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A B S T R A C T

This thesis presents an intensive study on slip flows of Newtonian and
Non-Newtonian fluids carried out both analytically and numerically.
Industrial applications of these flows are found in classical industries
such as in polymer processing (for instance in extrusion) and in more
modern applications as in lab-on-chip devices.

Analytical solutions for flows under slip, are presented for both
Newtonian, inelastic Newtonian and Non-Newtonian flows. These
analytical solutions were missing in the literature and are helpful for
both theoretical analysis and computer code validation.

Slip boundary conditions were implemented in a computational
fluid dynamics code, based on the finite volume method framework.
New techniques for their implementation were devised, allowing to
obtain convergence for reasonable Weissenberg numbers, using an
appropriate iterative procedure to couple velocity, pressure and stress.

The numerical code was then used to simulate benchmark problems,
such as the 4:1 contraction, 1:4 expansion and slip-stick flows under
slip, usually found in polymer processing..

The theoretical study of development length for Newtonian and
viscoelastic fluids was performed for a channel flow under slip. New
correlations for predicting the development length in micro and macro
channels were devised.

Other part of these thesis was dedicated to the theoretical study of
electro-osmotic flows of complex fluids, for which analytical solutions
for simple flows under the influence of the linear and nonlinear Navier
slip boundary conditions were devised.

keywords:

Slip boundary conditions; finite volume method; contraction flow;
expansion flow; development length; electro-osmotic flow
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R E S U M O

Nesta tese é apresentado um estudo intensivo de escoamentos com
escorregamento, envolvendo fluidos newtonianos e não-newtonianos.
Este tipo de escoamentos pode ser encontrado na indústria, por ex-
emplo no processo de extrusão e ainda em aplicações mais modernas,
tais como aparelhos baseados no conceito “lab-on-chip”.

São apresentadas soluções analíticas com escorregamento para flui-
dos newtonianos, e diversos fluidos não-newtonianos, tanto inelásticos
como viscoelásticos. Estas soluções analíticas não existiam na literatura
e são úteis tanto em termos teóricos assim como para a validação de
códigos numéricos.

As condições de fronteira de escorregamento foram implementadas
num código numérico de mecânica dos fluidos computacional baseado
no métodos dos volumes finitos. Foram desenvolvidas novas técnicas
para a implementação destas condições de fronteira, permitindo obter
convergência para valores razoáveis do número de Weissenberg, us-
ando um processo iterativo para acoplar os campos de velocidades,
pressões e tensões.

Este código numérico foi depois usado para simular problemas
de referência, tais como os escoamentos numa contracção súbita 4:1,
numa expansão 1:4 e o escoamento “slip-stick”, sob a influência do
escorregamento na parede. Estas geometrias são frequentemente uti-
lizadas em processamento de polímeros, o que substancia a utilidade
prática destas simulações.

Foi feito um estudo numérico e teórico para descobrir o compri-
mento de desenvolvimento do escoamento num canal simples com
escorregamento na parede, de fluidos newtonianos e viscoelásticos.
Foram ainda propostas novas correlações para prever esse compri-
mento.

Outra parte do trabalho foi dedicada ao estudo de electro-osmose,
onde novas soluções analíticas para escoamentos simples sob a influên-
cia do modelo de escorregamento linear de Navier, são apresentadas.

palavras-chave :

Condições fronteira de escorregamento; método dos volumes finitos;
escoamento em contracções; escoamento em expansões; comprimento
de desenvolvimento de um fluido; electro-osmose.
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Part I

T O S L I P O R N O T T O S L I P : T H AT I S T H E
Q U E S T I O N





1
I N T R O D U C T I O N

[...] Fluid dynamists were divided into:
hydraulic engineers who observed things that could not be explained,

and mathematicians who explained things that could not be observed [...]

— Sir Cyril Norman Hinshelwood

We all grew up with the idea that everything is finite, and therefore
we are limited. Even though we think of “time” as an endless (infinite)
independent property , we can only see “time” locally (through our
lifetime), which enhances again our limitation. All our actions and
way of thinking were built upon these “fabricated” concepts, and most
of the scientific problems that urged during the evolution of Mankind
were unsolved for many years because of people’s beliefs and because
of what people learned based on common sense. Our brain is capable
of the most amazing things, but at the same time is influenced by
external factors that deviate the scientific path. The main problem is
the constant creation of dogmas for everything we do not know and
do not completely understand. ”The dogmas of the

quiet past, are
inadequate to the
stormy present...”
Abraham Lincoln,
annual message to
Congress, December
1, 1862.

The subject of friction/slip between a fluid and a solid is not com-
pletely understood. It suffered somehow from the same mind limita-
tion over the years. The constant need for Gods or the need to believe
in “something” superior, made us slaves of the ideas created in the
past by great persons associated with fluid dynamics.

It is not easy to describe the flow between these two completely
different materials, because there are no hard physical principles
for friction/slip to be derived from (maybe our physical laws are a
special case of a more general theory that we cannot understand),
but the development of ever more sophisticated machines that are
able to describe flows at smaller scales, made us question the truth
of the ideas proposed before, and question the validity of the no-slip
boundary condition.

1.1 friction between solids

Friction is a
component of the
science of tribology.

From the early ages we have the proof of existence of friction between
solids, such as the discovery of fire resulting from the friction between
two rocks (or two pieces of wood), and the way we easily walk without
sliding (we are in contact with the ground with a normal force pulling
us against the center of the planet earth while a tangent force, friction,
does not allow us to slide). Later we discovered that depending on the

3



4 introduction

Figure 1.1: Inclined plane with friction between the two solids.

surface roughness between two bodies the “friction” could be different.
For example, ice on steel has a low coefficient of friction, while rubber
on pavement has a high coefficient of friction. There are two forms
of friction, kinetic and static. If we try to slide two objects past each
other, a small amount of force will result in no motion. In this case
the force of friction is greater than the applied force. This is static
friction. If we apply a little more force, the object "breaks free" and
slides, although we still need to apply force to keep the object sliding.
This is kinetic friction. We do not need to apply quite as much force to
keep the object sliding as you needed to originally break free of static
friction. An example of the static and dynamic friction is the inclined
plane given in Fig. 1.1. Depending on the inclination of the plane the
block will move or stay attached.The elementary

properties of sliding
(kinetic) friction

were discovered by
experiment in the

15th to 18th
centuries and were
expressed as three

empirical laws:
Amontons’ First
Law: The force of
friction is directly

proportional to the
applied load.

Amontons’ Second
Law: The force of

friction is
independent of the

apparent area of
contact.

Coulomb’s Law of
Friction: Kinetic

friction is
independent of the

sliding velocity.

The empirical law that models friction between solids is given by

Ff ≤ µFn (1.1)

where Ff is the force of friction exerted by each surface on the
other. It is parallel to the surface, in a direction opposite to the net
applied force. The constant µ, is the coefficient of friction, which is an
empirical property of the contacting materials and Fn is the normal
force exerted by each surface on the other, directed perpendicular
(normal) to the surface. The force of friction is always exerted in a
direction that opposes movement (for kinetic friction) or potential
movement (for static friction) between the two surfaces.

The friction between solids depends on several properties, but the
most important is the surface roughness (Fig. 1.2) between the two ob-

Figure 1.2: Surface roughness.

jects and the possible existence of lubrication (lubrication is a technique
employed to reduce wear of one or both surfaces in close proximity
moving relative to each another by interposing a substance called a
lubricant between the surfaces).

Friction can also have a negative effect. Although it is the principle
behind the braking systems we find on our automobiles and that the
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simple task of walking would not be possible without it, friction can
also be our enemy. Friction inside a car engine and inside the wheel
axes will slow a car down and wear out the engine parts. To prevent
this we put oil or even grease on their surfaces (lubrication). This
makes them more slippery and so reduces friction.

1.2 friction between a solid and a liquid

For the interface between a solid and a liquid a powerful empirical
law such as Eq. 1.1 is not available. Although for specific cases it
is still possible to correctly model the slip velocity of certain fluids
(Hatzikiriakos, 2012), a general function that works for all fluids is yet
unavailable. Microrheology is a

technique to measure
the rheological
properties of a
medium, such as
viscosity in
micron-sized
systems, often
involving the
measurement of the
trajectory of a flow
tracer (a
micrometre-size
particle).

Along the years, we have witnessed an evolution of technology that
is becoming more and more dependent on micro and nanostructures,
in particular, on microscopic and nanoflows (an example is Microrhe-
ology (Crocker et al., 2000; Levine et al., 1975)). At the same time this
technology allow us to see, and better understand, the interaction
between a liquid and a solid (Neto et al., 2005), revealing that the
validity of the no-slip boundary condition is compromised.

When speaking about slip velocity an important question pops to
our heads:

Do all the fluids show the same interaction with the wall?
Although the phenomenon of slip velocity is not well understood,

the answer to this question is “no”. We can think of an extreme case, a
fluid with very high viscosity (almost solid) that slides (while being
pushed) along a channel. Obviously, the interaction between this fluid
and the wall is expected to be different from the interaction of water
with the same wall.

For several decades the no-slip boundary condition has been suc-
cessfully applied to model macroscopic experiments. This boundary
condition states that the liquid molecules adjacent to the wall are
stationary relative to the wall,

u− uwall = 0 (1.2)

This boundary condition is empirical and as no supporting physical
law (Lauga et al., 2005). The truth is that this model seems adequate
for macroscopic flows of Newtonian fluids but fails for some non-
Newtonian fluids (Brochard and De Gennes, 1992; De Gennes, 1979;
Denn, 2001), electro-osmotic flow (Marry et al., 2003; Herr et al., 2000),
flow in microfluidic devices (Gad-el Hak, 1999; Stone et al., 2004)
and biological processes (Zhang et al., 2003; Beebe et al., 2002), and
Gas flow (the assumption that gases may exhibit wall slip was first
introduced by Maxwell (Maxwell, 1867b)). Even for Newtonian fluids
new experiments gave results that question the validity of the no slip
boundary condition (Pit et al., 2000; Craig et al., 2001).
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k

u

slipu

Figure 1.3: Slip length for the Navier slip law (Eq. 1.3).

1.2.1 Slip in Newtonian fluids

How the no-slip boundary condition became an accepted truth (for most of
us)?

In the early experiments (Stokes, 1845), (Bernoulli, 1738), (Du Buat,
1786) and (Coulomb, 1801) all drew similar conclusions, that the fluid
near the solid surface seems to have the same velocity as the surface.

In 1813, (Girard, 1813) proposed a model for the boundary condition;
he believed in the formation of a thin layer of fluid attached to the
wall, while the rest of the fluid would flow over this layer. If the fluid
did not wet the solid surface, then the layer thickness would be zero,
and the liquid would slip over the surface (such as mercury in glass
tubes).

In 1822, Navier (Navier, 1822, 1823) brought to life the idea that a
liquid may slip on a solid surface with the slip velocity (uslip) opposed
by a frictional force proportional to the velocity gradient in the wall
normal direction (n),

uslip = k
∂u
∂n

(1.3)

the constant k was known as “slip length”, because it really represents
a length (see Fig. 1.3) This simple slip boundary condition states that
the velocity vector points in the tangent stress opposite direction.

This boundary condition is similar to the one given for solids (Eq.
1.1), but the Newtonian fluid has null normal stresses and therefore it
is impossible to use the Fn force, instead we use the friction force as a
way to allow the fluid to slip.

From this point until the 1900’s the idea that a fluid could slip along
the walls was substituted by the no slip boundary condition. Poisson
(Poisson, 1831, 1832) still proposed the use of the Navier slip boundary
condition but in 1840 Stokes was asked to investigate the nature of
boundary conditions and he adopted the theory of Bernoulli instead of
the Navier slip boundary condition. In the next years there were some
efforts to understand the existence of slip velocity, (Poiseuille, 1844),
(Darcy, 1857), (Helmholtz, 1860). In the beginning of the 20th century
(Maxwell, 1890), (Whetham, 1890), (Couette, 1890) and (Ladenburg,
1907) all agreed with the no-slip boundary condition. The experimental
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work did not stop, and the results obtained agreed with the no-slip
boundary condition. Technology could not deal with such small scales
and consequently the slip boundary condition was becoming obsolete.

The fact that most of the books published on the subject of fluid dy-
namics present the no-slip boundary condition as a law, not providing
the correct history and evolution of this assumption (that is still under
debate), together with the knowledge gained with our common sense
lead to the disappearance of any doubts regarding the validity of the
no-slip boundary condition. Nanotechnology is

a part of science and
technology about the
control of matter on
the atomic and
molecular scale - this
means things that
are about 100
nanometers or
smaller. “Nano”
means one-billionth
of meter.

There are exceptions, though, such as the book by (Goldstein, 1965),
where it is stated that:

“At the present time it appears to be definitely settled that for practical
purposes the fluid immediately in contact with a solid body may be taken as
having no velocity relative to the solid, at any rate for nearly all fluids; but
the exact conditions on a molecular scale remain still in doubt”,

the classic book by (Lamb, 1932) where we can read:
“It appears probable that in all ordinary cases there is no motion, relative

to the solid, of the fluid immediately in contact with it. The contrary sup-
position would imply an infinitely greater resistance to the sliding of one
portion of the fluid past another than to the sliding of the fluid over a solid.”

or the book by (Batchelor, 2000) where the following two paragraphs
are provided with a detailed discussion of the subject. Batchelor first
states that:

“...there being some doubt about whether molecular interactions at such an
interface lead to momentum transfer of the same nature as that at a surface
in the interior of a fluid...”

which alerts for another possibility than the no-slip velocity, but then
he says:

“...but the absence of slip at a rigid wall is now amply confirmed by direct
observations and by the correctness of its many consequences under normal
conditions.” Microfluidics deals

with the behavior,
precise control and
manipulation of
fluids that are
geometrically
constrained to a
small, typically
sub-millimeter, scale,
and emerged in the
beginning of the
1980s.

We can also say that u = 0 is attractive to the eye and there is a
wealth of studies regarding the wellposedness of differential equations
using this Dirichlet boundary condition. Notice also that if we had to
choose between u = 0 and u = 0.000007861 (a random number) we
would prefer u = 0 based on our common sense.

At the end of the 20th century we assist to the rapid growth of micro
and nanofabrication. This provides the means for new experiments
that revive once again the existence of slip velocity and its dependence
on surface roughness, dissolved gas and bubbles, wetting, shear rate,
electrical properties and pressure. The search for the correct boundary
condition is a current topic of research. For a review on this subject
the excellent papers by (Lauga et al., 2005) and (Neto et al., 2005) are
advised.
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1.2.2 Slip in Non-Newtonian fluids

As mentioned before, the behavior of Newtonian and non-Newtonian
fluids is different on account of the different types of molecules in-
volved with consequent modifications in the wall boundary conditions.

In the following discussion only polymer melts will be considered.
For slip regarding other types of non-Newtonian fluids the work of
(Archer, 2005) is advised.

1.2.2.1 Extrusion Process
Extrusion: the act

or process of pushing
or thrusting out.

The extrusion process (see Fig. 1.4) basically consists of creating objects
of a constant cross-sectional profile. The material is pushed or drawn
through an extrusion die of the desired cross-section. The die assumes
the shape of a block with depth, and its internal shape changes along
its length, usually, from a circular to the a cross-section similar to the
one of the profile to be produced (a part of this thesis is dedicated to
study the influence of slip velocity inside the die geometry).In 1797, Joseph

Bramah patented the
first extrusion

process for making
lead pipe. It involved
preheating the metal

and then forcing it
through a die via a

hand driven plunger.
In 1820, Thomas

Burr constructed the
first hydraulic

powered press. In
1894, Alexander

Dick expanded the
extrusion process to

copper and brass
alloys.

Commonly extruded materials include metals, polymers, ceramics,
concrete and food stuffs.

Figure 1.4: Extrusion process for polymer melts

The first
thermoplastic

extrusion was in
1935 by Paul

Troester in Germany.
Shortly after, Roberto

Colombo developed
the first twin screw

extruders in Italy.

For the polymer melts extrusion process (see Fig. 1.4), thermoplastic
material in the form of small beads is gravity fed from a top mounted
hopper into the barrel of the extruder. The rotation of the screw forces
the material forward along the extruder and the presence of band
heaters forces the material to melt. At the end a cooling system is used
to ensure the final shape is not altered.

A real extrusion die used for the production of woodplastic com-
posites, can be seen in Fig.1.5.

1.2.2.2 Wall Slip in Polymer Melts

The presence of apparent wall slip in polymer melts was first given
in 1961 by (Rielly and Price, 1961) and it consisted of an experiment
with high density polyethylene (HDPE) and the use of colored wax
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Figure 1.5: Extrusion die for the production of deck together with a sample
of the extruded profile.

crayon marks in the interior face of the extruder channel. Benbow and
Lamb, 1963 performed a variety of experimental works using different
polymers and die materials, and, using again colored markers. They
concluded that the unstable flow is connected to the existence of slip
velocity along the die wall, slip velocity depends on the material from
which the die is constructed, they also suggested the existence of a
slip-tick regime and the dependence of slip velocity on some critical
stress value. In Fig. 1.5 we see a

sample of an
extruded profile, and
we notice that this
profile is not perfect
(it was the first
attempt to produce
that kind of profiles).
This means that the
extrusion process is
still based on a
tentative procedure,
where a trial and
error methodology is
used before reaching
the final product.

Extrusion instabilities were first reported during World War II in
1945 (Denn, 2001) and in 1976, Petrie and Denn reviewed extensively
these flow instabilities (Fig. 1.6).

Figure 1.6: Extrusion intabilities. (a) stable (b) sharkskin (c) slip-stick (d)
gross melt fracture.

These instabilities, or at least part of them, are assumed to be
associated with the slip velocity ((Kalika and Denn, 1987)); also, the
flow curve for an apparent shear rate versus the wall shear stress in
a controlled-throughput experiment shows a discontinuity, usually
attributed to the onset of wall slip (see Fig. 1.7). Polymer melts are
known to show a sudden increase in flow rate above a critical pressure
drop, in controlled stress capillary flow. These polymer melts also
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show diameter dependence and slip-stick oscillations in controlled
flow rate capillary flow (Joshi et al., 2000).

slip-stick

sharkskin

smooth

A
pp

ar
en

tS
he

ar
R

at
e

Wall Shear Stress

superextrusion

gross melt
fracture

Figure 1.7: Typical flow curve of a linear polymer (obtained with a capillary
rheometer).

From Fig. 1.7 we see that the surface of the extrudate initially is
smooth and then becomes visibly rough at an higher value of the wall
shear stress. This phenomenon is commonly referred as sharkskin
(apparent periodicity in the small-amplitude distortion). At a higher
level of stress the flow becomes slip-stick. At still higher stress levels,
sometimes the extrudate surface is relatively smooth (“superextrusion”
is not represented in Fig. 1.6) during the early part of this steady
regime, with the appearance of gross melt fracture at higher stresses.
This behavior is common for linear polymers (see (El Kissi and Paiu,
1990) ).

The association of sharkskin with the presence of slip velocity gained
strength in 1986 with the remarkable experiment of Ramamurthy. He
showed that the flow instabilities that occur during the extrusion
of linear polymers can be suppressed if instead of chrome-plated
stainless steel die an α−brass die is used. Although the experiment
was excellent, his conclusions were controversial. He believed that the
α−brass die was removing the ability of the fluid to slip while the
results from other research groups suggested the opposite.

Until today, several other studies regarding the influence and origin
of slip velocity have been made, but the conclusions are similar to the
ones obtained earlier.

As for Newtonian fluids, the slip boundary condition for the non-
Newtonian fluids also depends on several properties such as surface
roughness, tangent stress, normal stress, temperature, energy, type of
fluid, type of wall material. In order to model the slip velocity data
obtained by experimental works, several models have been proposed.
Most of the models are static, however there are experiments showing
that the slip velocity may depend on the past states of the local tangent
and normal stresses. For a review of this models the works of Archer
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(Archer, 2005) (static) and Hatzikiriakos (Hatzikiriakos, 2012) (static
and dynamic) should be consulted.

Static models are those that are going to be used in this thesis.
They evolved from a simple Navier slip to the nonlinear Navier slip
boundary condition, where the slip length also depends on the tangent
stress. More sophisticated models for slip have been proposed during
the years, that basically include the contribution from normal stresses,
temperature and other properties.

1.2.3 Objectives

The aim of this thesis is the investigation of the effects of slip boundary
conditions on a wide range of fluid flows, with application to the ex-
trusion process, microfluidics and electro-osmotic flow. The objectives
are the following:

• Derive analytical solutions for Newtonian and non-Newtonian
fluids with slip boundary conditions. For the cases where an
explicit formula is not possible, the existence and uniqueness of
the solution must be proved;

• Derive analytical solutions for electro-osmotic flow under the
influence of slip boundary conditions;

• Study the influence of the slip velocity on the development
length of Newtonian and non-Newtonian fluids;

Other objectives are formulated as questions that will be answered
along the thesis and at the conclusions Section.

• Is it possible to implement slip boundary conditions in the finite
volume method framework and what are its limitations?

• Is it possible to use slip boundary conditions as a method to
improve the limits of convergence associated with the High
Weissenberg Number Problem (HWNP)?

• Is the presence of slip velocity always helpful during the extru-
sion process?

All this objectives/questions are pertinent and the answers are still
missing in the literature. The main objective of this thesis is to ob-
tain further improvements for the understanding of the slip physical
phenomenon.

1.2.4 Dissertation Outline

The present study is a theoretical and numerical numerical study of
slip flows. For the numerical implementation of the slip boundary
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conditions a three-dimensional time dependent finite volume code
(developed by (Oliveira et al., 1998), with improvements described
later in (Oliveira and Pinho, 1999b) and (Alves et al., 2000)) was used.

This thesis is divided into six main parts and is built with published,
submitted and “to be submitted” papers.

part I: To slip or not to slip: that is the question

An introduction to the subject of slip velocity in Newtonian and non-
Newtonian fluids is made.

part II: Mathematical Modelling

The mathematical modelling of fluid flow is explained together with a
brief description on the type of the numerical methods used to solve
the system of partial differential equations.

part III: Analytical studies of flows under slip

Two papers are presented with analytical solutions for Newtonian,
inelastic non-Newtonian and viscoelastic non-Newtonian fluids under
the influence of different types of slip boundary conditions. Four
different slip models are used, most of them nonlinear. In the cases
where a closed form solution is not possible the proof of existence
and uniqueness of the simple analytical solution is provided (this
way a basic numerical method can be used to find the solution in the
provided range). These solutions are helpfull for theoretical purposes
and for the validation of numerical codes.

part IV: Numerical studies of flows under slip

Six papers are presented. The first two, concern the implementation
of slip boundary conditions in the finite volume method (FVM) and a
study of the slip-stick flow through a geometry with a singular point.
In the first paper the same slip models of Part III are used, and a
detailed explanation of three different methods of implementation is
presented. The second paper is based on two other slip models and
investigates the effect of slip velocity on the singularity of a slip-stick
geometry.

The third and fourth papers investigate flow development in channel
flow and specifically look at the development length for Newtonian
and non-Newtonian fluids under the influence of the Navier slip
boundary condition. For the Newtonian fluids a correlation for the
development length is presented as a function of the Reynolds number
and the slip coefficient of the linear Navier slip model. This has
a practical application in microfluidics. The other paper concerns
viscoelastic fluids (the viscoelastic model used is the Upper Convected
Maxwell, UCM) and has practical application in the extrusion process.

The last two papers of this part, present numerical simulations of
flows through abrupt expansions and contractions under the influence
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Figure 1.8: Type of geometries that can be found in the extrusion process.

of linear and nonlinear Navier slip boundary conditions. These ge-
ometries are easily found in flow channels employed in the extrusion
process (c.f. Fig. 1.8) and the results are relevant to understand the
fluid flow inside an extruder, and to study its influence upon the final
shape of the extruded profile. From the results obtained we we noticed
that the recirculation zone increases with the slip velocity for the 4:1
contraction flow, and decreases (or even vanishes) for the expansion
flow.

part V: Electro-Osmotic flow

Two papers analytically investigate electro-osmotic/pressure driven
flows for viscoelastic fluids under the influence of slip boundary
conditions. The first paper is about symmetric flow in a channel while
the second paper concerns asymmetric wall conditions. This work is
usefull because it gives the possibility of modeling the apparent slip
velocity characteristic of the electro-osmotic flows, with the linear and
nonlinear Navier slip laws.

part VI: Conclusions and Outlook

In this last part of the thesis, the questions proposed as objectives are
answered together with the possibilities of a future work.





Part II
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2
M AT H E M AT I C A L M O D E L L I N G

[...] It would be better for the true physics,:
if there were no mathematicians on earth. [...]

— Daniel Bernoulli

There are two major steps when modelling physical phenomena.
The first step is to find the mathematical model that reproduces (we
hope) what we are trying to model, and the second step is to solve
the mathematical equations (or else we will not know whether the
model is correct). Usually these models are complex and difficult (if
not impossible) to solve analytically, therefore a numerical procedure
must be adopted. We can also try to find analytical solutions for
specific fluids and geometries, but in this way the model will not
be helpful predicting the behavior of the physical phenomena for
different geometries and flows.

2.1 newtonian and non-newtonian fluids

2.1.1 What is a fluid?

Any continuous
medium can be
subject to two
different types of
forces, body (such as
gravity) and surface
forces (act on the
surface of the
medium). If we think
of a force F acting on
the surface (area of
the surface=S) of an
object, then the
average stress, τ, is
given by τ = F

S . The
normal stress point
in the normal vector
direction and the
tangent stress points
in the tangent
direction for a chosen
point of the surface.

All the material in the universe (that follows the conservation laws
of physics) can be classified as either, solid, liquid or gas. The key
distinction between fluids and solids is their resistance to change
shape. If a normal force is applied, both deform proportionally to the
compressive force, but if a tangential force is applied, the fluid cannot
sustain a finite deformation under the action of this shear force.

Suppose there is a small portion of fluid between two parallel plates
(Fig. 2.1) and that a generic stress is applied to the upper plate (Couette
flow). Then we expect the stress to be proportional to the constant
velocity of the plate, U, and inversely proportional to H through a
constant, designated dynamic viscosity, µ, in such way that τ = µ U

H .
If we think of two very thin and close layers of fluid with different
directions than we would expect a tangent stress between the two
surfaces of fluid given by,

τ = µ
du
dy

(2.1)

where du is the difference of velocity while dy is the distance between
the two layers. In a more general framework this equation is written

17
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Figure 2.1: Schematic of a Couette flow.

Figure 2.2: Shear stress variation.

as τ = µ
(
∇u + (∇u)T

)
= 2µD. The tensor D = 1

2

(
∇u + (∇u)T

)
is

known as the deformation tensor.
Notice that at Fig. 2.1 the orange line represents a dye line that

was injected in the flow. When the upper plate moves the line moves
linearly with the flow. The friction between the several layers of fluid
(viscosity) is constant.

Suppose now that we have a vessel filled with glycerin and that we
carefully inject an orange line of dye, as shown in Fig. 2.2. If we place
a block at the free surface of the glycerin and then move the block to
the right, a nonlinear dye line is obtained. This hapens because now
we do not have a Couette flow anymore, the stress is not constant, and
decreases as we move away from the free surface.

Viscosity is perhaps the most importante property of a fluid. It does
not only describes the nature of the fluid (wether it is Newtonian or
not), but predicts the behavior of the shear stress with respect to the
rate of the angular deformation of the fluid. We know a great deal
about the fluid if we know its viscosity.

2.1.2 Newtonian fluids

The Navier-Stokes equations were first proposed in 1822 by Navier.
The equations of motion were independently rederived by Cauchy
in 1828 and by Poisson in 1829, and in 1843 Barre de Saint-Venant
published the derivation of the equations for both laminar and tur-
bulent flows. It was George Gabriel Stokes, in 1845, that derived the
equations in a manner that we still use today, and because of that he
earned his place in the equation’s name.

The system of differential equations that governs the fluid flow is
given by,
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ρ ∂u
∂t + ρ∇ · uu = −∇p +∇ · τ, on [0, T]Rn

∂ρ
∂t +∇ · ρu = 0, on [0, T]×Rn

ut=0 = u0, on [0, T]×Rn

(2.2)

where u is the velocity vector, p is the pressure, ρ is the density and
τ = µ

(
∇u + (∇u)T

)
+
( 2

3∇ · u
)

I is the deviatoric stress tensor (µ
is the viscosity). The first and second equations are the momentum
(Cauchy equation of motion) and continuity equation, respectively.
The substitution of the deviatoric stress tensor into the momentum
equation gives the Navier-Stokes equations. Notice that this system of
differential equations works for compressible fluids. For incompress-
ible fluids, like the ones studied in this thesis, ∇ · u = 0. A Newtonian fluid

(named after Isaac
Newton) is a fluid
whose stress versus
strain rate curve is
linear and passes
through the origin.
The constant of
proportionality is
known as the
viscosity.

These governing equations work well for Newtonian fluids such as
water, glycerin, kerosene, milk, sugar solution, mineral oil, etc.

When thinking about a numerical procedure for solving this system
of equations we notice that there is no evolution equation for the
pressure, p. It seems we have four equations for the three velocity
components, and there is no time derivative for the pressure. The
idea is then to remove the pressure from the momentum equation
by finding a relation between the velocity and pressure, p(u), and
transform the continuity equation in an evolution equation for p.

If we substitute τ = µ
(
∇u + (∇u)T

)
in Eq. 2.2, the momentum

equation can be rewritten as,

ρ
∂u
∂t

+ ρ∇ · uu = −∇p + µ4u (2.3)
Lemma:Let f ∈ Rn

be a smooth function
vanishing when
|x| → ∞ then the
solution v to the
Poisson equation
4v = f with ∇v
vanishing as
|x| → ∞, is given
by v (x) =∫

Rn N (x− y) f (y) dy,
with N (x) =
(2π)−1 ln |x| if
N = 2 and N (x) =
((2− N)ω)−1 |x|2−N

if N ≥ 3. ω is the
surface area of a unit
sphere in Rn.

If we compute the partial derivative ∂xk of the Navier-Stokes equa-
tions, we obtain the following componentwise equation,

ρ

((
ui

xk

)
t
+ uj

(
ui

xk

)
xj
+ uj

xk ui
xj

)
= −pxixk + µ

(
ui

xk

)
xjxj

(2.4)

By introducing the notation U ≡
(
ui

xk

)
and P ≡ (pxixk) for the

Hessian matrix of p, we obtain the following equation,

DU
Dt

+ U2 = −P + µ4U (2.5)

By taking the trace of this equation and based on the fact that
tr [U] = ∇ · u = 0 we get,

D(∇ · u)
Dt

+ tr
[
U2] = −4p + µ4(∇ · u) (2.6)

that results in a Poisson equation,

−4p = tr [∇u]2 (2.7)
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.
We now have more equations than variables.
Based on the Lemma on the right, Eq. 2.7 can be used to obtain p

and than differentiating under the integral to obtain ∇p,

∇p (x, t) = CN

∫
Rn

x− y

|x− y|N
tr [∇u (y, t)]2 dy (2.8)

The Navier-Stokes equation can now be written as,

Du
Dt

= −CN

∫
Rn

x− y

|x− y|N
tr [∇u (y, t)]2 dy + µ4u (2.9)

The most remarkable thing about Eq. 2.9 is that its solution already
verifies the continuity equation (Majda and Bertozzi, 2001) and the
pressure can be recovered from Eq. 2.7.

For the numerical solution of the Navier-Stokes equations a similar
technique is used to obtain an equation for the pressure, p. An iterative
procedure is then used between the discretized version Eqs. 2.3 and
2.7 until pressure and velocity verifies both equations (the restriction
∇ · u = 0 is automatically verified).

2.1.3 Non-Newtonian fluids (inelastic)

Although the simulations of Newtonian fluids are of great interest,
we are interested in a broader range of materials, as the ones where
the shear viscosity is not constant, being dependent on shear rate,
temperature and time.

Depending on how viscosity changes with time the flow behavior
is characterized as thixotropic (time thinning, i.e. viscosity decreases
with time) or rheopetic (time thickening, i.e. viscosity increases with
time) Thixotropic fluids are quite common while rheopectic fluids are
very rare (examples: thixotropic: yogurt, paint, rheopectic: gypsum
paste).

Depending on how viscosity changes with shear rate the flow be-
havior is characterized as:

shear thinning - the viscosity decreases with increased shear rate.
shear thickening - the viscosity increases with increased shear rate.
plastic - exhibits a so-called yield stress value, i.e. a certain stress

must be applied before flow occurs. Shear thinning fluids are also
called pseudoplastic and shear thickening fluids are also called dila-
tant.

Examples of shear thinning fluids are, polymer melts, paints, sham-
poo and ketchup. Examples of shear thickening fluids are wet sand
and suspensions. Examples of plastic fluids are tooth paste and hand
cream.
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The easiest way to implement this feature of the viscosity into
the Navier-Stokes equation is to define the viscosity as a function of
parameters such as temperature, shear rate and time.

For inelastic fluids remains valid a relation of the form τ = 2µD,
but, with a varying viscosity that must be a tensor of rank zero, a scalar.
This is only possible if the viscosity is a function of the invariants
of D. For the case of simple shear flow only the second invariant,
I ID = 1

2

[
(trD)2 − trD2

]
does not vanish, and the viscosity function

can be written as µ (I ID).This explains why this model is only suitable
for simple shear flows.

Two well known viscosity functions are the “power law” (created
by Ostwald and de Waele) and the Carreau models.

The power law model is given by

µ (γ̇) = aγ̇
m−1

(2.10)

with a and m (m = 1: Newtonian fluid, 0 < m < 1: shear thinning,
m > 1: shear thickening ) empirical parameters. For 0 < m < 1, if
γ̇ → ∞ then µ (γ̇) → 0 (while in reality µ (γ̇) → µ0) and for m > 1
if γ̇→ 0 then µ (γ̇)→ ∞(while in reality µ (γ̇)→ µ∞). µ0 and µ∞are
the so-called zero-shear-rate viscosity and infinite shear rate viscosity,
respectively.

The Carreau model is a more complex model that already accounts
for these features of the Non-Newtonian fluids. It is given by,

µ (γ̇) = µ∞ + (µ0 − µ∞)
[
1− (λγ̇)2

] m−1
2

(2.11)

Here, µ0, µ∞, λ and m are constant parameters which are deter-
mined by experimental investigations and that characterize the fluid.
For both models γ̇ =

√
−4I ID

These fluids are known as “generalized Newtonian fluids”. Because
they only describe well simple shear flows, they are are not suitable
for flows where the elastic effects are relevant (for example extensional
flows), and new constitutive equations must be used.

2.1.4 Non-Newtonian fluids (viscoelastic)

The different behavior observed in Newtonian and viscoelastic fluids
can be illustrated with two well known examples: the die swell and
the rod climbing phenomena (Fig. 2.3).

When a rotating rod is brought into a polymer melt or concentrated
polymer solution, the meniscus climbs the rod. This is due to the
normal stresses and is thus a purely non-Newtonian effect. Die swell
is an instance where a non-Newtonian fluid stream is compressed by
entrance into a die, and is followed by a partial recovery or “swell”
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Figure 2.3: Die swell and rod climbing.
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Figure 2.4: Mechanical model that represents the behavior of a Maxwell fluid.

back to the former shape and volume of the the fluid after exiting the
die.

The key features of viscoelastic fluids, is the existence of relaxation
and retardation times. When we apply a stress to a Newtonian fluid
the response is instantaneous (the relaxation time is zero). On the
other hand, if we have a viscoelastic fluid, the response will have a
delay (the relaxation time is different from zero) (Gurtin, 1981; Majda
and Bertozzi, 2001; Phan-Thien, 2002).

Maxwell proposed a viscoelastic model that couples two properties
of the viscoelastic fluids, elasticity and viscosity. To represent the
mechanical equivalent of this model we can assume a spring (elasticity)
connected to a dashpot (viscosity), with both objects subject to the
same stress (c.f. Fig. 2.4).

For quick deformations the fluid behaves as a Hookean elastic solid
with modulus of elasticity G, for small deformations the fluid behaves
as a Newtonian fluid. For solids, the stress is given by a constant
(G) times the deformation (strain) τ = Gγe, while for a liquid, the
deformation can be infinite so the measure “deformation” is of no use,
the rate of deformation (γ̇v) is used instead, τ = ηpγ̇v. The total rate
of deformation is given by γ̇ = γ̇e + γ̇v meaning that,
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1
G

dτ

dt
+

τ

ηp
= γ̇ (2.12)

Integration (simple integration and then integration by parts) of this
equation leads to,

τ (t) =
∫ t

−∞

ηp

λ2 exp
(
−
(

t− s
λ

))
γ (s) ds (2.13)

This equations shows that the stress at a certain moment depends
on the strain history. The function that controls this dependence is
the memory function ηp

λ2 exp
(
−
( t−s

λ

))
, with λ =

ηp
G being called the

relaxation time. It tells us that the further we move back in time, the
less the strain contributes to the actual stress.

A parameter which is used to measure the influence of the relaxation
time is the Deborah number (De). It is defined as the ratio between
the characteristic relaxation of the fluid and the time length of the
observed phenomenon (time),

De =
λ

time
(2.14)

Eq. 2.12 can be rewritten using a general framework based on
tensors as ,

τ + λ
dτ

dt
= ηpγ̇ (2.15)

This model was proposed by (Maxwell, 1867a) to study the possible
viscoelasticity of gases.

This model does not respect the conditions proposed by (Oldroyd,
1950), therefore, Oldroyd proposed a correction, the substitution of dτ

dt
by the upper convected derivative,

∇
τ ≡ dτ

dt
+∇·uτ − τ · ∇u− (∇u)T · τ (2.16)

giving an equation of the form,

τ + λ
∇
τ = ηpγ̇ (2.17)

named Upper Convected Maxwell (UCM) model.
Later, Oldroyd proposed a similar model, based on the Jeffreys

(1924) model. Jeffrey’s “added another dashpot” to the UCM model,
as seen in Fig. 2.5 . The constitutive equation can be written as,

τ + λ
dτ

dt
= ηp

(
γ̇ + λr

dγ̇

dt

)
(2.18)

where τ = τp + τs , η0 = ηs + ηp and λr = λ
ηs
η0

.
Again, this model does not respect the conditions proposed by

(Oldroyd, 1950), and Oldroyd, proposed the Oldroyd-B model,
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Figure 2.5: Mechanical model that represents the behavior of a Jeffrey fluid.

τ + λ
∇
τ = ηp

(
γ̇ + λr

∇
γ̇

)
(2.19)

Both UCM and Oldroyd-B models predict a zero second normal
stress difference.The normal stress

differences are given
by: first normal
stress difference

N1 = τyy − τxx and
second normal

stress difference
N2 = τzz − τyy.

Constitutive equations can also be derived from molecular theory.
In order to improve the modelling and the prediction of normal stress
differences, the PTT model, proposed by (Phan-Thien and Tanner,
1977), was based on molecular networks and predicts a negative sec-
ond normal stress difference, in agreement with experimental results.
The model depends on the first invariant of the stress tensor (the trace
of the tensor) and is given by,

τ = τp + τs

τ = ηs

(
∇u + (∇u)T

)
f
(
trτp

)
τp + λ

∇
τp +

ξ
2 λ
(
γ̇ · τp + τp · γ̇

)
= ηpγ̇

(2.20)

with

f
(
trτp

)
= 1 +

λε

ηp
trτp (2.21)

as given in the original version, or

f
(
trτp

)
= exp

(
λε

ηp
trτp

)
(2.22)

proposed later by (Phan-Thien, 1978).
The model has five parameters, λ, ηs and ηp, which are the relax-

ation time, solvent viscosity and polymer viscosity, ε is a parameter
that eliminates the singularity in the extensional viscosity and ξ is
related to the fluidity of the molecular network.

Several other models have been proposed along the years to model
accurately specific fluids. In spite of all these developments, there is
still no general model which is able to predict the behavior of all types
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of fluid. For more information on constitutive equations the workks
by (Larson, 1999; Phan-Thien, 2002) are advised.

