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Abstract  1 

 Colorectal carcinomas (CRC) with P53 mutations have been shown to be 2 

resistant to chemotherapy with 5-fluorouracil (5-FU), the most widely used 3 

chemotherapeutic drug for CRC treatment. Autophagy is emerging as a promising 4 

therapeutic target for drug resistant tumors. In the present study, we tested the effects of 5 

ursolic acid (UA), a natural triterpenoid, on cell death mechanisms and its effects in 6 

combination with 5-FU in the HCT15 p53 mutant apoptosis resistant CRC cell line. The 7 

involvement of UA in autophagy and its in vivo efficacy were evaluated. 8 

Our data shows that UA induces apoptosis independent of caspases in HCT15 9 

cells, and enhances 5-FU effects associated with an activation of JNK. In this cell line, 10 

where this compound has a more pronounced effect on the induction of cell death 11 

compared to 5-FU, apoptosis corresponds only to a small percentage of the total cell 12 

death induced by UA. UA also modulated autophagy by inducing the accumulation of 13 

LC3 and p62 levels with involvement of JNK pathway, which indicates a contribution 14 

of autophagy on JNK-dependent induction of cell death by UA. By using nude mice 15 

xenografted with HCT15 cells, we verified that UA was also active in vivo decreasing 16 

tumor growth rate.  17 

In conclusion, this study shows UA’s anticancer potential both in vitro and in 18 

vivo. Induction of cell death and modulation of autophagy in CRC resistant cells was 19 

shown to involve JNK signalling. 20 

21 
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Introduction 22 

 Colorectal carcinoma (CRC) is the second leading cause of cancer related death 23 

and 5-fluorouracil (5-FU) is the main chemotherapeutic agent used in the treatment of 24 

this disease [1]. However, significant resistance to 5-FU has been reported and other 25 

compounds are needed in order to increase treatment efficacy [2]. Resistance to 5-FU 26 

(with reduced induction of apoptosis) has been associated with tumour cells that 27 

harbour P53 mutations [3-5]. Tumors presenting microsatellite instability (MSI) status, 28 

which accounts for 15% of sporadic CRC, have also demonstrated in vitro resistance to 29 

5-FU [6-8], suggesting little or no benefit from 5-FU treatment in MSI patients, 30 

although clinical evidence is not always consistent [8]. These patients, in particular 31 

those with MSI and p53 mutations, would clearly gain from new treatment modalities 32 

for enhanced efficacy.      33 

Apoptotic cell death is a fundamental cellular process that plays an important 34 

role during development and tissue homeostasis and has also a profound effect on 35 

cancer progression and response to treatment [9]. Apoptosis can be mediated by death 36 

receptors (extrinsic pathway) or by the mitochondrial pathway (intrinsic pathway), both 37 

involving the activation of caspases [9, 10]. Other alternative cell death mechanisms 38 

independent of caspases have been proposed, such as modulation of autophagy [11]. 39 

Autophagy is considered a mechanism of cell survival with an important role in 40 

preventing early phases of tumor development [12]. However, at late stages of tumor 41 

development it may confer anticancer drug resistance [13, 14]. Thus, inhibition of 42 

autophagy in resistant cancer cells can lead to cell death and it is currently considered 43 

an alternative therapeutic approach [13].   44 

The c-Jun N-terminal kinase (JNK), a stress-activated protein kinase of the 45 

family of the mitogen activated protein kinase (MAPK), has been implicated in many 46 
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cellular events including apoptosis signalling [15, 16]. More recently, JNK was also 47 

found to be a mediator of autophagy, contributing to autophagic cell death in some 48 

types of cancer cells [17-22]. Activation of JNK can induce Beclin-1 expression [19], 49 

mediate damage-regulated autophagy modulator (DRAM) [18, 22], as well as, mediate 50 

p53 phosphorylation [17], effects that contribute to cell death.   51 

Several phytochemicals have demonstrated the ability to modulate cancer cell 52 

death through different signalling pathways [23, 24]. Activities, such as anti-53 

inflammatory and anticancer, have been attributed to ursolic acid (UA), a naturally 54 

occurring triterpenoid found in fruits and herbs [25]. In a previous study [26], we 55 

showed that UA has anticarcinogenic potential through inhibitory effects on PI3K 56 

pathway in HCT15 MSI mutant p53 CRC cell line. The present study demonstrates that 57 

