a 55-min period the textile dye appeared to be completely degraded due to the laccase activity (Fig. 4). The kinetic parameters of laccase oxidation of the dye were described using the Michaelis–Menten model.

The apparent \(K_m \) was estimated to be 16.8 ± 2.6 \(\mu \text{M} \) DB or 5.9 ± 0.9 mg l\(^{-1}\) DB and the \(V_{\text{max}} \) was 1.34 \(\mu \text{M} \) min\(^{-1}\).

Several other lignolytic fungi were shown to degrade azo dyes investigated including \textit{P. chrysosporium} [47,48], \textit{T. versicolor} [49], \textit{T. modesta} [50] and \textit{Aspergillus niger} [51].

Previously, a purified laccase from \textit{A. niger} was shown to decolourize one of four diazo dyes tested, demonstrating a specificity for the type or position of substituents on the phenolic ring of the dye structure [14]. However, in most of these studies crude enzyme preparations or fungal cultures were used. One disadvantage of using fungal cultures to effect dye degradation is the accumulation of biomass.

From an industrial point of view it would be simpler to add a laccase solution directly into the wastewater. An attractive feature of this enzyme is the fact that it does not require redox mediators to function efficiently in dye biotransformation. For the treatment of wool dyeing effluents with low pH values, an acid stable laccase would be desirable. Consequently, the laccase from \textit{S. rolfsii}, which is very stable in the acidic pH range, may prove to be successful on an industrial scale. Immobilisation of the laccase could further reduce cost of the enzyme and avoid interaction of the enzyme protein with dyes when the treated effluents are reused in dyeing [45].

3.7. Redyeing

The crude laccase was immobilized on alumina support. Eighty-three percent of the protein bound to the carrier, corresponding to 0.13 mg g\(^{-1}\) alumina and 72% of the laccase activity was retained on the carrier material. Previously, between 70 and 98% of the protein immobilised and 67–96% of laccase activity, recovery was reported with different carrier materials [52–54]. Out of a number of different carrier materials previously tested for laccase immobilization such as activated carbon [55], EupergitC [56], Sepharose [57], silica-based matrices [58] and porous glass [53–59] only alumina was used in this study as it seems to be more suitable.

<table>
<thead>
<tr>
<th>Depth of shade (% o.w.f.)</th>
<th>Colour difference, (\Delta E^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liquor 1</td>
</tr>
<tr>
<td>0.5%</td>
<td>2.9</td>
</tr>
<tr>
<td>1.0%</td>
<td>1.0</td>
</tr>
<tr>
<td>1.5%</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Fig. 4. Absorbance spectra of DB (20 mg l\(^{-1}\)) after treatment with the \textit{S. rolfsii} laccase. The scans were performed at 12 min intervals.
for application in dye decolourization, due to its mechanical stability.

Dyeing effluents decolourized with the immobilized lac-
case were suitable for redyeing (Table 7), providing consid-
erable fresh water saving. The ΔE* values for redyeing with
1.0 and 1.5 depth of shade (%) o.w.f.) were in a range which
is acceptable to the industry (using a laccase). However, these values
might certainly be improved by proper adjustments of the
standard dyeing protocols. In summary, we have shown for
the first time that an acidic laccase from S. rolfsii immobi-
lized on alumina can be used for the continuous decolour-
ization of wool dyeing effluents which allows usage of the
water for redyeing.

References

[1] Bourbonnais R, Puce MG. Demethylation and delignification of
kraft pulp by Trametes versicolor laccase in the presence of
2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate). Appl Microbiol

[4] Harvey BM, Walker JRL. Studies with plant laccases: comparison of
51.

and identification of phenol oxidases in hemolymph and midgut of

characterization of Laccase in the ligninolytic fungus Phanerochaete

[8] Shin KS, Lee YJ. Purification and characterization of a new member
of the laccase family from the white-rot basidiomycete Corticaria

[9] Eggert C, Temp U, Eriksson KE. The ligninolytic system of the white-
rot fungus Phanerochaete chrysosporium: purification and characteriza-