2.1.5 Electro-osmotic flow

Stern
layer

su
rf

ac
e

Diffusive
layer

ψ

0ψ

Figure 2.6: (a) Schematic of the ions distribution near a charged wall. (b)
Variation of the potential, ψ, with the distance from the wall.

Electroosmotic flow is the motion of liquid induced by an applied
potential across a porous material, capillary tube, membrane, mi-
crochannel, or any other fluid conduit. It was first reported in 1809 by
F.F. Reuss in the Proceedings of the Imperial Society of Naturalists of
Moscow. He showed that water could be made to flow through a plug
of clay by applying an electric voltage. Clay is composed of closely
packed particles of sand and other minerals, and water flows through
the narrow spaces between particles just as it would through a narrow
glass tube.

One of the most significant effects of the charged surface (Fig. 2.6)
is the attraction of ions with opposite sign of the charge (counter-ions)
and the repulsion of the ions with the same sign (co-ions). Near the
charged wall we can distinguish two different types of layers. The
first layer is called Stern layer and is composed of counter-ions. At
zero absolute temperature the counter-ions would screen the charged
wall, but due to thermal fluctuations the screening is only partial. The
second layer is called diffusive layer where the ions have the ability
to more around freely. The different concentrations of counter-ions
and co-ions leads to the creation of a varying potential field ψ (see Fig.
2.6).

These two layers near the wall form what is called the Electrical
Double Layer (EDL). If we assume a flow between parallel plates
with charged walls and the existence of a current potential difference
between two electrodes at the inlet and outlet, then an electric field
is generated that exerts a body force on the counter-ions of the EDL,
which move along the channel dragging the neutral liquid core.

The governing equations for this type of flow are given by,
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Ex

Figure 2.7: Schematic representation of electro-osmotic flow in a microchan-
nel.

−∇p +∇ · τ + ρeE = 0, on [0, T]Rn

∇ · u = 0, on [0, T]×Rn

ut=0 = u0, on [0, T]×Rn

(2.23)

where τ is the polymeric extra stress tensor and ρeE represents a body
force per unit volume, where E is the applied external electric field
and ρe is the net electric charge density in the fluid.

In this thesis we propose the use of slip boundary conditions to
model the slip zone between the ions that can move freely and those
attached to the charged surface.

2.2 computational fluid dynamics

Predicting the future has always been in everyone’s mind. Even ancient
civilizations presented us the idea of predicting the course of actions.

There are two possible ways for predicting the future, either you
have special powers, or the future repeats itself over and over again,
in such a way that you start finding patterns.

Computational fluid dynamics is the prediction of the future of
a fluid flow. Because no special powers seem to solve the problem,
the idea of finding patterns seems reasonable. These patterns were
translated to mathematical language some years ago, when the Navier-
Stokes equations were written. It is remarkable how so many informa-
tion was compacted in such a small system of equations. Because of
this compactness another tool must be created to unlock the Navier-
Stokes information when desired. This tool is nowadays known as
“numerical solution of partial differential equations” and involves tech-
niques such as, finite difference methods (FDM), finite element meth-
ods (FEM), finite volume methods (FVM), spectral methods, boundary
element methods, vorticity based methods, lattice gas/lattice Boltz-
mann, etc. Each method has its own advantages and disadvantages.
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Anyway, the recent commercial codes for the prediction of fluid flow
are mostly based on the FVM.

The finite volume method (FVM) is a numerical method well suited
for various types of conservation laws. It is used in fluid mechan-
ics, meteorology, electromagnetics, semi-conductor device simulation,
models of biological processes and many other engineering areas gov-
erned by conservative systems that can be written in integral control
volume form.

The method is attractive because while variables may not be con-
tinuously differentiable across shocks and other discontinuities, mass,
momentum and energy are always conserved. In the FVM, conserva-
tiveness is explicitly enforced, in sharp contrast to Finite Difference
Methods (FDM) and Finite Element Methods. The late 1970’s early
1980’s, saw the development of body-fitted grids (Wesseling, 2010)
while in the 1990’s, unstructured grid methods have appeared. A dis-
advantage of this methods is the appearance of false diffusion when
low order numerical methods are used.

The method consists of dividing the domain into control volumes,
integrate the differential equation over the control volume and apply
the divergence theorem. The derivative terms are evaluated with
discrete values at the center of the control volume and this results in a
set of linear algebraic equations: one for each control volume. At the
end we can solve the system of equations iteratively (the most used
procedure in computational fluid dynamics) or simultaneously.

Historically, the finite difference method (FDM) is the oldest of
the three. The technique was first presented by L. F. Richardson in
1910 at the Royal Society of London, for the stress analysis of a ma-
sonry dam. In 1922, Richardson developed the first numerical weather
prediction system. His own attempt to calculate weather for a sin-
gle eight-hour period took six weeks and ended in failure. In 1928,
Courant, Fredrichson and Lewy (Courant et al., 1967) derived stability
criteria for explicit time stepping (known as CFL condition).

The first numerical solution with the FDM was given by (Thom,
1933) for the flow over a circular cylinder and (Kawaguti, 1953) ob-
tained a solution for flow around a cylinder, by using a mechanical
desk calculator, working 20 hours per week for 18 months.

The FDM is very easy to implement but is restricted to simple grids
and does not conserve momentum, energy, and mass. The domain is
discretized into a series of grid points. The governing equations are
discretized and approximated by truncated Taylor series expansions.
The resulting set of linear algebraic equations is then solved either
iteratively or simultaneously. For more on the FDM see (Roache, 1972).

The FEM earliest use was by Courant (1943) for solving a torsion
problem (see (Courant, 1994)), and in 1956, Turner, Clough, Martin
and Topp published in the Aeronautical Science Journal an FEM study
of an aircraft stress analysis ((Turner et al., 1956)). The method was
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refined greatly in the 60’s and 70’s, mostly for analyzing structural
mechanics problem and in the mid 70’s for fluid flow.

For more on the FEM with fluid flow applications, see (Zienkiewicz,
1991);

In order to understand the difference between these three methods,
consider the two-point boundary value problem,

− d2u
dx2 = f in (0, 1)

u(0) = 0, u′(1) = 0
(2.24)

fem:

Let u be the solution to the differential equation and v be any regular
function with the restriction v (0) = 0. Multiplying both side of the
equation by v and integrating over the range (0, 1) leads to,

∫ 1

0
f (x) v (x) dx =

∫ 1

0
−d2u

dx2 v (x) dx =
∫ 1

0

du
dx

dv
dx

dx (2.25)

For the second equality integration by parts was used.
The weak or variational formulation of the problem can be stated

as,

f ind u ∈ V such that
∫ 1

0
du
dx

dv
dx dx =

∫ 1
0 f (x) v (x) dx ∀v ∈ V

V =
{

v ∈ L2 (0, 1) :
∫ 1

0
dv
dx

dv
dx dx < ∞ and v (0) = 0

} (2.26)

Theorem: Suppose
f ∈ C0 ([0, 1]) and

u ∈ C2 ([0, 1])
satisfy Eq. 2.26.

Then u solves Eq.
2.24.

Based on the theorem given on the left we see that the solution for
the problem can be achieved with the weak formulation. The weak
formulation is less restrictive because only the first derivative for u is
needed.

The “discretization” of the problem can be easily introduced with
the Ritz-Galerkin approximation. Let S ⊂ V be any (finite dimensional)
subspace. If we rewrite the weak formulation of Eq. 2.24 in terms of S,
then,

f ind uS such that
∫ 1

0

duS

dx
dv
dx

dx =
∫ 1

0
f (x) v (x) dx ∀v ∈ S (2.27)

Theorem: Given
f ∈ L2 (0, 1) then
2.27 has a unique

solution. (see
(Brenner and Scott,

2008)).

Let {φi : 1 ≤ i ≤ n} be a basis of S ; uS can be written in terms

of the basis elements by uS =
n
∑

j=1
Ujφi. Let Kij =

∫ 1
0

dφi
dx

dφj
dx dx and

Fi =
∫ 1

0 f (x) φidx for i, j = 1, ..., n. Then the problem 2.27 is equivalent
to solve the system of equations (see Livro Susanne),[

Kij
] [

Uj
]
= [Fi] (2.28)
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0 1

1 node

xi

Figure 2.8: Linear basis function φi

Let 0 = x0 < x1 < ... < xn = 1 be a partition of [0, 1]. Sup-
pose we chose S as the piecewise polynomial space, constituted by
linear space functions v such that : v ∈ C0 ([0, 1]), v[xi−1,xi ] is a lin-
ear polynomial (i = 1, ..., n) and v (0) = 0. For the proof of S ⊂ V
see (Brenner and Scott, 2008). Define φi with the requirement that
φi
(

xj
)
= δij(Knonecker delta) as in Fig. 2.8. , then {φi : 1 ≤ i ≤ n} is a

basis for S (nodal basis).
Definition: Given v ∈ C0 ([0, 1]), the interpolant vInt ∈ S of v is

determined by vInt =
n
∑

i=1
v (xi) φi. Note that v ∈ S⇒ v = vInt.

The following theorem finalizes the exposition on the finite element
method, giving an approximation result for the interpolant.

Theorem: Let h = max1≤i≤n (xi − xi−1) then ‖u− uInt‖E ≤ ch
∥∥∥ d2u

dx2

∥∥∥
for all u ∈ V (c is independent of h and u).

We now have all the elements to compute the numerical solution of
the Eq. 2.24 by using the system of equations 2.28.

fdm :

Making use of the same example given for the FEM we can derive
the FDM formulation. Let hi = xi − xi−1, then the matrix

[
Kij
]

can be
written as 

k11 k12 0 0 0

k21 k22 k23 0 0

0 k32 k33 · · · 0

0 0
...

. . . k(n−1)n

0 0 0 kn(n−1) knn


(2.29)

with Kii =
1
hi
+ 1

hi+1
, Ki,i+1 = Ki+1,i = − 1

hi+1
and Knn = 1

hn
(this also

works for the FEM). Remember that Fi =
∫ 1

0 f (x) φidx and it can be
approximated by 1

2 (hi + hi+1) ( f (xi) +O (h)) with h = max hi (this
follows from the fact that the integral of φi is 1

2 (hi + hi+1)and from
Taylor’s theorem). Assuming a uniform mesh, the i− th equation of[
Kij
] [

Uj
]
= [Fi] can be written as,

−
Uj − 2Uj + Uj

h2 = f (xi) +O
(
h2) (2.30)
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which is a familiar difference equation. Basically in the FDM the
derivatives are approximated by finite differences.

fvm

The FVM makes use of an integral formulation of the equations. For
the sake of simplicity assume the variables are equally spaced (except
at the boundary) as shown in Fig. 2.9. and assume that f is constant.

0 1
hh/2

CV1 CV2 CV3 CV4

PW Ew e

Figure 2.9: Finite volume grid for a one dimensional case.

In this example we have four variables, four control volumes, and
also a Dirichlet and a Newman boundary condition. The integral
version of the two-point boundary value problem is given by∫

− d2u
dx2 =

∫
f in (0, 1)

u(0) = 0, u′(1) = 0
(2.31)

The existence of control volumes, forces the approximation of our
integral equation into four integrals.

For a control volume without boundary conditions , the integration
−
∫ e

w
d2u
dx2 dx =

∫ e
w f dx yields

(
du
dx

)
e
−
(

du
dx

)
w
+ f h = 0 (this equation

represents the diffusive flux conservation in a control volume) where
the one dimensional divergence theorem was used on the left side
of the equal sign and the mid-point rule was used to approximate
the right hand side integral. Assuming a simple central difference to
approximate the derivatives,(

du
dx

)
e
' uE − uP

h
,
(

du
dx

)
w
' uP − uW

h
(2.32)

the following equation is obtained,

aPuP = aWuW + aEuE + f h

aW = aE = 1
h ; aP = aW + aE

(2.33)

This equation applies for control volumes 2 and 3.
For the control volume number 1, if a one-sided first order approxi-

mation is used,
(

du
dx

)
w
' uP−uw

h/2 , then we have (notice that uw = u (0)),

aPuP = aWuW + aEuE + f h + 2u(0)
h

aW = 0; aE = 1
h ; aP = aE + 2

h

(2.34)
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If a similar procedure is used for the control volume number 4, with(
du
dx

)
e
= du(1)

dx = 0 then,

aPuP = aWuW + aEuE + f h

aW = 1
h ; aE = 0; aP = aW + aE

(2.35)

Combining all the discretized equations, the following algebraic
system of equations is obtained,


3
h − 1

h 0 0

− 1
h

2
h − 1

h 0

0 − 1
h

2
h − 1

h

0 0 − 1
h

1
h




u1

u2

u3

u4

 =


f h + 2u(0)

h

f h

f h

f h

 (2.36)

Notice the similarity between the coefficients matrix and the matrix[
Kij
]

from the FEM.
The FVM is a powerful method with a very intuitive and physical

interpretation. Therefore this is the adopted method for this thesis. For
a more detailed description of the FVM in the field of fluid dynamics
the books of ((Patankar, 1980; Wesseling, 2010)) are advised.
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introduction to part iii

In this Part, the following papers based on analytical solutions for
both Newtonian and Non-Newtonian fluids, are presented:

.L.L. Ferrás, J.M. Nóbrega, FT Pinho (2012), Analytical solutions for
Newtonian and Inelastic non-Newtonian flows with wall slip, Journal
of Non-Newtonian Fluid Mechanics 175-176 76-88;

.L.L. Ferrás, J.M. Nóbrega, FT Pinho (2012), Analytical solutions for
channel flows of Phan-Thien–Tanner and Giesekus fluids under slip,
Journal of Non-Newtonian Fluid Mechanics 171-172 97-105;





3
A N A LY T I C A L S O L U T I O N S F O R N E W T O N I A N A N D
I N E L A S T I C F L O W S W I T H WA L L S L I P

Abstract1

This work presents analytical solutions for both Newtonian and inelas-
tic non-Newtonian fluids with slip boundary conditions in Couette and
Poiseuille flows using the Navier linear and non-linear slip laws and the
empirical asymptotic and Hatzikiriakos slip laws. The non-Newtonian con-
stitutive equation used is the generalized Newtonian fluid model with the
viscosity described by the power law, Bingham, Hershel-Bulkley, Sisko and
Robertson-Stiff models. While for the linear slip model it was always possi-
ble to obtain closed form analytical solutions, for the remaining non-linear
models it is always necessary to obtain the numerical solution of a transcen-
dent equation. Solutions are included with different slip laws or different slip
coefficients at different walls.

3.1 introduction

Wall slip occurs in many industrial applications, such as in polymer
extrusion processes, thus affecting the throughput and the quality of
the final product (Denn, 2001). Therefore, analytical solutions of slip
in shear flows are important to solve relevant industrial problems and
better understand them, but also for the assessment of computational
codes used in fluid flow simulations. There are many exact solutions
for fluid flow in the literature (Berker, 1963; Bird et al., 2002) some of
which are very simple, and others that use complex rheological models
(Bird et al., 2002). Even though the simple exact solutions seem trivial,
they are the building blocks to the understanding of more complex
solutions. They usually rely on the Dirichlet type (no-slip) boundary
condition ( where stands for the velocity at the wall). However, there
is experimental evidence suggesting that some fluids do not obey this
condition at the wall (Lauga et al., 2005), and show instead slip along
the wall. For a review on wall slip with non-Newtonian fluids, slip laws
and techniques to measure this property, the works of (Denn, 2001),
(Lauga et al., 2005) and (Hatzikiriakos, 2012) are strongly advised.

Meijer and Verbraak, 1988 and (Potente et al., 2002, 2006) present
analytical solutions for Poiseuille flow in extrusion using wall slip for
Newtonian and power law fluids. Chatzimina et al. (2009) solves for
non-linear slip in annular flows and analyses its stability. Ellahi et al.

1 L.L. Ferrás, J.M. Nóbrega, F.T. Pinho (2012). Analytical solutions for Newtonian and
Inelastic non-Newtonian flows with wall slip, Journal of Non-Newtonian Fluid Mechanics
Volumes 175–176, May 2012, 76–88.

37
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(2010) presents an analytical solution for viscoelastic fluids described
by the 8-constant Oldroyd constitutive equation with non-linear wall
slip. Wu et al. (2008) investigated analytically the pressure driven
transient flow of Newtonian fluids in microtubes with Navier slip,
whereas (Matthews and Hill, 2007) presented analytical solutions for
pipe, annular and channel flows with the slip boundary conditions
given by (Thompson and Troian, 1997). Yang and Zhu (2006), and
the references cited therein, report analytical solutions and theoretical
studies of squeeze flow with the Navier slip boundary condition. It
is also worth mentioning the works on the well-posedness of the
Stokes equations with leak, slip and threshold boundary conditions
(Fujita, 2002; Roux and Tani, 2007), which also included their numerical
implementation.

In spite of the wealth of solutions in the literature, there is a wide
range of slip conditions, which have not been addressed analytically.
With the exception of the simple linear Navier slip, for most other slip
laws in the literature the analytical solutions for the so-called indirect
problem are missing. Here, the results are dependent on the imposed
flow rate. For the direct problem the literature is rich on the solutions
but lack the corresponding reverse case, and this is not just a matter
of inverting the final expressions given the non-linearity of the slip
models and of the constitutive equations. In fact, the inverse problem
is invariably more difficult to obtain than the solution of the direct
problem. The main purpose of this paper is precisely to address these
issues and report some new analytical solutions in particular for the
inverse problem.

The remainder of this paper is organized as follows: subsection
2 presents the governing equations and the employed slip models.
The study of Newtonian fluid flows with slip is presented first in
subsection 3, starting with the simple Couette flow for the sake of
understanding and this is followed by the Poiseuille flow using linear
and non-linear slip boundary conditions and different slip coefficients
at the upper and bottom walls (the existing relevant literature is only
concerned with the direct problem for melt flow in extrusion screws).
Subsection 3 ends with a study of Newtonian Poiseuille flow with the
Hatzikiriakos and asymptotic slip laws and is followed by subsection
4 which describes solutions for the generalized Newtonian model with
the viscosity function given by Power law, (Sisko, 1958), (Herschel
and Bulkley, 1926) (Bingham) and Robertson-Stiff (Robertson and Stiff,
1976) models, both for linear and non-linear slip models. The text ends
with the conclusions, in section 5.
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Figure 3.1: (a) Velocity profile across the flow channel assuming Couette-
Poiseuille flow and slip at the wall (b) Different slip lengths
0 = k0 < k1 < k2 (zoom of the channel near the wall).

3.2 theory

3.2.1 Governing equations

This work concerns incompressible fluids which are governed by the
continuity equation

∇.u = 0 (3.1)

and the momentum equation,

∂ρu
∂t

+ ρ∇ · uu = −∇p +∇ · τ (3.2)

In Eq. 2 u is the velocity vector, p is the pressure, τ is the deviatoric
stress tensor and the gravity contribution is incorporated in the pres-
sure. All equations are written in a coordinate free form. The stress
tensor obeys the following law for generalized Newtonian fluids,

τ = 2η (γ̇)D (3.3)

with the rate of strain tensor D given by,

D =
1
2

(
[∇u] + [∇u]T

)
(3.4)

and η (γ̇) representing the fluid viscosity function.
Considering steady, incompressible, laminar flow (in the streamwise

direction) between two infinite parallel horizontal plates, with no
movement in the direction (Fig. 3.1), the momentum equation (Eq. 3.2)
written in a Cartesian coordinate system reduces to,

d
dy

(
η (γ̇)

du
dy

)
= px (3.5)

where px = dp/dx. This equation is valid for both planar Couette
and Poiseuille flow.
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For fluids described by the Generalized Newtonian model, the
empirical viscosity function η (γ̇) can be given by any of the models
in Eqs. 3.6 to 3.9. These are the power law model

η (γ̇) = a |γ̇|n−1 (3.6)

and the Sisko model

η (γ̇) = µ∞ + a |γ̇|n−1 (3.7)

where γ̇ is the shear rate obtained from the following definition
involving the second invariant of the rate of deformation tensor (|γ̇| =√

DijDij/2) and a, n are the consistency and power law indices with
n ≥ 0, and µ∞ is the viscosity at a very large shear rates. Analytical
solutions are also presented for yield stress fluids described by the
following two models,

Herschel Bulkley: τ =
(

µ0 |γ̇|n−1 + τ0
|γ̇|

)
γ̇ if |τ| > τ0

γ̇ = 0 if |τ| < τ0

(3.8)

Robertson-Stiff:

 τ =

(
µ1/n

0 |γ̇|(n−1)/n +
(

τ0
|γ̇|

)1/n
)n

γ̇ if |τ| > τ0

γ̇ = 0 if |τ| < τ0

(3.9)

where τ0 is the yield stress and µ0 > 0. For n = 1 the Herschel-
Bulkley model reduces to the Bingham model. For the yield stress
models |τ| is the second invariant of the deviatoric stress tensor |τ| =√

τijτij/2.

3.2.2 Boundary conditions

The specification of boundary conditions is mandatory to guarantee
the wellposedness of the problem. As mentioned before, most solu-
tions in the literature are for the Dirichlet type no-slip wall boundary
condition,

u = 0 (3.10)

This imposes that the fluid adheres to the wall, together with the
impermeability condition.

However, this boundary condition cannot be derived from first
principles (Lauga et al., 2005). Lamb (1932), (Batchelor, 2000) and
(Goldstein, 1965) mention that slip may be wrong and that the use of
no-slip stems from the need to agree predictions with experiments
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(some of the experiments referred to were not carried out carefully
and consequently their results are contradictory). Several authors try
to explain the existence of slip and its dependence on parameters like
surface roughness, dissolved gas and bubbles attached to the wall,
wetting characteristics, shear rate, electrical properties and pressure,
and this list keeps increasing with time.

In any case it is now an established fact that for macro geometries
the interaction between small fluid molecules and walls is equivalent to
a no-slip condition for most fluid-wall pairs. However, as the Knudsen
number (the ratio between the mean free path and the characteristic
flow size) increases, slip effects become more important (see (Lauga
et al., 2005) and references cited therein). Regarding long molecules,
such as the ones found in polymer melts, slip effects can actually
be found also at the macro scale leading to some flow instabilities
reviewed by (Denn, 2001), such as sharkskin, stick-slip and gross
melt fracture. Other investigations concerning slip at the liquid-solid
interface for polymers are Potente et al. (Potente et al., 2002) and
Mitsoulis et al. (Mitsoulis et al., 2005).

3.2.3 Slip laws

Friction between a fluid in contact with a wall generates a tangent
stress vector τ (Fig. 3.1) that may be sufficient to eliminate slip of
the fluid. Therefore, a way to promote slip is to reduce that friction,
leading to the appearance of a nonzero velocity along the wall. The
tangent stress vector depends on the velocity gradient of the fluid at
the wall, with both variables related in such a way that the tangent
velocity and tangent stress vectors are pointing in opposite directions
(Fig. 3.1). Since all the analytical solutions in this work concern flow
between parallel plates aligned with the axis x direction, there is no
need to continue using vector notation, so, all the slip laws will be
presented in their streamwise component.

Navier (1822) argued that in the presence of slip the liquid mo-
tion must be opposed by a force proportional to the relative velocity
between the first liquid layer and the solid wall. Fig. 3.1 illustrates
an interpretation of slip with Fig. 3.1(a) showing the velocity pro-
file across the channel and the relation between the velocity and its
derivative at the wall. This derivative at the wall is the same as the
slope given by u/k. Thus, the following relation that involves the slip
velocity can be obtained,

uws

k
=

du
dy

∣∣∣∣
wall

(3.11)

Solving for uws, the relationship between the slip velocity and the
wall velocity gradient is,
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uws = k
du
dy

∣∣∣∣
wall

(3.12)

where the coefficient k is named slip length or friction coefficient. As
illustrated in Fig. 3.1(b) the slip length can take any positive value (k ≥
0), with no-slip at wall for k = 0, and increasingly large slip velocity
as k increases to infinity in which case the velocity profile becomes
a plug with zero velocity gradient. Eq. 3.12 must be combined with
the rheological constitutive equation. Considering the Generalized
Newtonian Fluid model for inelastic fluids, near the wall the tangent
stress is given by,

τxy = η (γ̇)
du
dy

(3.13)

Eq. 3.12 can now be rewritten for a Generalized Newtonian fluid as,

uws = sign (du/dy) kτxy (3.14)

with k = k/η (γ̇) ≥ 0. Based on the fact that the velocity points to
the stress opposite direction and because scalar variables are employed,
different signs will be used in Eq. 3.14 depending on the sign of the
shear rate sign (du/dy). For the “top wall”, the equation makes use
of the minus sign and for the “bottom wall” the plus sign, since
the tangent velocity is positive in both walls but the sign (du/dy) in
the top and bottom walls is negative and positive, respectively. This
notation will stand for the other slip laws.

This linear relationship between slip velocity at the wall and shear
stress at the wall is called the linear Navier Slip law (Navier, 1822) or
simply the Navier slip law. It has been used extensively to represent
experimental data, for both Couette and Poiseuille flows.

Slip laws are models to bridge the gap between theory and exper-
imental data, and to fit experimental observations a variety of slip
models were created, such as those stating the dependence of the
friction coefficient on wall shear rate or stress and models derived
from molecular kinetic theory (Schowalter, 1988; Hatzikiriakos, 1993).

The nonlinear Navier Slip law (Schowalter, 1988) assumes that the
friction coefficient is a function of the shear stress , thus providing a
non-linear power function,

uws = sign (du/dy) k
∣∣τxy

∣∣m−1
τxy (3.15)

where m > 0 (m ∈ R). For m = 1 the Navier slip law is recovered.
This non-linear model has been used to represent experimental

data in Couette and Poiseuille flows by (Thompson and Troian, 1997;
Schowalter, 1988). It provides a good approximation for several condi-
tions, but it fails to describe the slip velocity in the neighborhood of
the critical stress at which the slip starts. To eliminate this discrepancy,
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Hatzikiriakos proposed an alternative slip law based on the Eyring
theory of liquid viscosity in order to provide a smooth transition from
no-slip to slip flow at the critical shear stress (Hatzikiriakos, 1993).
The argument goes as follows:

Let τc be the positive critical stress at which slip starts and k1, k2 ≥ 0
. Then, the Hatzikiriakos slip law is given by,

uws =

{
k1sinh

(
k2sign (du/dy) τxy − τc

)
if τxy ≥ τc

0 if τxy < τc
(3.16)

The asymptotic slip law is given by

τ = (−1/k2) [1− exp (u/k1)] (3.17)

for one dimensional flow, and can also be written as an explicit
function for the slip velocity,

uws = k1ln
(
1 + k2sign (du/dy) τxy

)
(3.18)

For both the Hatzikiriakos and the asymptotic slip models, the coef-
ficients k1 and k2 allow controlling the amount of slip and the shape
of the curve τ vs uwsthat is obtained by experimental measurements.
Schowalter (1988) used the Hatzikiriakos slip law model to model wall
slip in Couette and Poiseuille flows, respectively.

For the Poiseuille and Couette flows of Figs. 3.1 and 3.2 the boundary
conditions for these slip laws can be written in a general form for both
the “top” (+h ) and “bottom” (+h ) walls.

U U U

11 0i k= = 2 12i k k= > 33i k= → ∞

( ) i xyu h k µτ− = −

y

x2h

Figure 3.2: Couette flow velocity profiles for different slip lengths k1 < k2 <

k3 .

Integrating the momentum equation (Eq. 3.5) τxy is given by,

τxy = pxy + c (3.19)

Combining Eq.3.19with Eqs. 3.15, 3.16 and 3.18 for all the investi-
gated slip laws gives the general form of the boundary conditions at
the upper and bottom walls.

For the non-linear Navier slip law ( m = 1 for the linear Navier slip
law):

u(h) = knl1 (−pxh− c)m (3.20)
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u(−h) = knl2 (−pxh + c)m (3.21)

For the Hatzikiriakoc slip law:

u(h) = kH1sinh (kH2 (−pxh− c)) (3.22)

u(−h) = kH3sinh (kH4 (−pxh + c)) (3.23)

For the asymptotic slip law:

u(h) = kA1ln (1 + kA2 (−pxh− c)) (3.24)

u(−h) = kA3ln (1 + kA4 (−pxh + c)) (3.25)

For symmetrical boundary conditions c1 = 0, thus the top and
bottom slip velocities become identical, as expected.

3.3 analytic and semi analytic solutions for newtonian

fluids

Newtonian fluids have a constant viscosity so η (γ̇) = µ in Eq. 3.13.

3.3.1 Couette flow

In pure Couette flow (Fig. 3.2) the pressure gradient is null and Eq.
3.5 reduces to:

u(y) = c1y + c2 (3.26)

with c1 the shear rate γ̇ = du/dy.

3.3.1.1 Navier slip at the bottom wall and no slip at the upper wall

Assume the upper wall is moving with velocity U and that a Navier
slip boundary condition applies to the bottom wall (cf. Fig. 3.2) so that

u(h) = U and u(−h) = kµ

(
du
dy

)
y=h

= kµc1 (3.27)

Using the boundary condition of Eq. 3.27 the coefficients c1 and c2

are given by,

c2 = U − c1h (3.28)

c1 =
U

2h + kµ
(3.29)

The final solution for the velocity profile across the channel is then,
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u(y) =
U (y− h)
2h + kµ

+ U (3.30)

Let f (k) be defined by,

f (k) =
U (y− h)
2h + kµ

+ U, k ≥ 0 (3.31)

For k = 0, f (0) = (U/2h) (y + h)which is the original solution
with Dirichlet boundary condition u = 0. As k increases the solution
approaches plug flow conditions, i.e.,

lim
k→∞

f (k) = lim
k→∞

U (y− h)
2h + kµ

+ U = U (3.32)

This equation states that it is impossible to obtain a slip velocity
larger than U, which is in agreement with the physical constraints of
the problem. Fig. 3.2 illustrates the evolution of the flow with the slip
length.

If U = 0 the flow profile is given by the trivial solution u(y) = 0 for
0 ≤ y ≤ h. The main problem with this slip boundary condition (Eq.
3.27) is that both the bulk and wall velocities depend on the velocity
gradient, so that a nonzero gradient will develop only if some velocity
is given at the boundary. Therefore, it can be said that the Navier slip
boundary condition is somewhat weaker than the Dirichlet boundary
condition, so that in the absence of a pressure gradient and of an
imposed velocity the fluid will not move. Note that for U = 0 and
imposing slip at both walls leads again to the trivial solution u(y) = 0.

3.3.1.2 Nonlinear slip laws at the bottom wall and no slip at the upper wall

Assume the upper wall is moving with velocity u(h) = U and a
nonlinear slip boundary condition is imposed at the bottom wall.
Following a procedure similar to that of the previous section the fol-
lowing boundary conditions are obtained: for the non-linear Navier
slip law we have u(−h) = knl2 (µc1)

m , for the Hatzikiriakos slip law
u(−h) = kH3sinh (kH4µc1) and for the asymptotic slip law the bound-
ary condition is given by u(−h) = kA3ln (1 + kA4µc1) . To determine
the integration constant , the following equations must be solved for
the non-linear Navier slip law, Hatzikiriakos and asymptotic slip laws,
respectively,

(c1)
m + (2h/kµm) c1 − (U/kµm) = 0 (3.33)

kH3sinh (kH4µc1) + 2hc1 −U = 0 (3.34)

kA3ln (1 + kA4µc1) + 2hc1 −U = 0 (3.35)
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Table 3.1: Analytical solutions for Couette flow with linear and nonlinear
Navier slip laws and slip only at the bottom wall. The top row
shows the general system of equations to be solved and the next
four rows show the solution for different values of the slip expo-
nent m = 0.5, 1, 2, 3.
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Couette 
Flow
[linear (m=1) 
and nonlinear 
Navier Slip 
(m     1)]

y

x

U

≠

For the special cases m = 0.5, 2, 3of the analytical solutions are
possible for the nonlinear Navier slip law, the results of which are
presented in Table 3.1 and Appendix A. For the other solutions and
equations we prove the existence of a unique solution in Appendix A.

3.3.2 Couette-Poiseuille Flow

Integrating twice the momentum equation (Eq. 3.5) for a constant
viscosity fluid, the result is,

u(y) =
px

2µ
y2 + c1y + c2 (3.36)

with c1 = c/µ, c2 ∈ R two real constant numbers, µ ≥ 0 and
0− h ≤ y≤h. Applying boundary conditions u(−h) and u(h) to the
velocity profile in Eq. 3.36 the constants of integration c1 and c2 can
be determined and the following final form of the velocity profile is
obtained

u(y) =
px

2µ

(
y2 − h2)+(u(h)− u(−h)

2h

)
y +

u(−h) + u(h)
2

(3.37)

For the particular case of pure Poiseuille flow, symmetry leads to
c1 = 0 and c2 = u(h)− (px/2η (γ̇)) h2.

For the inverse problem of Couette-Poiseuille flow with an imposed
flow rate Q = U.2h where U is the mean velocity obtained by integra-
tion of the velocity profile across the channel, we obtain the relation of
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Eq. 3.38 between the imposed mean velocity and the ensuing pressure
gradient,

U =
1

2h

h∫
−h

(
px

2µ
y2 + c1y + c2

)
dy⇔ − px

3µ
h2 +

u (−h) + u (h)
2

−U = 0

(3.38)
Notice that u(−h) and u(h) are themselves functions of the pressure

gradient, and nonlinear equations may arise.

3.3.2.1 Linear and nonlinear slip laws - pure Poiseuille flow

For the linear and non-linear slip models and from the boundary
conditions of Eqs. 3.20, 3.22 and 3.24 the flow velocity profile for the
direct problem becomes,

u(y) =
px

2µ

(
y2 − h2)+ u(h) (3.39)

whereas for the inverse problem the pressure gradient is obtained
from the following transcendent equation for a given bulk velocity U,

− px

3µ
h2 + u (h)−U = 0 (3.40)

Generally speaking the solution of the previous equation must be
obtained numerically, but for the particular cases of the non-linear
Navier slip law with m = 0.5, m = 1 (linear), m = 2 and m = 3
full analytical solutions can be obtained and are given in Table 3.2.
For the Hatzikiriakos and asymptotic slip laws, the corresponding
solutions are presented in Table 3.3. Details on these solutions are
given in Appendix B, where the existence of a unique solution for all
the boundary conditions is also proved.

Note that the solution of Hatzikiriakos and Mitsoulis (Hatzikiriakos
and Mitsoulis, 2009) is more general since they investigated a power
law fluid with non-linear Navier slip boundary conditions, but they
restricted their solutions to the particular case m = 1/n, where n is
the power law exponent, meaning that for the Newtonian case they
only explore the linear Navier slip.

3.3.2.2 Different slip in the upper and bottom walls for Couette-Poiseuille
flow

When compared to the pure Poiseuille flow we see that for the Couette-
Poiseuille flow the symmetry condition (c1 = 0) can no longer be used,
meaning that, a system of nonlinear equations will be obtained for the
constant of integration and the pressure gradient (Eq. 3.41).
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Table 3.2: Analytical solutions for Poiseuille flow with identical slip at both
walls for the linear and nonlinear Navier slip laws. In the top row
the general system of equations to be solved and the next four
rows show the solution for different values of the slip exponent
m = 0.5, 1, 2, 3.
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Flow
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Navier Slip 
(m     1)]
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Table 3.3: Semi-analytical solutions for the Poiseuille flow of a Newtonian
fluid with Hatzikiriakos and asymptotic slip laws.

Poiseuille 
Flow
[Hatzikiriakos 
and asymptotic]

( )2 2

2

( ) ( )
2

( ) 0
3

x

x

p
u y y h u h

p
h u h U

µ

µ

 = − +− + − =y

x
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{
−2hc1 + u(h)− u(−h) = 0

− px
3µ h2 − c1h + u(h)−U = 0

(3.41)

For linear Navier slip law at both walls (with slip coefficients kl1 at
the bottom and kl2 at the top), the analytical solution is still possible
and is given by Eq. 3.42,

u(y) =
px

2µ
y2 + c1y + px

(
−kl1h− h2

2µ

)
+ c1 (−kl1µ− h) (3.42)

with

px = −
(3/2)

(
2 + kl1

(
µU/h

)
+ kl2

(
µU/h

))[
3kl1kl2

(
µU/h

)2
+ 2kl1

(
µU/h

)
+ 2kl2

(
µU/h

)
+ 1
] (

µU/h2
)

(3.43)

c1 =
(3/2)

(
µU2/h

)
(kl1 − kl2)[

3kl1kl2
(
µU/h

)2
+ 2kl1

(
µU/h

)
+ 2kl2

(
µU/h

)
+ 1
]

h
(3.44)

For this case, the boundary conditions are given by Eq. 3.20 and
3.21 with m = 1. The term (kl1 − kl2) will determine the sign of c1.
If kl1 > kl2 the maximum velocity value is on the positive half of
the channel 0 ≤ y ≤ h whereas for kl1 < kl2 it is on the lower half
–h ≤ y ≤ 0.

For the nonlinear Navier slip law, full analytical solutions can also
be found, when the linear Navier slip law is valid in one wall, and on
the other the non-linear Navier slip law applies with m equal to 2 or
3. These solutions can be very helpful to test numerical codes with
different slip boundary conditions in the same domain, and can be
found in Appendix C.

For the remaining values of the exponent and for the other two slip
models (asymptotic and Hatzikiriakos), semi-analytical solutions are
obtained. Their restrictions du/dy < 0, in the upper wall, du/dy > 0
in the bottom wall and a favorable pressure gradient (px < 0), are
helpful to narrow down the possible solutions, especially when the
use of a numerical method is required.

px < 0 and − pxh− µc1 > 0 and − pxh + µc1 > 0

⇔ px < 0 and c1 ∈
]

px
µ h; − px

µ h
[ (3.45)

See Table 3.4 for a summary of these solutions.
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Table 3.4: Semi-analytical solutions for the Poiseuille flow of a Newtonian
fluid with Hatzikiriakos and asymptotic slip laws.

Poiseuille 
Flow
[different slip at 
top and bottom 
walls]

Linear  Navier slip
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Figure 3.3: Velocity profiles for the Couette flow with the non-linear Navier
slip model (full line m = 2, dashed line m = 1) at the fixed wall.

3.3.3 Discussion (Newtonian fluids)

All the solutions obtained for the Newtonian fluids are summarized
in Tables 3.1 to3.4, which will be used for the subsequent discussion.
In Poiseuille flow the following dimensionless variables will be used.
The slip friction coefficients are given by k

′
nl = knlU

m−1
(µ/h)m for the

Navier nonlinear slip model, k
′
1 = k1U and k

′
2 = k2

(
µU/h

)
, for the

first and second coefficients in the asymptotic and Hatzikiriakos slip
laws. The velocity is given by u′ = u/U and the pressure gradient by
p
′
x = px/

(
ηU/h2).

3.3.3.1 Couette flow

For the Couette flow several flow conditions were studied. Fig. 3.3
shows the influence of the non-linear Navier slip model exponent (m)
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Figure 3.4: Integral constant c1 versus the friction coefficient for the Couettte
flow with non-linear Navier slip model at the fixed wall

on the velocity profile, for different values of the friction coefficient (
k
′
nl). The slip velocity decreases inversely to exponent , so it becomes

increasingly difficult to attain the plug flow conditions when increases.
This behavior can be also verified by variation of the shear rate

c1 = du/dy with the slip coefficient, seen in Fig. 4. As shown for the
case with exponent m = 2, du/dy is larger than for the m = 1 case.
Notice that du/dy will multiply a negative number (see Table 3.1),
thus reducing the slip velocity for higher slip exponents.

3.3.3.2 Poiseuille flow (symmetrical conditions)

In Fig. 3.5(a) the difference in slip velocity between the asymptotic
and Hatzikiriakos slip laws is illustrated. For different values of the
slip coefficient k

′
2 the sensitivity of the models is different. Notice that

the Hatzikiriakos slip law is built with the inverse function of the
asymptotic law, and therefore its growth is exponential. For small
values of k

′
2 both functions tend to a linear “local” behavior for some

specific range of the pressure gradient, and for these values they
locally have a similar behavior as can be seen in Fig. 3.5.