UA induces cell death and modulates autophagy through JNK signaling. In addition, 58 

UA enhances 5-FU-induced apoptosis in this resistant cell line where it demonstrated to 59 

be even more efficient in inducing cell death than 5-FU alone. In vivo results using 60 

xenografted nude mice showed that UA significantly decreased tumor growth while 61 

increasing expression of autophagy markers (p62) and JNK, providing evidence for 62 

UA’s therapeutic potential against CRC. 63 

 64 

Material and methods 65 

 66 

Reagents and antibodies 67 

 Ursolic acid (UA), z-VAD-fmk (zVAD), staurosporine (STS), 5-Fluorouracil (5-68 

FU), SP600125 (SP), 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 69 

(MTT) and N-Acetyl-L-cysteine (NAC) were purchased from Sigma-Aldrich (St. Louis, 70 
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MO, USA). UA, zVAD, STS, 5-FU and SP were used as stock solutions dissolved in 71 

dimethyl sulfoxide (DMSO). 72 

 Primary antibodies were purchased from the following sources: anti-phospho-73 

JNK (G-7), anti-JNK, anti-p53 and anti-MAPLC3 (clone 5F10) from Santa Cruz 74 

Biotechnology, Inc. (Santa Cruz, CA, USA); anti-phospho-mTOR and anti-mTOR from 75 

Cell Signaling (Danvers, MA, USA); anti-p62 (SQTM1) from Enzo Life Sciences 76 

(Lorrach, Germany); anti-LC3 (clone 5F10) from NanoTools (Teningen, Germany); and 77 

anti-β-actin from Sigma-Aldrich. Secondary antibodies HRP donkey anti-rabbit and 78 

sheep anti-mouse were purchased from GE Healthcare (Bucks, UK).  79 

 80 

Cell line and culture conditions 81 

 HCT15 and CO115 human colon carcinoma-derived cell lines were kindly 82 

provided by Dr. Raquel Seruca (IPATIMUP, University of Porto, Portugal). Cell lines 83 

were maintained at 37ºC in a humidified 5% CO2 atmosphere in RPMI-1640 medium 84 

(Sigma-Aldrich) supplemented with 10mM HEPES, 0.1mM pyruvate, 1% 85 

antibiotic/antimycotic solution (Sigma-Aldrich) and 10% fetal bovine serum (FBS; EU 86 

standard, Lonza, Verviers, Belgium). Cells were seeded onto six (2ml) and twelve (1ml) 87 

well plates at a density of 0.7510
5
 cells/ml. Test compounds were added to culture 88 

medium to the desired concentration ensuring that the DMSO concentration did not 89 

exceed 0.5% (v/v); controls received vehicle only. 90 

 91 

Apoptosis analysis by TUNEL assay  92 

  TUNEL (TdT mediated dUTP Nick End Labelling) assay was performed to 93 

estimate the percentage of cells with DNA damage typical of apoptosis. After the 94 

different treatments for 48h, cells were collected (both floating and attached cells), fixed 95 

with 4% paraformaldehyde for 15min at room temperature and attached onto a 96 
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polylysine treated slide using a Shandon Cytospin. Centrifuged cells were then washed 97 

in PBS and permeabilized with 0.1% Triton X-100 in 0.1% sodium citrate for 2min on 98 

ice. TUNEL assay was performed using a kit from Roche (Mannheim, Germany), 99 

following the manufacturer’s instructions. Cells were incubated with Hoechst for nuclei 100 

staining. The percentage of apoptotic cells was calculated from the ratio between 101 