[10] Des J, Bollag JM. Detoxification of substituted phenols by
oxidoreductive enzymes through polymerization reactions. Arch

the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl

(laccase) showing formation of melanin in Sclerotium rolfsii: FEMS

[15] Easter E, Pacheco AM, Cozzolino R, Rizzarelli E, Santoro AM,
Saidan JC, Patil RV. Cellulose dehydrogenase from Sclerotium

[16]1.0 and 1.5 depth of shade (% o.w.f.) were in a range which
is acceptable to the industry [60–62]. However, these values
might certainly be improved by proper adjustments of the
standard dyeing protocols. In summary, we have shown for
the first time that an acidic laccase from S. rolfsii immobi-
lized on alumina can be used for the continuous decolour-
ization of wool dyeing effluents which allows usage of the
water for redyeing.

characterization of a laccase from Sclerotium rolfsii. J

[18] Gianfreda L, Xu F, Bollag JM. Laccases: a useful group of

[19] marsh et al. AComparative study of two isoforms of laccase
secreted by the "white-rot" fungus Phanerochaete chrysosporium.

[20] Bonomo RP, Boudet AM, Corizolino R, Bizzarilli E, Santoro AM,
Sterjadev R, et al. A catalytic study of two isoforms of laccase
secreted by the "white-rot" fungus Pycnoporus cinnabarinus. Can J

[21] Gubitz GM. Characterisation of a laccase and an endo-1,3-

[22] Rodrigues-Nowak J, Kasture SM, Dudek B, Haber J. Effect of
halides on laccase production by some white rot fungi. Biotechnol

[23] Shin KS, Lee YJ. Purification and characterization of a new member
of the laccase family from the white-rot basidiomycete Corticaria

[24] Eggert C, Temp U, Eriksson KE. The ligninolytic system of the white-
rot fungus Phanerochaete chrysosporium: purification and characteriza-

[25] Des J, Bollag JM. Detoxification of substituted phenols by
oxidoreductive enzymes through polymerization reactions. Arch

[26] Glenn JR, Gold MH. Decolorization of several polymeric dyes by
the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl

[27] Abuddulla E, Roba KH, Gubitz GM. Characterization of a laccase

[28] Chet I, Huttermann A. Denovo synthesis of polyphenol oxidase
(laccase) showing formation of melanin in Sclerotium rolfsii: FEMS

[29] Oosumi T, Stem rot and other diseases caused by Sclerotium rolfsii.

[30] Easter E, Pacheco AM, Cozzolino R, Rizzarelli E, Santoro AM,
Saidan JC, Patil RV. Cellulose dehydrogenase from Sclerotium

[31] Bonomo RP, Boudet AM, Corizolino R, Bizzarilli E, Santoro AM,
Sterjadev R, et al. A catalytic study of two isoforms of laccase
secreted by the "white-rot" fungus Pycnoporus cinnabarinus. Can J

[32] Gubitz GM. Characterisation of a laccase and an endo-1,3-

[33] Rodrigues-Nowak J, Kasture SM, Dudek B, Haber J. Effect of
halides on laccase production by some white rot fungi. Biotechnol

[34] Shin KS, Lee YJ. Purification and characterization of a new member
of the laccase family from the white-rot basidiomycete Corticaria

[35] Eggert C, Temp U, Eriksson KE. The ligninolytic system of the white-
rot fungus Phanerochaete chrysosporium: purification and characteriza-

[36] Des J, Bollag JM. Detoxification of substituted phenols by
oxidoreductive enzymes through polymerization reactions. Arch

[37] Glenn JR, Gold MH. Decolorization of several polymeric dyes by
the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl

[38] Abuddulla E, Roba KH, Gubitz GM. Characterization of a laccase

[39] Chet I, Huttermann A. Denovo synthesis of polyphenol oxidase
(laccase) showing formation of melanin in Sclerotium rolfsii: FEMS

[40] Oosumi T, Stem rot and other diseases caused by Sclerotium rolfsii.

[41] Easter E, Pacheco AM, Cozzolino R, Rizzarelli E, Santoro AM,
Saidan JC, Patil RV. Cellulose dehydrogenase from Sclerotium

[42] Gubitz GM. Characterisation of a laccase and an endo-1,3-