The Hatzikiriakos slip law is much more sensitive to the k
′
2 co-

efficient than the asymptotic slip law, as can be seen in Fig. 3.5(b).
This fact can be a problem when implementing this law in numerical
codes, mainly due to convergence difficulties, since along the iterative
procedure large variations in the slip velocity can occur and cause
divergence (overflow) or even round off errors on the final data.

The other slip parameter k
′
1 increases or decreases the slip velocity

establishing a linear relationship between the slip velocity and the
hyperbolic sine or logarithmic functions. In Fig 3.5(b) we can also
see the agreement between the Hatzikiriakos and asymptotic slip
laws for lower values of the shear stress. Notice the almost linear
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Figure 3.5: (a) Difference between the asymptotic (A) and the Hatzikiriakos
(H) slip velocities for different values of the slip coefficient k

′
2.

It is assumed that k
′
1 = 1. (b) Representation of the four slip

boundary conditions (slip velocity versus shear stress) for equal
and constant friction coefficients.

growth of the slip velocity for the nonlinear Navier slip laws, while
the Hatzikiriakos slip law has a sigmoid shape with an inflection
point where the curvature changes (in Fig. 3.5(b) the complete sigmoid
shape cannot be seen because we use null critical stress).

The slip intensity influences the pressure gradient, which promotes
the fluid flow. As the resistance of the walls decrease a smaller pres-
sure gradient is enough to ensure motion as shown in Fig. 3.6(a),
where the variation of the pressure gradient with the slip coefficient
is represented. These effects can also be analyzed in terms of the
dimensionless slip velocity, shown in Fig. 3.6(b), where similar trends
to those obtained for pressure gradient are depicted.

It should be noticed that with dimensional variables the slip co-
efficient k

′
nl depends on the slip exponent which may influence the

results, since the coefficient is different for each flow exponent (m).
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Figure 3.6: Variation of the normalized pressure gradient (a) and slip velocity
(b) with the dimensionless slip coefficient k

′
nl for different values

of the slip exponent m for Poiseuille flow in a channel.
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However, plotting the data in nondimensional form shows the same
qualitative behavior.

For the Hatzikiriakos and asymptotic slip models, the behavior
is slightly different when compared with the Navier slip model as
shown Fig. 3.7. For the slip constant k

′
1 = 1 , both models exhibit the

same qualitative behavior as is also the case for the Navier Slip model.
However, as the coefficient k

′
1 decreases, their behavior departs from

each other and from the Navier slip.
The asymptotic model is greatly influenced by the slip coefficient k

′
1

showing a nearly constant pressure gradient which slowly decreases
with slip whereas the slip velocity increases strongly with the slip
coefficient k

′
2.

The Hatzikiriakos model results in smaller pressure gradient and
higher slip velocities than the asymptotic, for the same numerical
value. As seen in Fig. 3.7, the trend in the slip velocity for the k

′
1 =

10−3 (Hatzikiriakos) is quite different from the other slip trend lines.
At some point this model seems to be very sensitive to the friction
coefficients and the slip velocity increases drastically, thus creating
numerical instabilities.

3.3.3.3 Different slip in both walls

For the analysis of the different slip coefficients at both walls, the
linear Navier slip boundary condition was chosen. The variation of
the pressure gradient with k

′
l is shown in Fig. 3.8(a) for a case with no

slip at one boundary, showing that the normalized pressure gradient
varies from −3 for k

′
l = 0 to a maximum value of −0.75 for k

′
l → ∞.

Different slip conditions distort the velocity profile as plotted in Fig.
3.8(b). As the slip velocity increases the velocity peak tends to the wall
where there is slip (y/h = −1). Still in this particular case, it is easily
proven that the velocity profile for the limiting condition of infinite
friction coefficient is given by the following quadratic expression.

u
U
(y) = 0.375

[(y
h

)2
− 1
]
+
(y

h
− 1
)

(3.46)

3.4 non-newtonian fluids (poiseuille flow)

3.4.1 Power law fluids

Analytical and semi-analytical solutions are derived for non-Newtonian
fluids obeying the “power law” viscosity model. The solution for im-
posed pressure gradient flow (direct problem) in the extrusion barrel
geometry given by Newtonian slip law has been reported elsewhere
(Meijer and Verbraak, 1988; Potente et al., 2006) and we look now at
the inverse solution.
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Figure 3.7: Comparison between the asymptotic and Hatzikiriakos slip laws
for Poiseuille flow in a channel. (a) Variation of the normalized
pressure drop for different values of the slip coefficient k

′
2 and

two different values of k
′
1. (b) Variation of the normalized slip

velocity with the pressure drop.

Consider the momentum equation (Eq. 3.2), with the variable vis-
cosity of Eq. 3.6. For symmetric boundary conditions consider only
the lower half channel, where the velocity gradient is positive.

η (γ̇) = a
(

du
dy

)n−1

(3.47)

For wall slip u(−h) the velocity profile is given by (cf. (Bird et al.,
2002) for the pipe flow case),



56 analytical solutions for newtonian and inelastic flows with wall slip

����

���

���

���

���

���

���

���

��	��� ��	��� ��	��� ��	
�� ��	
��

�������������	
��	���
����´
lim ´ 0.75x
k

p
→∞

− =

-p
x
/[
m

U
/h

2 ]

k(m /h)

(a)

�

���

���

���

���

�

���

���

���

�� ���	 � ��	 �

��������������������������������������	
-3

-3

0

1

+ 9

´ 1 0

´ 1 0

´ 1 0

´ 2

´ 1 0

´ 1 0

l

l

l

l

l

l

k

k

k

k

k

k

=
=
=
=
=
=

u/
U

y/h

(b)

Figure 3.8: Study of the linear Navier slip boundary condition applied to
the bottom wall of a channel flow: (a) Variation of the pressure
gradient with the friction coefficient. (b) Velocity profile with no
slip velocity at the top wall (y = 1) and different slip coefficients
at bottom (y = −1).

u (y) =
(
−px

a

)1/n
(

h1/n+1 − (−y)1/n+1

1/n + 1

)
+ u(−h) (3.48)

The solution for the “inverse problem” with an imposed mean
velocity U is given by solving Eq. 3.49,(

−px

a

)1/n ( h1/n+1

1/n + 2

)
+ u(−h)−U = 0 (3.49)

Hatzikiriakos and Mitsoulis (Hatzikiriakos and Mitsoulis, 2009)
studied these flows with Navier non-linear slip law for special cases
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Table 3.5: Analytical solutions for Poiseuille flow of a power law fluid for
different sets of power law (n) and slip (m) coefficients.

Poiseuille 
Flow:
Power-
law fluid
[linear 
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nonlinear 
Navier Slip 
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of the slip exponents 1/n = m and making use of lubrication theory
in tapered dies. They only presented full analytical solutions for the
direct problem, whereas for the inverse problem the solutions are
approximate because there is an unsolved integral in the equations.
However, there is a closed form solution for their special case “Power-
law (n = 1/2) with linear slip” which we give at the end of Appendix
D. For our geometry (Poiseuille flow in a channel), the analytical
solutions for the special cases n = 1/2 with m = 1, 2, 3, n = 1/3 with
m = 1, 2, 3, and n = 2 with m = 1 are also in closed form and given in
Table 3.5. For other values of the slip exponents and other slip laws
Appendix D includes the proof of existence of a unique solution.

3.4.2 Sisko model-particular solutions for n=0.5 and n=2

When the fluid viscosity obeys the Sisko model (Eq. 3.7), integration
of the momentum equation gives,

µ∞
du
dy

+ a
(

du
dy

)n

− pxy = 0 (3.50)

The solution of Eq. 3.50 is complex and is only given below (in closed
form for the direct problem) for the cases n = 0.5, 2 (see Appendix E
for the details).

For n = 0.5:

u(y) = − µ∞
2a (y + h)+

+
[(µ∞)2+4apxy]

3/2−[(µ∞)2+−4apxh]
3/2

12a2 px
+ u(−h) = 0

(3.51)

For n = 2:
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u(y) = a2(y+h)
2µ2

∞
+ px(y2−h2)

2µ∞
+

+
a
(
[a2−4µ∞ pxh]

3/2−[a2+4µ∞ pxy]
3/2)

12µ3
∞ px

+ u(−h) = 0
(3.52)

3.4.3 Discussion (non-Newtonian fluids)
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Figure 3.9: Power law fluid with Navier slip boundary condition: (a) Nor-
malized pressure drop versus slip coefficient (b) Normalized slip
velocity versus slip coefficient.

Figs. 3.9(a) and (b) show the variations of pressure gradient and the
slip velocity with the slip coefficient for both shear-thinning (n < 1)
and shear-thickening (n > 1) fluids. Increasing the slip coefficient
decreases the magnitude of the favorable pressure gradient, with shear-
thickening fluids leading to higher frictional loss than shear-thinning
fluids. Similar variations are observed for the slip velocity in Fig.
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3.9(b), except that for slip coefficients in excess of about 5× 10−1where
shear-thinning fluids have higher velocities than shear-thickening
fluids. For the non-linear Navier slip law, the viscosity power-law
exponent has the major influence on the pressure gradient as seen in
Fig. 3.10(a), something that is confirmed also by Fig. 3.10(b), for the
Hatzikiriakos and asymptotic slip models. Fig. 3.10(b) also shows that
the asymptotic model is much less sensitive to the friction coefficient
than the Hatzikiriakos model.
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Figure 3.10: (a) Pressure drop versus friction coefficient for different slip
and power law exponents. (b) Pressure drop versus friction
coefficient for the asymptotic and Hatzikiriakos slip models
with k

′
1 = k1/U = 1E− 3, k

′
2 = k2ηU/h.
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Figure 3.11: Geometry for the yield stress fluids. The plug zone goes from
−y0 to y0. The channel width is 2h.

3.4.4 Yield Stress fluids - Herschel-Bulkley and Robertson-Stiff models

The Poiseuille flow of a yield stress fluid is characterized by a “plug
region” everywhere the yield stress τ0 is not exceeded and where the
rate of strain tensor is identically zero. The motion of the plug region
, is determined by the following form of the momentum equation
(Frigaard et al., 1994),∮

∂Ω
(σ · n) ds =

∫
Ω

ρ
du
dt

dΩ (3.53)

with , σ = −pδ + τ, p- pressure, δ- unity tensor, τ- deviatoric stress
tensor and n the normal vector to the surface ∂Ω.

Considering the geometry in Fig. 3.11, integration of the momentum
equation gives the shear stress distribution,

τxy = −pxy (3.54)

For fully developed flow the momentum equation applied to the
geometry of Fig. 3.11 states that,

∫ b

a
τxydx︸ ︷︷ ︸

upper wall

−
∫ b

a
−τxydx︸ ︷︷ ︸

bottom wall

+
∫ y

−y
τxya − padx︸ ︷︷ ︸
le f t side

−
∫ y

−y
τxyb − pbdx︸ ︷︷ ︸
right side

= 0 (3.55)

The stress profile is linear across the channel and based on equation
3.54 the yield surface distances are given by,

± h0 = τ0/px = τ0h/τw (3.56)

px = τw/h (3.57)

± h0 = τ0h/τw (3.58)

where τw with τw > 0 is the stress at the walls (y = ±h) and τ0 is
the yield stress.

To obtain the solution for the Herschel-Bulkley and the Robertson-
Stiff models, we followed the procedure of (Fordham et al., 1991),
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except that here the slip velocity is included. The two rheological
models can be written depending on the stress invariant,


γ̇ =

(
τ0
µ0

)1/n ( |τ|
τ0
− 1
)1/n

γ̇ =
(

τ0
µ0

)1/n
((
|τ|
τ0

)1/n
− 1
) if |τ| > τ0 and

(
fl̇ = 0 if |τ| ≤ τ0

)
(3.59)

The flow rate dependence on the pressure gradient (direct problem)
results from integration of the velocity profile over the domain (half of
the domain because of symmetry) and lead to the following velocity
profiles (subscripts HB and RS stand for the Herschel-Bulkley and
Robertson-Stiff models, respectively).

u(y)HB
u =

n
(

px
µ0

)1/n

1+n

[
(h− h0)

(1+n)/n − (y− h0)
(1+n)/n

]
+u(h),

h0 ≤ |y| ≤ h

uplug =
n
(

px
µ0

)1/n

1+n

[
(h− h0)

(1+n)/n
]
+ u(h), 0 ≤ |y| ≤ h0

(3.60)

u(y)RS

u =
(

τ0
µ0

)1/n
(y− h)−

n
(

px
µ0

)1/n

1+n

[
(y)(1+n)/n − (h)(1+n)/n

]
+ u(h),

h0 ≤ |y| ≤ h

uplug =
(

τ0
µ0

)1/n
(y− h)−

n
(

px
µ0

)1/n

1+n

[
(h0)

(1+n)/n − (h)(1+n)/n
]
+ u(h),

0 ≤ |y| ≤ h0

(3.61)
To determine the inverse problem solution we impose a flow rate

Q = Uh and integrate over half of the channel width leading to the
following solutions for the Herschel-Bulkley model,

n
(

px
µ0

)1/n

1 + n

[
h (h− h0)

(1+n)/n − n (h− h0)
(1+2n)/n

1 + 2n

]
+ hu(h)−Q = 0

(3.62)
and the Robertson-Stiff model,
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n
(

τ0
µ0

)1/n
(h0)

−1/n

1+2n

(
h1/n+2 − (h0)

1/n+2
)
− 1

2

(
τ0
µ0

)1/n (
h2 − (h0)

2
)
+

hu(h)−Q = 0
(3.63)

respectively. In both cases h0 = τ0/px and the non-linear equations
must be solved numerically.

Bingham fluids:
For the special case of Bingham fluids (Herschel-Bulkley model

with n = 1) with Navier slip boundary condition, the full analytical
solution is possible and is given by Eq. 3.64 for the direct problem,

u(y)HB =

 u f luid = B
2x

[
(1− x)2 − (|y′| − x)2

]
+ kB, x ≤ |y| ≤ 1

uplug = B
2x (1− x)2 + kB, 0 ≤ |y| ≤ x

(3.64)
and by Eq. 3.65for the inverse problem,

τ3
0 (B/6)

6µ0︸ ︷︷ ︸ x3

a

− (B/2 + 1) x︸ ︷︷ ︸
b

+ B/3 + kB︸ ︷︷ ︸
c

= 0 (3.65)

where B is the Bingham number B = τ0h/µ0U0, x = τ0/τw, kB =

kτ0/U0. The algebraic solution of this cubic equation is given as Eq.
3.66 with p = b/a and q = c/a.

x =
3

√
−q/2 +

√
(q/2)2 + (p/3)2 +

3

√
−q/2−

√
(q/2)2 + (p/3)2

(3.66)
Note that this solution is presented in the literature (Frigaard et al.,

1994) in the absence of slip. Analytical solutions for Bingham fluids
with Navier Slip boundary conditions could be found for the special
case of squeeze flow between parallel disks for the regularized bi-
viscosity model with imposed pressure gradient (Yang and Zhu, 2006);
a similar study is also given by (Estellé and Lanos, 2007).

3.4.4.1 Discussion (non-Newtonian fluids with yield stress):

For the yield stress fluids, the Bingham fluid was chosen. The studies
were made varying the parameters B and kB. Fig. 3.12 shows the
dramatic increase of stress ratio τ0/τw with the slip coefficient, which
means that the pressure gradient decreases and the plug size increases.
The stress ratio τ0/τw also decreases with the increase of the Bingham
number. As the slip coefficient increases the plug grows in size towards
the wall and it is not always possible to have a solution (un-yielded
fluid). In fact the yield stress cannot exceed the wall stress. Table 3.6
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Figure 3.12: Variation of y0 = τ0/τw with the (dimensionless) slip coefficient
kB = kτ0/U0.

Table 3.6: Different values of y0 = τ0/τw for different slip coefficients kB =
kτ0/U0.� ������� ������� ������� ������	 ��
����� ������
 ����
�� ����	�	 ������� ��
���	� ������
 ������� ���
��� ��
���� ��
��	
� ������� ������� ������� ������� ��������� ����	�� ����	�� ���	��� �����	� ���	���

Bk 1B = 2B = 3B = 4B = 5B =

shows that for some values of kB this condition is violated and this
can bring problems to numerical simulation.

3.5 conclusion

Analytical and semi-analytical solutions were presented for the direct
and inverse flow problems of Couette-Poiseuille flows of Newtonian
and non-Newtonian fluids. As for the non-Newtonian fluids only
inelastic models were considered namely the Power law, Sisko and
two yield stress fluid models (Herschel-Bulkley and Robertson-Stiff).
Four different slip models were considered, namely the Navier linear
and non-linear slip laws, the asymptotic law and the Hatzikiriakos
slip law. For some fluids, only particular solutions were presented, as
for the Sisko fluid, whereas for cases where the solution could not be
found analytically, the existence of the solution was proven, and the
interval where the solution lies was given.

The proposed analytical solutions are valid for any values of the
employed models’ parameters, thus they cover all the slip velocity
data given in the literature both for Newtonian and non-Newtonian
fluids.
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appendix a : couette flow of newtonian fluids with the

nonlinear navier slip boundary condition at the bottom

wall and no-slip at the top wall

In the nonlinear Navier slip law the boundary conditions are given by,

u(−h) = k(µc1)
m (3.67)

u(h) = U (3.68)

This implies that the constant c1 = U−k(µc1)
m

2h ⇔ (c1)
m +(2h/kµm) c1−

U/kµm = 0
For m = 0.5 this nonlinear equation can be solved with the help of

a variable change c0.5
1 = x ⇒ x2 = c1, x > 0leading to the equation,

(2h/kµm) x2 + x−U/kµm = 0 (3.69)

which needs to be solved for the positive solution.
For m = 2 the solution is trivial and for m = 3 the Cardan-Tartaglia

formula is used.
Remark. The solution c1 is always positive. Let f (c1) be a func-

tion of the constant c1 and given by f (c1) = (c1)
m + (2h/kµm) c1 −

U/kµm. The derivative of f (c1) is f
′
(c1) = m (c1)

m−1 + (2h/kµm).
It can also be seen that f

′
(c1) > 0, ∀c1 ≥ 0, f (0) < 0 and that

f
(
[U/kµm]1/m

)
> 0. We can now conclude by Bolzano and Rolle

theorems that there is a unique solution c1 to equation f (c1) = 0, in
the range,

[
0; [U/kµm]1/m

]
.

appendix b : poiseuille flow of a newtonian fluid with non-
linear slip laws

For m = 0.5, 1, 2 and 3, a full analytical solution can be obtained and
is given in table 3.2.

The existence of a unique solution can be proved provided m > 0.
The derivative of Eq. 3.38 is given by,

− h2

3µ
−mkhm (−px)

m−1 < 0, ∀px < 0 (3.70)
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Let

f (px) = −
px

3µ
h2 + khm (−px)

m −U (3.71)

Then f (0) = −U and f
(
−3Uµ/h2) = khm (3Uµ/h2)m

> 0, to-

gether with f
(
−U1/m/khm

)
= U1/mh2/ (3µkhm) > 0.By Bolzano and

Rolle theorems there is a unique solution in the range ]0; A[with
A = min

{
−3Uµ/h2; −U1/m/khm

}
.

appendix c : derivation of equations for different slip co-
efficients at top and bottom walls

Assume for the top wall the Navier slip boundary condition of Eq.
3.72 and at the bottom wall the non-linear Navier slip law of Eq. 3.73

with m = 2, 3.

u(h) = k1 (−pxh− µc1) (3.72)

u(−h) = k2 (−pxh + µc1)
m (3.73)

The system of equations to be solved is,{
−2hc1 + u(h)− u(−h) = 0

− px
3µ h2 − c1h + u(h)−U = 0

(3.74)

where the second equation of the system is independent of the slip
exponent and can be solved for the pressure gradient,

px =
c1h + k1µc1 + U
−k1h− h2

3µ

(3.75)

By substitution of Eq. 3.75 into 3.74 a quadratic and a cubic equation
are obtained for c1 for m = 2 and 3, respectively.

The solution for m = 2 is given by Eq. 3.74 with constants (Eqs.)
3.75 and 3.76,

c1 =
(

16k2µ2 (1.5k1µ + h)2
)−1

(
√

24[(3k1µ + h)2 (1.5k2
1µ4k2U+

2.5k2µ3k1Uh + h2µ2 [k2U + (1/6)k2
1

]
+ (1/6)h3k1µ + (1/24)h4)]0.5

−18k2µ3k1U + (−6k2
1 − 12k2U)hµ2 − 5h2k1µ− h3)

(3.76)
For m = 3 one has to solve the equation,

c3
1 + bc2

1 + cc1 + d = 0 (3.77)

with coefficients,
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b = B
A , c = C

A , d = D
A

A = 288k2µ4h2 + 432k2µ5hk2
1 + 64k2µ3h3 + 216k2µ6k3

1

B = 432k2µ4hk1U + 144k2µ3h2U + 324k2µ5k2U

C = 16h3k1µ + 42h2k2
1µ2 + 36hk3

1µ3 + 108k2µ3hU2 + 162k2µ4k1U2 + 2h4

D = −3k1µUh2 − 18k2
1µ2Uh + 27k2µ3U3 − 27k3

1µ3U
(3.78)

Making the substitution c1 = x − b/3 the equation transforms to
x3 + ex + f = 0, and the so called Vieta substitution x = y − e/3y,
leads to a quadratic equation for y3.(

y3)2
+ f

(
y3)− e3/27 = 0 (3.79)

This equation gives six solutions that reduce to three after back
substitution.

appendix d : proof of existence of a unique solution for

poiseuille flows of power law fluids with slip

Let f (px) be given by Eq. D1 and u(h) be given by Eqs.3.20, 3.22 and
3.24.

f (px) =

(
−px

a

)1/n ( h1/n+1

1/n + 2

)
+ u(h)−U (3.80)

Let f
′
(px) represent the derivative of the function f (px),

f
′
(px) =

(
h1/n+1

(1/n + 2) an

)(
−px

a

)1/n−1

+
du(h)
dpx

< 0 ∀px < 0 (3.81)

du(h)
dpx

is given by,

−mkhm (−px)
m−1 < 0 (3.82)

− k1k2h cosh (−k2 pxh) < 0 (3.83)

−k1k2h
1− k2 pxh

< 0 (3.84)

for the non-linear Navier, asymptotic and Hatzikiriakos slip models,
respectively.

For all cases f (0) = −U and f
(
−a
[

U(1/n+2)
h1/n+1

]n)
> 0,

f
(
−U1/m/khm

)
= U1/mh2/3µkhm > 0.
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Regarding now the application of the slip condition, we have the
following three models:

Non-linear Navier slip law:
f
(
−U1/m/khm

)
= U1/mh2/3µkhm > 0. By Bolzano and Rolle theo-

rems there is a unique solution in the range ]0; A[, with:

A = min
{
−a
[

U(1/n+2)
h1/n+1

]n
; −U1/m/khm

}
.

Hatzikiriakos slip law:
f
((
−arcsinh

(
U/k1

))
/hk2

)
> 0.There is unique solution in the

range ]0; A[ with:

A = min
{
−a
[

U(1/n+2)
h1/n+1

]n
; −arcsinh

(
U/k1

)
/hk2

}
.

Asymptotic slip law:
f
(
−
(
exp

(
U/k1

)
− 1
)

/hk2
)
> 0.There is unique solution in the

range ]0; A[ with:

A = min
{
−a
[

U(1/n+2)
h1/n+1

]n
; −

(
exp

(
U/k1

)
− 1
)

/hk2

}
.

Power-law Case (n = 1/2) with Linear Slip from Hatzikiriakos
and Mitsoulis (Hatzikiriakos and Mitsoulis, 2009).

Their Eq. 11 is now simplified and given by,

∆p = B
2A

[
1

RL
− 1

R0

]
−

R0(B2R0+4QA)
√

B2R0+4QA

A2R5
0

12QA


+R1(B2R1+4QA)

√
B2R1+4QA

A2R5
1

12QA

(3.85)

appendix e : derivation of analytical solution for sisko

model

The Sisko model is given by Eq. 3.7 and its substitution into the
integrated form of the momentum equation (Eq. 3.5) gives

µ∞
du
dy

+ a
(

du
dy

)
− pxy = 0 (3.86)

It is difficult to obtain the solution of this equation, because of its
non-linear nature associated with the exponent, unless some particular
values are explored such as n = 0.5, 1, 2.

For n = 0.1 Eq. 3.86 is quadratic in du/dy. Let x = (du/dy)0.5

leading to,

µ∞x2 + ax− pxy = 0 (3.87)

The solutions for this equation is given by,

x = − a
2µ∞

± 1
2µ∞

√
a2 + 4µ∞ pxy (3.88)

In order to pick the physically solution acceptable, it should be
noticed that du/dy > 0 at y = −h. Notice that 4µ∞ pxy ≥ 0 for y ∈
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[−h; 0](favorable pressure gradient is negative) and
√

a2 + 4µ∞ pxy >

a2 leading to,

du
dy

=
a2

2µ2
∞
− a

√
a2 + 4µ∞ pxy

2µ2
∞

+
pxy
2µ∞

(3.89)

After integration

u (y) =
a2

2µ2
∞

y +
pxy2

2µ∞
− a

12µ3
∞ px

[
a2 + 4µ∞ pxy

]3/2
+ c (3.90)

and applying the slip boundary condition u (−h), the constant c is
revealed and the final solution, depending on the pressure gradient, is
given by

u (y) = a2(y+h)
2µ2

∞
+

px(y2−h2)
2µ∞

+

a
(
[a2−4µ∞ pxh]

3/2−[a2+4µ∞ pxy]
3/2)

12µ3
∞ px

+ u (−h)
(3.91)

The solution to the inverse problem is given by solving the following
equation with px as a variable,

a2h
4µ2

∞
− pxh2

3µ∞
+

a[a2−4µ∞ pxh]
3/2

8µ3
∞ px

+

a
(
[a2−4µ∞ pxh]

5/2−a5
)

120hµ4
∞ p2

x
+ u (−h)−U = 0

(3.92)

For n = 1 the solution is exactly the same as the one obtained for
the Poiseuille flow and Newtonian fluid, but η0 + a should be used
instead of µ.

For n = 2 the integrated momentum equation is again quadratic,

a
(

du
dy

)2

+ µ∞
du
dy
− pxy = 0 (3.93)

and its solution is given by,

du
dy

= −µ∞

2a
± 1

2a

√
µ2

∞ + 4apxy (3.94)

Proceeding as for the case n = 0.5 one has that,

u (y) = −µ∞

2a
y +

2
(
µ2

∞ + 4apxy
)3/2

24a2 px
+ c (3.95)

Applying the boundary condition u (−h), we find the final solution
depending on the pressure gradient,

u (y) = −µ∞

2a
(y + h) +

(
µ2

∞ + 4apxy
)3/2 −

(
µ2

∞ − 4apxh
)3/2

12a2 px
+ u (−h)

(3.96)
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The solution to the inverse problem is given by the following equa-
tion with px as a variable,

− µ∞h
2a −

(µ2
∞−4apxh)

3/2

12a2 px
+

(
µ5

∞−(µ2
∞−4apxy)

3/2)3/2

120ha2 px
+

u (−h)−U = 0
(3.97)
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A N A LY T I C A L S O L U T I O N S F O R C H A N N E L S L I P
F L O W S O F P T T A N D G I E S E K U S F L U I D S

Abstract1

Analytical and semi-analytical solutions are presented for the cases of
channel and pipe flows with wall slip for viscoelastic fluids described by the
simplified PTT (using both the exponential and the linearized kernel) and
the Giesekus models. The slip laws used are the linear and nonlinear Navier,
the Hatzikiriakos and the asymptotic models. For the nonlinear Navier slip
only natural numbers can be used for the exponent of the tangent stress in
order to obtain analytical solutions. For other values of the exponent and
other nonlinear laws a numerical scheme is required, and thus, the solution
is semi-analytical. For these cases the intervals containing the solution and
the corresponding proof for the existence and uniqueness are also presented.
For the Giesekus model the influence of the wall slip on the restrictions of
the slip models are also investigated.

4.1 introduction

Analytical solutions are a valuable tool to understand the complexity
of fluid dynamics. The Cauchy equation together with a rheological
constitutive equation, allow the determination of the flow characteris-
tics of non-Newtonian fluids. However, these are complex equations
for which analytical solutions can only be obtained for basic flows in
simple geometries. Adding slip boundary conditions to this system
of equations increases the complexity to obtain analytical solutions.
Understanding the influence of slip on the flow behaviour is crucial
to comprehend some characteristics of industrial flows (Denn, 2001),
relevant for the polymer processing industry. The mathematical study
of Navier slip boundary conditions for Stokes fluids was carried out
by (Fujita, 2002), who was only concerned with the wellposedness
of the system of equations. Mitsoulis and Hatzikiriakos (2009) have
studied the application of these slip boundary conditions to polymer
extrusion using generalized Newtonian fluids. Later they presented
some analytical solutions for lubrication flows in convergent chan-
nels and compared them with the corresponding numerical results
(Hatzikiriakos and Mitsoulis, 2009). In this way they could identify
the conditions for validity of the analytical solution obtained using
the lubrication theory, for different degrees of contraction.

1 L.L. Ferrás, J.M. Nóbrega, FT Pinho (2012), Analytical solutions for channel flows of
Phan-Thien–Tanner and Giesekus fluids under slip, Journal of Non-Newtonian Fluid
Mechanics 171-172 97-105;

71
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For viscoelastic materials described by a differential stress constitu-
tive equation, published work using slip boundary conditions is scarce.
Here, (Pereira, 2009) studied microfluidic flows under slip of New-
tonian, generalized Newtonian and viscoelastic fluids governed by
the linearized White-Metzner model using the Navier slip boundary
condition.

For the simplified Phan-Thien—Tanner (PTT) and Giesekus models
no analytical solutions with slip boundary conditions have been re-
ported in the literature, but there are several analytical solutions in the
absence of wall slip. For the PTT fluid we single out the solutions for
Couette flow (Azaiez et al., 1996; Carew et al., 1993; Alves et al., 2001a),
and for channel and pipe flows (Oliveira and Pinho, 1999a). For the
Giesekus model solutions exist for no slip channel and pipe flows with
the inclusion of a solvent contribution (Yoo and Choi, 1989) as well as
without solvent (Schleiniger and Weinacht, 1991). There are also ana-
lytical solutions for no slip planar Couette-Poiseuille flow (Raisi et al.,
2008), concentric annular flow (Mostafaiyan et al., 2004; Mohseni and
Rashidi, 2010) and Taylor-Couette flow with inner cylinder rotation
(Ravanchi et al., 2007).

The aim of this work is then, to fill the gap of analytical solutions
for Couette and Poiseuille flows of viscoelastic fluids described by the
simplified PTT and Giesekus constitutive equations considering slip
velocity at the wall.

The paper is organized as follows: first, in subection 2, the governing
equations are presented for both constitutive models and the various
slip models used are also presented and simplified for the simple
case of flow between parallel plates. These slip laws are the linear
and the nonlinear Navier, the Hatzikiriakos and the asymptotic slip
models. In subsection 3 analytical solutions are given for the Couette
and the Poiseuille flows of a PTT fluid under various conditions for
the selected slip laws. For some cases like the Navier slip law, it is
possible to present an analytical solution for the inverse problem
(where the pressure gradient is computed as a function of the average
velocity), but for the remaining cases the numerical solution of an
equation is required (semi-analytical solution). In subsection 4, the
Giesekus model (Giesekus, 1982) is considered and again the Couette
and Poiseuille flows are studied for the various slip laws. Subsection
5 concludes/summarizes the main findings of this work.

4.2 governing equations

It is assumed that the fluid is incompressible and governed by the
continuity (Eq. 4.1) and momentum (Eq. 4.2) equations,

∇.u = 0 (4.1)
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∂ρu
∂t

+ ρ∇ · uu = −∇p +∇ · τ (4.2)

together with a constitutive equation for the stress τ. In Eqs. 4.1 and
4.2,u is the velocity vector, p is the pressure and τ is the deviatoric
stress tensor.

The simplified PTT constitutive model is given by Eq. 4.3,

f (trτ) τ + λ

(
∇
τ

)
= η

(
∇u + (∇u)T

)
(4.3)

where f (trτ) is a function depending on the trace of the stress tensor,

λ is the relaxation time, η is the viscosity coefficient and
∇
τ stands for

Oldroyd’s upper convective derivative (Eq. 4.4),

∇
τ =

∂τ

∂t
+ u.∇τ −

[
(∇u)T .τ + τ.∇u

]
(4.4)

The function f (trτ) can take the form of the exponential equation
(Phan-Thien, 1978),

f (trτ) = exp
(

ελ

η
(trτ)

)
(4.5)

as well as the linearized function (Eq. 4.6), presented by (Phan-Thien
and Tanner, 1977),

f (trτ) = 1 +
ελ

η
(trτ) (4.6)

Parameter ε is inversely proportional to the extensional viscosity
of the fluid and the linearized function only approaches well the
exponential form at low deformations.

The Giesekus constitutive model is given by,

τ +
αλ

η
(τ � τ) + λ

∇
τ = η

(
∇u + (∇u)T

)
(4.7)

where α is the so-called mobility parameter. This model is based on
molecular concepts and it reproduces well many of the characteristics
of polymeric fluids (Giesekus, 1982).

Considering a Cartesian coordinate system x, y, z with in the stream-
wise, transverse and spanwise directions, respectively, and since the
flows studied in this work are the fully developed Couette and
Poiseuille flows (cf. Fig. 4.1), the governing equations can be sim-
plified because,

∂/∂x = 0 (except for pressure) , ∂v/∂y = 0, ∂p/∂y = 0 (4.8)
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This implies the automatic satisfaction of the continuity equation,
whereas the momentum equation simplifies and can be integrated to
become,

τxy = pxy + c1 (4.9)

where px stands for the pressure gradient in the x direction, τxy is the
shear stress and c1 is a stress constant. Eq. 4.9 is valid regardless of
the rheological constitutive equation.

The simplified forms of the constitutive equations for the fully
developed flow conditions are somewhat different and they will be
presented later, at the beginning of the corresponding results section.

The slip boundary conditions investigated here are the linear and
nonlinear Navier, the Hatzikiriakos and the asymptotic slip laws. For
the nonlinear Navier slip law (Schowalter, 1988) the nonlinear power
function relating wall shear stress and wall slip is given by Eq. 4.10,

uws = knl
(
∓τxy,w

)m (4.10)

where m > 0 (m ∈ R). When m = 1 the Navier linear slip law (Navier,
1822) is recovered. The signs ∓ stand for the upper − and bottom
+ walls, assuming there is flow between the parallel plates and the
coordinate system is given in Fig. 4.1.

Hatzikiriakos (Hatzikiriakos, 1993) proposed a slip model based on
Eyring’s theory of liquid viscosity that provides a smooth transition
from no-slip to slip flow at the critical shear stress τc (positive constant).
The one dimensional Hatzikiriakos slip law is given by,

uws =

{
kH1sinh

(
kH2

(
∓τxy,w

)
− τc

)
if τxy ≥ τc

0 if τxy < τc
(4.11)

where kH1, kH2 ∈ [0; +∞[ are the friction coefficients. In this work we
have considered only a null critical stress (τc = 0 ).

The last slip model investigated here is the asymptotic slip law,
given for one dimensional flow by,

uws = kA1ln
(
1 + kA2

(
∓τxy,w

))
(4.12)

with kA1, kA2 ∈ [0; +∞[ .

4.3 analytical solutions for the ptt fluid and discus-
sion

For the fully developed Couette and Poiseuille flows (cf. Fig. 4.1), the
system of rheological constitutive equations for the simplified PTT
model is given by,
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h
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y
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Figure 4.1: (a) Velocity profile across the flow channel assuming Couette-
Poiseuille flow and slip at the wall (b) Different slip lengths
0 = k0 < k1 < k2 (zoom of the channel near the wall).

f
(
τxx + τyy

)
τxx = 2λτxy (∂u/∂y) (a)

f
(
τxx + τyy

)
τyy = 0 (b)

f
(
τxx + τyy

)
τxy = η (∂u/∂y) + λτyy (∂u/∂y) (c)

(4.13)

From Eq. 4.13(b) one can see that f
(
τxx + τyy

)
= 0 ∨ τyy = 0, but

if f
(
τxx + τyy

)
= 0, unrealistic results would be obtained hence, the

only possible solution is τyy = 0.
Dividing Eq. 4.13(a) by Eq. 4.13(c), the former becomes τxx =

2λ/η
(
τxy
)2. If Eqs. 4.13(a), (b), (c) are combined with the momen-

tum equation, the following system is obtained,

τxy = pxy + c1 (a)

τxx = 2λ/η
(
τxy
)2

(b)

τyy = 0 (c)

f
(
τxx + τyy

)
τxy = η (∂u/∂y) (d)

(4.14)

Length, velocity and stresses are scaled with h, U and ηU/h, respec-
tively (U is the mean streamwise velocity), leading to the dimen-
sionless system of equations in Eq. 6.44, with y

′
= y/h, u

′
(

y
′
)

=

u
(

y
′
)

/U, c
′
1 = c1/ (ηU/h) and τ

′
xy = τxy/ (ηU/h)

τ
′
xy = p

′
xy
′
+ c

′
1 (a)

τ
′
xx = 2Wi

(
p
′
xy
′
+ c

′
1

)2
(b)

τ
′
yy = 0 (c)(

∂u
′
/∂y

′
)
= f

[
τ
′
xx

] (
p
′
xy
′
+ c

′
1

)
(d)

(4.15)

together with f
[
τ
′
xx

]
= 1 + 2εWi2

(
p
′
xy
′
+ c

′
1

)2
for the linear PTT and

the function f
[
τ
′
xx

]
= exp

(
2εWi2

(
p
′
xy
′
+ c

′
1

)2
)

for the exponential

PTT. In the previous expressions Wi = λU/h is the Weissenberg
number.
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The boundary conditions are written in a dimensionless form for
Couette flow in Eqs. 4.16, 4.17, 4.18 for the nonlinear Navier, the
Hatzikiriakos and the asymptotic slip laws, respectively,

u
′
ws (0) = k

′
nl

(
c
′
1

)m
(4.16)

u
′
ws (0) = k

′
H1sinh

(
k
′
H2c

′
1

)
(4.17)

u
′
ws (0) = k

′
A1ln

(
1 + k

′
A2c

′
1

)
(4.18)

and correspondingly by Eqs. 4.19, 4.20, 4.21 for Poiseuille flow,

u
′
ws (±1) = k

′
nl

(
p
′
x

)m
(4.19)

u
′
ws (±1) = k

′
H1sinh

(
k
′
H2 p

′
x

)
(4.20)

u
′
ws (±1) = k

′
A1ln

(
1 + k

′
A2 p

′
x

)
(4.21)

where k
′
nl = kUm−1 (η/h)m, k

′
H1 = kH1/U, k

′
H2 = kH2ηU/h, k

′
A1 =

kA1/U, k
′
A2 = kA2ηU/h ∈ R+

0 , m ∈ R+

4.3.1 Couette flow - linear and exponential PTT models

For the Couette flow (Fig. 4.1(a)) with slip velocity at the moving
wall, the only admissible solution for the velocity profile is the trivial
solution u

′
(

y
′
)
= 0 (Ferrás et al., 2012c), regardless of the boundary

condition at the immobile wall.
For the Couette flow with slip velocity at the immobile wall and

no slip at the moving wall and since the pressure gradient is null
(by Eq. 4.13(a) the shear stress is constant c

′
1) the system of equations

simplifies to Eq. 19,

τ
′
xy = c

′
1 (a)

τ
′
xx = 2Wi

(
c
′
1

)2
(b)

τ
′
yy = 0 (c)(

∂u
′
/∂y

′
)
= f

[
c
′
1

] (
p
′
xy
′
+ c

′
1

)
(d)

(4.22)

with f
[
c
′
1

]
= 1 + 2εWi2

(
c
′
1

)2
for the linear PTT and the function

f
[
c
′
1

]
= exp

(
2εWi2

(
c
′
1

)2
)

for the exponential PTT.