TUNEL positive cells and total number of cells (nuclei staining with Hoechst), from a 102 

count higher than 500 cells per slide under a fluorescent microscope. Results are 103 

presented as mean ± SEM of at least three independent experiments. 104 

 105 

Cell death analysis by PI staining  106 

After the different treatments (2h or 48h), cells were collected (both floating and 107 

attached cells) and washed in ice cold PBS containing 5% (v/v) FBS. Cells were then 108 

resuspended in ice cold PBS with propidium iodide (PI) added to a final concentration 109 

of 0.5mg/ml. Cells were maintained on ice and protected from light. Twenty microliters 110 

of the stained cell suspensions were placed on clean microscope slides and overlaid 111 

carefully with coverslips. Immediately, cells were visualized on a fluorescent 112 

microscope and photos taken from different fields. The percentage of dead cells (PI 113 

positive) was calculated from the ratio between PI positive cells and total number of 114 

cells (visualized under phase contrast), from a count higher than 500 cells per slide. 115 

Results are presented as mean ± SEM of at least three independent experiments. 116 

 117 

Western blot analysis  118 

 Cells were subjected to different treatment combinations for 24h or 48h, and 119 

total cell lysates were prepared to measure expression of different proteins. The cells 120 

were washed with PBS 1X and lysed for 15min at 4ºC with ice cold RIPA buffer (1% 121 



 7 

NP-40 in 150mM NaCl, 50mM Tris (pH 7.5), 2mM EDTA), supplemented with 20mM 122 

NaF, 1mM phenylmethylsulfonyl fluoride (PMSF), 20mM Na2V3O4 and protease 123 

inhibitor cocktail (Roche, Mannheim, Germany). Protein concentration was quantified 124 

using the Bio-Rad DC protein assay (Bio-Rad Laboratories, Inc., Hercules, CA, USA) 125 

and BSA used as a protein standard. For western blot analysis, 20µg of protein were 126 

resolved by SDS-polyacrylamide gel and electroblotted to a Hybond-P polyvinylidene 127 

difluoride membrane (GE Healthcare). Membranes were blocked in TPBS (PBS with 128 

0.05% Tween-20) containing 5% (w/v) non-fat dry milk or 1% (w/v) BSA (bovine 129 

serum albumin), washed in TPBS and incubated with primary antibody overnight. After 130 

washing, membranes were incubated with secondary antibody conjugated with IgG 131 

horseradish peroxidase for 1h and immunoreactive bands were detected using the 132 

Immobilon solutions (Millipore, Billerica, MA, USA) under a chemiluminescence 133 

detection system, the Chemi Doc XRS (Bio-Rad Laboratories, Inc.). Band area intensity 134 

was quantified using the Quantity One software from Bio-Rad. β-actin was used as 135 

loading control. 136 

 137 

In vivo experiment of UA treatment in mice xenografted with HCT15 cells  138 

Six to eight weeks-old female Balb/cA nude mice (Taconic BALBANU-F) were 139 

kept in individually filtered ventilated housing, and acclimated before the experiment. 140 

HCT15 cells (10
6 

cells in 100µl Hanks BSS) were injected subcutaneously into the right 141 

flank of each animal and tumors were allowed to grow for one week. Mice were then 142 

assigned to two groups of ten animals: Group 1 placebo and Group 2 UA. Animals 143 

received orally once daily 0.1 ml of Nutella with or without UA (75mg/kg body weight) 144 

for 14 days. Tumor growth was measured twice a week for two weeks or until tumor 145 

volume was 1 cm
3
 whichever was attained first. Tumor size was calculated using the 146 
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formula: V= ¾ π (a/2)
2 

b, where a represents the smallest tumor diameter and b the 147 

largest tumor diameter. No signs of toxicity were observed in animals. The experiment 148 

was carried out at the Biocenter, University of Copenhagen, according to the regulation 149 

of Danish national authorities for handling laboratory animals. 150 

 151 

Histological sections and immunohistochemistry  152 

At the end of the two weeks treatment period, tumors were excised, fixed in 153 

formalin and paraffin-embedded. Five µm sections were cut, collected onto APS coated 154 

slides, and dried at 37ºC overnight. For immunohistochemistry analysis, slides were 155 

deparaffinised, rehydrated and antigen retrieval was performed by placing slides in 156 