Integrating equation 4.22(d) and applying the Dirichlet boundary
condition at the upper wall,
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u
′
ws (1) = 1 (4.23)

together with one of the slip boundary conditions (Eqs. 4.16, 4.17, 4.18)
at the lower wall, the velocity profile u

′
(

y
′
)

and c
′
1 are given by Eqs.

4.24 and 4.25 for the linear PTT model

u
′
(

y
′
)
=

[
c
′
1 + 2εWi2

(
c
′
1

)3
]

y
′
+ u

′
ws (0) (4.24)

c
′
1 + 2εWi2

(
c
′
1

)3
+ u

′
ws (0)− 1 = 0 (4.25)

and by Eqs. 4.26 and 4.27 for the exponential PTT model

u
′
(

y
′
)
= exp

(
2εWi2

(
c
′
1

)2
)

c
′
1y
′
+ u

′
ws (0) (4.26)

exp
(

2εWi2
(

c
′
1

)2
)

c
′
1 + u

′
ws (0)− 1 = 0 (4.27)

Due to nonlinearities, the full analytical solutions are obtained only
for the following few cases: the linear PTT model with Navier slip
law and exponents m = 1, 2, 3, and the exponential PTT with no slip
velocity.

For the linear PTT with m = 1, we have that,

c
′
1 =

(4εWi2)−1
+

√
(4εWi2)−2 +

(
1+k′nl
6εWi2

)3
1/3

+

(4εWi2)−1 −

√
(4εWi2)−2 +

(
1+k′nl
6εWi2

)3
1/3 (4.28)

whereas for exponential PTT with k
′
nl = 0, c

′
1 is given by,

c
′
1 =

(
2
(
εWi2/W

(
4εWi2))0.5

)−1
(4.29)

Substitution of Eqs. 4.28 and 4.29 on the expressions for the velocity
profile Eqs. 4.24 and 4.26 (for the linear and exponential PTT, respec-
tively) gives the final solution. Note that the latter solution depends
on the Lambert function , that can be expressed as the solution of Eq.
31.

W (x) exp (W (x)) = x (4.30)

These results show that the stress will be influenced by the presence
of slip.

The analytical solutions for the nonlinear Navier slip model with
m = 2, 3 can be found in Appendix A, which includes the proof for
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Figure 4.2: Variation of c
′
1as a function of k

′
nl and εWi2 for Couette flow with

slip at the fixed wall and no-slip at the moving wall. The εWi2

numbers are given next to each graph in the zoomed view.

the existence and uniqueness of solutions for other values of m and
for the Hatzikiriakos and asymptotic slip models, together with the
corresponding interval where the solutions are located.

The relationship between slip velocity, stress and εWi2 was studied
for both PTT models with linear Navier slip law, and are plotted in
Fig. 4.2.

As the slip velocity increases to total slip, the dimensionless shear
stress decreases to zero, regardless of the slip model and Weissenberg
number (for full slip conditions, the velocity profile is a plug flow
since there is no shear and the normal stresses are null).

Lower shear stresses are obtained for the exponential PTT when
compared with the linear PTT especially as the no-slip condition is
approached. As slip increases the shear rates are smaller and under
these conditions the linear stress function (first two terms of a Taylor
expansion) approaches well the exponential stress function. It is also
shown that the shear stress decreases with the increase of Wi on
account of shear thinning behavior.

4.3.2 Planar channel flow with the linear PTT model

For the Poiseuille flow (Fig. 4.1(b)) it is assumed that the same bound-
ary condition is applied at the top and bottom walls leading to a
symmetric flow, hence from Eq. 6.44(a) .

From Eq. 6.44(d) one obtains,
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τ
′
xy = p

′
xy
′
+ c

′
1 (a)

τ
′
xx = 2Wi

(
p
′
xy
′
+ c

′
1

)2
(b)

τ
′
yy = 0 (c)(

∂u
′
/∂y

′
)
= f

[
τ
′
xx

] (
p
′
xy
′
+ c

′
1

)
(d)

(4.31)

together with f
[
τ
′
xx

]
= 1 + 2εWi2

(
p
′
xy
′
+ c

′
1

)2
for the linear PTT and

the function f
[
τ
′
xx

]
= exp

(
2εWi2

(
p
′
xy
′
+ c

′
1

)2
)

for the exponential

PTT. In the previous expressions Wi = λU/h is the Weissenberg
number. (

∂u
′
/∂y

′
)
= p

′
xy
′
+ 2εWi2

(
p
′
xy
′
)3

(4.32)

that after integration gives,

u
′
(

y
′
)
= 0.5p

′
xy
′2 + 0.5εWi2

(
p
′
x

)3
y
′4 + c, c ∈ R (4.33)

where there are two unknowns, the pressure gradient p
′
x and c. In

order to obtain a unique solution and determine c, a boundary condi-
tion given by any of the Eqs. 4.19, 4.20, 4.21 must be provided, here
represented by u

′
ws (1). The velocity profile is then given by Eq. 4.34,

u
′
(

y
′
)
= 0.5p

′
x

(
y
′2 − 1

)
+ 0.5εWi2

(
p
′
x

)3 (
y
′4 − 1

)
+ u

′
ws (1) (4.34)

By applying a constant flow rate Q = Uh (with the imposed average
velocity) and integrating Eq. 4.34 over half of the channel width, the
following equation is achieved for the pressure gradient,

∫ 1

0
u
′
(

y
′
)

dy
′
= 1⇒ −2

5
εWi2

(
p
′
x

)3
− p

′
x

3
− 1 + u

′
ws (1) = 0 (4.35)

The nonlinearity of Eq. 4.35 (u
′
ws (1) depends on p

′
x, cf. Eqs. 4.19,

4.20, 4.21 reduces the existence of full analytical solutions to just a few
cases m = 1, 2, 3.

Assuming m = 1 in Eq. 4.19(a), Eq. 4.35 can be rewritten after some
algebra as,

(
p
′
x

)3
+ p

′
x

1/3 + k
′
nl

2/5εWi2︸ ︷︷ ︸
R

+
(
(2/5) εWi2)−1︸ ︷︷ ︸

Q

= 0 (4.36)

According to the Cardano-Tartaglia formula (Guilbeau, 1930) this
cubic equation has the following real solution for the pressure gradient
as a function of the imposed flow rate,
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p
′
x =

(
−Q/2 +

[
(Q/2)2 + (R/3)3

]1/2
)1/3

+(
−Q/2−

[
(Q/2)2 + (R/3)3

]1/2
)1/3 (4.37)

with R and Q defined in Eq. 4.36.
With this explicit formula, the velocity profile (Eq. 4.34) will no

longer depend on the pressure gradient, and it can be written (Eq.
4.38) as a function of the y

′
coordinate (assuming all the parameters

are known),

u
′
(

y
′
)
=
(
(a + b)1/3 + (a− b)1/3) [0.5

(
y
′2 − 1

)
− k

′
nl

]
+

+
(
(a + b)1/3 + (a− b)1/3) 0.5εWi2

(
y
′4 − 1

) (4.38)

where (a± b)1/3 is given by:− ( 4εWi2

5

)−1
±
[(

4εWi2

5

)−2
+

(
1/3+k

′
nl

(6/5)εWi2

)3
]1/2

1/3

For m = 2 Eq. 4.35 can be rearranged and rewritten as Eq. 4.39,

(
p
′
x

)3
+

k
′
nl

(−2/5) εWi2

(
p
′
x

)2
+

1/3
(62/5) εWi2 p

′
x +

(
(2/5) εWi2)−1

= 0

(4.39)
The solution of the Cardano-Tartaglia formula shows that the real

roots of this cubic equation are different. For m = 3, the cubic Eq.
(4.40) for the pressure gradient is similar to Eq. (4.36) and its real
solution is also given by Eq. (4.37), with the new definitions of R and
Q.

(
p
′
x

)3
+ p

′
x

1/3(
2/5 + k′nl

)
εWi2︸ ︷︷ ︸

R

+
((

2/5 + k
′
nl

)
εWi2

)−1

︸ ︷︷ ︸
Q

= 0 (4.40)

Hence, the velocity profile can be computed by Eq. 4.41,

u
′
(

y
′
)
=
(
(a + b)1/3 + (a− b)1/3) [0.5

(
y
′2 − 1

)]
+

+
(
(a + b)1/3 + (a− b)1/3) 0.5εWi2

(
y
′4 − 1− k

′
nl

) (4.41)

where (a± b)1/3 is given by:− (X)−1 ±
[
(X)−2 +

(
1/3

(6/5+3k′nl)εWi2

)3
]1/2

1/3
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with X =
(

4
5 + k

′
nl

)
εWi2.

For the Hatzikiriakos and asymptotic models and for other non-
linear slip exponents, the solution is semi-analytical and requires a
procedure like the one adopted in Appendix A. Incidentally, for m = 4
it is still possible to obtain a closed form analytical solution. In the
supplementary material appended to this work we give the solution
for the pressure gradient equation (Eq. 4.35) for the four different slip
boundary conditions and for different values of εWi2, k

′
nl , k

′
H1,k

′
H2,k

′
A1

and k
′
A2.

4.3.3 Planar channel flow with the exponential PTT model

Eq. 6.44(d) for the exponential PTT model (Eq. 4.5) and considering
symmetry on the centreplane leads to .(

∂u
′
/∂y

′
)
= exp

(
2εWi2

(
p
′
xy
′
)2
)

p
′
xy
′

(4.42)

After integration and application of the boundary condition u
′
ws (1)

the velocity profile is

u
′
(

y
′
)
=
[
4εWi2

(
p
′
x

)]−1
exp

(
2εWi2

(
p
′
xy
′
)2
)
−

exp
(

2εWi2
(

p
′
x

)2
)
+ u

′
ws (1)

(4.43)

where u
′
ws (1) is the boundary condition given by any of the Eqs.

4.19, 4.20, 4.21.
The solution of the inverse problem is achieved as for the linear PTT

model, i.e. integrating the velocity profile of Eq. 4.43 now leading to,

∫ 1
0 exp

(
2εWi2

(
p
′
xy
′
)2
)

dy
′
= exp

(
2εWi2

(
p
′
x

)2
)
+ 4εWi2

(
p
′
x

)
−

4εWi2
(

p
′
x

)
u
′
ws (1) = 0

(4.44)
and then solving in order to the pressure gradient. To evaluate the

left hand side (lhs) of Eq. 4.44 use is made of the definition of the error
function (er f ), giving

− i
√

π

2
√

G
er f
(

i
√

2εWi2 (p′x)
2
)
= exp

(
2εWi2

(
p
′
x

)2
)
+ 4εWi2

(
p
′
x

)
−

4εWi2
(

p
′
x

)
u
′
ws (1) = 0

(4.45)
Eq. 4.45 can be further simplified and written as,
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Figure 4.3: Variation of p
′
x as a function of k

′
nl and εWi2 for a Poiseuille planar

channel flow with the linear PTT model and linear Navier slip.
The εWi2 numbers are given next to each graph in the zoomed
view.

∑∞
k=0

(
2εWi2

(
p
′
x

)2
)k

(2k+1)k! = exp
(

2εWi2
(

p
′
x

)2
)
+ 4εWi2

(
p
′
x

)
−

4εWi2
(

p
′
x

)
u
′
ws (1) = 0

(4.46)

This series is convergent and since it calculates the area under a
known function, it can be shown that the lhs of Eq. 4.46 is a monotonic
function in the range p

′
x ∈ ]−∞, 0]. To obtain the pressure gradient

the range containing the solution must be known and the bisection
method is then applied. Care must be taken because of the sharp
changes occurring while changing the slip friction coefficient.

Tables are given as supplementary material containing the solution
for the pressure gradient equation (Eq. 4.46) for the four different slip
boundary conditions and for different values of εWi2, k

′
nl , k

′
H1,k

′
H2,k

′
A1

and k
′
A2.

The results for the Poiseuille flow with the linear and exponen-
tial PTT models can be summarized as follows. For the linear PTT
model with linear Navier slip, the absolute value of the pressure drop
decreases (tends to zero) with the increase of both slip and εWi2,
as observed in Fig. 4.3. So, the effect of slip on p

′
x is as in Couette

flow. An increase in εWi2 increases the shear rate, while imparting
shear-thinning behaviour to the fluid so that ultimately it reduces
significantly its shear viscosity as shown in Fig. 4.4(a) in terms of
the shear stress τ

′
xy. The corresponding normal stress τ

′
xx variation is

shown in Fig. 4.4(b) and is similar to that of the shear stress given that
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they are proportional. In the absence of slip the results match those of
(Oliveira and Pinho, 1999a).

As in the Couette flow, and for the same reasons, the exponential
PTT model exhibits lower stresses than the corresponding linear PTT
model.

The solution for the Poiseuille pipe flow of a PTT fluid (linear and
exponential) is given in Appendix B.
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Figure 4.4: Variation of τ
′
xx (a) and τ

′
xy (b) along the channel half width y

′
for

a Poiseuille flow of a PTT model with different values of k
′
nl and

constant εWi2 = 1.

4.4 analytical solutions for the giesekus fluid and dis-
cussion

The derivation of the equations is well explained by (Yoo and Choi,
1989), and here we follow the same sequence as in subsection 3 for the
PTT model.
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Based on the simplifications for fully developed flow in the ge-
ometries of Fig. 4.1, the dimensionless momentum and constitutive
equations become (h, U and ηU/h are the length, velocity and stress
scales, respectively),

∂τ
′
xy

∂y′
= p

′
x (a)

2Wiτ
′
xy

(
∂u
′

∂y′

)
= τ

′
xx + αWi

(
τ
′2
xx + τ

′2
yy

)
(b)(

1 + Wiτ
′
yy

) (
∂u
′

∂y′

)
= τ

′
xy + αWiτ

′
xy

(
τ
′
xx + τ

′
yy

)
0 (c)

αWi
(

τ
′2
xy + τ

′2
yy

)
+ τ

′
yy = 0 (d)

(4.47)

where Wi = λU/h is the Weissenberg number.
Redefining dimensionless quantities as u∗ = Wiu

′
, τ∗xx = Wiτ

′
xx,

τ∗yy = Wiτ
′
yy and τ∗xy = Wiτ

′
xy the previous system of equations (Eq.

4.47) can be integrated and presented as in Eq. 44,

τ∗xy = Wi
(

p
′
xy
′
+ c

′
2

)
(a)

∂u∗

∂y′
= 2ατ∗xy

(
1±(2α−1)

√
1−4α2(τ∗xy)

2
)

(
2α−1±

√
1−4α2(τ∗xy)

2
)2 (b)

τ∗xx =

[
(1−α)

(
1∓
√

1−4α2(τ∗xy)
2
)
+2α2(τ∗xy)

2
]

α

(
2α−1±

√
1−4α2(τ∗xy)

2
) (c)

τ∗yy =

(
−1±

√
1−4α2(τ∗xy)

2
)

2α (d)

(4.48)

Eqs. 4.48(b) and (c) require 1 − 4α2
(

τ∗xy

)2
> 0 and in addition,

thermodynamic considerations require a positive first normal stress
difference (τ∗xx − τ∗yy ≥ 0). This inequality can be further simplified

leading to 2α − 1±
√

1− 4α2
(

τ∗xy

)2
> 0. These restrictions on the

system of equations bring two sets of solutions, the so-called upper
branch solution, where ,{

τ∗xy <
√

1/α− 1 α ∈ ]0; 1/2]

τ∗xy < 1/2α α ∈ ]1/2; 1]
(4.49)

and the lower branch solution for which .

√
1/α− 1 < τ∗xy ≤ 1/2α for α ∈ ]1/2; 1] (4.50)

These restrictions imply that for some values of the Weissenberg
number the solutions for Couette and Poiseuille flows with no slip
may not exist as already shown by (Yoo and Choi, 1989). Next we
analyse the cases with slip but since the lower branch solution presents
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physically unrealistic solutions only the upper branch solution needs
to be considered.

4.4.1 Couette flow

Following (Yoo and Choi, 1989) let Ψ = 2ατ∗xy, p∗x = 0 in Couette flow,
so Ψ can be written as Ψ = 2αWic

′
2 (with the help of Eq. 4.48(a)) and

integrate Eq. 4.48(b) to obtain the following velocity profile .

u∗
(

y
′
)
=

Ψ
(

1± (2α− 1)
√

1−Ψ2
)

(
2α− 1±

√
1−Ψ2

)2 y
′
+ c (4.51)

where c is the constant of integration determined by the lower wall
slip boundary conditions with the proper normalization (Eqs. 4.16,
4.17, 4.18) multiplied by Wi). These are given by,

u∗ws (0) = Wik
′
nl

(
Ψ

2αWi

)m

(4.52)

for the (non)linear Navier slip law,

u∗ws (0) = Wik
′
H1sinh

(
k
′
H2

Ψ
2αWi

)m

(4.53)

for the Hatzikiriakos slip law, and

u∗ws (0) = Wik
′
A1ln

(
1− k

′
A2

Ψ
2αWi

)m

(4.54)

for the asymptotic slip law. At the upper wall there is no slip (cf.
Section 3.1 for the justification) and the Dirichlet boundary condition
is

u∗ws (1) = Wi (4.55)

and this condition together with Eq. 4.51 provides the following im-
plicit equation relating the Weissenberg number and c

′
2 (note that

Ψ = 2αWic
′
2)

2αWic
′
2

(
1± (2α− 1)

√
1−

(
2αWic′2

)2
)

(
2α− 1±

√
1−

(
2αWic′2

)2
)2 + u∗ws (0)−Wi = 0 (4.56)

This equation must be solved numerically with the following restric-
tion on Wi,

Wic
′
2 ≤

1
2α

(4.57)
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For the special case of the linear Navier slip law it is possible to
analytically find the limiting admissible values for Wi and c

′
2. Based

on the definition of Ψ, the upper branch solution (Eq. 4.49) can be
rewritten as, {

Ψ < 2α
√

1/α− 1 α ∈ ]0; 1/2]

Ψ < 1 α ∈ ]1/2; 1]
(4.58)

Eq. 4.56 with the Navier slip boundary condition can be rewritten
as,

Wi (Ψ) = Ψ

(
1± (2α− 1)

√
1−Ψ2

)
(

2α− 1±
√

1−Ψ2
)2 +

Ψk
′
nl

2α
(4.59)

Wi (Ψ) =
∂u∗

∂y′
+

Ψk
′
nl

2α
(4.60)

Physical reasons require the solution to verify ∂
(

∂u∗/∂y
′
)

/∂τ∗xy =

2α∂
(

∂u∗/∂y
′
)

/∂Ψ > 0, i.e., shear rate increases with shear stress and

this is verified by the upper branch solution. Since ∂
(

∂u∗/∂y
′
)

/∂Ψ >

0 and ∂
(

∂Ψk
′
nl/2α

)
/∂Ψ > 0, by Eq. 4.60 ∂ (Wi (Ψ)) /∂Ψ > 0 meaning

that Wi (Ψ) is a monotonically increasing function of Ψ. Thus, for
α ∈ ]1/2; 1] and considering Eq. 4.59, the restrictions are given by,

lim
Ψ→1

Wi (Ψ) =
1

(2α− 1)2 +
k
′
nl

2α
(4.61)

for the Weissenberg number and by .(
2α

(2α− 1)2 + k
′
nl

)−1

≤ c
′
2 < 1 (4.62)

for the stress coefficient c
′
2 (obtained combining Eqs. 4.59, 4.60 and

4.61). Note that c
′
2 < 1 because the fluid is shear thinning. For the

range α ∈ ]0; 1/2] there are no restrictions.
As shown by Eqs. 4.61 and 4.62, increasing the slip velocity smoothes

the restriction on Wi and c
′
2. For the other slip laws, it is more difficult

to determine these restrictions on the Weissenberg and stress constants.
Although those slip laws can be written using Ψ, they always depend
on Wi or c

′
2, so the same approach cannot be used to identify those

restrictions.
It was shown that limiting values of Wi and c

′
2 depend on slip.

Increasing the slip coefficient, a higher limiting value for Wi is obtained
and the range of admissible solutions for the stress coefficient c

′
2 also

increases, because the admissible values of Wi and c
′
2 are inversely
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Table 4.1: Minimum and maximum admissible values for c
′
2 and k

′
nl as a

function of α and k
′
nl for Couette flow of Giesekus model with the

linear Navier slip law.
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´
nl

k
α

2 min max´c Wi 2min max´c Wi 2min maxć Wi 2min maxć Wi
2min maxć Wi 2min maxć Wi

proportional to each other. Table 4.1 presents a set of limiting values
for Wi and c

′
2 as a function of α and the slip coefficient.

Although the existence of slip seems to smooth the problem of
nonexistence of analytical solutions, such limitation continues to ex-
ist, at least for specific cases. In fact, as the Weissenberg number is
increased a larger slip velocity is required to guarantee the existence
of solution. From Eq. 4.59 with Wi = 1, α = 1, k

′
nl = 0.1 (linear

Navier slip) and some manipulation, the result is (1/2) c
′
2 − 1/20 =

1/
(

1 +
√

1− 4
(
c′2
)2
)

, an equation without a real number solution,

i.e., although slip widens the range of conditions for a solution to exist
with the Giesekus model, by itself it does not guarantee its existence.

4.4.2 Planar Channel Flow

The symmetry condition of planar Poiseuille flow (see Fig. 4.1(b)),
defines the shear stress distribution given by τ∗xy = Wi

(
p
′
xy
′
)

(see Eq.

4.48(a)). Using φ = −2αWi
(
−p

′
x

)
the differential equation for the

velocity derivative (Eq. 4.48(b)) becomes (see (Yoo and Choi, 1989) for
more details),

∂u∗
(

y
′
)

∂y′
= −

φy
′
(

1± (2α− 1)
√

1− (φy′)2
)

(
2α− 1±

√
1− (φy′)2

)2 (4.63)

The solution of the direct problem with wall slip is,

u∗
(

y
′
)
=

a (φ)
φ

+ u∗ws (1) (4.64)

with:
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Table 4.2: Variation of p
′
x with different values of α, k

′
nl and constant Wi = 1

for a Poiseuille flow with the Giesekus model with the linear
Navier slip law.
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´
nl

k
α

a (φ) =
(
1− 2b2) ln

[
b+
√

1−(φy′)
2

b+
√

1−(φ)2

]
+ b

(√
1− (φy′)2 −

√
1− (φ)2

)
+

b
(
1− b2) [ 1

b+
√

1−(φy′)
2 − 1

b+
√

1−(φ)2

]
and b = 2α− 1.

The solution for the inverse problem is obtained as for the PTT fluid,
integrating the velocity profile, here with the modified dimensionless
velocity . ∫ 1

0
u∗
(

y
′
)

dy
′
= Wi (4.65)

Once again the only physically acceptable solution is the upper
branch here is given as,

∣∣∣φy
′
∣∣∣ < 2α

√
1/α− 1 α ∈ ]0; 1/2]∣∣∣φy

′
∣∣∣ < 1 α ∈ ]1/2; 1]

(4.66)

for a fixed y
′
. As expected, restrictions on the admissible Weis-

senberg number Wi and pressure gradient p
′
x arise.

For Poiseuille flow, slip also relaxes the Weissenberg number restric-
tion and in order to obtain the pressure gradient the nonlinear Eq.
4.65 must be solved numerically.

Assuming that Wi = 1 (Yoo and Choi, 1989) showed that there
should be no solution for Eq. 4.65, but its existence can be proved for
some cases with slip even though it has to be determined numerically.
For this particular case, Table 4.2 lists the pressure gradient for dif-
ferent values of α and k

′
nl , no solution exists for α = 0.8, 0.9, 1.0 and

k
′
nl = 1 and the pressure gradient decreases when α increases.
The variation of the shear stress τ∗xy (and of the other stress com-

ponents) with slip, shown in Fig. 4.5, is qualitatively similar to that
for the PTT models. For the normal stress τ∗xx the Giesekus model
exhibits lower values than the corresponding PTT models, everything
else being the same. Even though the effect of α on both τ∗xy and τ∗xx
is very small, it leads to a non-zero second normal stress difference
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Figure 4.5: Variation of τ
′
xx (a), τ

′
xy(b), and τ

′
yy (c) along the channel half

width y
′

for a Poiseuille flow of a Giesekus model with different
values of α, k

′
nl and for a constant Wi = 1 .

(here N2 = −τ∗yy) that decreases with slip as shown in the plots of τ∗yy
of Fig. 4.5(c) ( τ∗yy = 0 for any of the simplified PTT models).

The solution for the Poiseuille pipe flow of a Giesekus fluid is given
in Appendix B.
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4.5 conclusions

Analytical and semi analytical solutions (for the direct and inverse
problems) are presented for the Couette and Poiseuille flows of linear
and exponential simplified PTT fluids, together with an analysis of the
existence of solutions for the one mode Giesekus model. For the sPTT
fluids it could be proved that for the four slip models presented there
is always a unique solution for the flow between parallel plates, but
full analytical solutions could only be found for special values of the
exponent in the nonlinear Navier slip law. For the Giesekus fluid, the
procedure to obtain the solution is very similar as the one employed
for the sPTT. The proof of existence of solutions (that could not exist
without slip velocity) is made analytically for the Couette flow and is
studied numerically for the Poiseuille flow. For both flows this study
is carried out for the Navier slip law, although, for the other nonlinear
laws the results are qualitatively similar.
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appendix a : solutions for the couette flow and nonlin-
ear navier slip with the ptt models

The nonlinear Navier slip law is given by,

u
′
ws (0) = k

′
nl

(
c
′
1

)m
(4.67)

where k
′
nl = knlUm−1 (η/h)m. The velocity profile is obtained by solv-

ing the following two systems of equations. For the linear PTT model
they are,

u
′
(

y
′
)
=

[
c
′
1 + 2εWi2

(
c
′
1

)3
]

y
′
+ k

′
nl

(
c
′
1

)m
(4.68)

2εWi2
(

c
′
1

)3
+ c

′
1 + k

′
nl

(
c
′
1

)m
− 1 = 0 (4.69)

Let g
(

c
′
1

)
= 2εWi2

(
c
′
1

)3
+ c

′
1 + k

′
nl

(
c
′
1

)m
− 1, then, the derivative

of g
(

c
′
1

)
is positive and given by,

dg
(

c
′
1

)
dc′1

= 6εWi2
(

c
′
1

)2
+ mk

′
nl

(
c
′
1

)m−1
+ 1 > 0 (4.70)
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Since g (0) = −1 and g (1) = 2εWi2 + k
′
nl > 0 , Bolzano and Rolle

theorems imply a unique solution in the range [0, 1].
For the special case of m = 3, the solution is given next and was

obtained with the help of the Cardan-Tartaglia formula,

c
′
1 =

(
−
(
−2εWi2 − k

′
nl

)−1
/2 +

√
Y
)1/3

+

(
−
(
−2εWi2 − k

′
nl

)−1
/2−

√
Y
)1/3 (4.71)

with Y =

((
−2εWi2 − k

′
nl

)−1
/2
)2

+

((
2εWi2 + k

′
nl

)−1
/3
)3

For the special case of m = 2, the analytical solution is obtained as
a general solution of a cubic equation.

The system of equations for the exponential PTT is,

u
′
(

y
′
)
= exp

(
2εWi2

(
c
′
1

)2
)

c
′
1y
′
+ k

′
nl

(
c
′
1

)m
(4.72)

exp
(

2εWi2
(

c
′
1

)2
)

c
′
1 + k

′
nl

(
c
′
1

)m
− 1 = 0 (4.73)

Let g
(

c
′
1

)
= exp

(
2εWi2

(
c
′
1

)2
)

c
′
1 + k

′
nl

(
c
′
1

)m
− 1, the derivative of

g
(

c
′
1

)
is positive and given by equation, .

dg
(

c
′
1

)
dc′1

= exp
(

2εWi2
(

c
′
1

)2
)(

1 + 4εWi2
(

c
′
1

)2
)
+mk

′
nl

(
c
′
1

)m−1
> 0

(4.74)
Since:

g (0) = −1 and g
(

k
′−1/m
nl

)
= exp

(
2εWi2

(
k
′
nl

)−2/m
)

k
′−1/m
nl > 0 ,

we have, once again by Bolzano and Rolle theorems, a unique
solution in the interval

[
0, k

′−1/m
nl

]
.

For the other two slip boundary conditions given by Eqs. 4.17

and 4.18we have similar results. For the linear PTT let g
(

c
′
1

)
=

2εWi2
(

c
′
1

)3
+ c

′
1 + u

′
ws (0)− 1 , then the following positive derivative

is obtained,

dg
(

c
′
1

)
dc′1

= 6εWi2
(

c
′
1

)2
+

du
′
ws (0)
dc′1

+ 1 > 0 (4.75)

For the exponential PTT let:

g
(

c
′
1

)
= exp

(
2εWi2

(
c
′
1

)2
)

c
′
1 + u

′
ws (0)− 1, then,
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dg
(

c
′
1

)
dc′1

= exp
(

2εWi2
(

c
′
1

)2
)(

1 + 4εWi2
(

c
′
1

)2
)
+

du
′
ws (0)
dc′1

> 0

(4.76)
Since g (0) < 0 and g (1) > 0 for both linear and exponential

PTT once again is proved the existence of a unique solution in the
range[0, 1].

appendix b : pipe flow for the sptt and giesekus models

sPTT:
The solutions for the pipe flow (Fig. 4.1(c)) are very similar to those

of channel flow. A practical way to obtain the simplified governing
equations is to substitute y by r/2 in Eq. 6.44 leading to,

τ
′
xr = p

′
xr
′
/2 (a)

τ
′
xx = 2Wi

(
p
′
xr
′
/2
)2

(b)

τ
′
rr = 0 (c)(

∂u
′
/∂r

′
)
= f

(
(2λ/η)

(
p
′
xr
′
/2
)2
)

p
′
x

(
r
′
/2η

)
(d)

(4.77)

The solution for the direct problem is given by the following two
equations for the linear and the exponential models, respectively.

u
′
(

r
′
)
= 0.125p

′
x

(
r
′2 − 1

)
+ 0.0625εWi2

(
p
′
x

)3 (
r
′4 − 1

)
+ u

′
ws (1)

(4.78)

u
′
(

r
′
)
=
(

2εWi2
(

p
′
x

))−1 (
exp

(
Zr
′2
)
− exp (Z)

)
+ u

′
ws (1) (4.79)

with Z = 0.5εWi2
(

p
′
x

)2
.

The term u
′
ws (1) is once again given by any of the Eqs 4.19, 4.20,

4.21. The solution for the inverse problem is very similar to the channel
flow.

Giesekus:
For the pipe flow, the solution is very similar to that in the pressure-

driven channel flow. The main difference is that y is replaced by r, and
φ gives place to Ψ1 = αWi

(
−p

′
x

)
.

u∗
(

r
′
)
=

aΨ1

Ψ1
+ u∗ws (1) (4.80)
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introduction to part iv

Part IV can be dived into three distinct sets of papers. The first two
papers that are presented, are related to the implementation of differ-
ent slip boundary conditions into a computer code based on the finite
volume method:

.L.L. Ferrás, J.M. Nóbrega, FT Pinho (2012), Implementation of Slip
Boundary Conditions in the Finite Volume Method: New Techniques,
accepted for publication in the International Journal for Numerical Meth-
ods in Fluids;

.L.L. Ferrás, A.M. Afonso, J.M. Nóbrega, M.A. Alves, F.T. Pinho
(2012), A numerical and theoretical study on viscoelastic fluid slip-
flows, to be submitted to Theoretical and Computational Fluid Dy-
namics;

In the second set of papers, a study concerning the influence of the
slip velocity on Newtonian and viscoelastic fluid flow through
contractions and expansions, is presented:

.L.L. Ferrás, A.M. Afonso, J.M. Nóbrega, M.A. Alves, F.T. Pinho,
4:1 Contraction flow of Non-Newtonian fluids with slip boundary
conditions, submitted to Journal of Non-Newtonian Fluid Mechanics;

.L.L. Ferrás, A.M. Afonso, J.M. Nóbrega, M.A. Alves, F.T. Pinho
(2012), The Influence of Slip Velocity on the Newtonian and Viscoelas-
tic Fluid Flow Through an Abrupt 1:4 Expansion, to be submitted to
Journal of Non-Newtonian Fluid Mechanics;

In the third set of papers, a study concerning the development length
requirements for fully developed fluid flows under the influence of
slip velocity, is presented:

.L.L. Ferrás, A.M. Afonso, J.M. Nóbrega, M.A. Alves, F.T. Pinho
(2012), Development length in planar channel flows of Newtonian
fluids under the influence of wall slip, accepted for publication in the
Journal of Fluids Engineering;

.L.L. Ferrás, A.M. Afonso, J.M. Nóbrega, M.A. Alves, F.T. Pinho
(2012), Numerical study of the Development Length Requirements
for Fully Developed flow of Viscoelastic Fluids Under Slip, to be
submitted to Journal of Fluids Engineering;
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I M P L E M E N TAT I O N O F S L I P B C I N T H E F V M : N E W
T E C H N I Q U E S

Abstract1

Two different techniques for the implementation of the linear and the non-
linear slip boundary conditions into a finite volume method based numerical
code are presented. For the linear Navier slip boundary condition an implicit
implementation in the system of equations is carried out for which there is
no need for any relaxation, especially when handling high slip coefficients.
For three different nonlinear slip boundary conditions, two different methods
are devised, one based on solving a transcendental equation for the bound-
ary and the other based on the linearization of the slip law. For assessment
purposes comparison is made between these new methods and the usual it-
erative process. With these new methods the convergence difficulties, typical
of the iterative procedure, are eliminated and for some of the test cases the
convergence rate even increased with the slip velocity. The details of these im-
plementations are given first for a simple geometry using orthogonal meshes
and Cartesian coordinates followed by their generalization to non-Cartesian
coordinates and nonorthogonal meshes. The developed code was tested in the
benchmark slip-stick and 4:1 contraction flows, evidencing the robustness of
the proposed procedures.

5.1 introduction

Most of the literature related to the computation of the Navier-Stokes
equations with slip boundary conditions is based on the finite element
method (FEM). Some works present the variational and FEM studies
of the Stokes and the Navier-Stokes equations with free slip boundary
conditions (see (Liakos, 2001; Verfürth, 1986) and the literature cited
therein), others give friction an important role, and investigate the
effects of slip and leak boundary conditions (John, 2002; Stokes and
Carey, 2008).

This paper concerns friction slip models. Even though a number
of difficulties have been reported in the FEM literature on handling
friction slip models (John, 2002), some recent techniques, such as the
penalty approach (Stokes and Carey, 2008), seem to work well, at
least when applied to Stokes flow. However, other contributions using
linear and nonlinear slip models in the context of FEM (Sunarso et al.,

1 L.L. Ferrás, J.M. Nóbrega, FT Pinho (2012), Implementation of Slip Boundary Condi-
tions in the Finite Volume Method: New Techniques, accepted for publication in the
International Journal for Numerical Methods in Fluids;
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2006, 2007; Wesson and Papanastasiou, 1988) frequently refer the need
to use relaxation in order to obtain convergence.

To our best knowledge numerical codes based on the finite volume
method (FVM) comprising slip boundary conditions are scarce and
a comparison between FEM and FVM shows that the solver for the
Navier-Stokes equations is often quite different: whereas FEM is often
built in the variational formulation of the boundary value problem
and iteratively couple the equations, based on projection (Guermond
et al., 2006), penalty or augmented-Lagrangian (Stokes and Carey,
2008) methods, amongst others, the FVM uses the integral formulation
of the Navier-Stokes equations together with one of the various SIM-
PLE (Patankar, 1980) based methods, to develop and couple pressure
and velocity fields along iterations (Oliveira et al., 1998). Although the
SIMPLE method is a disguised version of a projection method, results
about the implementation of slip boundary conditions making use
of FEM and projection methods could not be found in the literature,
except for the case of an explicit implementation of slip boundary con-
ditions. This makes it rather difficult to compare the implementation
techniques of the slip models.
The aim of this paper is then to present a detailed description of two
new different implementations of slip boundary conditions within
a FVM approach. These implementations do not need the use of
relaxation and work well for all the slip boundary conditions. In
addition, two other specific methods, one for the linear Navier slip
law and the other for the nonlinear Navier slip law are also presented.
The remainder of this paper is organized as follows: the next section
presents the governing equations and is followed, in subsection 3,
by a detailed description of the implementation of slip velocity in
a two dimensional flow using Cartesian coordinates. In subsection
3 we first compare “the classical” fully explicit method (which is
applied to the four different slip boundary conditions, namely the
linear and especially three non-linear slip boundary conditions) with
the fully implicit method for the linear Navier slip law, and then
present two new different methods able to deal with all the slip laws
studied here. The first of these two methods only works for orthogonal
meshes while the second method is able to handle both orthogonal
and nonorthogonal meshes. The description of the four methods is
followed by the presentation and discussion of results using reference
cases for validation, prior to the closure of the paper.

5.2 governing equations and numerical method

The governing equations for incompressible fluids are the continuity,

∇ · u = 0 (5.1)

and the momentum equations,
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∂ρu
∂t

+ ρ∇ · uu = −∇p +∇ · τ (5.2)

where u is the velocity vector, ρ is the fluid density (assumed to
be constant), p is the pressure and τ = τs + τp is the extra stress
tensor. The extra stress tensor is divided into solvent τs=ηs(∇u+(∇u)T)
(with ηs the solvent viscosity) and polymer τp contributions, the latter
given here by the following differential constitutive equation, called
the simplified Phan-Thien Tanner model (sPTT) (Phan-Thien and
Tanner, 1977; Phan-Thien, 1978):

f
(
trτp

)
τp + λ

(
∂τp
∂t + u.∇τp −

[
(∇u)T .τp + τp.∇u

])
=

= ηp

(
∇u + (∇u)T

) (5.3)

where f
(
trτp

)
is a function depending on the trace (tr) of the stress

tensor (τp), λ is the relaxation time and ηp is the zero shear polymer
viscosity. In the literature, there are two possible functions for f

(
trτp

)
.

The original linear function, presented by (Phan-Thien and Tanner,
1977),

f
(
trτp

)
= 1 +

ελ

ηp
tr
[
τp
]

(5.4)

and the exponential proposed later by (Phan-Thien, 1978), which is
given by,

f
(
trτp

)
= exp

(
ελ

ηp
tr
[
τp
])

(5.5)

In any case the parameter ε is related to the elongational behavior
of the modeled fluid (ε is inversely proportional to the extensional
viscosity).

The UCM model can be derived from the sPTT model by making
ηs = ε = 0 and the Oldroyd-B model is obtained when ε = 0 and ηs 6=
0. The generalized-Newtonian fluid model assumes τ=τs+τp=2η(γ̇)S in
Eq. 2, where η(γ̇) is a viscosity function which depends on the second
invariant (γ̇) of the rate of deformation tensor S=(∇u+(∇u)T)/2 with
γ̇ =
√

2S : S).
A fully-implicit finite volume numerical method is used to solve

Eqs. 5.1 to 5.3, which are transformed to generalized coordinates. The
method is based on a time marching pressure-correction algorithm
formulated with a collocated variable arrangement. The governing
equations are integrated in space over the control volumes (cells with
volume VP) forming the computational mesh and in time over a time
step (∆t). The volume integration benefits from Gauss Theorem and
the subsequent surface integrals are then discretized with help of
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the midpoint rule so that sets of linearized algebraic equations are
obtained, having the general form:

aPuP =
6

∑
F=1

aFuF + Su (5.6)

for the velocity components u, v, w, and

aτ
PτP =

6

∑
F=1

aτ
FτF + Sτ (5.7)

for the extra stress components τxx, τxy, τxz, τyz, τyy, τzz. In these
equations aP, aF, aτ

P and aτ
F are the coefficients accounting for convec-

tion and diffusion influences, Su and Sτ are source terms encompass-
ing all contributions not included in the coefficients, the subscript P
denotes the cell under consideration and subscript F its corresponding
neighboring cells. The central coefficients of the discretized equations,
aP and aτ

P, are generally given by the sum of neighbor cell coefficients
in addition to the time dependent term in the corresponding gov-
erning equation (the time is used here with the purpose of inertial
under-relaxation since the interest is only in steady state solutions).
As follows, the central coefficient for the momentum equation is given
by,

aP =
ρVP

∆t
+

6

∑
F=1

aF (5.8)

but for the PTT stress equations an additional term is included,
resulting from the f (trτ) term in Eq. 5.3, which tends to promote
stability by increasing the numerical value of the aP coefficient,

aτ
P =

λVP

∆t
+ VP

(
1 +

ελ

ηp
tr
[
τp
])

+
6

∑
F=1

aτ
F. (5.9)

The linear set of equations given by Eq. 5.6 are sequentially solved
for the Cartesian velocity components by means of a preconditioned
bi-conjugate gradient solver (the preconditioner used is LDU decom-
position special for indirect addressing). The newly computed ve-
locity field usually does not satisfy the continuity equation (i.e. Eq.
5.1) which needs to be corrected by an adjustment of the pressure
differences which drive them. This is accomplished by means of a
pressure-correction field obtained from a discrete Poisson equation,
derived from a discretized form of the continuity equation (Eq. 5.1)
in combination with the momentum equation (Eq. 5.2). This pressure
correction equation is then solved by a symmetric conjugate gradient
method. The correction of the velocity field follows the SIMPLEC
strategy of Van Doormal and Raithby (Van Doormaal and Raithby,
1984) and we may now solve sequentially the implicitly discretized
constitutive equations for τxx, τxy, τxz, τyz, τyy, τzz (Eq. 5.7). This sys-
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tem of equations is solved with the help of the bi-conjugate gradient
method.

Most important from the standpoint of accuracy is the representa-
tion of the convective terms in the constitutive equations which relies
on the SMART scheme of Gaskell and Lau (Gaskell and Lau, 1988) .
A schematic view of the numerical procedure can be seen in Fig. 5.1,
and a detailed description of the code can be found in (Oliveira et al.,
1998).
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Figure 5.1: Schematic of the numerical procedure.

Boundary conditions:

The slip boundary conditions used in this work are the linear (Navier,
1822) and nonlinear (Schowalter, 1988) Navier slip laws as well as
the Hatzikiriakos (Hatzikiriakos, 1993) and the asymptotic slip laws,
presented next.

Let ut and τt be the velocity and stress vectors tangent (to the wall)
, respectively. It is required that the absolute value of the slip velocity
must be a function of the absolute value of the tangent stress vector as
in Eq.5.10,

‖ut‖ = ‖ f (τt)‖ , (5.10)

where ‖.‖ stands for the usual l2 norm and f (.) represents any real
linear or nonlinear function of the tangent stress vector (τt). It is
also required that the tangent velocity vector, ut, should point in the
opposite direction to the tangent stress vector τt, i.e. the relationship
between these two quantities is given by,

ut = −‖ f (τt)‖ ‖τt‖−1 τt, (5.11)
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where the function‖ f (τt)‖ takes the form in Eq. 5.12 for each of the
various slip laws

‖ f (τt)‖ =


linear Navier kl ‖τt‖ (a)

nonlinear Navier knl ‖τt‖m (b)

Hatzikiriakos kH1 sinh (kH2 ‖τt‖) (c)

asymptotic kA1 ln (1 + kA2 ‖τt‖) (d)

(5.12)

and the parameters kl , knl , kH1, kH2, kA1, kA2, m are the correspond-
ing slip coefficients. The interested reader is referred to (Ferrás et al.,
2012c) for more details about these models.

5.3 numerical implementation of slip boundary condi-
tions

5.3.1 Discretization

To better understand the implementation of slip boundary conditions,
a simple 2D channel flow with Cartesian coordinates and orthogonal
meshes is used as in Fig. 5.2. At the boundary (the wall at the north cell
face), the velocity is tangent to the wall (x-direction) and the tangent
stress vector is determined as,

τt =
(

1− n⊗ nT
) (

τnT
)

(5.13)

where n = (n1, n2, n3) is the normal vector to the wall and 1 is the
identity matrix.

����
nτ P EW

S

n

y

x
�� fy∆

Figure 5.2: Simple geometry: flow between parallel plates (zoomed view of
the computational cells near the wall).

The main key for this new implementation of slip boundary condi-
tions is the local assumption of a Couette flow in the vicinity of the
wall (Oliveira et al., 1998). If so, the tangent stress vector at the upper
wall (for this simple geometry) can be written as,

τt =

(
µ(γ̇)

du
dy

)
wall

(5.14)

for all the constitutive equations studied here.
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Based on this, what distinguishes one viscoelastic model from an-
other (with respect to the wall boundary treatment) is only the vis-
cosity function µ(γ̇)wall which is given by µ(γ̇)wall≡η(γ̇wall) for the gener-
alized Newtonian fluids and is given by µ(γ̇)wall≡ηs+

ηp
1+(α−1)2/3α

(with

α≡(θ+
√

θ2−1)
1/3and θ≡1+27ε(λγ̇)2

wall ) (Azaiez et al., 1996) for the PTT
model.

Under these flow conditions the slip law takes the form,

uws = knl

(
−µ(γ̇)

du
dy

)m

wall
(5.15)

for the nonlinear Navier slip law. The linear law is recovered for
m = 1 in which case knl ≡ kl . The Hatzikiriakos and asymptotic slip
laws are given by Eqs. 5.16 and 5.17, respectively.

uws = kH1 sinh
(
−kH2µ(γ̇)

du
dy

)
wall

(5.16)

uws = kA1 ln
(

1− kA2µ(γ̇)
du
dy

)
wall

(5.17)

If we assume a one-sided first order approximation for the derivative
du
dy at the wall appearing in Eqs. 5.15, 5.16 and 5.17, then du

dy '
uws−uP

∆y f
,

where ws stands for “wall slip”, uP is the velocity at the center of the
control volume adjacent to the wall and ∆y f is half the cell width, as
shown in Fig. 5.2. Based on this, Eqs. 5.15, 5.16 and 5.17 can be written
in their discretized form as functions of the difference uws − uP, by
uws = fd (uws − uP) with:

fd (uws − uP) ≡


Navier knl

(
− µ(γ̇)(uws−uP)

∆y f

)m
(a)

Hatzikiriakos kH1 sinh
(
− kH2µ(γ̇)(uws−uP)

∆y f

)
(b)

asymptotic kA1 ln
(

1− kA2µ(γ̇)(uws−uP)
∆y f

)
(c)
(5.18)

where fd( ) represents the discretized version of the slip laws.
The discretization of the continuity equation (Eq. 5.1) in a computa-

tional cell P (Fig. 5.2) results in the balance of mass fluxes for this cell.
These fluxes are normal to the cell faces, therefore, the slip boundary
condition has no direct influence on this equation, since the walls are
impermeable.

The momentum equation (Eq. 5.2) is directly affected by the slip
boundary condition through the term ∇·τ. Notice that the discretiza-
tion of this term will also change with the assumption of a Couette
flow in the vicinity of the wall, Eq. 5.14, as shown in Appendix A.
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5.3.2 Explicit and Implicit implementations of the Navier slip law

Explicit formulation:

For the implementation of the slip boundary conditions with an ex-
plicit slip formulation, a SIMPLE (Patankar, 1980) type method is used
as an example. It can be easily adapted to other algorithms such as
the SIMPLEC, SIMPLER or PISO.

Let i represent the number of the outer iteration (iteration between
the linearized momentum equation and the pressure correction equa-
tion), then, the discretized slip boundary condition at iteration i is
given for the linear Navier slip law by,

ui
ws = kl

(
−µ(γ̇)i−1

wall
ui−1

ws − ui−1
P

∆y f

)
(5.19)

where µ(γ̇)i−1
wall , ui−1

ws , ui−1
P pertain to the previous iteration.

The proposed modified SIMPLE algorithm (SIMPLE-SLIP-Explicit
(SSE)) is given in Fig. 5.1 with the following additional step:

(a) Compute slip velocity with the discretized slip model given by
Eq. 5.19.

This slip velocity value ui
ws goes straight to the source term Su of

Eq. 5.6 (see Appendix A for more details).
At each iteration i the boundary condition is updated with the

velocity from the previous iteration i − 1. In order to achieve con-
vergence the variation of this boundary condition along the iterative
process must be stable in some sense (sudden changes in the boundary
condition along the iterative process will not allow the overall con-
vergence and for a well posed problem we want the flow to depend
continuously on the boundary data).
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Figure 5.3: Example of the iterative procedure for the explicit formulation of
slip velocity.

The example illustrated in Fig. 5.3 shows a case where convergence
is not achieved for a situation where the linear Navier slip boundary
condition was employed. There we can see the evolution of the velocity
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at the center of a control volume with the north face coinciding with
a wall, as in Fig. 5.2. The fluid movement is from left to right (with
imposed velocity of 1 m/s), but at iteration i + 2 the calculations are
made assuming the fluid is slipping at the wall from the right to the
left, while just next to the wall the fluid flows in the opposite direction.
Due to this inconsistency, non-physical characteristics appear, and the
process either diverges or converges to an unacceptable solution.

The relationship uws < uP seems to be the key to the convergence of
the process, but this is difficult to guarantee when calculating the slip
velocity with the values from the previous iteration. A possible remedy
is the classical use of underelaxation ui

ws = Rui−1
ws + (1− R) ui

ws with
R < 1 when updating the slip velocity in step (a), but for high slip
coefficients and nonlinear slip laws this does not work.

Remark: This method can also be applied to any of the other
slip laws studied here, provided the right hand side of Eq. 5.19

is evaluated with the values from the previous iteration, i − 1, by
ui

ws = fd

(
ui−1

ws − ui−1
P

)
.

Implicit formulation:

To eliminate the convergence issues of the explicit method a fully-
implicit formulation can be implemented, but only the linear Navier
slip law allows a fully implicit method without the use of other
techniques (such as a deferred correction). The idea is to evaluate
Eq.5.19 assuming all variables come from the present iteration. Eq.5.19

can then be rewritten as

ui
ws=kl

(
−µ(γ̇)i

wall
(ui

ws−ui
P)

∆y f

)
⇔ui

ws =
a

a + 1
ui

P with a=kl

(
−

µ(γ̇)i
wall

∆y f

)
(5.20)

This ensures the slip velocity is always smaller than the velocity at
the center of the adjacent computational cell, so the continuity/mono-
tonicity we searched for is preserved.

The dependency of ui
ws on ui

P leads to modifications in Eqs. 5.6 and
5.8 with the central coefficient aP (Eq. 5.8) now being given by,

aP = aE + aW + aS +
aN

a + 1
+

∆VPρ0
P

∆t
(5.21)

These equations differ from those for no slip velocity (Eqs. 5.6 and
5.8), in that the term aNuN in Eq. 5.6 does not exist, and the coefficient
aN in Eq. 5.8 is now multiplied by 1

a+1 , therefore in Eq. 5.21 aP is
smaller when compared to the aP of Eq. 5.8. Even though this implicit
implementation brings a less diagonally dominant system of equations
the required conditions for convergence and stability are maintained,
such as aP≥∑ aF.
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With this implicit implementation there is no need to specify the
value of uws along the iterative process and no need to use undere-
laxation to solve the discrete system of equations that results from
the discretization of the momentum equation. When convergence is
achieved the slip velocity can be calculated with Eq. 5.20 at each of
the wall computational cells.

The iterative procedure, here called SIMPLE-SLIP-Implicit (SSI)
scheme, is given by the scheme of Fig. 5.1 with the following additional
step:

(c) After convergence, compute the slip velocity with the discretized
slip model ui

ws=
a

a+1 ui
P, for each of the wall computational cells.

Notice that lim(∆y f→0) 1
a+1=0 and this means that the refinement of the

mesh near the wall does not improve the convergence of the iterative
matrix solver.

For a formulation with a second order approximation of the deriva-
tive du

dy wall
(derivative of the slip law) see Appendix B.

5.3.3 Semi-Implicit implementation of slip laws (orthogonal meshes)

As mentioned before, the fully implicit formulation can only by ap-
plied to the linear Navier slip law. In order to implement the other
slip laws implicitly we devised the method described below.

Consider again the geometry of Fig. 5.2. The idea behind this new
method is to assume the slip velocity implicit on both sides of the
equation for each of the wall boundary cells at each iteration i,

ui
ws = fd

(
ui

ws − ui−1
P

)
(5.22)

and then use a numerical scheme to find the roots of the ensuing
transcendent equation. It can be proved analytically that with this
method ui

ws < ui−1
P for all the slip boundary conditions studied here

(see Appendix C ). In particular, we have the bounds [a; b] for the
solution ui

ws that are given by Eqs. 5.23, 5.24 and 5.25 for the nonlinear
Navier, Hatzikiriakos and asymptotic slip laws, respectively,

[a; b] ≡
[
0; ui−1

P

]
(5.23)

[a; b] ≡
[

kH1kH2µ(γ̇)i−1
wall/∆y f

kH1kH2µ(γ̇)i−1
wall/∆y f + 1

; ui−1
P

]
(5.24)

[a; b] ≡


[
0; ui−1

P

]
i f kA1 ≥ 1[

0; kA1kA2µ(γ̇)i−1
wall+kA1∆y f

kA1kA2µ(γ̇)i−1
wall+∆y f

ui−1
P

]
i f kA1 < 1

(5.25)
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Here, the bisection method was used to find the roots of the tran-
scendent equation (Eq. 5.22), starting in the range of Eqs. 5.23, 5.24

and 5.25 and stopping after n iterations such that (b− a) /2n is below
a given error.

The canonical equation used to compute the velocity field is still Eq.
5.6 with the central coefficient given by Eq. 5.8.

With this method the new iterative algorithm (SIMPLE-SLIP-Semi-
Implicit-transcendent (SSSIT)) follows the SIMPLE scheme, shown in
Fig. 5.1, with the following additional step:

(a) Compute slip velocity with the discretized slip model ui
ws= fd(ui

ws−ui−1
P )

by applying the bisection method;

5.3.4 Semi-Implicit implementation of slip laws (orthogonal and nonorthog-
onal meshes)

SSSIT algorithm solves the convergence problems for linear and non-
linear slip laws, but only works for orthogonal meshes. A new semi-
implicit method is now devised that is able to deal with both orthogo-
nal and nonorthogonal meshes, which is inspired on the linearization
used with the Navier slip law (fully implicit formulation).

The slip velocity uws can usually be written as a function of the dif-
ference (uws − uP) by uws = fd (uws − uP). If we multiply this function
by the ratio uws−uP

|uws−uP |
then our slip law can be rewritten as,

uws = fd (uws − uP)
uws − uP

|uws − uP|
(5.26)

and, if along the iterative procedure only the slip velocity in the nu-
merator is taken from the present iteration ui

ws−ui−1
P

|ui−1
ws −ui−1

P |
, then the general

slip boundary condition becomes,

ui
ws =

c
c + 1

ui−1
P (5.27)

with c= fd(ui−1
ws −ui−1

P )/|ui−1
ws −ui−1

P |. Since c
c+1 < 1 we guarantee once again

the continuity/monotonicity of the slip velocity. The specification of c
for each of the slip laws studied here is straightforward.

Notice that although ‖(ui
ws−ui

P)/|ui
ws−ui

P|‖=1, along the calculations
‖(ui

ws−ui−1
P )/|ui−1

ws −ui−1
P |‖ 6=1. This ratio should tend to 1 as convergence is

approached or else the slip velocity vector will not be pointing in the
correct direction. This is another criterion that should be checked for
convergence.

The canonical equation used to compute the velocity field is again
Eq. 5.6 with the central coefficient given by Eq. 5.8, and the iterative
procedure (SIMPLE-SLIP-Semi-Implicit(SSSI)) follows the SIMPLE
scheme, shown in Fig. 5.1, with the following additional two steps:

(a) Compute slip velocity with the discretized slip model of Eq. 5.27;
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(b) Check for convergence in the residuals of the system of equa-
tions and for ‖(ui

ws−ui−1
P )/|ui−1

ws −ui−1
P |‖→1. If convergence is not achieved

proceed to the beginning of the iteration. (The nonlinear Navier slip
law can be treated as a special case of this method. For more details
see Appendix D).

The generalization to nonorthogonal meshes is straightforward but
takes some more work. Let ut = (u1t, u2t, u3t) and τt = (τ1t, τ2t, τ3t)
be the tangent (to the wall) velocity and stress vectors, both with
Cartesian components. By Eq. 5.11 and assuming Couette flow near
the wall, we obtain the following general formula for all slip laws,

uws = ± f
(∥∥∥∥(µ(γ̇)

du
dn

)
wall

∥∥∥∥)
(

µ(γ̇) du
dn

)
wall∥∥∥(µ(γ̇) du

dn

)∥∥∥
wall

, (5.28)

where the ± depends on the sign of du
dn , and du

dn =
(

du1t
dn ; du2t

dn ; du3t
dn

)
with ujt, j = 1, 2, 3 the components of the tangent vector at the wall.

The discretization of these derivatives is given by,(
u1t − u1tP

δn
;

u2t − u2tP

δn
;

u3t − u3tP

δn

)
(5.29)

where δn is the distance between the wall and P
′

(as given in Fig. 5.4)
and ujtP = ujP − nju.n, j = 1, 2, 3 are the components of the tangent
velocity vector at the center of the adjacent cell P.

tu

nu

t

n

nδ

P P´tu

nu

t

n

nδ

P

��������

Figure 5.4: Projection of the velocity vector in the center of the computational
cell into the tangent and normal part (left - orthogonal mesh;
right- nonorthogonal mesh).

The velocity at P
′

is not known (Fig. 5.4), so it is assumed that
uP = uP′ . This introduces an error in the calculations that will diminish
as the mesh quality and refinement are improved.

Considering that µ(γ̇)wall is a positive scalar and that only the slip
velocity on the last term of Eq. 5.28 is evaluated implicitly then Eq.
5.28 can be rewritten as,

(u1, u2, u3)
i
ws =

d
d + 1

(u1tP; u2tP; u3tP)
i−1 (5.30)

with
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d ≡


Navier

knl‖g‖m−1(µ(γ̇)i−1
wall)

m

δn (a)

Hatzikiriakos
kH1 sinh(kH2‖µ(γ̇)i−1

wall g‖)µ(γ̇)i−1
wall

‖µ(γ̇)i−1
wall g‖δn

(b)

asymptotic
kA1 ln(1+kA2‖µ(γ̇)i−1

wall g‖)µ(γ̇)i−1
wall

‖µ(γ̇)i−1
wall g‖δn

(c)

(5.31)

and g = (u1t − u1tP; u2t − u2tP; u3t − u3tP)
i−1 /δn.

Notice that ujws < ujtP seems to be sufficient to obtain a stable
computation. In our tests this procedure worked well, except for very
high slip coefficients with the Hatzikiriakos law, where convergence
was difficult. More details on this issue can be found in the following
section.

5.4 results and discussion

To assess the performance of the numerical implementations the slip
models studied here were first compared with analytical solutions for
fully-developed channel flow with wall slip and subsequently tested
for the slip-stick and 4:1 contraction flow problems. The analysis is
carried out first for Newtonian fluids and subsequently for viscoelastic
fluids.

5.4.1 Newtonian fluids

Figs.5.5(a) and 5.5(b) compare predictions by the nonlinear Navier
slip law (including the particular case of the linear Navier slip law
(m = 1 )) for different values of the model parameters (slip coeffi-
cient and exponent) with the corresponding analytical solutions. The
comparison between the analytical and numerical solutions for the
Hatzikiriakos and asymptotic slip laws can be seen in Figs. 5.5(d) and
5.5(e), respectively. The accuracy of the results is quite good as can
also be assessed by a zoom of Fig. 5.5(a), shown in Fig. 5.5(c), but
more specifically by Figs. 5.6 and 5.7(a) which plot the relative error
in the prediction of the slip velocity as a function of the mesh size for
the linear and non-linear Navier slip laws, respectively. Fig. 5.6 shows
that the accuracy and the order of convergence of the solution both
increase with the slip coefficient. For instance, for the linear law the
order of convergence increases from 2.14 with kl = 10E− 6 [m.(Pa.s)−1]
to 2.6 for kl = 1 [m.(Pa.s)−1]. This is so because increasing the slip coeffi-
cient leads to higher slip velocities, the velocity profile tends to a plug
thus reducing the role of diffusion and increasing that of convection
where a third-order accurate scheme (Leonard, 1979) is used. Note
also that here the error committed in the evaluation of the tangent
stress is equal to the error for the slip velocity because the slip velocity
depends linearly on the tangent stress |unum

ws −uws|/|uws|=|τnum
12 −τ12|/|τ12|.
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Figure 5.5: Comparison between analytical (lines) and numerical (symbols)
solutions for a fully developed channel flow using linear and
non-linear slip laws with different slip coefficients (a) non-linear
Navier slip law with knl = 1E− 5(b) non-linear Navier slip law
with knl = 1E− 4(c) zoomed view of the non-linear Navier slip
law with knl = 1E− 5 (d) Hatzikiriakos slip law (e) Asymptotic
slip law.U is the imposed mean velocity and H is half the channel
width.

These features are observed regardless of the numerical method
used to obtain the solution as can be confirmed in Figs. 5.7(a) and
5.7(b), where the order of convergence and error are shown for the
predictions obtained with the nonlinear Navier law using the numeri-
cal methods SSSIT and SSSI, respectively. Our calculations with the
two methods show that the order of convergence increases with the
slip coefficient.
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Figure 5.6: Variation of the relative error in slip velocity with mesh spacing
4y for the linear Navier slip law with different slip coefficients
and three different meshes (Re = 0.003) using the totally implicit
scheme (p stands for the order of convergence).
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Figure 5.7: Variation of the relative error in slip velocity with mesh spacing
4y for the nonlinear Navier slip law with different slip coeffi-
cients and three different meshes (Re = 0.003). (a) n = 1.5 SSSIT
(b) n = 1.5 SSSI. p stands for the order of convergence.

Comparing both methods, the order of convergence is larger for the
Method SSSIT, where at each iteration the “numerically correct” slip
solution is determined by the bisection method, whereas for Method
SSSI the solution is only approximated using values from the previous
iteration.

After the code assessment, the next step was to compare the various
explicit and implicit/semi-implicit schemes using the channel flow
of Fig. 5.2 (with the mesh 2 of Table 5.1), at two different Reynolds
numbers of 0.003 and 10 for the four different implementations of slip
boundary conditions proposed: (1) totally explicit (SSE), (2) totally im-
plicit (SSI), (3) semi-implicit transcendent (SSSIT) and (4) semi-implicit
(SSSI). The linear Navier slip model was chosen for the comparison
because all the schemes work with it, and the non-linear Navier slip
model was chosen to compare scheme (3) and (4).



112 implementation of slip bc in the fvm : new techniques

Table 5.1: Three different uniform meshes were created. x stands for the
number of cells in the x direction and y stands for the numbers of
cells in the y direction.���� ����� ����� � ���	�		 ��	�	 	
�	
�	
	�x y / /x H y H=∆ ∆

Linear slip model:
Fig. 5.8 plots the number of iterations required for convergence, and

shows that for the implicit procedure (SSI) and this specific geometry
and flow, the larger the slip velocity, the quicker is the convergence.
This is so because for large slip the analytical solution is the plug flow,
and the guessed initial velocities are very close to the converged values,
so only a few iterations are needed to obtain convergence. For the
remaining schemes similar results were obtained in terms of number of
iterations. It should also be noticed that the error for the totally explicit
scheme (SSE) was larger than for any other method, because for high
slip coefficients the required relaxation factor was sometimes of the
same order as the tolerance used to stop the numerical simulation.

From these results one can conclude that for the linear slip law the
best method is the implicit procedure (SSI).

������������������������������

� � � � � � �
	
��������������	
�������
��������	
������
�������	
�����������	
����
��������	
���
�������

1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1

nº
 o

fi
te

ra
tio

ns

Re=0.003 SSI
Re=0.003 SSSI & SSSI T
Re=0.003 SSE
Re=10 SSI
Re=10 SSSI & SSSI T
Re=10 SSE

Kl [m(Pa.s)-1]

Figure 5.8: Graph representing a comparison for the number of iterations
needed to achieve convergence using the schemes: implicit
(SSI), explicit (SSE), semi-implicit transcendent (SSSIT) and semi-
implicit SSSI (for the linear Navier slip law) with the simple
geometry of Fig. 2 (mesh 2).

Nonlinear slip models:
The advantages of the semi-implicit procedures can be seen with

the nonlinear law SSSIT and SSSI. Table5.2 shows the number of
iterations needed to obtain convergence for Re = 0.003, 10. The results
for the totally explicit method are not shown because convergence
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was impossible. This results are for a simple geometry, but for a more
complex geometry the capability of the explicit procedure is expected
to decrease.

Table 5.2: Number of iterations needed to achieve convergence using the
schemes SSSIT and SSSI for the nonlinear Navier slip law with
n = 1.5, for the Hatzikiriakos and for the asymptotic slip laws.

( ) 1

nonlinear NS

[ . ].nlk m Pa s
−

Re=0.003

SSSIT & SSSI������� 18142 19932 ���	
 ����� ������� 27204 27198 33049������� 17764 20049 ����� ����� ������� 23662 23663 33050������� 18266 20094 ������� ��
�� ������� 16622 19606 33048������� 18327 20111 ������� �
��� ������� 14944 14797 33045������� 18344 20130 ������� �
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From Table 5.2 it can be seen that for the nonlinear Navier slip law
the number of iterations for methods SSSIT and SSSI was the same.
For method SSSI we found that when d/ (d + 1) ≈ 1 (see Eq. 5.30) the
code was not able to get out of a periodic sequence where the velocity
equals the tangent stress and in order to remedy this issue and obtain
convergence a classic relaxation for the slip velocity was used.

For the asymptotic slip law, the schemes SSSIT and SSSI were both
efficient and a similar number of iterations were required for conver-
gence. It should be noticed that when starting the outer iterations,
the slip velocity was initialized as 90% of the velocity in the center of
the nearest computational cell. Starting with null slip velocity and a
constant non-zero velocity at the center of the adjacent computational
cells may lead to divergence.

For the Hatzikiriakos slip law several convergence issues occur,
especially for high slip coefficients. For both methods SSSIT and SSSI
the main problem is due to the hyperbolic function, which either
gives very high values at the beginning of the calculations leading
to d/ (d + 1) ≈ 1 (SSSI), or gives values that cannot be cannot be
computed by the CPU (SSSIT).

We tried to solve the problem by controlling the growth of the hy-
perbolic function by limiting the maximum value of the sinh function
argument, however, for high velocities this algorithm does not seem
to solve the problem because convergence could only be obtained for
mean velocities below 3

[
m.s−1] (Re=0.0091). The problem seems to

be velocity value and not the Reynolds number itself as one could
increase the Reynolds number by imposing a mean velocity smaller
than 3

[
m.s−1].

We also tried to initiate the calculations for the Hatzikiriakos model
using the converged results from the linearized version of this model,
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but convergence was poorly enhanced and the series expansion of the
function did not solve the problem either.

For the Hatzikiriakos slip law, with the scheme SSSIT only the
first two trials converged. So, the chosen method for this slip law
is method SSSI, but even here computations are limited to smaller
imposed velocities as with higher imposed velocities the sinh function
overflows.

5.4.2 Non-Newtonian fluids

5.4.2.1 Slip-stick

The simplified PTT model was selected for testing the slip-stick prob-
lem in a straight channel (cf. Fig. 5.9) using orthogonal and skewed
meshes and the linear and nonlinear slip laws. This flow comprises
two regions: the initial part (region I) is unbounded (the upper bound-
ary imposed as a symmetry plane) and the second region (region II)
has a solid wall. A symmetry plane was considered at the bottom
boundary in both regions. The inlet velocity is a plug profile and the
mesh used has the properties indicated in Table 5.3 and Fig. 5.9. The
meshes (orthogonal and non-orthogonal) are those of (Oliveira et al.,
1998) and correspond to their mesh 7, with a skewness of 30º for the
non-orthogonal grid.

Table 5.3: Slip constants used in the simulation of the slip-stick flow for the
different slip models.

linear Navier
nonlinear Navier

Hatzikiriakos
Asymptotic

{ } ( ) 1E [ . ].1.0 - , 1;2;3;4;5;6l m Pa sk a a −= ∈
{ } ( ) 1E [ . ].1.0 -5; 1.0nl m Pa sk −∈

1
1 [ ]1.0A Pak −= { } 1

2 E [ ]1.0 -5; 1.0A Pak −∈
1

1 1.0[ . ]Hk m s−= { } 1
2 E1.0 -5; 1.0 [ . ]Hk m s−∈

Tests were made for different values of the slip coefficients (see
Table 3), at constant Reynolds number Re = ρUH/η = 20 and a
varying Deborah number De = λU/H ∈ {0.25; 0.5; 1.0; 2.0} with
ε = 0.25. Convergence could be achieved for all cases when the mesh
was orthogonal and all the slip laws whereas for the skewed mesh
convergence was only possible for a Deborah number of up to 2. As
expected an easier convergence could be seen for high slip velocities
(high slip coefficients), because the slip velocity numerically smoothes
the singularity at the wall.

In Figure 5.10 one can see the variation (with slip) of the flow
variables u, τxx, τxy, τyy along the line y/H = 0.9975 (near the wall).
As expected, near the singularity the variation of all variables tend
to smooth with the slip coefficient and this is especially clear with
the stresses that develop due to the extensional nature of the flow
in the vicinity of the singularity. As the fluid moves away from the
singularity, the stresses start to redevelop for shear flow. Increasing the
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Figure 5.9: Schematic representation of the slip-stick geometry.

slip coefficient, the slip velocity increases and the shear rate tends to
zero. This reduces the transverse transfer of momentum by molecular
diffusion and flow redevelopment is slowed down. This can be seen
especially for the case of τxx with kl = 1E− 4 [m.(Pa.s)−1] (Fig. 5.10 (b)).
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Figure 5.10: Variation of: (a) u, (b) τxx, (c) τxyand (d) τyyalong the slip-stick
region near the wall y/H = 0.9975. Four different slip constants
were used kl ∈ {1E− 6, 1E− 5, 1E− 4, 1E− 3}and De = 2,
Re = 20 .

5.4.2.2 Contraction flow
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Figure 5.11: Schematic of the 4:1 contraction geometry.
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The second benchmark flow problem tested for viscoelastic fluids
(under the influence of slip) was the planar 4:1 contraction flow.

The geometry for this problem is given in Fig.5.11 and was divided
into five blocks (Table 5.4) with only half of the channel being consid-
ered because of symmetry. Based on (Oliveira et al., 1998), (Alves et al.,
2003b) and (Ferrás et al., 2012a) we built three different meshes with
consistent mesh refinement between consecutive meshes (MC1, MC2

and MC3 as in Table 5.4). The notation nx and ny is used to represent
the number of cells in the x and y directions, respectively, fx and fy

are the corresponding contraction/expansion ratios that allow the con-
centration of cells in zones were high gradients are expected to occur.
The most refined mesh (MC3) has almost two hundred thousand cells.

The simulations were performed for the sPTT model with a constant
Reynolds number Re = ρU2H2/η = 0.04 and a varying Deborah
number De = λU2/H2 ∈ {0; 1; 2; 3; 4; 5} with ε = 0.25 and viscosity
ratio β = ηs

η0
= ηs

ηs+ηp
= 1

9 .

Table 5.4: Mesh properties for the 4:1 contraction geometry.�� �� �� �����	 
� 
� �� �� 
� 
� �� �� 
� 
� �� �� 
� 
� �� ��� ���� ����� �� � ���� ���� �� � ������ ������ �� � ������ ������ ��� �� ���� ����� �� �� ���� ������ �� �� ������ ������ �� � ������ ����� ��� �� ���� ����� �� � ���� ����� �� � ������ ������ �� �� ������ ����� ��� ��� ������ ����� � � ������ ���� � � ������ ������ � � ���� ������ �� �� �� ����� � � �� ���� �� � �� ������ �� � �� ������ � �
nº cells ��� nº cells ���� nº cells ����� nº cells ��������� ��� ���� �� ���� �� ���� ��

The method that was tested was the SSSI because of its good results
in the previous geometries and the chosen viscoelastic model was
again the linear PTT model.

For the linear Navier slip law we could obtain convergence only
up to a De number of 5. As expected convergence is reduced with
the mesh refinement. It should be noticed that for the no-slip velocity
boundary condition no restrictions were found in the De number for
this specific geometry and constitutive equation (Alves et al., 2003b).

Based on the results obtained for the linear Navier slip law it is
expectable that the other nonlinear slip laws will again suffer from
poor convergence. Because the Hatzikiriakos slip law is the most
difficult slip law to compute, we also tested the limits on the De
number for the Hatzikiriakos slip law. We could obtain convergence
up to De = 1 with kH1 = 1 and kH2 = 1E− 4 .

We could also find that the presence of slip velocity leads to an
increase of the vortex size, Fig. 5.12 (see (Ferrás et al., 2012a) for more
details).
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Kl=0 [m(Pa.s)-1] Kl=1 [m(Pa.s)-1]

Figure 5.12: Vortex size for the 4:1 contraction flow of a PTT fluid for two
different slip coefficients kl = 0 and kl = 1.

5.5 conclusions

Several new explicit, implicit and semi-implicit numerical techniques
were developed to implement slip boundary conditions into a finite
volume method based code. These implementations are “stable” for
the linear and nonlinear Navier, and asymptotic slip laws. However
the Hatzikiriakos slip model leads to unstable behavior for high slip
coefficients leading to divergence of the code. Some ad hoc procedures
were presented to attenuate this divergence, but these never solve
completely the problem which is rooted on the sinh function and the
corresponding computer overflow it creates. The predictions given by
the numerical code were compared with the analytical solutions and
excellent agreements were obtained for Newtonian fluids. Finally the
implementations were tested with viscoelastic fluids in the slip-stick
and benchmark planar 4:1 contraction flow, evidencing the robustness
of the proposed numerical procedures.
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appendix a : discretization of the momentum equation for

a simple 2d geometry

The continuity and momentum equations can be written in Cartesian
coordinates as Eqs. 5.32 and 5.33, respectively,

∂u
∂x

+
∂u
∂y

= 0 (5.32)

∂(ρφ)
∂t + ∂(uφ)

∂x + ∂(vφ)
∂y = − ∂p

∂Ψ+

∂
∂x

(
ηs

∂φ
∂x + τΨx

)
+ ∂

∂y

(
ηs

∂φ
∂y + τΨy

) (5.33)
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where φ = u , Ψ = x in the x-momentum equation, and φ = v
, Ψ = y in the y- momentum equation. The discretization of the
continuity equation in a computational cell P (Fig. 5.2) results in the
balance of mass fluxes for this cell. These fluxes are normal to the cell
faces, therefore, the slip boundary condition has no direct influence
on this equation (since the walls are impermeable). The momentum
equation is directly affected by the slip boundary condition, for that
reason its discretization is briefly explained below. The interested
reader should consult (Patankar, 1980; Oliveira et al., 1998) for more
details.

In the momentum equarion (Eq. 5.33), the discretization of the tran-
sient, convective and pressure gradient terms is not directly affected by
the implementation of slip velocity, but the diffusive term is affected,
as explained next.

The discretization of the transient term using a first order scheme is
given by Eq. ??. The variable φ is evaluated at the center of the cell P,
meaning that this term is not directly affected by the slip velocity (the
superscript “0” indicates the previous time step and compass notation
is used, i.e. e stands for “east”, w for “west”, n for “north” and s for
“south” cell faces).

∫ e
w

∫ n
s

∫ t1
t0

∂(ρφ)
∂t dtdxdy =

∫ e
w

∫ n
s (ρφ)− (ρφ)0 dxdy ≈

≈
[
(ρφ)P − (ρφ)0

P

]
∆VP

(5.34)

For the fully implicit method in time used here all other terms are
evaluated at the present time step.

Discretization of the convective terms results in Eq. 5.35 for the x
and y momentum equations. Although the variable of interest φn (cf.
Fig.1) appears in Eq. 5.35, for impermeable walls this wall-normal
convective term has no contribution from the slip boundary condition
(Fn = ∆yρv = 0 ).

∫ e
w

∫ n
s

∫ t1
t0

∂(uφ)
∂x + ∂(vφ)

∂y dtdxdy ≈ (Feφe − Fwφw)∆t+

+ (Fnφn − Fsφs)∆t
(5.35)

The discretization of the diffusive term for the PTT fluid together
with the assumption of Eq. 5.14 leads to the following expression to
be incorporated the x and y momentum equations,[(

µ(γ̇) ∂φ
∂y

)
n≡wall

−
(

ηs
∂φ
∂y + τΨy

)
s

]
∆x∆t+

+
[(

ηs
∂φ
∂x + τΨx

)
e
−
(

ηs
∂φ
∂y + τΨx

)
w

]
∆x∆t

(5.36)

Notice that the terms for the north cell face (...)n at Eq. 5.36 came
from Eq. 5.14 (the north cell face is a boundary face). The slip velocity



5.5 conclusions 119

is then carried via
(

∂φ
∂y

)
n≡wall

. Different one-sided approximations to the
derivatives can be used, such as the first order scheme of Eq. 5.37,
or the second order accurate scheme of Eq. 5.38 . Assuming uniform
meshes the first order approximation is given by,(

∂φ

∂y

)
wall

=
φwall − φP

∆y f
+ O(4y) (5.37)

(
∂φ

∂y

)
wall

=
8φwall − 9φP + φS

6∆y f
+ O(4y)2 (5.38)

Assuming square computationall cells and the use of central dif-
ferences to discretize all diffusion-related derivatives (except at the
boundaries) the first term in Eq. 5.36 becomes Eqs. 5.39 and 5.40 for
the first and second order approximations, respectively,

[
µ(γ̇)wall

∆y f
φn +

(ηs)s
∆y

φS −
(

µ(γ̇)wall

∆y f
+

(ηs)s
∆y

)
φP +

(
τΨy
)

s

]
∆x∆t

(5.39)[
8µ(γ̇)wall

6∆y f
φn +

(
µ(γ̇)wall

6∆y f
+

(ηs)s
∆y

)
φS

]
∆x∆t+[

−
(

9µ(γ̇)wall
∆y f

+
(ηs)s
∆y

)
φP +

(
τΨy
)

s

]
∆x∆t

(5.40)

After grouping all the terms, the discretized momentum equation
is rewritten in the standard compact form, (where we have now sub-
stituted the general variable φ by the specific variable u, since we are
analyzing the x - momentum equation),

aPuP = aEuE + aWuW + aSuS + aNuN +
∆VP (ρφ)0

P

∆t
+

δp
δΨ

+ Sstress︸ ︷︷ ︸
source terms

(5.41)

where δp
δΨ represents a general discretization of the pressure gradient

and aE, aS, aWare given by Eqs. 5.42, 5.43 and 5.44 respectively,

aE = ac
E + ad

E = ac
E +

(ηs)e ∆y
∆x

( f irst and second order) (5.42)

aS = ac
S + ad

S =

 ac
S +

(ηs)s∆x
∆y ( f irst order)

ac
S +

(
µ(γ̇)wall

6∆y f
+

(ηs)s
∆y

)
∆x (second order)

(5.43)

aW = ac
W + ad

W = ac
W +

(ηs)w ∆y
∆x

( f irst and second order) (5.44)



120 implementation of slip bc in the fvm : new techniques

with the superscripts c and d referring to the convective and dif-
fusive contributions, respectively. To account for the slip boundary
condition, which affects aNuN, the coefficient aN is given by Eqs. 5.45

and 5.46 for first and second order accurate discretization schemes,
respectively,

aN =
µ(γ̇)wall∆x

∆y f
(5.45)

aN =
8µ(γ̇)wall∆x

6∆y f
(5.46)

Finally the central coefficient aP is given as in the standard procedure
by,

aP = aE + aW + aS + aN + α
(ηs)n ∆x

6∆y
+

∆VPρ0
P

∆t
(5.47)

with α = 0 and α = 1 for the first and second order approximations,
respectively.

appendix b : second order discretization of the linear navier

slip law

The implicit calculation of the second order accurate linear Navier slip
law is given by Eq. 5.48,

ui
ws =

9klµ(γ̇)wall

6∆y f + 8klµ(γ̇)wall
ui

P −
klµ(γ̇)wall

6∆y f + 8klµ(γ̇)wall
ui

S (5.48)

with the restrictions of Eq. 5.49,

 ui
P < klµ(γ̇)wall

klµ(γ̇)wall−6∆y f
ui

S i f klµ(γ̇)wall − 6∆y f > 0

ui
P > klµ(γ̇)wall

klµ(γ̇)wall−6∆y f
ui

S i f klµ(γ̇)wall − 6∆y f < 0
(5.49)

which are imposed by the need to ensure that ui
ws < ui

P. Under
these conditions the momentum equation for the control volume P is

aPuP = aEuE + aWuW + aSuS +
∆VP (ρφ)0

P

∆t
+

δp
δΨ

+ Sstress︸ ︷︷ ︸
source terms

(5.50)

with aS given by,

aS = ac
S +

(ηs)s ∆x
∆y

− klµ(γ̇)wall

8klµ(γ̇)wall + 6∆y f
ui

S (5.51)

and aP by,
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aP = aE + aW + aS + aN −
8klµ(γ̇)wall

8klµ(γ̇)wall + 6∆y f
+

∆VPρ0
P

∆t
(5.52)

Eq. 5.51 shows that aS can become negative therefore violating the
requirement for positive coefficients (Patankar, 1980) needed to obtain
physically realistic solutions, and this is an important limitation. The
condition for positive values of aS cannot be given because it depends
on several physical parameters that we do not control.

appendix c : existence and uniqueness of the discretized

slip velocity

Hatzikiriakos slip law:

We postulate that:
(1) The relationship between ui

ws and ui−1
P must be

ui
ws = kH1 sinh

(
kH2µ(γ̇)

∆y f

(
ui−1

P − ui
ws

))
(5.53)

with ui
ws < ui−1

P (the physics of the problem requires the slip velocity
to be smaller than the velocity at center of the adjacent computational
cell), and that ui

ws and ui−1
P are both positive or both negative.