0.05% citraconic anhydride solution, pH 7.3, for 30 min at 98ºC [27] and, after drying at 157 

37ºC, 5 min incubation with 1% SDS in phosphate buffered saline (PBS). Sections were 158 

then blocked with 5% normal goat serum in 0.05% tween-20/1% bovine serum 159 

albumin/PBS and incubated with primary antibodies overnight at 4ºC in humidity 160 

chambers: rabbit ant-p62 (1:500), mouse anti-LC3 (5µg/ml) and mouse anti-p-JNK 161 

(1:100). After incubation, slides were washed with TPBS and incubated with secondary 162 

antibodies (goat anti-rabbit Alexa Fluor 488 and goat anti-mouse Alexa Fluor 568; 163 

Invitrogen) for 1 h at 37ºC. Slides were rinsed, nuclei were counter stained with DAPI 164 

and mounted with 10% Mowiol, 40% glycerol, 0.1% DABCO, 0.1 M Tris (pH 8.5). 165 

Slides were observed in a fluorescent microscope and semi-quantitatively scored, and 166 

photos taken in a confocal microscope. 167 

 168 

Statistical analysis 169 

 Statistical analyses were done using t-test and two-away ANOVA, using 170 

GraphPad Prism 4.0 software (San Diego, CA, USA). P-values ≤ 0.05 were considered 171 
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statistically significant. All results are presented as mean ± SEM of at least 3 172 

independent experiments. Images are representative of three independent experiments.  173 

 174 

Results  175 

 176 

UA induces caspase-independent apoptosis in HCT15 and enhances 5-FU effect 177 

In a previous study, UA at 4µM was shown to decrease significantly cell 178 

proliferation (by 50%), to inhibit PI3K/Akt pathway and to induce apoptosis as assessed 179 

by TUNEL assay [26]. In the present study we aimed to clarify the mechanisms 180 

involved in the cell death induced by UA that is only partly due to apoptosis induction. 181 

As shown in Fig. 1A, the significant induction of TUNEL-positive cells by UA in 182 

HCT15 cells was caspase independent, since the inclusion of the inhibitor of caspases z-183 

VAD (20µM) did not prevent the induction of apoptosis by UA after 48h of treatment. 184 

The increase of TUNEL-positive cells by the classical inducer of apoptosis 185 

staurosporine (STS, 0.250µM) was also independent of caspases in this apoptosis 186 

resistant cell line. These results were corroborated by analysis of apoptosis markers by 187 

western blotting (Fig. 1B), where UA did not induce the cleavage of caspase 9, caspase 188 

3 or PARP-1. However, STS induced slightly the cleavage of PARP-1 and decreased 189 

the levels of procaspase 3 and 9 (Fig. 1B). These results suggest that UA induces 190 

apoptosis by a caspase-independent mechanism in HCT15 cells.  191 

We had also shown previously that HCT15 cells are resistant to induction of cell 192 

death by apoptosis by a common CRC chemotherapeutic drug 5-FU, probably due to 193 

the p53 mutation and MSI status [28]. However, when we subjected HCT15 cells to the 194 

combination of UA with 5-FU for 48h, at concentrations that were previously shown to 195 

decrease cell growth by 50% [26, 28], a significant enhancement of apoptosis was 196 
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observed when compared with both compounds alone (Fig. 1C). Interestingly, this same 197 

combination of 5-FU and UA when tested in normal human fibroblasts did not decrease 198 

cell viability (Supplementary Fig. 1). 199 

 200 

UA induces JNK-dependent apoptosis in HCT15  201 

Since the stress-activated MAPK signalling pathways have been implicated in 202 

cell death mechanisms [16], we further studied their involvement in UA-induced 203 

apoptosis, as well as, the role of reactive oxygen species (ROS). As shown, in Fig. 2A, 204 

co-incubation of UA with the antioxidant N-acetylcysteine (NAC) inhibited the % of 205 