Let us assume, without loss of generality, that they are both positive.
It must be proved that

∃
(
ui

ws
)1 : ui

ws = kH1 sinh
(

kH2µ(γ̇)
∆y f

(
ui−1

P − ui
ws

))
∧0 ≤ ui

ws ≤ ui−1
P , ∀kH1, kH2, µ(γ̇), ui−1

P ∈ R+
0

(5.54)

Proof: (existence) Because 0 ≤ ui
ws ≤ ui−1

P , then, ∃δ ∈ R : 0 ≤ δ ≤
ui−1

P in such a way that ui
ws can be written like ui

ws = ui−1
P − δ. The

problem can now be stated as,

∃ (δ)1 : δ + kH1 sinh
(

kH2µ(γ̇)
∆y f

δ
)
− ui−1

P = 0

∧0 ≤ δ ≤ ui−1
P , ∀kH1, kH2, µ(γ̇), ui−1

P ∈ R+
0

(5.55)

Let f (δ) = δ + kH1 sinh
(

kH2µ(γ̇)
∆y f

δ
)
− ui−1

P , because f (ui−1
P ) f (0) < 0

and f () is a real-valued continuous function on the interval
[
0; ui−1

P

]
,

the intermediate value theorem implies that ∃δ : f (δ) = 0.
(uniqueness) Rolle theorem states that for a continuous function in

some interval [a; b], f : [a; b] → R, between two zeros (say x and y)
that belong to that interval, there exists a value ξ ∈ ]x; y[ : f ′(ξ) = 0 (if
f ′(ξ) 6= 0 there could exist at most one zero). Since f ′(δ) 6= 0 ∀δ ∈ R,
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f ′ (δ) = 1 + kH1cosh
(

kH2µ(γ̇)

∆y f
δ

)
kH2µ(γ̇)

∆y f
> 0 (5.56)

Rolle theorem implies that δ is unique. It is now proved the existence
and uniqueness of ui

ws.
More can be said about the bottom bound of ui

ws. Since:
sinh

(
kH2µ(γ̇)

∆y f

(
ui−1

P − ui
ws

))
> kH2µ(γ̇)

∆y f

(
ui−1

P − ui
ws

)
, then,

ui
ws >

kH1kH2µ(γ̇)

kH1kH2µ(γ̇) + ∆y f
ui−1

P (5.57)

and the initial range for the bisection method is given by,[
kH1kH2µ(γ̇)

kH1kH2µ(γ̇) + ∆y f
ui−1

P ; ui−1
P

]
(5.58)

Asymptotic slip law:

As for the Hatzikiriakos slip model, first the intermediate value theo-
rem will be used to prove the existence of the solution, and then, with
the Rolle theorem we will prove its uniqueness.

Consider the function f (ui
ws) given by,

f
(

ui
ws

)
= ui

ws − kA1ln
(

1 +
kA2µ(γ̇)

∆y f

(
ui−1

P − ui
ws

))
(5.59)

Since f (ui−1
P ) f (0) < 0 and f () is a real-valued continuous function

on the interval
[
0; ui−1

P

]
, the intermediate value theorem implies that

∃ui
ws : f (ui

ws) = 0.
Because f ′

(
ui

ws
)
> 0 for ui

ws ∈
[
0; ui−1

P

]
, by Rolle theorem the

solution is unique.
Using the identity ln(x) < x ∀x ∈ R, it can be seen that,

ui
ws <

kA1kA2µ(γ̇) + kA1∆y f

kA1kA2µ(γ̇) + ∆y f
ui−1

P (5.60)

The initial range for the bisection method is then given by,
[
0; ui−1

P

]
i f kA1 > 1[

0; kA1kA2µ(γ̇)+kA1∆y f
kA1kA2µ(γ̇)+∆y f

ui−1
P

]
i f kA1 < 1

(5.61)
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appendix d : implementation of the nonlinear navier slip

law

The discretized form of the nonlinear Navier slip law (Eq. 5.18(a)) can
be linearized assuming that only the slip velocity of the linear part
comes from the actual iteration as,

ui
ws = knl

(
µ(γ̇)i−1

∆y f

)m (
ui−1

P − ui
ws

) (
ui−1

P − ui−1
ws

)m−1

This way we can solve for the slip velocity variable ui
ws, and obtain,

ui
ws =

l
1 + l

ui−1
P with l = knl

(
µ(γ̇)i−1

∆y f

)m (
ui−1

P − ui−1
ws

)m−1
.





6
A NUMERICAL AND THEORETICAL STUDY ON
VISCOELASTIC FLUID SLIP-FLOWS

Abstract1

This work describes a theoretical and numerical study on viscoelastic
fluid slip-flows. The viscoelastic fluid is described by the simplified Phan-
Thien Tanner (sPTT) model, and the governing equations with slip bound-
ary conditions are solved by a finite volume method using a new method to
control the growth of the slip velocity along the iterative process, named the
SIMPLE-slip method. The numerical results were compared with the analyt-
ical solution for a fully-developed slip-flow in planar channel for two non-
linear slip models. Simulations were carried out in a classical benchmark
problem employed in computational rheology, the viscoelastic fluid flow in a
slip-stick geometry, in order to identify the wall slip influence on the bulk ve-
locity and stress developments at the discontinuity region. Tests were made
to investigate the effect of slip on convergence rates and accuracy.

6.1 introduction

Wall slip is a relevant phenomenon in many engineering processes,
especially those involving long molecular chains, as happens, for
example, in polymer processing as demonstrated by a variety of
experiments reported in the literature (Potente et al., 2006; Mitsoulis
et al., 2005). Among others, fluids that exhibit this type of behavior are
the Polyvinyl chloride (PVC), high-density polyethylene, elastomers,
suspensions and food products (Denn, 2001).

Given the hyperbolic nature of the constitutive equations used to
represent the rheological behavior of viscoelastic fluids, and also the
effects of the wall slip, computational simulations of this type of
fluids and flows require the use of robust numerical methods. To
handle these problems, a new method to solve the pressure equa-
tion and to control the growth of the slip velocity along the iterative
process, named the SIMPLE-slip method (Ferrás et al., 2012d), was im-
plemented in a well validated computational rheology code (Oliveira
et al., 1998), and was subsequently used to predict numerically the slip-
stick flow of an sPTT fluid (Phan-Thien and Tanner, 1977; Phan-Thien,
1978) together with the linear and nonlinear Navier slip boundary
conditions (?). The SIMPLE-slip method was used with nonlinear slip
boundary conditions such as the nonlinear Navier (Schowalter, 1988),

1 L.L. Ferrás, A.M. Afonso, J.M. Nóbrega, M.A. Alves, F.T. Pinho (2012), A numerical
and theoretical study on viscoelastic fluid slip-flows, to be submitted to Theoretical
and Computational Fluid Dynamics;
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the (Hatzikiriakos, 1993) and asymptotic slip models, and presented
numerical convergence for higher values of the Weissenberg num-
ber and the slip coefficient, when compared to the classic explicit
implementation of slip (Ferrás et al., 2012d).

In this work, we further extend the use of the SIMPLE-slip method
by implementing the slip models given by (Thompson and Troian,
1997) (TT) and by (Lau and Schowalter, 1986) (LS), we also present a
detailed study of the slip-stick flow under slip. The slip model derived
by (Thompson and Troian, 1997) is controlled by the extent to which
the liquid feels corrugations and allows to relate the degree of slip
to the underlying static properties and dynamic interactions of the
walls and the fluid. The slip model by (Lau and Schowalter, 1986)
was derived by applying the concept of junctions at the wall/polymer
interface and depends on the shear stress and the temperature. The
temperature dependence was assessed with experimental results and
a good agreement was obtained, showing the robustness of this model
(Lau and Schowalter, 1986).

Additionally, in the analytical study we present closed form solu-
tions for the (Lau and Schowalter, 1986) model (under some simplifi-
cations). For the case where an analytical solution was not possible
(for both (Thompson and Troian, 1997) and (Lau and Schowalter, 1986)
models) we prove the existence of a unique solution and provide
the range where the solution lies, thus facilitating the task of finding
semi-analytical solutions.

This introduction is preceded by subsection 2, where the relevant
governing equations are presented. In subsection 3 we explain the
numerical method used to solve and couple the Navier-Stokes equa-
tions together with the nonlinear Navier slip boundary condition and
present a possible linearization for the TT and Ls slip velocity models.
In subsection 4 the results obtained from the simulations of an sPTT
fluid on a slip-stick geometry are studied and finally the paper ends
with the Conclusions in subsection 5. As a secondary result of this
investigation, in Appendix A we derive the full analytical solution for
fully developed slip-flow of polymer solutions described by the sPTT
or FENE-P (Bird et al., 1987) models in planar channel for the TT and
LS non-linear slip models, which is used for validation purposes.

6.2 governing equations

The governing equations for incompressible fluids are the mass con-
servation equation,

∇ · u = 0 (6.1)

and linear momentum equation
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ρ
∂u
∂t

+ ρ∇ · uu = −∇p +∇ · τ (6.2)

where u is the velocity vector, p is the pressure and τ = τs + τp is
the extra stress tensor. The extra stress tensor is divided into solvent
τs = ηs

(
∇u + (∇u)T

)
and polymer, τp, contributions (elastic part

of the stress tensor), the latter given by the following differential con-
stitutive equation, called the simplified Phan-Thien Tanner model
(sPTT) (Phan-Thien and Tanner, 1977; Phan-Thien, 1978):

f
(
trτp

)
τp + λ

(
∂τp
∂t + u · ∇τp −

[
(∇u)T · τp + τp · ∇u

])
=

= ηp

(
∇u + (∇u)T

) (6.3)

where f
(
trτp

)
is a function of the trace of the stress tensor, λ is

the relaxation time and ηp is the zero-shear polymer viscosity. In the
literature, there are two possible functions for f

(
trτp

)
, but only the

original linear function (Phan-Thien and Tanner, 1977) is considered
here,

f (trτ) = 1 +
ελ

ηp
tr
(
τp
)

(6.4)

with ε the parameter related to the elongational behavior of the
fluid.

When considering slip boundary conditions at the wall, the usual
Dirichlet velocity boundary condition u = 0 is substituted by the
nonlinear Navier slip model (Schowalter, 1988)(NNS),

‖uws‖ = knl ‖τw‖m m > 0 (6.5)

where uws is the slip velocity vector (ws stands for wall slip), τw

is the tangent stress vector, knl is the slip coefficient that allows con-
trolling the desired amount of slip for the simulation and m is the
slip exponent that gives the model its nonlinearity (knl and m are both
model parameters).

The (Thompson and Troian, 1997) model is given by,

‖uws‖ = α

(
1− ‖τw‖
‖τw‖c

)−1/2

‖τw‖ (6.6)

where ‖τw‖c is some critical (maximum) tangent stress (its value is
such that 1− ‖τw‖ / ‖τw‖c ≥ 0 is always verified) and α is a model
parameter. Following the notation of (Matthews and Hill, 2007) Eq.
(6.6) can be rewritten as

‖uws‖ = α (1− β ‖τw‖)−1/2 ‖τw‖ (6.7)

with β = ‖τw‖−1
c and α, β > 0.
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The (Lau and Schowalter, 1986) slip velocity model is given by

‖uws‖ = c1 ‖τw‖m
[

1− c2 tanh
(

E− c3 ‖τw‖
RT

)]
(6.8)

where c1, c2 and c3 are empirical constants, E is the activation energy
and T is the temperature.

6.3 analytical solutions

Assuming a fully developed flow and some simplifications in the slip
models, it is possible to present a closed form analytical solution for
the LS slip model.

If m = 1 and
E+c

′
3

(
p
′
x

)
RT � 1 than, tanh

(
E+c

′
3

(
p
′
x

)
RT

)
≈

E+c
′
3

(
p
′
x

)
RT . Un-

der this assumptions, and imposing a flow rate, Q, the solution is
given by (as shown in Appendix A),

u
′
(

y
′
)
= 0.5p

′
x

(
y
′2 − 1

)
+ 0.5εWi2 p

′3
x

(
y
′4 − 1

)
+

c
′
1

(
−p

′
x

)m
[

1− c2 tanh

(
E+c

′
3

(
p
′
x

)
RT

)]
(6.9)

with

p
′
x =

3

√
−P

2
+

√
P2

4
+

Q3

27
+

3

√
−P

2
−
√

P2

4
+

Q3

27
− a1

3
= 0 (6.10)

and

a1 = −
5c
′
1c2c

′
3

(
−p
′
x

)2

2RT

a2 =
− 1

3−c
′
1+

c
′
1c2E
KT

− 2
5 εWi2

a3 =
(

2
5 εWi2 p

′3
x

)−1

P = a3 − a1a2
3 +

2a3
1

27

Q = a2 − a2
1

3

(6.11)

where length, velocity and stresses were scaled with H, U and
ηU/H, respectively, U is the mean streamwise velocity, H is the half
channel width and Wi = λU/H is the Weissenberg number.

For an higher order truncated series expansion:

E+c
′
3

(
p
′
x

)
RT − 1

3

(
E+c

′
3

(
p
′
x

)
RT

)3
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Figure 6.1: Schematic representation of the channel flow geometry.

a closed form solution is still possible because the equation to solve
for p

′
x is quartic,(
− c

′
1c2c

′3
3

3(RT)3

)
p
′4
x +

(
c
′
1c2c

′2
3 E

3(RT)3 − 2
5 εWi2

)
p
′3
x +

(
c
′
1c2c

′
3

RT +
c
′
1c2c

′
3E2

3(RT)3

)
p
′2
x

+

(
− 1

3 − c
′
1 +

c
′
1c2E
RT −

c
′
1c2E3

3(RT)3

)
p
′
x − 1 = 0

(6.12)
and the procedure to solve this type of equations can be found in any
elementary algebra book.

As shown in Appendix A, for the other slip models is still possible
to find semi-analytic solutions.

6.4 numerical method

The in-house code used is a three-dimensional time dependent finite-
volume method (FVM) code developed by (Oliveira et al., 1998),
with improvements described later in (Oliveira and Pinho, 1999c,b)
and (Alves et al., 2001b, 2003a). The FVM code uses collocated non-
orthogonal meshes, central differences for discretization of diffusive
terms, a second order backward implicit time discretization through
the SIMPLEC algorithm (Patankar, 1980) to ensure simultaneously the
momentum balance and mass conservation and the Rhie and Chow
interpolation method (Rhie and Chow, 1983) to couple the pressure
and velocity fields.

The main modifications required to implement the slip boundary
condition coupled with the pressure equation correction (the so-called
SIMPLE-slip method (Ferrás et al., 2012d)) are briefly explained in the
next lines. To illustrate the SIMPLE-slip method implementation, we
assume that the equations are solved in a simple 2D flow between
parallel plates with Cartesian coordinates and orthogonal meshes,
with equal slip at both walls so that symmetry at the channel center
plane can be invoked (cf. Fig 6.1). The slip velocity vector is tangent to
the wall (x-direction) and the tangent stress vector is determined as
τt =

(
I− n⊗ nT) (τnT), where n = (n1, n2) is the normal vector to

the wall and I is the identity matrix. Assuming a Couette flow in the
vicinity of the wall, the tangent stress vector at the upper wall is given
by,
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Figure 6.2: Projection of the velocity vector in the center of the computational
cell into the tangent and normal part (left- Cartesian mesh; right-
non Cartesian mesh).

τt = µ (γ̇)
du
dy

∣∣∣∣
wall

(6.13)

for any constitutive equation. At the boundary, what will distinguish
one constitutive model from the other is only the viscosity function
µ (γ̇)wall which is given by µ(γ̇)wall≡ηs+

ηp
1+(α−1)2/3α

(with α≡(θ+
√

θ2−1)
1/3and

θ≡1+27ε(λγ̇)2
wall ) (Azaiez et al., 1996) for the PTT model. Under these

flow conditions the nonlinear Navier slip model takes the form,

uws = knl

(
−µ(γ̇)

du
dy

)m

wall
. (6.14)

The linear model is recovered for m = 1 in which case knl ≡ kl .
The continuity and momentum equations can be written in Carte-

sian coordinates as Eqs. (6.15) and (6.16), respectively,

∂u
∂x

+
∂u
∂y

= 0 (6.15)

∂(ρφ)
∂t + ∂(uφ)

∂x + ∂(vφ)
∂y = − ∂p

∂Ψ + ∂
∂x

(
ηs

∂φ
∂x + τΨx

)
+

∂
∂y

(
ηs

∂φ
∂y + τΨy

) (6.16)

where φ = u , Ψ = x in the x-momentum equation, and φ = v , Ψ =

y in the y-momentum equation. The discretization of the continuity
equation in a computational cell P (Fig. 6.2) results in the balance
of mass fluxes for this cell. These fluxes are normal to the cell faces,
therefore, the slip boundary condition has no direct influence on
this equation (since the walls are impermeable). On the other hand,
the momentum equation is directly affected by the slip boundary
condition, for that reason its discretization is briefly explained below.
The interested reader should consult (Oliveira and Pinho, 1999c,b) for
further details.

The discretization of the transient, convective and pressure gradient
terms is not directly affected by the implementation of slip velocity,
but the diffusive term is, as explained next. The discretization of the
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diffusive term for the PTT fluid together with the assumption of Eq.
(6.13) leads to the following expression,[(

µ(γ̇) ∂φ
∂y

)
n≡wall

−
(

ηs
∂φ
∂y + τΨy

)
s

]
∆x∆t+[(

ηs
∂φ
∂x + τΨx

)
e
−
(

ηs
∂φ
∂y + τΨx

)
w

]
∆x∆t

(6.17)

where the subscripts n, s, e and w stand for north, south, east and
west faces, respectively.

Notice that the terms for the north cell face (...)n at Eq. (6.17) came
from Eq. (6.13) (the north cell face is a boundary face). The slip ve-
locity is then carried via the term

(
∂φ
∂y

)
n≡wall

. Assuming the one-sided
approximation to the derivatives, such as the first order scheme of Eq.
(6.18), (

∂φ

∂y

)
wall

=
φwall − φP

∆y f
+ O(4y) (6.18)

together with uniform meshes (square computationall cells) and
central differences to discretize all diffusion-related derivatives (except
at the boundaries), Eq. (6.17) becomes,

[
µ(γ̇)wall

∆y f
φn +

(ηs)s
∆y

φS −
(

µ(γ̇)wall

∆y f
+

(ηs)s
∆y

)
φP +

(
τΨy
)

s

]
∆x∆t

(6.19)
After grouping all the terms, the discretized momentum equation

is rewritten in the standard compact form, (where we have now sub-
stituted the general variable φ by the specific variable u, since we are
analyzing the x - momentum equation),

aPuP = aEuE + aWuW + aSuS + aNuN +
∆VP (ρφ)0

P

∆t
+

δp
δΨ

+ Sstress︸ ︷︷ ︸
source terms

(6.20)

where δp
δΨ represents a general discretization of the pressure gradient

and aE, aS, aW are given by Eqs. (6.21), (6.22) and (6.23) respectively,

aE = ac
E + ad

E = ac
E +

(ηs)e ∆y
∆x

(6.21)

aS = ac
S + ad

S = ac
S +

(ηs)s ∆x
∆y

(6.22)

aW = ac
W + ad

W = ac
W +

(ηs)w ∆y
∆x

(6.23)

with the superscripts c and d referring to the convective and dif-
fusive contributions, respectively. To account for the slip boundary
condition, which affects aNuwall, the coefficient aN is given by Eq. (6.24)
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aN =
µ(γ̇)wall∆x

∆y f
(6.24)

Regarding the convective terms, since they are not affected by the
slip velocity, they are handled as in (Oliveira et al., 1998). Finally the
central coefficient aP is given as in the standard procedure (Oliveira
and Pinho, 1999b) by,

aP = aE + aW + aS + aN +
∆VPρ0

P
∆t

(6.25)

Assuming the approximation of Eq. (6.18), let i represent the number
of the outer iteration (iteration between the linearized momentum
equation and the pressure correction equation), then, the discretized
slip boundary condition at iteration i is usually given by,

ui
ws = knl

(
−µ(γ̇)i−1

w
(ui−1

ws −ui−1
P )

δn

)m
(6.26)

At each iteration i the boundary condition is updated with the veloc-
ity from the previous iteration i− 1. In order to achieve convergence
the variation of this boundary condition along the iterative process
must be stable in some sense. Sudden changes in the boundary condi-
tion along the iterative process will not allow the overall convergence.
Due to this inconsistency, non-physical characteristics may appear, and
the process either diverges or converges to an unacceptable solution.
The relationship uws < uP seems to be the key to the convergence of
the process. For the linear Navier slip model, Eq. (6.14) with m = 1,
it was found that if klµ (γ̇)wall /δn ≤ 1 the growth of the slip velocity
relative to the adjacent cell velocity can be controlled and convergence
is achieved, whereas for klµ (γ̇)wall /δn > 1 divergence occurs. There-
fore, this provides the restrictions to the converged solution. Near
the boundaries the mesh is usually more refined giving a smaller
δn, and leading to a larger value of klµ (γ̇)wall /δn, thus facilitating
divergence of the computation. A possible remedy is the classical
use of underelaxation ui

ws = Rui−1
ws + (1− R) ui

ws with R < 1 when
updating the slip velocity in the iterative procedure, but even with
this relaxation the computations are not possible for large values of
the friction coefficient and a better method proposed below is used.

The nonlinear Navier slip model of Eq. (6.14) can be written as in
Eq. (6.27) if the first order approximation to the derivative is used,

uws = knl

(
µ(γ̇)w

δn

)m

(uP − uws) (uP − uws)
m−1 (6.27)

It is assumed that (uP − uws) > 0 which can be guaranteed if in
the first iteration the given slip velocity is smaller than the given
velocity for the control volume P, and all the coefficients (central
and neighbor coefficients ) are positive. To obtain a linear numerical
equation the term (uP − uws)

m−1 is evaluated explicitly with the values
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from the previous iteration
(

ui−1
P − ui−1

ws

)m−1
, and only in the term(

ui−1
P − ui

ws

)
, ui

ws is evaluated in the present iteration together with
the left-hand-side, i.e.,

ui
ws = knl

(
µ(γ̇)i−1

w
δn

)m (
ui−1

P − ui
ws

) (
ui−1

P − ui−1
ws

)m−1
(6.28)

The method is known semi-implicit in the linearized velocity differ-
ence and Eq. (6.28) can be rewritten as,

ui
ws =

a
a + 1

ui−1
P (6.29)

with a = (knlµ (γ̇)wall /δn)m
(

ui−1
P − ui−1

ws

)m−1
. In this way, the slip

velocity is always bounded by up because 0 ≤ a/ (a + 1) < 1.
The other two slip models can also be linearized in a similar way.

For the TT slip model this would be,

ui
ws = αµ

(
δn2 − δnβµ

(
ui−1

P − ui−1
ws

))−1/2 (
ui−1

P − ui
ws

)
(6.30)

This equation can be rewritten as,

ui
ws =

b
b + 1

ui−1
P (6.31)

with βµ
(

ui−1
P − ui−1

ws

)
< δn and b = α

(
δn2 − δnβµ

(
ui−1

P − ui−1
ws

))−1/2
.

During the iterative procedure, specially in the beginning of the
iterations, the difference

(
ui−1

P − ui−1
ws

)
can be substantial and eventu-

ally lead to βµ
(

ui−1
P − ui−1

ws

)
≥ δn, resulting in the divergence of the

computation or in float errors. To avoid this potential problem, the
friction coefficient β at Eq. (6.31) should be replaced by (1− ς) β, with
limi→+∞ς = 0 (i represents the iteration number).

For the LS slip model, the linearization is given by,

ui
ws =

c1µm

δnm

(
ui−1

P − ui
ws

) (
ui−1

P − ui−1
ws

)m−1
.[

1− c2 tanh
(

E− c3µ
δn (ui−1

P −ui−1
ws )

RT

)] (6.32)

which is equivalent to,

ui
ws =

c
c + 1

ui−1
P (6.33)

with c = c1µm

δnm

(
ui−1

P − ui−1
ws

)m−1
[

1− c2 tanh
(

E− c3µ
δn (ui−1

P −ui−1
ws )

RT

)]
.
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The main feature of this method is that the slip velocity is always
smaller than the velocity in the center of the adjacent computational
cell, an indispensable property for convergence. To solve the system
of equations we use the following iterative procedure:

1. Set the boundary conditions, the initial velocity and pressure
fields;

2. Solve the stress equations for the non-Newtonian model;

3. Compute the slip velocity with the discretized slip model, Eqs.
6.29, 6.31 or 6.33;

4. Solve the linearized momentum equation;

5. Solve the pressure correction equation;

6. Correct velocity and pressure;

7. Check for convergence in the residuals of the system of equa-
tions;

8. If convergence is not achieved proceed to step 2.

This method of implementing slip boundary conditions can be
generalized for any slip velocity function, provided we can express
the slip velocity as a function of the wall tangent stress. Assuming
a one-dimensional flow, the slip velocity uws can be written as a
function of the difference up − uws, i.e. uws = ± f

(
up − uws

)
, where

the ± depends on the direction of the slip velocity and up is the
velocity at the computational cell adjacent to the wall. This function
can be multiplied by

(
ui−1

p − ui
ws

)
/
∣∣∣ui−1

p − ui−1
ws

∣∣∣ and solved in a semi-
implicit manner. In the iterative procedure only the slip velocity in
the numerator comes from the actual iteration, so the general slip
boundary condition is given by,

ui
ws =

 f
(

ui−1
p − ui−1

ws

)
∣∣∣ui−1

p − ui−1
ws

∣∣∣+ f
(

ui−1
p − ui−1

ws

)
 ui−1

P (6.34)

For the three slip boundary conditions studied here, the function
f
(

ui−1
p − ui−1

ws

)
is given by,

f
(

ui−1
p − ui−1

ws

)
= uws = k

(
µ(γ̇)w

δn

)m (
ui−1

p − ui−1
ws

)
(6.35)

for the NNS model,

f
(

ui−1
p − ui−1

ws

)
= α

(
1− βµ

δn

(
ui−1

p − ui−1
ws

))−1/2 µ

δn

(
ui−1

p − ui−1
ws

)
(6.36)
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Figure 6.3: Comparison between semi-analytical solutions and the simulated
results obtained for a Poiseuille flow, under the influence of three
different slip boundary conditions, LS, TT, NLN.

for the TT slip model, and

f
(

ui−1
p − ui−1

ws

)
= c1µm

δnm

(
ui−1

p − ui−1
ws

)m
.[

1− c2 tanh
(

E
KT −

c3µ
δn RT

(
ui−1

p − ui−1
ws

))] (6.37)

for the LS slip velocity model.
Providing that the mesh is orthogonal, a semi-implicit method to

calculate the slip boundary condition could also be used, as described
in Appendix B.

6.5 results and discussion

6.5.1 Code Verification

To validate the implementation of the non-linear slip models, we com-
pared the analytical and semi-analytical solutions for a fully developed
flow (see Appendix A), with the simulation results obtained for the
Poiseuille flow between parallel plates (cf. Fig. 6.1). We expect the flow
to be fully developed in the center region of the channel where the
influence of the inlet and outlet boundary conditions is weaker.

The simulations were performed for the sPTT model with Wi = 1
and ε = 0.25, and the slip coefficients used were k

′
nl = 2.53 and m =

1.5 for the non-linear Navier slip model, α
′
= 0.4 and β

′
= 4.0x10−4

for the LS slip model, and, c
′
1 = 0.24, c2 = 0.59x10−6, c

′
3 = 0.024,

RT = 3.43x103 J and E = 5.0x103 J for the TT slip model. In Fig. 6.3 we
show a good agreement between the analytical and numerical results
for the three non-linear slip models, showing that the implementation
of this models is in agreement with the theoretical results.

To evaluate the influence of the slip velocity in the flow dynamics of
viscoelastic fluids flowing in a geometry that possesses a singularity
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Table 6.1: Mesh characteristics for the slip-stick geometry.

point, we performed additional simulation carried out in a classical
benchmark problem in computational rheology, the viscoelastic fluid
flow in a slip-stick geometry. In the sake of compactness, only the
nonlinear Navier slip boundary condition was used as shown in the
next section.

6.5.2 Elasticity Effects

Simulations were carried out (for the nonlinear Navier slip model)
in a classical benchmark problem in computational rheology, the
viscoelastic fluid flow in a slip-stick geometry, illustrated in Fig. 6.4.
The computational domain has the following two regions: the inlet
region I, bounded by two symmetry lines, and the downstream region
II, bounded by a solid wall, the outlet and a symmetry line. The
variable U stands for the imposed mean velocity and three meshes
were created with its properties described in Table 6.1.

The finer mesh (M3) employed is practically the same as the refined
mesh used by Oliveira et al. (1998), for which the results were shown
to be mesh independent. In Table 6.1 f x and f y stand for the ratio of
two consecutive cells while nx and ny stand for the number of cells in
the x and y directions, respectively. A zoomed view of our finer mesh
can be seen in Fig 6.5.

The simulations were performed for a constant Reynolds number
Re = ρUH/µ = 20 and a varying Weissenberg number Wi = λU/H ∈
{0.25, 0.5, 1.0, 2.0} . For the linear slip model, implemented via Eq.
(6.14), convergence could be achieved for all the established Weis-
senberg numbers. As expected an easier convergence was obtained for
high slip velocities (high friction coefficients). This happens because
the slip velocity numerically smooths the singularity. For the nonlinear
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Figure 6.5: Detailed view of mesh M3 near the singularity point.

(a)

(b)

knl =0.0025

knl =2500�

�

Figure 6.6: Representation of linear slip velocity streamlines for (a) k
′
nl =

0.0025 , (b) k
′
nl = 2500 , with Re = 20, Wi = 2 for the sPTT model.

model the results were qualitatively very similar to the ones obtained
with the linear slip except that convergence was more difficult, not
because of the singularity but due to the the method used..

In order to quantify the effect of slip velocity on the flow, the
streamlines for two different values of the friction coefficient were
plotted in Fig. 6.6. For the case k

′
nl = knl

(
ηs + ηp

)
/H = 0.0025 (almost

no slip velocity) curved streamlines appear in the slip-friction passage
because of the fluid viscosity and the restriction promoted by the wall
(Fig. 6.6(a)). The streamlines for the slip coefficient k

′
nl = 2500 are

almost horizontal because for this case a plug flow is obtained. The
curved streamlines tend to disappear (Fig. 6.6(b)).

The stress distribution was also studied, together with the charac-
terization of the flow type parameter, ξ, defined as (Lee et al., 2007):

ξ =
|D| − |Ω|
|D|+ |Ω| (6.38)

where |D| and |Ω| represent the magnitudes of the rate of deformation
and vorticity tensors, respectively, given by,

D =
1
2

[
∇u + (∇u)T

]
, Ω =

1
2

[
∇u− (∇u)T

]
, (6.39)
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which can be calculated as

|D| =

√
1
2
(D : DT) =

√
1
2 ∑

i
∑

j
D2

ij (6.40)

|Ω| =

√
1
2

(
Ω : ΩT

)
=

√
1
2 ∑

i
∑

j
Ω2

ij.

The flow type parameter varies from −1, which corresponds to
solid-like rotation, up to 1, for pure extensional flow. Pure shear flow
is characterized by ξ = 0. In Fig. 6.7 are shown the contour plots
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Figure 6.7: Representation of contour lines (τxx) superimposed with the flow
type ξ contours for the linear slip model: (a) k

′
nl = 0.0025 , (b)

k
′
nl = 2.5, (c) k

′
nl = 2500 . Re = 20 and Wi = 2.

for the τxx component and flow type parameter, ξ, for three different
slip coefficients, whereas Figs. 6.8 and 6.9 show the corresponding
contour plots for τxy and τyy . For lower slip coefficients, the region
of shear-dominant flow is concentrated near the channel wall, while
the extension-dominant flow appears near the stagnation point. In-
creasing the slip coefficients, the shear-dominated flow increases also
in the vicinity of the stagnation point, and eventually, for higher slip
coefficients, the extension-dominant flow appears is limited to the
thinner region near the walls. The τxx component changes drastically
with the increase of slip. Notice that for the Newtonian case this stress
component is compressive (negative) in the region of fluid near the
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Figure 6.8: Representation of contour lines
(
τxy
)

superimposed with the flow
type ξ contours for the linear slip model: (a) k

′
nl = 0.0025 , (b)

k
′
nl = 2.5, (c) k

′
nl = 2500 . Re = 20 and Wi = 2.

wall, as explained by (Oliveira et al., 1998). For this non-Newtonian
fluid, in the presence of low slip velocity (Fig. 6.7(a)), this stress com-
ponent becomes positive (traction), but on increasing the slip velocity
it becomes negative as happens for Newtonian fluids (Figure 6.7 (c)).
For the τxy component on increasing the slip coefficient the negative
stress values decrease in magnitude in the wall region, as shown in
Fig. 6.8 (c). This happens because the flow tends to a plug, which
corresponds to a null tangent stress as the slip velocity increases (cf.
Figs. 6.8(b) and 6.8(c)).

For the contour plots of τyy , plotted in Fig.6.9, the qualitative
behavior is essentially the same on increasing the slip velocity but a
reduction in magnitude is visible again associated to the progression
towards a plug velocity profile, for which there is no shear.

6.6 conclusions

In this work the numerical implementation of the slip boundary con-
dition in a flow modeling code, based on the Finite Volume Method,
was described. The code was then employed to study the effect of
the nonlinear Navier, the (Thompson and Troian, 1997) and (Lau and
Schowalter, 1986) slip models on the stick-slip flow.
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(
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k
′
nl = 2.5, (c) k

′
nl = 2500 . Re = 20 and Wi = 2.

As expected, a lower number of iterations was necessary to obtain
converged solutions when using higher slip velocities (high friction
coefficients), because the slip velocity smooths the flow at the singu-
larity. Identically, by using wall slip, converged solutions are obtained
up to higher values of the Weissenberg number than in the absence
of slip. However, the use of slip velocity as a method to improve the
numerical stability of fluid computations is still under investigation.
Regarding the fluid stresses, for the studied stick-slip problem, we
found that increasing the slip velocity smoothes the stress profiles and
increases the relaxation length.
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appendix a : analytical solutions for the sptt and fene-
p viscoelastic models

Considering a 2D Cartesian coordinate system x, y and a fully devel-
oped Poiseuille flow (see Fig. 6.1), the governing equations can be
simplified because,

∂/∂x = 0 (except for pressure) , ∂v/∂y = 0, ∂p/∂y = 0 (6.41)

This leads to the following simplification in the momentum equa-
tion,

τxy = pxy (6.42)

where px stands for the pressure gradient in the x direction and τxy is
the shear stress.

The system of rheological constitutive equations for the simplified
PTT model can be simplified and is given by,

f
(
τxx + τyy

)
τxx = 2λτxy (∂u/∂y) (a)

f
(
τxx + τyy

)
τyy = 0 (b)

f
(
τxx + τyy

)
τxy = η (∂u/∂y) + λτyy (∂u/∂y) (c)

(6.43)

From Eq. (6.43)(b) one can see that f
(
τxx + τyy

)
= 0 ∨ τyy = 0. If

f
(
τxx + τyy

)
= 0 unrealistic results would be obtained, hence τyy = 0.

Dividing Eq. (6.43)(a) by Eq. (6.43)(c), the former becomes τxx =

2λ/η
(
τxy
)2. If Eqs. (6.43)(a), (b), (c) are combined with the momentum

equation, the following system is obtained,

τ
′
xy = p

′
xy
′

(a)

τ
′
xx = 2Wi

(
p
′
xy
′
)2

(b)

τ
′
yy = 0 (c)(

∂u
′
/∂y

′
)
= p

′
xy
′
+ 2εWi2

(
p
′
xy
′
)3

(d)

(6.44)

with length, velocity and stresses scaled with H, U and ηU/H, respec-
tively, U is the mean streamwise velocity, H is the half channel width
(see Fig. 6.1) and Wi = λU/H is the Weissenberg number.

If we assume that the tangent stress vector is given by Eq. (6.13)
than the boundary conditions are written in a dimensionless form as:

u
′
ws (±1) = k

′
nl

(
−p

′
x

)m
(6.45)

u
′
ws (±1) =

−α
′
p
′
x√

1 + β′ p′x
(6.46)
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u
′
ws (±1) = c

′
1

(
−p

′
x

)m

1− c2 tanh

E + c
′
3

(
p
′
x

)
RT

 (6.47)

for the nonlinear Navier, the TT and LS slip models, respectively, and
k
′
nl = kUm−1 (η/H)m, α

′
= α (η/H), β

′
= β (ηU/H), c

′
1 = c1Um−1,

c
′
3 = c3 (ηU/H).

Integrating Eq. (6.44)(d) gives,

u
′
(

y
′
)
= 0.5p

′
xy
′2 + 0.5εWi2 p

′3
x y
′4 + d, d ∈ R (6.48)

where we have two unknowns, the pressure gradient, p
′
x, and the

integration constant d. To find d we can make use of the slip boundary
condition u

′
ws (±1) given by Eqs. (??), (6.46) and (6.47). Therefore, the

solution for the direct problem is given by,

u
′
(

y
′
)
= 0.5p

′
x

(
y
′2 − 1

)
+ 0.5εWi2 p

′3
x

(
y
′4 − 1

)
+ u

′
ws (1) (6.49)

By applying a constant flow rate Q = 2UH and integrating Eq.
(6.49) over half the channel width,∫ 1

0
u
′
(

y
′
)

dy
′
= 1 (6.50)

the following equation is obtained,

(−2/5) εWi2 p
′3
x − (1/3) p

′
x − 1 + u

′
ws (1) = 0 (6.51)

The strong nonlinearity of Eq. (6.51), mainly due to the u
′
ws (1) term,

makes difficult the work of finding closed form solutions for this
equation.

For the nonlinear Navier slip model, these solutions were already
reported in the literature and can be found in the work of ?. For the
other two slip models one can only prove the existence and uniqueness
of a solution and provide the range where the solution lies (for the LS
slip model an approximate particular solution can still be devised), this
way is easy to find the solution using a method to solve transcendent
equations.

TT slip model

Let f
(

p
′
x

)
= (−2/5) εWi2 p

′3
x − (1/3) p

′
x − 1− α

′
p
′
x√

1+β
′ p′x

then,
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d f
(

p
′
x

)
dp′x

= −6
5 εWi2 p

′2
x − 1

3 −
α
′√

1+β
′ p′x

1+β
′ p′x

+

αβp
′
x

2(1+β
′ p′x)
√

1+β
′ p′x

< 0
(6.52)

Since f (0) = −1 < 0 and f (−3) > 0 (β
′
> 1/3), the intermediate

value theorem together with Rolle theorem guarantees the existence
of a unique solution in the range [−3, 0].

LS slip model

Let g
(

p
′
x

)
=(−2/5)εWi2 p

′3
x −(1/3)p

′
x−1+c

′
1

(
−p
′
x

)m
[

1−c2 tanh

(
E+c
′
3(p
′
x)

RT

)]
then,

dg
(

p
′
x

)
dp′x

= −6
5 εWi2 p

′2
x − 1

3 −mc
′
1

(
−p

′
x

)m−1
[

1− c2 tanh

(
E+c

′
3

(
p
′
x

)
RT

)]
−

c
′
1c2c

′
3

(
−p
′
x

)m

RT cosh2 < 0
(6.53)

Since g (0) = −1 and g (−3) > 0, the intermediate value theorem
together with Rolle theorem, guarantees again the existence of a
unique solution in the range [−3, 0].

For small values of the tanh argument,
E+c

′
3

(
p
′
x

)
RT � 1, we can ap-

proximate tanh

(
E+c

′
3

(
p
′
x

)
RT

)
by:

E+c
′
3

(
p
′
x

)
RT (linear), and,

E+c
′
3

(
p
′
x

)
RT − 1

3

(
E+c

′
3

(
p
′
x

)
RT

)3

(truncated series expansion).

With these approximations, and assuming m = 1 in Eq. (6.51), the
following equation is obtained

− 2
5

εWi2 p
′3
x +

c
′
1c2c

′
3

RT
p
′2
x +

(
−1

3
− c

′
1 +

c
′
1c2E
RT

)
p
′
x − 1 = 0 (6.54)

This equation can be written in a more compact form as,

p
′3
x + a1 p

′2
x + a2 p

′
x + a3 = 0 (6.55)

and its solution is given by the Cardano-Tartaglia formula,

p
′
x =

3

√
−P

2
+

√
P2

4
+

Q3

27
+

3

√
−P

2
−
√

P2

4
+

Q3

27
− a1

3
= 0 (6.56)
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with

a1 = −
5c
′
1c2c

′
3

(
−p
′
x

)2

2RT

a2 =
− 1

3−c
′
1+

c
′
1c2E
KT

− 2
5 εWi2

a3 =
(

2
5 εWi2 p

′3
x

)−1

P = a3 − a1a2
3 +

2a3
1

27

Q = a2 − a2
1

3

(6.57)

The second viscoelastic model used in this work is the FENE-P
equation, based on the kinetic theory for finitely extensible dumbbells
with a Peterlin approximation for the average spring force. In this case
the polymer extra-stress is given b

Z
(
trτp

)
τp + λ

(
∂τp
∂t + u · ∇τp −

[
(∇u)T · τp + τp · ∇u

])
=

= λ
(

τ − b
b+2 nkTI

)
D ln Z

DZ + ηp

(
b+5
b+2

) (
∇u + (∇u)T

)
(6.58)

where I is the identity tensor, b is a parameter that measures the
extensibility of the dumbbell, kB is the Boltzmann constant, T is the
absolute temperature and n is a parameter of the model (Bird et al.,
1987). The stress coefficient function, Z(økk), can be expressed by

Z(τkk) = 1 + 3
(

1
b + 2

+
λ

3η

τkk

(b + 5)

)
(6.59)

Note that for fully-developed flows D ln Z/Dt ≈ 0 and equation (6.58)
becomes considerably simplified. Since that for steady fully developed
channel flow, the sPTT and the FENE-P models exhibit similar behav-
ior, as found by (Oliveira, 2002), then there is an exact equivalence
between the sPTT and the FENE-P models in the sense of a parameter
to parameter match, as explained in detail in Cruz et al. (Cruz et al.,
2005), with the following change of variables,

Z(τxx) →
(

b + 5
b + 2

)
f (τxx)

λ → λ

(
b + 2
b + 5

)
(6.60)

ε → ε

b + 5
ηp → ηp

Then, providing these substitutions are made, the results of this
Appendix remain valid for the FENE-P fluid.
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appendix b : analytical solutions for the sptt and fene-
p models with nonlinear slip boundary conditions

The slip boundary conditions could be implement assuming that an
implicit slip velocity on both sides of the equation for each of the wall
boundary cells at each iteration i,

ui
ws = αµ

(
δn2 − δnβµ

(
ui−1

P − ui
ws

))−1/2 (
ui−1

P − ui
ws

)
(6.61)

ui
ws =

c1µm

δnm

(
ui−1

P − ui
ws

)m
[

1− c2 tanh
(

E
KT
− c3µ

δn RT

(
ui−1

p − ui
ws

))]
(6.62)

and then use a numerical method to find the solution of these
transcendent equations (Eq. (6.61) for the TT and Eq. (6.62) for the LS
slip models).

The iterative procedure is very similar to the one presented in
Section 3, except that step 3 is now: “3.Compute the slip velocity by
solving the transcendent equation for the boundary (Eq. (6.61) for the
TT model and Eq. (6.62) for the LS model);”.

The bisection method was the selected algorithm to find the roots
of these equations. In the overall numerical procedure for each wall
boundary cell and each iteration i the solution is chosen after n iter-
ations (bisection method iterations) such that (b− a) /2n is below a
given error ([a; b] are the initial bounds for the solution ui

ws).
It can be proved analytically (for these two slip boundary conditions)

that a unique solution, ui
ws, exists , and that this solution verifies the

condition ui
ws < ui−1

P .
Proof of existence of a unique solution for the LS model:
First, the intermediate value theorem will be used to prove the

existence of the solution, and then, with the Rolle theorem we will
prove its uniqueness.

We want to prove that :

∃
(
ui

ws
)1 : ui

ws =
c1µm(ui−1

P −ui
ws)

m

δnm

[
1− c2 tanh

(
E

KT −
c3µ(ui−1

p −ui
ws)

δn RT

)]
∧0 ≤ ui

ws ≤ ui−1
P , ∀c1, c2, c3, R, T, m, E, δn, ui−1

P ∈ R+
0

(6.63)
Without loss of generality assume that the solution, ui

ws , is positive.
Let us create a function f (ui

ws) given by,

f
(
ui

ws
)
= ui

ws −
c1µm(ui−1

P −ui
ws)

m

δnm .[
1− c2 tanh

(
E

KT −
c3µ(ui−1

p −ui
ws)

δn RT

)] (6.64)
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Since f (ui−1
P ) f (0) < 0 and f (.) is a real-valued continuous function

on the interval
[
0; ui−1

P

]
, the intermediate value theorem implies that

∃ui
ws : f (ui

ws) = 0.
Because f ′

(
ui

ws
)
< 0 for ui

ws ∈
[
0; ui−1

P

]
, by Rolle theorem the

solution is unique.

For m = 1 we can narrow down the range where the solution lies.
Assuming c2 tanh

(
E

KT −
c3µ

δn RT

(
ui−1

p − ui
ws

))
< 1, then,

ui
ws =

c1µm

δnm

(
ui−1

P − ui
ws

) [
1− c2 tanh

(
E

KT −
c3µ

δn RT

(
ui−1

p − ui
ws

))]
≤ c1µm

δnm

(
ui−1

P − ui
ws

)
(6.65)

meaning that,

ui
ws <

c1µm

δnm

1 + c1µm

δnm

ui−1
P (6.66)

The initial range for the bisection method is then given by,

[a; b] ≡


[

0;
c1µm

δnm

1+ c1µm

δnm
ui−1

P

]
i f m = 1[

0; ui−1
P

]
i f m 6= 1

(6.67)

For the TT model we can use a similar procedure to prove that the
existence of a unique solution ui

ws ∈
[
0; ui−1

P

]
. Furthermore, we have

that,

ui
ws = α

µ
δn

(
1− βµ

δn

(
ui−1

P − ui
ws

))−1/2 (
ui−1

P − ui
ws

)
≥ α

µ
δn

(
ui−1

P − ui
ws

) (6.68)

This sets a new initial range for the bisection method, given by,

[a; b] ≡
[

α
µ
δn

1 + α
µ
δn

ui−1
P ; ui−1

P

]
(6.69)

By using this ranges as initial guess for the bisection method (used
to obtain the solutions of these transcent equations) we gain computa-
tional time.
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S L I P F L O W S O F N E W T O N I A N A N D P T T F L U I D S
I N A 4 : 1 P L A N A R C O N T R A C T I O N

Abstract1

This work presents numerical results regarding the simulation of the 4:1
planar contraction flow for a viscoelastic fluid modeled by the simplified
Phan-Thien–Tanner (sPTT) model under the influence of slip boundary con-
ditions at the channel walls. The linear Navier slip law was considered with
the dimensionless slip coefficient varying in the range [0; 4500]. The simu-
lations were carried out for a small constant Reynolds number of 0.04 and
different Deborah numbers, De = 0; 1; 2; 3; 4; 5. Convergence could not be
achieved for higher values of the Deborah number, especially for large values
of the slip coefficient, due to the large stress gradients near the singularity
of the reentrant corner. Increasing the slip velocity leads to the formation of
two vortices, a corner and a lip vortex. The lip vortex grows with increasing
slip until it absorbs the corner vortex, creating a single vortex that continues
to increase in size and intensity. In the range De = 3− 5 no lip vortex was
formed. The results are intensively investigated for the De = 1 case as func-
tion of the slip coefficient, while for the remaining De only the main features
are shown for specific values of the slip coefficient.

7.1 introduction

In industrial processes, such as those involved in polymer processing,
the existence of contraction flows is very common. The development of
vortices in these flows affects the smoothness of the flow and promotes
the appearance of instabilities, as reported by (Kim and Dealy, 2002;
Dealy and Kim, 2005) and (Meller et al., 2002). In fact, the flow through
a 4:1 planar sudden contraction under conditions of creeping flow
and no wall slip is a long standing classic benchmark problem in
computational rheology (Owens and Phillips, 2002).

A wide range of experimental, theoretical and numerical studies
have been carried out in the past regarding contraction flows of New-
tonian and non-Newtonian fluids. For the experimental work we
highlight the work of (Boger and Walters, 1993) where most of the
relevant non-Newtonian flow phenomena are illustrated. In terms
of theoretical investigations of viscoelastic flow in the vicinity of the
reentrant corner in a planar contraction we cite the works by Hinch
(Hinch, 1993), (Renardy, 1995) and a series of investigations by Evans

1 L.L. Ferrás, A.M. Afonso, M.A. Alves, J.M. Nóbrega, O.S. Carneiro, F.T. Pinho (2012).
Flow of Newtonian and Phan-Thien–Tanner fluids in a 4:1 planar contraction with
slip boundary conditions, submitted to the Journal of Non-Newtonian Fuid Mechanics.
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and co-workers (Evans and Sibley, 2008, 2009; Evans, 2010). In terms
of numerical simulation the monograph by (Owens and Phillips, 2002)
gives a detailed overview of the progress in numerical analysis. Other
contributions of note include the comparison between numerical and
experimental results for a Boger fluid by Cochrane et al. (Cochrane
et al., 1981) and by (Walters and Webster, 1982), who found no sig-
nificant vortex activity for a 4:1 contraction. Marchal and Crochet
(1986) studied numerically the 4:1 contraction flow with the UCM and
Oldroyd-B viscoelastic models, while (Keunings and Crochet, 1984)
used the PTT model. In their revision papers, (White et al., 1987) and
(Boger, 1987) emphasize the critical role of the extensional viscosity
in contraction flows and (Boger, 1987) also showed the presence of
a lip vortex. Marchal and Crochet (1987) (numerical), and (Nguyen
and Boger, 1979) (experimental) studied the growth of the main vortex
with the Deborah number (De). Debbaut and Crochet (1988) studied
the contraction flow of fluids described by the Oldroyd-B, PTT and
Giesekus-Leonov models. Luo and Tanner (1989) studied the 4:1 con-
traction flow of UCM and Oldroyd-B fluids. There are several other
important works on contraction flows, such as references (Yul Yoo
and Na, 1991; Keiller, 1993; Olsson, 1994; Xue et al., 1998a,b; Wap-
perom and Webster, 1999; Aboubacar and Webster, 2001; Aboubacar
et al., 2002; Alves et al., 2003b, 2005, 2008; Fu et al., 2010; Kwon and
Han, 2010; Afonso et al., 2011b). All these works assume the typical
no-slip boundary condition at the walls. The few exceptions that we
are aware of regarding contraction flows assuming wall slip, are the
works of (Sunarso et al., 2006, 2007) where they perform numerical
simulations to investigate the effect of wall slip on the flow behavior
in macro and micro contraction channels, the work of (Yasuda and
Sugiura, 2008) that is based on experimental and numerical studies
of contractions with the nonlinear Navier slip boundary condition,
and the work of (Joshi and Denn, 2003) that presents an analytical
study of inertialess planar contraction flow with the linear Navier slip
boundary condition.
The challenge of establishing quantitative agreement between the
numerical results and the experimental observations is a demanding
need (Nigen and Walters, 2002) and this cannot be achieved if the correct
boundary conditions are not applied. It is known that various polymer
melts exhibit wall slip (Ramamurthy, 1986; Kalika and Denn, 1987;
Hatzikiriakos and Dealy, 1991, 1992; Migler et al., 1993; Chen et al.,
1993; Awati et al., 2000; Münstedt et al., 2000; Gevgilili and Kalyon,
2001) but when developing constitutive equations and determining the
parameters that best fit the fluid rheology, slip velocity in not usually
taken into account.

It is therefore important to assess the influence of the slip velocity
on the fluid flow and, for that reason, this work studies numerically
the 4:1 contraction flow with the Navier slip boundary condition
for a large range of slip coefficients, k∗l ∈ [0; 4500], and Deborah
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numbers, De ∈ {0; 1; 2; 3; 4; 5}. This geometry was chosen in order to
investigate the direct influence of the slip velocity by analyzing the
vortex dimensions. We study both Newtonian and non-Newtonian
fluids modeled by the simplified PTT model.
Although (Sunarso et al., 2006, 2007) have analyzed this problem, they
used a different constitutive equation. Their investigation is limited to
a set of values of the slip coefficient and they do not assess convergence
with mesh refinement, a fundamental issue with viscoelastic fluids. In
our calculations we present a detailed study of the flow characteristics
and there is no need for any direct relaxation of the slip velocity
as used by (Sunarso et al., 2006, 2007). Instead, we use an efficient
procedure that calculates the slip velocity along iterations, adjusting
the calculations depending on the solution’s proximity to convergence.
When convergence is eminent the calculated slip velocity converges
to the correct slip velocity, while when far from the solution the new
procedure guarantees that the slip velocity is always smaller than
the velocity at the center of the adjacent control volume, a necessary
condition to avoid numerical divergence.

This introduction is followed by subsection 2 where the governing
equations are presented together with the slip boundary condition. In
subsection 3 we briefly describe the algorithm used to couple velocity,
pressure and the slip boundary condition and we describe also the
geometry and the characteristics of the flow. The results are presented
in three parts in subsection 4. First, the slip flow is analyzed for
Newtonian fluids, followed by a detailed investigation of the flow
of the sPTT fluid at De = 1 and finally for the remaining Deborah
numbers. The main conclusions close the paper.

7.2 governing equations

The governing equations for confined flow of incompressible fluids
are the continuity,

∇ · u = 0 (7.1)

and the momentum,

ρ
∂u
∂t

+ ρ∇ · uu = −∇p +∇ · τ (7.2)

equations, where u is the velocity vector, p is the pressure, ρ is the
density and τ = τs + τp is the deviatoric stress tensor. The stress

tensor is divided into a solvent contribution, τs = ηs

(
∇u + (∇u)T

)
(with ηs being the solvent viscosity) and a polymer contribution, τp,
which in this case is given by the simplified Phan-Thien–Tanner (sPTT)
model (Phan-Thien and Tanner, 1977) :
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f
(
trτp

)
τp + λ

(
∂τp
∂t + u · ∇τp −

[
(∇u)T · τp + τp · ∇u

])
=

= ηp

(
∇u + (∇u)T

) (7.3)

where f (trτ) is a function depending on the trace of the stress tensor,
λ is the relaxation time and ηp is the polymer viscosity coefficient. For
the function f (trτ) we use its linear form, given by

f (trτ) = 1 +
ελ

ηp
tr
(
τp
)

(7.4)

where ε is the extensibility parameter that bounds the extensional
viscosity of the PTT fluid. This model was chosen because it has been
extensively studied in the contraction flow in the absence of slip with
the PTT model (see Alves et al. (Alves et al., 2003b) and the literature
cited therein).

In order to include the wall slip boundary condition, the usual
Dirichlet (no-slip) boundary condition was replaced by the Navier slip
law (Navier, 1822). Assuming Cartesian coordinates for the velocity
[u1t, u2t, u3t] and stress wall tangent vectors [τ1t, τ2t, τ3t], the Navier
slip boundary condition can be written as,

[u1t, u2t, u3t] = −kl [τ1t, τ2t, τ3t] (7.5)

where kl ∈ [0, +∞[ is the slip coefficient (also known as slip length)
that allows increasing or decreasing the intensity of slip velocity. Eq.
7.5 states that the tangent velocity vector points in the stress opposite
direction, both variables referring to the wall.

7.3 numerical method and geometry

The system of Eqs. 7.1, 7.2 and 7.3 is solved using a methodology based
on the finite volume method algorithm. The SIMPLEC method of van
Doormal and Raithby (Van Doormaal and Raithby, 1984), extended
by (Oliveira et al., 1998) to incorporate viscoelastic fluids, is used to
couple velocity, pressure and stress fields (Oliveira et al., 1998). The
inclusion of slip boundary conditions promotes some changes in the
overall procedure that are described in detail by (Ferrás et al., 2012d).

The main key for the implementation of slip boundary conditions is
the assumption of a Couette flow in the vicinity of the wall,

τt = η (γ̇)w
du
dn

∣∣∣∣
w

(7.6)

where n is the unit normal velocity vector (cf. Fig. 7.1), τt is the
tangent stress vector and the subscript ”w” means that the variables
are evaluated at the wall.
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Figure 7.1: Computational cell near the wall.

Combining Eqs. 7.5 and 7.6, the discretized slip boundary condi-
tion (assuming a one-sided first order approximation for the wall
derivative) is given by

[
ui

1t, ui
2t, ui

3t

]
= −klη (γ̇)i−1

w

[
ui

1 − ui−1
1tP

δn
;

ui
2 − ui−1

2tP
δn

;
ui

3 − ui−1
3tP

δn

]
(7.7)

where δn is the distance between the wall and P (as given in Fig.
7.1), ujtP (j = 1, 2, 3) are the components of the tangent velocity vector
at the center of the adjacent cell P, i is the iteration number and
η (γ̇)i−1

wall is the shear-rate dependent shear viscosity ,γ̇ , evaluated at
the wall. This shear viscosity is evaluated for the particular constitutive
equation adopted, here the sPTT.

To solve the system of equations the following iterative procedure
is used:

(1) Set the boundary conditions, the initial (tentative) velocity and
pressure fields;

(2) Solve the stress equations for the non-Newtonian model;
(3) Compute the slip velocity with the discretized slip model:

(u1, u2, u3)
i
ws =

d
1+d (u1P, u2P, u3P)

i−1
t ,

where d = klη (γ̇)i−1
w /δn with :

η (γ̇)i−1
w = ηs +

ηp

1+(α−1)2/3α
,

α =
(

θ +
√

θ2 − 1
)1/3

, θ = 1 + 27ε (λγ̇)2
w;

(4) Solve the linearized momentum equations;
(5) Solve the pressure correction equation;
(6) Correct the velocity and pressure fields;
(7) Check for convergence of the residuals of the linear system of

discretized equations and for convergence of the vector direction (see
Eq. 7.8);

(8) If convergence is not achieved return to step 2 and repeat until
convergence.



152 slip flows of newtonian and ptt fluids in a 4 :1 planar contraction

Since we are looking for the steady state solution a pseudo time
evolution is employed, thus time is only used for relaxation purposes;
this means that each time step represents one iteration i. Based on
(Ferrás et al., 2012d) it is known that during the first iterations the slip
velocity vector may not have the correct direction, but is expected that
when convergence is achieved the correct direction is obtained. This is
achieved when

lim
i→∞

∥∥∥(ui
1 − ui−1

1P , ui
2 − ui−1

2P , ui
3 − ui−1

3P

)∥∥∥∥∥∥(ui−1
1 − ui−1

1P , ui−1
2 − ui−1

2P , ui−1
3 − ui−1

3P

)∥∥∥ = 1 (7.8)

With this method there is no need for direct relaxation in the slip
velocity and the computations are stable (Ferrás et al., 2012d) .
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Figure 7.2: Schematic representation of the 4:1 contraction geometry.

The geometry of the 4:1 contraction used in the present study is
given in Fig.7.2. The computational domain was divided into five
blocks (see Table 7.1 and Fig. 7.2) and only half of the channel is
considered because of symmetry. Based on the work of (Oliveira et al.,
1998) and (Alves et al., 2003b) we built three different meshes named
MC1, MC2 and MC3 (Table 7.1) that were used for Newtonian and
non-Newtonian fluids.
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Refinement between consecutive meshes is consistently done by
doubling the number of cells in each direction and using square-
rooted cell contraction/expansion factors. The notation nx and ny

is used to represent the number of cells in the x and y directions,
respectively, fx and fy are the contraction/expansion ratios between
consecutive cells that allow the concentration of cells in zones where
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high gradients are expected to occur. The most refined mesh (MC3)
has 199344 cells and a zoomed view of the more refined zone can
be seen in Fig.7.3. More details regarding these three meshes can be
found in Table 7.1.

Figure 7.3: Zoomed view of mesh MC3.

The simulations were performed for the sPTT model at a constant
Reynolds number, Re = ρU2H2/η0 = 0.04 and a varying Deborah
number De = λU2/H2 (De = 0; 1; 2; 3; 4 and 5) with ε = 0.25 and a
viscosity ratio β = ηs

η0
= ηs

ηs+ηp
= 1

9 .

7.4 results and discussion

7.4.1 Newtonian Fluids

7.4.1.1 Vortex size and intensity

For Newtonian fluids (De = 0) one could find that the increase in the
slip coefficient leads to a significant variation in the vortex intensity
ΨR and vortex dimensions XR = xR/H2 and YR = yR/H2 (cf. Fig.
7.2). The vortex intensity is defined as the flow rate inside the vortex
normalized by the flow rate at the entrance, U1H1:

ΨR =
ψR −U1H1

U1H1
× 103 (7.9)

where ψR is the streamfunction value at the vortex center (we as-
sume ψR = 0 at the centerline, y = 0).

As shown in Figs. 7.4 and 7.5 the vortex decreases with the increase
of the slip coefficient and it disappears at k∗l = klη0/H2 ≈ 4500. As for
the vortex intensity we found that it increases from 1.125 for k∗l = 0
to 1.829 with k∗l = 0.45 and then decreases to 0 as k∗l continues to
increase.
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kl =0* kl =0.45*

kl =4500*kl =4.5*

Figure 7.4: Variation of the vortex dimensions and strength with the fiction
coefficient k∗l for a Newtonian fluid at a constant Re = 0.04.
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Figure 7.5: Variation of the vortex dimension XR and vortex intensity ΨR with
the dimensionless slip coefficient k∗l for Re = 0.04 and De = 0.

For small slip intensity the flow is essentially affected in the vicin-
ity of the wall where there is a reduction of the shear rates with
concomitant reductions in dissipative friction, thus increasing the
vortex strength while the vortex remains essentially unchanged (cf.
Fig. 7.4). As k∗l is further increased the slip effect penetrates further
into the channel and leads to a reduction in size and consequently
in the strength of the recirculation. With a very large slip the flow
behaves essentially as an inviscid fluid, which is able to negotiate all
the obstacles and no recirculation exists.

7.4.1.2 Singularity (variation along the line θ = π/2)

In all Newtonian fluid cases there was no lip vortex and this allowed
the measurement of the asymptotic variation of the stress and velocity
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components on their approach to the reentrant corner at θ = π/2
measured counterclockwise from the incoming flow direction (cf. Fig.
7.2). This way we can compare our results with the theoretical studies
of (Moffatt, 1964), and (Dean and Montagnon, 1949), for the asymptotic
behavior of a fluid near the reentrant corner (Fig. 7.6). More precisely,
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Figure 7.6: Asymptotic behavior for the velocity and stress components near
the reentrant corner of a 4:1 contraction, for a Newtonian fluid
with Re = 0.04 and k∗l = 0.

these authors found that the asymptotic behavior of velocity and
stress components near the reentrant corner are given by (Dean and
Montagnon, 1949),

ui ∝ r0.545, τij ∝ r−0.455 (7.10)

where r is the distance measured from the reentrant corner. In Fig.
7.6 we can see a good agreement between our results (k∗l = 0) and the
results obtained by (Dean and Montagnon, 1949; Moffatt, 1964). This
allows us to assess the accuracy of our results.

7.4.1.3 Couette correction

In order to investigate the viscous losses, we also studied the varia-
tion of the Couette correction with the slip coefficient. The Couette
correction is given by (Coates et al., 1992),

C =
4p−4p1FD −4p2FD

2τw
(7.11)

where 4p represents the pressure drop between the entrance and
the exit of the contraction (in regions where the flow is well full-
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developed), 4p1FD, 4p2FD denote the pressure drop for fully devel-
oped Poiseuille flow in the entry and exit channels (between the same
points considered for 4p), with widths H1 and H2, respectively, and
τw is the wall shear stress for the fluid in question (encompassing both
solvent and polymer contributions) for fully-developed flow in the
exit channel. We could find a non-linear relationship between C and
k∗l as can be seen in Fig. 7.7 (a). For small values of the slip coefficient

C
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Figure 7.7: Variation of the Couette correction with the slip coeficient for a
Newtonian fluid at Re = 0.04. (a) Couette correction (C) normal-
ized with 2τw. (b) Couette correction (C∗) normalized with the
wall stress from the no-slip case 2τw−no slip

we observe a slight increase in C followed by a sudden exponential in-
crease. For k∗l = 0 we obtained a value of C = 0.3786 (C = 0.3741 was
obtained in the work of Alves et al. (Alves et al., 2003b) for Re = 0)
while for k∗l = 4500 we obtained a value of C = 6856. These high
values of the Couette correction are mainly an outcome of the small
values of τw (a consequence of the increase of the slip coefficient) used
in the normalization of 4p. Therefore we also plotted in Fig 7.7 (b)
the modified Couette correction, C∗, normalized with the wall stress
obtained from the no-slip case, τw−no slip . In this case, for k∗l = 4500
we obtained a value of C∗ = 0.5078.

In order to understand why C∗ increases with k∗l , we plotted sep-
arately in Fig. 7.8 the three terms that make up C∗, i.e., the normal-
ized real pressure drop (4p) and the normalized 4p corresponding
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Figure 7.8: Variation of the normalized real pressure drop, 4p, normalized
4p1FD and normalized 4p1FD, with the slip coeficient, for a
Newtonian fluid at Re = 0.04.

to fully-developed flow in the whole of the upstream (4p1FD) and
downstream channels (4p2FD). It is clear that by increasing the slip
coefficient these extrapolated fully-developed pressure drops decrease
significantly faster (and even tend to go to zero) than the reduction in
the overall pressure drop.

7.4.2 Viscoelastic fluids

7.4.2.1 Small elastic effects: De=1

7.4.2.2 Vortex size and intensity and Couette correction

Table 7.2 presents the vortex dimension XR, vortex intensity ΨR and
Couette correction C together with the relative error (relative difference
between the results obtained with the mesh MC3 and the extrapolated
values, in percentage) for the 4:1 contraction flow at De = 1. The
extrapolated values were obtained with the Richardson extrapolation
technique (Richardson, 1910; Richardson and Gaunt, 1927) using the three
consecutively refined meshes presented in Table 7.1.

As shown in Fig. 7.9(a) the variation of XR with k∗l is nonmonotonic
with a local minimum at k∗l = 0.36 and subsequent increase in length,
in strong contrast to the Newtonian behavior. This is a consequence
of the competition between viscous and elastic effects, both coupled
with slip. At low values of k∗l , and as for Newtonian fluids, the viscous
effects predominate over the elastic effects and the reduction of the
near wall shear rates associated with slip leads to a local reduction of
dissipative effects and to a small decrease in XR (note that a region of
separated flow is a fairly effective means of locally dissipating energy).
However, as k∗l increases the elastic effects also intensify and these are
translated into the formation of a lip vortex which grows slowly at low
values of k∗l and more intensely as k∗l increases, engulfing the corner
vortex and increasing in size. The increase in XR with k∗l is asymptotic
because the growth of the elastic recirculation is not dominated by
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Table 7.2: Vortex dimensions, intensity and Couette correction for an sPTT
fluid flow with ε = 0.25 ,Re = 0.04, De = 1.
*
lk ext.RX ext.RΨerror(%) ext.C������ ������ ������ ������ �����	 ������ ��
��� ������ ��
�������	� ������ ����
� ������ ������ ����	� ������ ����	� ������������ ������ ������ ��
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 �����
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 �����
 �����
	����� ������ �����	 � � ������ ������ ������ ������

error(%) error(%) ext.*C error(%)

the near wall forces, but by the normal stresses associated with the
extensional flow in the central region of the contraction, so the vortex
ceases to grow above k∗l ≈ 100. Since the increase of slip reduces both
the viscous shear stress and the elastic shear-induced normal stress,
we show in this way that the corner vortex is essentially determined
by viscous forces and that the lip vortex and its growth is essentially
determined by the extensional elastic stresses in the central region of
the geometry.

As for the corner vortex intensity we see in Fig. 7.9(b) that it in-
creases with the increase of the slip coefficient and this increase is due
at low values of k∗l to the reduction of viscous losses within the vortex,
already observed with Newtonian fluids, followed subsequently to
the increasing intensity of the elastically driven lip vortex. The specific
values of ΨR have to be looked at with care especially when the corner
and lip vortices co-exist given the distortion induced by each one on
the other, with obvious consequences in terms of accuracy.

For the three meshes used we find that for k∗l ' 0.027 the two
vortices begin to merge until a single and larger vortex is formed at
k∗l ' 0.45. Further, increasing k∗l leads to vortex growth and curvature
changes, as shown in the streamline plots of Fig 7.10 (obtained for the
mesh MC3).

For the lip vortex dimension Ylip, accurate results are much more
difficult to obtain and require very refined meshes. This happens
because the top part of the increasing vortex starts to rotate in the
counterclockwise direction (as seen in Fig. 7.11 ) meaning that the
results obtained for the Ylip are deceived by that rotation.

Regarding the lip vortex intensity, Ψlip, Fig. 7.12 shows that it in-
creases with the slip coefficient, but we could find the existence of
a region of higher uncertainty, k∗l ∈ [0.09; 0.45]. This happens in the
cases where the two vortices coexist and because their specific location
is very sensitive to the mesh characteristics. Finally, the lip vortex
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Figure 7.9: Variation of the vortex dimension XR (a) and vortex intensity ΨR
(b) with the slip coefficient k∗l for an sPTT fluid with ε = 0.25,
Re = 0.04 and De = 1.

becomes the main vortex above k∗l ' 0.4 and high levels of vortex
intensity are obtained.

The existence of two vortices with one vortex engulfing and absorb-
ing the other while increasing the elasticity was also found by (Xue
et al., 1998a) for an Oldroyd-B fluid employing the no-slip boundary
condition. These features were also present in the nonlinear dynamics
at high Deborah-number flows described by (Afonso et al., 2011b), in
which the elastic lip vortex increases in size and eventually reaches
the corner vortex region, and merges with it in a fairly complex dy-
namic process. This merging-growth regime occurs at De ' 4.5 for the
Oldroyd-B model with no slip, corresponding to the minimum value
of XR (Afonso et al., 2011b) .

The Couette correction was also calculated and we found a similar
behavior to the one obtained for the Newtonian results. The Couette
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Figure 7.10: Visualization of the corner and lip vortex growth with the slip
coefficient k∗l for an sPTT fluid with ε = 0.25, Re = 0.04 and
De = 1.

correction increases with the slip coefficient as shown in Fig. 7.13 and
in Table 7.2.

7.4.2.3 Variation of velocity and stresses near the wall

In order to assess the effects of slip velocity on the distribution of
velocity and stresses, the streamwise components of these variables
were monitored near the downstream channel walls, at y/H2 = 0.9985.

For the velocity Fig. 7.14(a) shows its smoothing with the increase
of the slip velocity, except near the reentrant corner where a large
gradient is usually found. For the dimensionless shear stress τxy (nor-
malized with 3η0U2/H2) we see, in Fig. 7.14(b), that the increase of
the slip velocity leads to a decrease of the shear stress (in absolute
value), as expected. The normalized first normal stress difference
N1 ≡ τxx − τyy given in Fig. 7.14 follows the same trend as the nor-
malized τxy showing a decrease but presenting higher values near the
singularity when compared to the no-slip boundary condition case.
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Figure 7.11: Lip vortex growth for increasing values of the slip coefficient k∗l
for an sPTT fluid with ε = 0.25, Re = 0.04 and De = 1.

7.4.3 Effect of elasticity

In addition to De = 0 and De = 1, the 4:1 contraction flow was also
simulated for De = 2, 3, 4 and 5. For higher values of De convergence
could not be achieved (especially for high slip coefficients). This con-
trasts with the no-slip simulations of (Alves et al., 2003b) with the
sPTT fluid, which converged up to values of De of at least 100, using
essentially the same code. However in the absence of slip the presence
of the lip vortex is not observed, i.e., the dynamics seen here for the
sPTT fluids with slip is more akin to that observed for the Oldroyd-B
fluid without slip by Alves et al. (Alves et al., 2003b). These results thus
show that the slip velocity strongly influences the convergence proper-
ties of the sPTT fluid mainly due to the higher normal strain/stress
gradients that appear near the reentrant corner.

For Deborah numbers ranging from 6 to 9 the code was not able
to decrease the residuals of the iterative procedure and convergence
was not possible, an indication of possible inherent unsteady behavior.
For higher values of De the computations diverged. Note also that the
computations were performed on half domain, but it is known that the
viscoelastic flow through a sudden contraction of some viscoelastic
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Figure 7.12: Variation of the lip vortex intensity Ψlip with the slip coefficient
k∗l for an sPTT fluid with ε = 0.25, Re = 0.04 and De = 1.

fluids, like Oldroyd-B fluid, exhibits time dependency and is no longer
symmetric above certain critical De (Afonso et al., 2011b).

For De = 0, 2, 3, 4 and 5 the results qualitatively follow the same
trends of the De = 1 case. We can see in Fig 7.15 that the vortex
intensity ΨR and the vortex dimension XR both increase with the
Deborah number for the constant value of slip coefficients ,k∗l =

0; 0.18; 45, and also increase with slip at constant De. As an example,
for De = 5 ΨR ≈ 3 for the no-slip case, and increases to ΨR ≈ 50 for
k∗l = 45 (see Fig. 7.15(b)). For the Couette correction C we see that the
presence of slip velocity leads to an extra pressure loss (C > 0 ) (Fig.
7.15(c)).

7.5 conclusions

Numerical simulations were performed for the flow of Newtonian
and non-Newtonian fluids past an abrupt 4:1 planar contraction in
the presence of wall slip. To model the non-Newtonian fluid the sPTT
constitutive equation was used and slip on all walls was described by
the Navier slip law.

For the Newtonian fluid the vortex decreases in size until it even-
tually disappears with increasing slip velocity, even though for weak
values of slip a slight increase in vortex intensity was observed. Al-
though it seems unlikely for a Newtonian fluid to present these high
levels of slip velocity, the results are helpful for the interpretation of
the slip effects.

For non-Newtonian fluids the corner vortex tends to decrease with
slip, with lower values of the slip coefficient, along with the formation
of a lip vortex. As slip increases the lip vortex engulfs and absorbs the
corner vortex, promoting an increase in size and curvature modifica-
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Figure 7.13: Variation of the Couette correction with the slip coefficient k∗l for
an sPTT fluid with ε = 0.25, Re = 0.04 and De = 0, 1. (a) Couette
correction (C) normalized with 2τw. (b) Couette correction (C∗)
normalized with the wall shear stress from the no-slip case,
2τw−no slip

tion of the flow recirculation, very much as had been observed with
Oldroyd-B fluids without wall slip. It was also found that the vortex
dimensions increase with De. Hence, slip enhances significantly the
effect of elasticity observed in the no-slip cases. For De > 5 it was not
possible to achieve convergence, mainly due to the higher gradients
that appear near the re-entrant corner. Considering that in the absence
of slip and for the same model Alves et al.(Alves et al., 2003b) were
able to obtain converged solutions up to De of 100 it is clear the the
high Deborah-number problem is enhanced by the presence of slip.

These results are useful to interpret and model fluids subjected
to slip boundary conditions such as some polymer systems used in
polymer processing industries.
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8
T H E I N F L U E N C E O F S L I P O N V I S C O E L A S T I C
F L U I D F L O W T H R O U G H A N E X PA N S I O N

Abstract1

In this work we present a systematic numerical investigation of the 1:4
planar expansion creeping flow for a Newtonian and a viscoelastic fluid mod-
eled by the simplified Phan-Thien–Tanner (sPTT) constitutive equations and
under the influence of slip boundary conditions. The linear and nonlinear
Navier slip laws were considered with the dimensionless slip coefficient k∗l
varying in the range [0, 4500] and the slip exponents m = 0.5, 1 and 2. The
simulations were carried out for creeping flow (we used a Reynolds number
of 0.001) with different Deborah numbers, De = λU/H = 0, 1, 2, 3, 4, 5, 10
, 50 and 100. Convergence could not be achieved for higher values of the
Deborah number, specially for large values of the slip coefficient, due to the
large stress gradients near the singularity point. The increase of slip velocity
leads to the vortex suppression for all De. The results are intensively inves-
tigated for low values of Deborah number, De = 0, 1, 2, 3, 4 and 5, while for
the remaining De the main features are only shown for specific values of the
slip coefficient.

8.1 introduction

The incompressible laminar flow in a symmetric plane sudden expan-
sion is an intriguing benchmark problem. Although the geometry is
rather simple, the resulting flows are dynamically complex, depending
on several factors such as the inlet boundary conditions, the Reynolds
(Re) and Deborah (De) numbers and the length of the inlet channel.
This geometry is found in several industrial and biomedical processes
and injection molding of polymer melts. In order to better understand
this problem, several studies have been done leading to new results
and improved knowledge of the expansion flow dynamics for both
Newtonian and non-Newtonian fluids.

Halmos and Boger (1975, 1976) present an experimental and numerical
study of flows of viscoelastic polymer solutions flows through an
abrupt expansion. They found good agreement between the experi-
mental results obtained for polymers melts and the numerical simu-
lations performed with a power-law model. Townsend and Walters
(1994) and (Baloch et al., 1996) both used the PTT model (Phan-Thien
and Tanner, 1977) to compare their numerical results with the experi-

1 L.L. Ferrás, A.M. Afonso, J.M. Nóbrega, M.A. Alves, F.T. Pinho (2012), The Influence
of Slip Velocity on the Newtonian and Viscoelastic Fluid Flow Through an Abrupt
1:4 Expansion, to be submitted to Journal of Non-Newtonian Fluid Mechanics.

167



168 the influence of slip on viscoelastic fluid flow through an expansion

mental results obtained by (Townsend and Walters, 1994). In all these
studies the conclusions were unanimous: viscoelasticity suppresses
the secondary flows that appear at the corner, and this is justified
with some kind of “extrudate swell” phenomenon that occurs to the
main flow upon entry to the expansion (the fluid releases some of
the stored energy resulting in the expansion of the main flow and
the compression of the recirculation region). More recently (Poole
et al., 2007) provided a numerical study of the 1:3 two dimensional
expansion flow for the upper-convected Maxwell (UCM), Oldroyd-B
and PTT models. They found that the previous results published in
the literature by (Darwish et al., 1992) and (Missirlis et al., 1998) were
only qualitatively correct because of the poor mesh refinement used.
In (Poole et al., 2007) the degree of recirculation suppression is much
weaker than suggested previously and for high Deborah numbers a
significant recirculation region still exists.