TUNEL-positive cells, suggesting an implication of oxidative stress as a contributor for 206 

UA-induced apoptosis in HCT15 cells. Previously, we observed that UA did not change 207 

MAPK/ERK pathway in HCT15 cells [26]. Here we studied the involvement of the 208 

stress kinases p38 and JNK on apoptosis induced by UA in HCT15 cells. Using western 209 

blot analysis, we observed that UA significantly induced phospho-JNK (active form) 210 

expression (Fig. 2B). An increase of phospho-JNK expression was also observed for 211 

STS and no effect was detected for 5-FU. UA did not change the expression of 212 

phospho-p38 expression in HCT15 cells (data not shown). 213 

To assess whether apoptosis induction by UA and UA plus FU were dependent 214 

on JNK activation, incubations in the presence of 20µM SP600125 (SP), a JNK 215 

inhibitor, were performed. As shown in Fig. 2C, SP inhibited TUNEL-positive cells 216 

induced by UA, suggesting a dependence on JNK signalling for the UA-induced 217 

apoptosis in HCT15 cells. SP also inhibited TUNEL-positive cells induced by STS 218 

(Supplementary Fig. 2), an effect not observed with 5-FU (Fig. 2C). An almost 219 

complete abrogation of TUNEL-positive cells induced by the combination of UA with 220 



 11 

5-FU was observed in the presence of SP (Fig. 2C). These results indicate that 221 

activation of JNK by UA is necessary for UA-induced apoptosis in HCT15 cells.  222 

 223 

UA induces cell death and modulates autophagy through JNK pathway in HCT15  224 

Although significant, apoptosis induced by UA in HCT15 only affects around 225 

4% of total cell number, which does not reflect the extensive morphological changes 226 

(and appearance of floating cells) induced by this compound, suggesting a much higher 227 

percentage of cell death. Cell death was, therefore, subsequently measured using PI 228 

staining, at 2h and 48h. As shown in Supplementary Fig. 3, UA produced a small 229 

increase in cell death after 2h of incubation, indicating no acute necrotic effect. 230 

However, after 48h, UA induced cell death in around 50% of cells, as shown by the 231 

increase number of PI positive cells (Fig. 3A, Supplementary Fig. 3). On the other hand, 232 

5-FU alone did not induce significant PI positive cell death and no cumulative effect 233 

with UA was observed (Fig. 3A). These results indicate that UA induces cell death in 234 

HCT15 cells more efficiently than 5-FU and also by mechanisms other than apoptosis. 235 

We also tested whether JNK pathway was involved in the total cell death induced by 236 

UA. As shown in Figure 3A, SP partially inhibited total cell death induced by UA, as 237 

well as, the cell death induced by the combination of UA with 5-FU. These data suggest 238 

a dependence on JNK signaling also for the total cell death induced by UA in HCT15 239 

cells.  240 

 Recently, autophagy has been argued to be a potential target for induction of cell 241 

death in chemoresistant cancer cells [13]. Therefore, we further investigated the 242 

possible role of UA in autophagy and the involvement of JNK in this process. As shown 243 

in Fig. 3B, UA induced an accumulation of both LC3-II (and to a lower extent also 244 

LC3-I) and p62 levels in HCT15 cells after 48h of treatment, which were remarkably 245 
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prevented in the presence of SP, indicating a role of JNK activation in the accumulation 246 

of these autophagic mediators. No effect on LC3-II protein expression was detected in 247 

cells treated with 5-FU or SP alone (Fig. 3B). The LC3-II accumulated in cells treated 248 

with UA plus 5-FU seems to be due to UA alone, an effect also inhibited in the presence 249 

of SP. The possible role of UA in some upstream regulators of autophagy, such as p53 250 

and mTOR, was also investigated. Figure 3B shows that UA decreased both p53 and 251 

phospho-mTOR levels, as well as, the levels of p53 induced by 5-FU. These effects are 252 

consistent with the potential of UA to modulate autophagy.  253 

Interestingly, UA also modulates the same autophagic mediators in other CRC 254 

cells, such as the MSI CO115 p53 wild-type cell line (Supplementary Fig. 4D). 255 

Although in this cell line UA induced apoptosis dependent of caspases, total cell death 256 

is higher (Supplementary Fig. 4A-C) indicating a possible role of autophagy on cell 257 

death.  258 

 259 

UA decreases tumor growth in mice xenografted with HCT15 cells  260 

 Because UA demonstrated to induce cell death more efficiently than 5-FU in 261 

HCT15 cells, we evaluated in vivo, in mice xenografted with HCT15 cells, the effects of 262 

UA and the possible implication of autophagy and JNK signaling on tumor growth. As 263 

shown in Fig. 4A, UA significantly decreased tumor growth rate after 14 days of 264 

treatment when compared to the control group. No significant effect on body weight 265 

was observed between treatments (data not shown). Using immunohistochemistry 266 

analysis of these tumors, a tendency for a higher expression of p62 and phospho-JNK in 267 

UA group was observed as compared to controls (Fig. 4B, 4C). Colocalization of p62 268 

and phospho-JNK was, however, only partial. No differences were observed on the 269 

tumor expression of LC3 or the proliferation marker Ki67 between treatments (Fig. 4B, 270 
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4C). These results suggest the potential of UA in reducing tumor growth and the 271 

possible involvement of JNK signalling and autophagy in the in vivo effects of UA. 272 

 273 

Discussion 274 

Several mechanisms of resistance have been reported that decrease 5-FU 275 

efficacy, such as loss of p53 transactivation function [3-5]. Defects in apoptosis play a 276 

central role in tumorigenesis and confer resistance to anticancer therapies [29]. 277 

Alternative strategies such as autophagy inhibition have been demonstrated to sensitize 278 

tumor cells to anticancer drugs [13, 14]. In a previous study, we showed that UA 279 

induces apoptosis in HCT15 mutant p53 MSI human CRC cell line [26]. This cell line is 280 

also resistant to 5-FU [28], and here we showed that combination of this 281 

chemotherapeutic agent with UA significantly enhanced apoptosis as compared with 5-282 

FU alone. This drug combination did not have any cytotoxicity in normal cells. The 283 

induction of apoptosis in HCT15 cells by UA (with or without 5-FU) was shown to be 284 

dependent on JNK pathway and independent of caspases. In the conditions used, the 285 

apoptosis induced by UA is small and did not account for the total cell death (about 286 

50%) observed, suggesting that other mechanisms must be involved.  287 

Reactive oxygen species (ROS) have been shown to be involved in the 288 

regulation of cell death and signalling through JNK pathway [30]. This pathway is 289 

implicated in many cellular events related to cell death, such as apoptosis [15, 16] and 290 

autophagy [17-22]. Our results showed that the antioxidant NAC partially inhibited 291 

apoptosis induced by UA, suggesting the involvement of ROS on UA´s effects. In 292 

addition, UA activated JNK pathway, as shown by the increased levels of phospho-293 

JNK. Its inhibition with SP significantly decreased UA-induced cell death and the 294 

increase of the autophagic mediators LC3 and p62. Therefore, both apoptosis and total 295 



 14 

cell death induced by UA alone or UA in combination with 5-FU were shown to involve 296 

JNK pathway, possibly in response to oxidative stress produced by UA. The importance 297 

of JNK activation as one contributing mechanism to cell death induction in CRC has 298 

previously been demonstrated for atorvastatin. This drug was shown to induce apoptosis 299 

involving JNK activation and to synergistically interact with celecoxib, a selective 300 

cyclooxygenase-2 inhibitor, in killing human CRC cells [31]. Also, UA has been shown 301 

to induce JNK pathway in other cell lines [32-37] leading to cell death, however its 302 

association with autophagy has never been reported. 303 

Autophagy is activated under stress conditions, such as nutrient and/or growth 304 

factor deprivation and, although it represents a mechanism of survival, it may assume a 305 

cell death function in cancer cells when apoptosis is deregulated [11, 12]. Several 306 

signalling proteins have been demonstrated to interfere with autophagy [13, 38]. In our 307 

previous work, UA showed to decrease PI3K/Akt pathway [26]. Here, we observed that 308 

UA also decreased the levels of phospho-mTOR, as well as, the levels of mutant p53. 309 

Since an inhibition of mTOR is associated with an induction of autophagy [38, 39] and 310 

the cytosolic mutant p53 has shown to inhibit autophagy [40, 41], our results suggest 311 

that UA may induce autophagy by inhibiting the PI3K/Akt/mTOR signaling and 312 

decreasing mutant p53.  313 

On the other hand, the ability of UA to increase the levels of autophagic 314 

mediators LC3 and p62 suggest that UA may be inhibiting autophagy. LC3-II is 315 

associated with autophagosome membrane reflecting its abundance. Its increasing levels 316 

have been interpreted as either the result of induction or inhibition of the autophagic 317 

process [42]. However, the accumulation of both LC3-I and LC3-II after long periods of 318 

incubation, as observed here, is taken as an indication of inhibition of autophagy [42]. 319 

In the case of p62 that is selectively incorporated into autophagosomes through binding 320 
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to LC3, its levels reflect its degradation by autophagy [42]. Therefore, an accumulation 321 

of p62 represents an inhibition at later steps of the autophagic process. As a result, in 322 

HCT15 cells, modulation of autophagy by UA seems to involve a dual effect: it may 323 

facilitate initial stages but it inhibits autophagy at later steps. Nevertheless, UA seems to 324 

be able to modulate autophagy independently of p53 status and of apoptosis cell 325 

resistance, since UA had the same effects in other CRC cells, such as CO115 cell line. 326 

Further experiments have to be performed to elucidate in detail the effects of UA on 327 

autophagy and its implication on induction of cell death. 328 

Since UA alone was more efficient in inducing cell death than 5-FU in vitro, the 329 

in vivo potential of UA against CRC was evaluated in nude mice xenografted with 330 

HCT15 cells. Interestingly, UA decreased tumor growth rate after 2 weeks of treatment, 331 

without affecting body weight, and a tendency to increase the levels of p62 and 332 

phospho-JNK in tumors was observed. These results suggest that the antitumor effect of 333 

UA may involve the regulation of autophagy possibly by JNK signaling. The in vivo 334 

potential of UA as an antitumorogenic agent has recently been suggested in other cancer 335 

types [43, 44].    336 

In conclusion, this study shows that UA enhances the apoptotic effect of 5-FU, 337 

with an activation of JNK. UA induces cell death in CRC resistant cell line more 338 

efficiently than 5-FU probably by inhibiting autophagy. The antitumor potential of UA 339 

against CRC and the possible involvement of autophagy and JNK were observed in 340 

vivo. The applicability of UA as a potential inhibitor of autophagy should be explored in 341 

future studies and in strategies for treatment of CRC tumors resistant to conventional 342 

chemotherapeutic drugs. 343 
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Figure Legends 

 

Figure 1 – Effect of both ursolic acid (UA) and 5-fluorouracil (FU), alone or in 

combination, on apoptosis in HCT15 cells. (A) Effect of UA 4µM (UA4) and 

staurosporine (STS) 0.25µM with or without a caspase inhibitor zVAD-FMK (zVAD) 

20µM in the % of TUNEL-positive cells after 48h of treatment. (B) Effect of UA4 for 

24h on the expression of protein markers of caspase-dependent apoptosis, as assessed 

by western blotting. (C) Effect of UA4 alone or in combination with 5-fluorouracil 

100µM (FU100) for 48h in the % of TUNEL-positive cells. (A, C) Values are mean ± 

SEM of at least 3 independent experiments. * P≤ 0.05, ** P≤ 0.01 and *** P≤ 0.001, 

when compared with control (CT); ++ P≤ 0.01, when compared with the respective 

compound alone; ## P≤ 0.01 and ### P≤ 0.001, when compared with FU or zVAD 

alone; NS, not significant differences observed between each other. In B, images are 

representative of at least 3 independent experiments with similar results. β-actin was 

used as loading control. 

 

Figure 2 – Effect of JNK pathway on apoptosis induced by ursolic acid (UA) in HCT15 

cells. (A) Effect of N-Acetyl-L-cysteine (NAC) 5mM in the % of TUNEL-positive cells 

induced by UA 4µM (UA4) after 48h of treatment. Values are mean ± SEM of at least 3 

independent experiments. *** P≤ 0.001, when compared to control (CT); ### P≤ 0.001, 

when compared with NAC alone; ++ P≤ 0.01, when compared with each other. (B) 

Effect of UA4, staurosporine (STS) 0.25 µM and 5-fluorouracil 100µM (FU100) on 

phospho-JNK and total JNK levels, for 48h, using western blot. Images are 

representative of at least 3 independent experiments with similar results. β-actin was 

used as loading control. (C) Effect of UA 4µM, FU 100µM and SP600125 (SP) 20µM, 

a JNK inhibitor, alone or in combination, in the % of TUNEL-positive cells for 48h of 

treatment. Values are mean ± SEM of at least 3 independent experiments. ** P≤ 0.01, 

*** P≤ 0.001, when compared with UA alone; θ P≤ 0.05 and θθ P≤ 0.01, when 

compared with SP alone; ### P≤ 0.001, when compared with FU alone. ++ P≤ 0.01 and 

+++ P≤ 0.001, when compared with each other; NS, not significant when compared 

with each other. 
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Figure 3 – Effect of both ursolic acid (UA) and 5-fluorouracil (FU), alone or in 

combination, on cell death and autophagic mediators in HCT15 cells. (A) Effect on cell 

death of UA 4µM, FU 100µM and SP600125 (SP) 20µM, alone or in combination, for 

48h, as assessed by PI staining. Values are mean ± SEM of at least 3 independent 

experiments. *** P≤ 0.001, when compared with UA alone; θθθ P≤ 0.001, when 

compared with SP alone; ### P≤ 0.001, when compared with FU alone; ++ P≤ 0.01 and 

+++ P≤ 0.001, when compared with each other; NS, not significant when compared 

with each other. (B) Effect UA 4µM, FU 100µM and SP 20µM, alone or in 

combination, in the levels of LC3, p62, p53, phospho-mTOR and total mTOR, for 48h, 

using western blot. Images are representative of at least 3 independent experiments with 

similar results. β-actin was used as loading control. 

 

Figure 4 – Effect of ursolic acid (UA) treatment in vivo. (A) Tumor progression of 

HCT15 cells xenografted in nude mice for 14 days, as expressed by relative tumor size. 

Mice were divided in two groups: control (placebo) and UA (75 mg/kg), each with 7 

animals. The effect of time (p< 0.001) and treatment were observed (p< 0.001), as well 

as, the effect of the interaction (p=0.006) shown in the figure as (++). (B) 

Representative confocal images of immunohistochemical analysis of the expression of 

p62 (green), ki67 (green), phospho-JNK (red) and LC3 (red) proteins in the tumors 

treated with UA in the in vivo experiment; bar: 20µm. (C) Semi-quantification of the 

immunohistochemical sections of the expression of p62, phospho-JNK, LC3 and Ki67 

proteins in vivo. Immunoreaction intensity was scored as 0 for negative staining, 1 for 

weak, 2 for intermediate and 3 for strong. Values are mean ± SEM of 7 animals each. 
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