The study of flow bifurcations in fluid mechanics has also received
considerable interest as it enables a better understanding of the prob-
lems of stability and transition to turbulent flow. For this specific topic,
experimental results are given in the work of (Durst et al., 1974) and
(Cherdron et al., 1978) whereas numerical predictions, as well as a
good review of the literature regarding the bifurcation phenomena for
Newtonian and non-Newtonian fluids, can be found in the work of
(Wahba, 2007).

For the bifurcation phenomenon in viscoelastic fluids we highlight
the works of (Rocha et al., 2007), where a numerical investigation of
viscoelastic flows (FENE–CR constitutive model) through a planar 1:4
sudden expansion is presented. They found that the viscoelasticity
stabilizes the flow and results in symmetric flow patterns up to a
Reynolds number of about 46 . Poole et al. (2005) arrived at similar
conclusions based on experimental results obtained for the laminar
flow of a viscoelastic liquid through a symmetrical plane sudden
expansion preceded by a gradual contraction from a square duct.
Therefore, because creeping flow conditions are employed in this
work, we assume the existence of symmetry.

For turbulent flows there is the experimental work of (Abbott and
Kline, 1962), about the subsonic turbulent flow over a single and dou-
ble backward facing steps, and the experimental works of (Escudier
et al., 2002), (Poole and Escudier, 2003, 2004) and (Dales et al., 2005).

All the previous works were done either for Newtonian or non-
Newtonian inelastic and viscoelastic fluids. The viscoelastic fluids
usually present a more rheologic and dynamic complex behavior
when compared to the Newtonian fluids, and one of these complex
features is the ability for the fluid to slip (Ramamurthy, 1986; Dealy
and Kim, 2005; Kalika and Denn, 1987; Denn, 2001) along the wall,
found in some polymer melt flows. However, in the literature we
could not find the influence of slip boundary conditions on the fluid
flow behavior through an abrupt expansion, and this feature is very
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important in polymer processing where contraction and expansion
flows are often encountered. For this reason, this work presents a
numerical study looking at the influence of slip velocity (linear and
nonlinear Navier slip boundary conditions) on the flow through an
abrupt 1:4 expansion for a large range of dimensionless slip coefficients
k∗l ∈ [0, 4500] and Deborah numbers, De ∈ {0, 1, 2, 3, 4, 5, 10, 50, 100}.
We study both Newtonian and non-Newtonian fluids modeled by the
simplified PTT model, and we present a detailed study of the flow
characteristics such as the influence of the slip velocity on the vortex
dimensions, vortex intensity and Couette correction.

In our calculations there is no need for any direct relaxation of the
slip velocity. Instead, we use an efficient procedure, proposed in (Ferrás
et al., 2012d), that calculates the slip velocity along iterations, adjusting
the calculations depending the proximity to the final solution. When
convergence is eminent the calculated slip velocity converges to the
correct slip velocity while far from the solution the new procedure
guarantees that the slip velocity is always smaller than the velocity at
the center of the adjacent control volume, an important requirement for
convergence since divergence occurs when this necessary condition for
continuity (between the boundary and the bulk data) is not satisfied.

In contrast to the contraction flows (Alves et al., 2003b; Ferrás et al.,
2012a; Afonso et al., 2011b) it was possible to obtain convergence for
higher values of the Deborah number, where we found the complete
suppression of recirculation for high slip coefficients. Based on the
fact that wall slip reduces both the amount of extrudate swell and
the critical Deborah number, (Phan-Thien, 1988) we confirm the cor-
recteness of the previous proposed hypothesis for the suppression of
recirculation (Townsend and Walters, 1994; Baloch et al., 1996).

This introduction is preceded by subsection 2, where the governing
equations are presented together with the linear and nonlinear Navier
slip boundary conditions. In subsection 3 we briefly describe the solver
used to couple velocity, pressure and the slip boundary condition and
we also describe the geometry and the characteristics of the flow. In
subsection 4 the results obtained for the Newtonian fluid case De = 0
are discussed, while the remaining Deborah numbers studied here
are treated in subsection 5. The closure of the paper is made with the
conclusions in subsection 6.

8.2 governing equations

The governing equations for the laminar and incompressible fluid flow
are those expressing the conservation of mass,

∇ · u = 0 (8.1)

and momentum,
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ρ
∂u
∂t

+ ρ∇ · uu = −∇p +∇ · τ (8.2)

Additionally, an appropriate constitutive relation for the the extra
stress tensor τ is used. The stress tensor (τ = τs + τp ) is split into a
Newtonian solvent contribution, τs,

τs = ηs

(
∇u + (∇u)T

)
(8.3)

and a polymer contribution, τp, (for a Newtonian fluid τ = τs) that
is given here by a widely used model, the simplified Phan-Thien and
Tanner equation (sPTT) (Phan-Thien and Tanner, 1977),

f
(
trτp

)
τp + λ

(
∂τp
∂t + u.∇τp −

[
(∇u)T .τp + τp.∇u

])
=

= ηp

(
∇u + (∇u)T

) (8.4)

For the function f
(
trτp

)
we use its linear form,

f (trτ) = 1 +
ελ

ηp
tr
(
τp
)

(8.5)

In Eqs. (8.1)-(8.5), u is the velocity vector, p is the pressure, τ =

τs + τp is the extra stress tensor, ηs and ηp are the solvent and zero
shear polymer viscosity contributions, respectively, λ is the relaxation
time and ε is the extensibility parameter related to the elongational
behavior of the PTT fluid.

In order to consider the possibility of slip at the boundary wall
we use the linear (m = 1) (Navier, 1822) and nonlinear Navier slip
boundary conditions (m 6= 1) (Schowalter, 1988),

‖uws‖ = k ‖τw‖m and uws = −k‖τw‖m τw

‖τw‖−1 (8.6)

where the parameter kl ∈ [0, +∞) is the slip coefficient (it will
depend on the material employed and on the flow conditions and is
normally computed through the adjustment of experimental observa-
tions) that allows to control the amount of slip in the simulation (for
m = 1 the slip coefficient can also be interpreted as the slip length).
The second condition in Eq. (8.6) refers to the fact that the slip ve-
locity vector uws (the subscript “ws” stands for “wall slip”) points in
the tangent stress τw (the subscript “w” stands for “wall”) opposite
direction.

8.3 numerical procedure and geometry

The system of differential equations, Eqs. (8.1-8.6), is solved with
a finite volume method code (see (Oliveira et al., 1998)), using the
SIMPLEC method of (Van Doormaal and Raithby, 1984) to couple velocity
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and pressure fields. For the implementation of the slip boundary
conditions we use two slightly different methods, one for the linear
Navier slip law and the other for the nonlinear Navier slip law. In
both cases we assume the flow near the wall is mostly viscometric so
that the tangent stress at the wall can be approximated by (Azaiez et al.,
1996),

τw = η (γ̇)w
du
dn

∣∣∣∣
w

(8.7)

where η(γ̇)w=ηs+
ηp

1+(α−1)2/3α
, α≡(θ+

√
θ2−1)

1/3
, θ≡1+27ε(λγ̇)2

w is the viscosity

as a function of the shear rate ,γ̇ , evaluated at the wall, and du
dn is the

velocity derivative in the wall normal direction.
Assuming Cartesian coordinates, orthogonal meshes and a one-

sided first order approximation for the velocity derivative, the rela-
tionship between the slip velocity and the tangent stress vector can be
written as,

uwsj = knl

(
η (γ̇)w

uPj − uwsj

δn

)m

j = 1, 2 and uPj > uwsj (8.8)

where (uws1; uws2) are the components of the slip velocity vector
uws, uPj is the velocity at the center of the adjacent computational cell
and δn is the distance between the center (P) of the adjacent cell and
the wall boundary (see Fig. 8.1).

tu
nu

nδ

P

wall

n

t

Figure 8.1: Schematic of a computational cell.

Let i represent one iteration of the SIMPLE method. For the imple-
mentation of the slip boundary condition two different linearizations
were used, depending on the exponent m. For m = 1 we assume that
only the slip velocity variable comes from the present iteration, i, thus
allowing to obtain the following relationship between ui

ws and ui−1
P ,

ui
ws = kl

(
−η(γ̇)i−1

w
(ui

ws−ui−1
P )

∆y f

)
=

a
a + 1

ui−1
P with a=kl

(
− η(γ̇)i−1

w
∆y f

)
(8.9)
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For m 6= 1 the discretized form of the nonlinear Navier slip law can
be linearized assuming that only the slip velocity of the linear part
comes from the actual iteration (i) as,

ui
ws = knl

(
η(γ̇)i−1

w
∆y f

)m (
ui−1

P − ui
ws

) (
ui−1

P − ui−1
ws

)m−1
(8.10)

leading to,

ui
ws =

l
1 + l

ui−1
P with l = knl

(
η(γ̇)i−1

w
∆y f

)m (
ui−1

P − ui−1
ws

)m−1
. (8.11)

The main feature of this method is that the slip velocity is always
smaller than the velocity at the center of the adjacent computational
cell, a required condition for convergence. To solve the system of
equations we use the following iterative procedure (Ferrás et al., 2012d):

(1) Set the boundary conditions, the initial velocity and pres-
sure fields;

(2) Solve the stress equations for the non-Newtonian model;

(3) Compute the slip velocity with the discretized slip model
Eqs. (8.9) or (8.11).

(4) Solve the linearized momentum equations;

(5) Solve the pressure correction equation;

(6) Correct velocity and pressure fields;

(7) Check for convergence in the system of equations residuals;

(8) If convergence is not achieved proceed to step 2.

In this work we are interested only in the stationary solution, so
the time evolution is fictitious. Each time step represents one iteration
i. With this method there is no need for direct relaxation of the slip
velocity and the computations are stable.

A schematic of the 1:4 expansion geometry is given in Fig. 8.2. We
assume the flow is two-dimensional and impose symmetry at the cen-
terline. At the inlet, a uniform velocity profile U is imposed together
with null stress components. To perform the numerical simulations
for the expansion flow we built three different meshes ME1, ME2 and
ME3 (cf. Table 8.1),
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Figure 8.2: Schematic of the expansion geometry.

Table 8.1: Mesh Characteristics for ME1, ME2, ME3.

ME1 ME2 ME3

Zone nx ny nx ny nx ny� �� �� �� �� �� ���� 	� �� ��� �� ��	 ���� 	� �� ��� �� ��	 ���� 	� �� ��� 
� ��	 �		� 	� �	 ��� �� ��	 ��� �� �� �� �� �� ���� �� �� �� 
� �� �			 �� �	 �� �� �� ��
NC ��
�� ��	
� ����	�∆xmin/H1 ���� ����� ������ 	

Zones � �� � � �
with consistent consecutive refinement, in the sense that the number

of cells was doubled in each direction, with mesh spacing being
approximately halved. This way we can measure the accuracy of our
results by using Richardson’s extrapolation technique (Richardson, 1910;
Richardson and Gaunt, 1927). The computational domain was divided
into eight blocks, the notation nx and ny is used to represent the
number of cells in the x and y directions, respectively. The mesh data
are provided in Table 8.1.

We performed a large number of simulations, mostly because of the
large range of slip coefficients used (for each De we used 15 different
slip coefficients) to capture the influence of slip velocity on the flow
behavior. Most results shown here were obtained for mesh ME2. Mesh
ME3 was also used to test the accuracy of the method but only for a
limited number of simulations, because of the high computation times
and convergence issues.

The simulations were performed for the sPTT model at a constant
Reynolds number, Re = ρU1H1/η0 = 0.001, and a varying Deborah
number De = λU1/H1 (De = 0, 1, 2, 3, 4, 5, 10, 50 and 100) with ε =
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0.25 and viscosity ratio β = ηs
η0

= ηs
ηs+ηp

= 1
9 . Several values of the

normalized slip coefficient, k∗l = klη0/H1, are used.
The numerical results were analyzed in terms of the vortex sizes

XR = xR/H1 and YR = yR/H1 (cf. Fig. 8.2), the vortex intensity,
defined here as the recirculating flow rate inside the vortex normalized
by the flow rate in the entrance channel, U1H1:

ΨR =
ψR −U1H1

U1H1
× 103 (8.12)

where ψR is the streamfunction value at the vortex center (we as-
sume ψR = 0 at the centerline, y = 0), and also the Couette correction
given by,

C =
4p−4p1FD −4p2FD

2τw
(8.13)

where 4p represents the pressure drop between two points located
far away from the expansion plane, one upstream and another down-
stream of the expansion plane, 4p1FD, 4p2FD the pressure drop for
the fully developed Poiseuille flow obtained for the entry and exit
channels, with widths H1 and H2, respectively, and τw is the wall shear
stress encompassing both the solvent and polymer contributions (for
fully-developed flow in the entrance channel).

Additional plots are also presented, such as the variations of veloc-
ity and stresses along the centerline, streamlines, together with the
characterization of the flow type parameter, ξ, defined as (Lee et al.,
2007):

ξ =
|D| − |Ω|
|D|+ |Ω| (8.14)

where |D| and |Ω| represent the magnitudes of the rate of deformation
and vorticity tensors, respectively

D =
1
2

[
∇u + (∇u)T

]
, Ω =

1
2

[
∇u− (∇u)T

]
, (8.15)

which are given by,

|D| =

√
1
2
(D : DT) =

√
1
2 ∑

i
∑

j
D2

ij (8.16)

|Ω| =

√
1
2

(
Ω : ΩT

)
=

√
1
2 ∑

i
∑

j
Ω2

ij.

The flow type parameter varies from −1, which corresponds to solid-
like rotation, up to 1, for pure extensional flow. Pure shear flow is
characterized by ξ = 0.
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8.4 results and discussion

8.4.1 Newtonian Fluids

For Newtonian fluids (De = 0) we observed that the axial vortex
dimension, XR, presents a non monotonic behaviour with the slip
coefficient, k∗l , while the vortex intensity, ΨR, decreases with k∗l , as
shown in Fig. 8.3. This means that for k∗l > 0.45, the vortex is at the

�

���

�

���

�

���

�

����� ���� ��� � �� ��� ����

���������	�JR

XR

YR

kl
*

J
R

, X
R

 ,Y
R

Figure 8.3: Variation of the vortex dimension, XR and YR, and vortex inten-
sity, ΨR, with k∗l for a Newtonian fluid (De = 0).

same time reducing his size (XR) and intensity. This is also clear in
Fig. 8.4, where the streamlines are superimposed on contour plots
of the flow type parameter, ξ, showing that the increase of the slip
coefficient leads to an increase of YR and a decrease of XR. For small
slip coefficients only YR increases and XR only experiences small
changes. For k∗l > 0.45 significant changes in the vortex dimensions
are seen, XR is abruptly reduced while YR is of the size of the corner
wall aligned with the y direction. This is in contradiction with the
behaviour observed for viscoelastic fluids (see Section 8.4.2), where the
vortex does not disappear for high slip velocity. We can also observe,
in Fig. 8.4, a region of shear flow located near the walls for no-slip
velocity and low slip coefficients (k∗l = 0.0045 and k∗l = 0.045), while
for k∗l ≥ 0.45 a region of extensional flow develops near the expansion
corner, which spreads over the domain with the increase of k∗l , thus
reducing the vortex size.

We also plotted the variation of the dimensionless stream wise
velocity component along the channel for y/H1 = 0.99 (Fig. 8.5(a))
and y/H1 = 0 (Fig. 8.5(b)). For both cases we see that the slip velocity
smoothes the velocity profile across the vicinity of the singular point.
Notice that for high slip coefficients there is also an abrupt change
in the velocity profile, especially for the case y/H1 = 0.99, where
the normalized velocity is almost unitary (plug flow) in the smaller
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Figure 8.4: Streamlines and flow type ξ for a Newtonian fluid (De = 0) and
different values of the slip coefficient k∗l .

channel and then drastically reduces when passing to the expansion
zone.

8.4.2 Viscoelastic fluids

8.4.2.1 Effect of elasticity and slip

In addition to Newtonian fluid limit (De = 0) the 4:1 expansion flow
was also simulated for De = 1, 2, 3, 4 and 5 using a vast range of slip
coefficients and for De = 10, 50 and 100 using only two different slip
coefficients, due to the significant computational times required for
these cases.

Fig. 8.6 presents the variation of XR and ΨR with De, for several slip
coefficients, k∗l . We see that both properties decrease with De and k∗l ,
with the vortex vanishing for smaller values of the slip coefficient as
elasticity increases. These results can also be seen in Tables 8.2 and 8.3
(for the case De = 1) where the accuracy of the results was assessed
with the Richardson extrapolation technique for three different values
of the slip coefficient. The variations of XR and ΨR for higher values of
De are also shown for a constant slip coefficient k∗l = 0.09. We see that
ΨR decreases with De while XR presents a non-monotonic behaviour,
in agreement with the conclusions of (Poole et al., 2007).

In Fig. 8.7 we show the streamlines superimposed on contour plots
of ξ for different values of the slip coefficient and two different values
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Figure 8.5: Dimensionless axial velocity profiles along the channel for a
Newtonian fluid (De = 0) (a) y/H1 = 0.99 (b) y/H1 = 0.

of the Deborah number, De = 1 and 5. Contrarily to the Newtonian
case the vortex totally disappears with the increase of the slip velocity,
and considerable changes in the vortex dimensions appear first for the
viscoelastic case, especialy for high Deborah numbers (De = 5). Notice
also that for De = 5 we obtain a wider region of extensional flow near
the centerplane for all slip coefficients used, which can be justified
by the higher relaxation time of the fluid that delays its deceleration
in the expansion region, thus increasing the area where the flow is
extensionally dominant. The overall conclusion, based on these figures,
is that the vortex dimensions decrease with the increase of elasticity
and slip intensity.

Regarding the Couette correction, C, Figs. 8.8 show the variation
of C and C∗ with De, for different values of the slip coefficient. The
variable C∗ represents the Couette correction normalized with the wall
tangent stress, τw, obtained for the case of no-slip velocity at the walls.
This normalization is used because when k∗l is very large, the value
of τw vanishes, leading to unbounded values of C. For a Newtonian
fluid our results match the results obtained by (Poole et al., 2009). In
Tables 8.4 (a) and (b) we can also see the Couette correction C and C∗
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Figure 8.6: Variation of (a) vortex dimension, XR, and (b) vortex intensity,
ΨR, with De, for different values of k∗l .

obtained for different slip coefficients at De = 1. For the viscoelastic
fluids, we can observe that both C and C∗, increase with De, as also
observed in the data for the 1:3 expansion flow (Poole et al., 2007).
The Couette correction increases with k∗l (a side effect of the chosen
normalization) while the alternative Couette correction, C∗, decreases.
This means that, contrarily to the behaviour observed in data obtained
by (Ferrás et al., 2012a) for the 4:1 contraction flow, slip reduces C∗.

The dimensionless axial velocity profiles along the channel at two
different positions y/H1 = 0 and y/H1 = 0.99, were studied for two
different Deborah numbers, De = 1 and 5 as shown in Fig. 8.9. For
both De, the velocity near the wall increases with the slip coefficient,
k∗l , and higher velocities are attained for the smaller Deborah number,
De = 1 . This is more notorious for intermediate values of k∗l and at the
smaller channel. When the fluid is at the wider channel, the influence
of the slip boundary condition is weakened by the larger distance
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Table 8.2: Variation of vortex dimension Xr with the slip coefficient k∗l for
De = 1.

ext. RXME1 ME2 ME3 Percent error� ������ ������ ����	� ����	� ����������� ����
������ ����	� �����	 ������ ������ ����	����
 ����������	 ����������� ���
	� ������ �����
 ������ ��������� ���	������ �����	���
 ��
	�� ��
������	 �����	���� ���������� � ��� � ����� � �

*
lk

Table 8.3: Variation of the vortex intensity ΨR with the slip coefficient k∗l for
De = 1.

ME1 ME2 ME3 Percent error� ������ ������ ������ ����	� ��������
� �����
����� ������ ������ �����	 �����
 ��������� ����������� �����	���	� ������ ����
� ������ ������ ����
���
� ���������� ���������� ������ ����	����� �����
��	� ����

��
� � �
� � �
��� � �

*
lk ext. RΨ

between the centerplane and the wall, and the velocity profiles for the
different De and k∗l vary from each other in a smaller range.

In order to see the influence of the slip exponent, m, on the flow
characteristics, we performed simulations for two different slip expo-
nents, six different slip coefficients and a constant De = 1 (see Fig.
8.10). We can observe that for m = 0.5 the influence of k∗l on the flow
is small, while for m = 1.5 the influence of k∗l is enhanced. Notice that
for the case k∗l = 0.36 and m = 1.5 we have an extensional flow near
the vortex corner that smears the vortex, while for the case m = 0.5
a rotation flow is still present indicating the existence of a vortex.
This result is the expected since the increase of the slip law exponent
enhances the slip velocity.

8.4.2.2 The vortex size reduction

In order to try to explain the vortex size reduction and its link to the
extrudate swell phenomenon, we performed simulations assuming
slip velocity only at the entrance channel walls. With this we wanted
to decrease the extrudate swell when the flow passes from the narrow
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Figure 8.7: Streamlines and flow type, ξ, for different values of the slip
coefficient k∗l . (a)De = 1 (b) De = 5 .

channel to the expansion zone. We found that when the inlet channel
has slip the vortex dimensions decrease, as observed in the comparison
shown in Fig. 8.11. For the case of no-slip velocity at the walls (c.f.
Fig. 8.12) we can observe a region of shear flow near the walls, in
deep contrast with the flow with high slip velocity where the flow
is mainly extensional, thus explaining the vortex suppression. When
slip is only present at the inlet channel walls, we can observe a region
of rotation flow near the singularity point due to the passage from
high slip to no-slip, and also an extensional flow approaching the
singularity point, that increases with elasticity.

The dimensionless stress contour plots are shown in Fig. 8.13 and the
variation of the stresses along the channel for y/H1 = 0.99 is shown
in Fig. 8.14.We can see that the presence of wall slip in the entrance
channel leads to a sudden increase of the axial polymer normal stress
τxx near the singular point (cf. Fig. 8.14(a) and Fig. 8.13). This results in
compression of the flow in the x direction, by an enhanced curvature
of the velocity streamlines. As expected, the shear stress, τxy, is almost
null in the entrance channel because of the high slip velocity attained
(see Fig.8.14(b) and Fig. 8.13). For τyy we can observe that it increases
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Figure 8.8: Couette correction, C, as function of De. (a) C (b) C∗.

(for the case with slip velocity) before the fluid reaches the singularity
point (see Fig.8.14(c) and Fig. 8.13), followed by a smooth transition to
a fully developed state. In the expansion zone we obtain higher values
of τyy for the no-slip case, and this leads to an increase of the vortex
size in the presence of slip.

8.5 conclusions

Simulations were performed to evaluate the influence of the slip
boundary condition on the 1:4 expansion flow of Newtonian and
viscoelastic fluids. The presence of slip velocity leads to a reduction
of the vortex size and intensity, together with the reduction of the
Couette correction. The influence of the slip exponent on the flow was
also studied and we found that a small slip exponent weakens the slip
effect on the flow properties. Simulations with high slip velocity in the
inlet channel and no slip in the outlet channel were performed which
helped relate the vortex size reduction with the weakening of the
transverse normal stress, i.e., with the weakening of the mechanism
associated with extrudate swell. Consequently we found that the
vortex size reduction is higher when the slip velocity in the inlet
channel is higher.
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Table 8.4: Variation of the Couette correction with k∗l for De = 1. (a) C (b) C∗.

ME1 ME2 ME3 Percent error� ������ ������ �����	 ������ ���
	����
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 ����	� ����
����� ����������� ����	�����	 �����
 �����	 ������ ������ ����
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Figure 8.9: Dimensionless axial velocity profiles along the channel for De =
1 and 5 and three different slip coefficients (a) y/H1 = 0 (b)
y/H1 = 0.99.
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two different slip exponents: (a) m = 0.5 (b) m = 1.5.
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Figure 8.12: Flow type, ξ, for De = 5 (a) no slip velocity (b) slip velocity in
the entrance of the channel walls (k∗l = 4500) (c) slip velocity at
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Abstract1

This technical brief presents a numerical study regarding the required
development length (L = L f d/H) to reach fully-developed flow conditions
at the entrance of a planar channel for Newtonian fluids under the influence
of slip boundary conditions. The linear Navier slip law is used with the
dimensionless slip coefficient kl = kl

( µ
H

)
varying in the range 0 < kl ≤ 1.

The simulations were carried out for low Reynolds number flows in the range
0 < Re ≤ 100, making use of a rigorous mesh refinement with an accuracy
error below 1%. The development length is found to be a non-monotonic
function of the slip velocity, increasing up to kl ≈ 0.1− 0.4 (depending on
Re), and decreasing for higher kl . We present a new non-linear relationship
between L, Re and kl that can accurately predict the development length for
Newtonian fluid flows with slip velocity at the wall, for Re of up to 100 and
kl up to 1.

9.1 introduction

The relevance of the development length is well known in engineering.
The assumption that the flow is fully developed in regions where it
remains under strong influence of the inlet boundary conditions, can
seriously under-estimate the design of flow systems and incorrectly
assume specific velocity profile shapes, in addition to lead to wrong
conclusions in the interpretation of data. Another relevant aspect in
system flow design is the fact that some flows of Newtonian fluids
in micro-channels exhibit slip velocity at the walls, especially if they
are hydrophobic, as shown in several experimental (Tretheway and
Meinhart, 2002; Watanabe et al., 1998; Zhu and Granick, 2001; Ligrani
et al., 2010) and numerical (Barrat and Bocquet, 1999) investigations.
A detailed review of experiments on Newtonian fluids showing the
existence of slip velocity is given by Neto et al. (Neto et al., 2005). Cor-
relations to predict the development length for Newtonian fluid flows,
as function of the Reynolds number, and under no-slip boundary
conditions are available in the literature. Recent accurate correlations
(Durst et al., 2005; Poole and Ridley, 2007; Poole and Chhabra, 2010)
indicate that the development length varies non-linearly with the
Reynolds number, while experimental data of flows in micro-channels

1 L.L. Ferrás, A.M. Afonso, M.A. Alves, J.M. Nóbrega, F.T. Pinho (2012). Development
length in planar channel flows of Newtonian fluids under the influence of wall slip,
accepted for publication in the Journal of Fluids Engineering.

189



190 development length of newtonian fluids under the influence of wall slip

with a rectangular cross section at low Reynolds numbers (Lee et al.,
2008) showed shorter developing lengths compared to conventional
correlations for 2D channel flows. To the best of our knowledge there
is no literature on development lengths for Newtonian fluids in the
presence of wall slip. The inclusion of slip boundary conditions in the
modeling process is very important, mainly due to the emergence of
industrial micro and nano technologies using Newtonian fluids that
exhibit wall slip (Neto et al., 2005; Lauga et al., 2005). This justifies
the present contribution, where a numerical study is presented on
the required development lengths for Newtonian fluid flow in planar
channels under the influence of slip boundary conditions, using the
linear Navier slip law (Navier, 1822), with the dimensionless slip co-
efficient kl varying in the range 0 < kl ≤ 1 (kl = 1 corresponds to a
significant slip, close to a plug velocity profile, and these high slip
lengths can be found in experimental results and attributed to the
presence of gaseous material at the interface (Neto et al., 2005)).

9.2 equations, numerical analysis and geometry

x

y

Lfd

H
U

Figure 9.1: Schematic representation of the geometry.

It is assumed that this internal flow is two dimensional, incompress-
ible, laminar, isothermal and steady. The governing equations for such
flow conditions are the continuity,

∇ · u = 0 (9.1)

and the momentum,

ρ

(
∂u
∂t

+ u · ∇u
)
= −∇p +∇ · τ (9.2)

equations, where u is the velocity vector, p is the pressure, ρ is the
fluid density and τ is the Newtonian extra-stress tensor, which is given
by

ø= µ
(
∇u + (∇u)T

)
= 2µD (9.3)

where D is the symmetric rate of deformation tensor and µ is the
dynamic viscosity.
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The channel geometry and Cartesian coordinate system are repre-
sented in Fig. 9.1. A uniform velocity profile, U, is imposed at the inlet
of the planar channel, with all other variables set to zero. Vanishing
streamwise gradients are applied to all variables at the outlet plane,
except for the pressure which is linearly extrapolated to the outlet
from the two nearest upstream cells. At the wall the usual no-slip
boundary condition was replaced by a wall slip law, in this case, the
linear Navier slip law (Navier, 1822):

uws = −klτxy,w (9.4)

where uws = uws/U is the dimensionless slip velocity, kl is the dimen-
sionless slip coefficient that allows to control the intensity of the slip
velocity and τxy,w = τxy,w(H/Uµ) stands for the dimensionless tan-
gent stress vector. Eq. 9.4 states that the tangent velocity vector points
in the tangent stress opposite direction, both variables calculated at
the wall. Hence, the Navier slip boundary condition can be written as
uws = ∓kl

du
dy (with y = y/H and u = u/U), where the signs (-) and

(+) are used for the upper and lower walls, respectively.
The system of Eqs. (9.1-9.3) is solved by the finite volume method
using the SIMPLE procedure of Patankar (Patankar, 1980) to couple
velocity and pressure fields (Oliveira et al., 1998). The inclusion of slip
boundary conditions changes the overall procedure as explained in
detail by Ferrás et al. (Ferrás et al., 2012d). With their semi-implicit
method, on the verge of convergence the calculated slip velocity con-
verges to the correct slip velocity, and when it is far from the solution
this new procedure guarantees that the slip velocity is always smaller
than the velocity at the center of the adjacent control volume (diver-
gence of the numerical method occurs when this necessary condition
is not verified), therefore there is no need to use direct relaxation in
the slip velocity and the computations are stable.

In order to achieve accurate mesh independent results, the physical
domain depicted in Fig. 9.1 was discretized into three meshes with
increasing mesh refinement by doubling the number of cells in the
streamwise and transverse directions. Due to symmetry, only half of
the domain was used in the numerical simulations. A non-uniform
distribution of the cell sizes was used, with the ratio of the geometric
progression of the cell sizes in the streamwise direction being 1.05 and
1.01 for the coarse and refined meshes, respectively. For the transverse
direction, the cells were concentrated near the channel wall and at
the centerplane region to quantify accurately the streamwise variation
of the velocity to define well the fully-developed flow condition. For
details about the meshes used in the numerical calculations see Table
9.1.
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Table 9.1: Mesh characteristics.

NC

M1 100x40 3.8x10-3 1.2x10-3

L=10H   M2 200x80 1.9x10-3 6.2x10-4

M3 400x160 9.6x10-4 3.1x10-4

min /x H△ min /y H△

The present mesh refinement strategy was designed to provide a
detailed and accurate measure of uncertainty in our simulations, by
using the Richardson extrapolation to the limit technique (Richardson,
1910; Richardson and Gaunt, 1927). This method allows the estimation
of the order of accuracy of the simulations (an overall second order
was attained in the mesh convergence studies) and an accurate mesh-
independent extrapolated Lext value. More details on this can be
found in Table 9.2, where we provide the results obtained for three
specific Reynolds numbers of 0.001, 5 and 100, and four different slip
friction coefficients (the “% error” in the table is a quantification of
the relative difference between the predictions of L on the finest mesh
(M3) and the extrapolated results (Lext) obtained from Richardson’s
extrapolation technique).

Table 9.2: Development length and estimated error for the three different
meshes.

Re M1 M2 M3 Lext % error

0.001 0.6394 0.6308 0.6289 0.6284 0.08
kl=0.0001 5 0.7160 0.7007 0.6958 0.6934 0.34

100 4.9945 4.7927 4.7252 4.6912 0.73

0.001 0.6402 0.6316 0.6298 0.6293 0.08
kl=0.001 5 0.7171 0.7018 0.6969 0.6945 0.34

100 4.9986 4.7971 4.7296 4.6955 0.72

0.001 0.6483 0.6397 0.6381 0.6377 0.06
kl=0.01 5 0.7283 0.7132 0.7085 0.7065 0.29

100 5.0468 4.8484 4.7814 4.7474 0.72

0.001 0.6893 0.6832 0.6819 0.6816 0.05
kl=0.1 5 0.8004 0.7873 0.7831 0.7811 0.25

100 5.5846 5.4168 5.3546 5.3179 0.69

0.001 0.5568 0.5560 0.5561 - -
kl=1 5 0.6856 0.6818 0.6806 0.6799 0.10

100 4.9682 4.9347 4.9235 4.9180 0.11

9.3 results and discussion

The results obtained showed that the development length varies non-
monotonically with the slip coefficient, as observed in Fig. 9.2, showing
that the development length increases at low dimensionless slip co-
efficients and decreases at high values of kl . For Re = 10−3 the peak
development length occurs for kl = 0.1. The development length, L,
is here defined as the length from the inlet required for the velocity
in the center plane to attain a value of 99% of the corresponding
fully-developed value. As shown in Table 9.2 and Fig. 9.2, for creep-
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Figure 9.2: Variation of the development length (L) with the slip coefficient
(kl) for three different values of Re.

ing flow conditions (Re = 10−3) and kl = 0.1 an asymptotic limit
of Lext|Re→0 = 0.682 was obtained, while for the no-slip boundary
condition the corresponding asymptotic limit is Lext|Re→0 = 0.628, as
show in Table 9.3

Table 9.3: Development length (L) obtained for different values of the slip
coefficient (kl) and different Reynolds numbers (Re) for the mesh
M2 (the extrapolated values are in bold).

Re kl=0.0001 kl=0.001 kl=0.01 kl=0.1 kl=0.4 kl=0.8 kl=1
0.001 0.6284 0.6293 0.6377 0.6816 0.6546 0.5860 0.5560
0.002 0.6308 0.6316 0.6397 0.6832 0.6546 0.5860 0.5560
0.005 0.6308 0.6317 0.6398 0.6833 0.6547 0.5861 0.5561
0.01 0.6309 0.6317 0.6398 0.6833 0.6548 0.5862 0.5562
0.02 0.631 0.6318 0.6399 0.6835 0.6550 0.5864 0.5564
0.05 0.6313 0.6321 0.6403 0.684 0.6557 0.5870 0.5570
0.1 0.6317 0.6326 0.6408 0.6848 0.6568 0.5881 0.5581
0.2 0.6327 0.6335 0.6419 0.6863 0.6591 0.5903 0.5603
0.5 0.6356 0.6364 0.6452 0.6911 0.6658 0.5970 0.5667
1 0.6411 0.642 0.6509 0.7 0.6773 0.6085 0.5779
2 0.6532 0.6541 0.6638 0.7189 0.7020 0.6327 0.6013
5 0.6934 0.6945 0.7065 0.7811 0.7881 0.7162 0.6799
10 0.8144 0.8159 0.831 0.9388 0.9680 0.8860 0.8441
20 1.156 1.1579 1.1779 1.3456 1.4180 1.3003 1.2366
50 2.4968 2.4995 2.5303 2.8361 2.9924 2.7324 2.5888

100 4.6912 4.6955 4.7474 5.3179 5.7238 5.2161 4.9180

(which is in agreement with Durst et al.). For the same inertialess
conditions and higher values of kl , the asymptotic limit decreases,
with Lext|Re→0 = 0.556 at kl = 1. Regarding the comparison between
the development lengths for the no-slip and the slip cases, we could
find differences of the order of 15% for high slip coefficients and
below 3% for small slip coefficients. These differences increased with
Reynolds number and slip coefficient, as seen in Table 9.3 and Fig.
9.3. For small slip coefficients and small Reynolds number (Re ≤ 10 )
these differences are less pronounced.
We propose a correlation (Fig. 9.4), which is able to predict the devel-
opment length of Newtonian fluid flows under slip (0 ≤ kl ≤ 1) for
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Figure 9.3: Variation with Re of the difference in L relative to the no-slip case
results of Durst et al. [8] as a function of the slip coefficient kl .

the low Reynolds number range studied here Re ≤ 100. The model is
inspired on the works of Durst et al. (Durst et al., 2005) and Barber
and Emerson (Barber and Emerson, 2001) and is given by

Lslip =
1 + 3.15k

1.2
l + 0.28kl Re0.5

1 + 3.82k
1.5
l + 0.018kl Re

[
0.6311.8 + (0.047Re)1.8

] 1
1.8

(9.5)

for 0 ≤ Re ≤ 100 and kl ≤ 1.
We quantified the error as the average of the relative errors (for each

slip coefficient and Reynolds number) and a global error below 0.01
was obtained.

In Fig. 9.5 we plot the profiles of the dimensionless streamwise
velocity component along the axial direction at several transverse posi-
tions for two distinct values of the slip coefficient (kl = 0.0001 and 0.1).
We can observe in both cases that the dimensionless velocity increases
as we move towards the symmetry axis (y = 0). The conservation of
mass, together with the fact that the slip velocity increases with the
slip coefficient, forces the certerplane velocity to decrease inversely
with kl . From the inset on Fig. 9.5 we can also see that the development
length for kl = 0.1 is longer than the development length obtained for
kl = 0.0001. For kl = 0.0001 the dimensionless axial velocity compo-
nent presents a pronounced local maximum close to the channel wall,
that increases as the Reynolds number increases. For higher values
of kl , we found that the introduction of the slip velocity tends to sup-
press the appearance of this near-wall velocity overshoot. To better
understand this behavior, we also plotted the transverse profiles of
the dimensionless streamwise velocity for various positions along the
channel, shown in Fig. 9.6, for creeping flow conditions (Re = 10−3)
and Re = 100. When the contribution from the slip velocity is negligi-
ble (kl = 0.0001), the development of the axial velocity profiles is not
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purely convex and shows a local minimum on the symmetry axis and
a local maximum near the walls. These overshoots are generated as a
result of the abrupt fluid deceleration happening near the wall at the
inlet that happens faster than diffusion is able to transport momentum
to the centerplane. As slip increases this deceleration effect is reduced
and the local maximum disappears (for the full slip condition there
is no fluid deceleration). A more in-depth description of this veloc-
ity overshoot for non-slip conditions is reported in (Darbandi and
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Figure 9.6: Velocity profiles at different axial locations for kl = 0.0001 (black),
0.1 (blue) and 1.0 (green): (a) Re = 10−3 and (b) Re = 100.

Schneider, 1998). Comparing Figs. 9.6a and 9.6b, we can conclude that
for small slip velocities the overshoots are present even when inertia
is negligible, with their magnitudes (measured by

(
uymax − usa

)
/usa,

where uymax is the local maximum velocity in the profile and usa is the
corresponding velocity at the symmetry axis) increasing with inertia.
For all the simulations, the maximum overshoot magnitude is attained
for Re = 100 with a value of 15.83% (close to 15.8% obtained with
kl = 0 by (Darbandi and Schneider, 1998)). For higher values of the
slip coefficient the appearance of the velocity overshoots is almost
suppressed, as also observed in Figs. 9.6a and 9.6b, where we can see
that for inertialess conditions there is no overshoot (since Re is the
ratio between diffusive and advective time scales, the effect of viscosity
is transmitted to the whole channel very quickly when Re = 0 ), while
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for higher Reynolds number (Re = 100) a very small overshoot is
present only for kl = 0.1. This can be explained as a result of a smaller
deceleration effect of the fluid elements near the channel walls due to
the slip condition, allowing both the convection and diffusion to trans-
port momentum to the centerplane. The velocity in the centerplane is
also affected (and indirectly the development length), as observed in
the dimensionless velocity profiles along the centerplane for different
slip coefficients and Re→ 0, plotted in Fig. 9.7, showing smaller L for
kl > 0.1.
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Figure 9.7: Variation along the channel of the dimensionless centreplane
velocity as a function of the slip coefficients for Re = 10−3. Inset:
detailed view of the development length for the different slip
coefficients.

9.4 conclusions

We conducted a detailed and systematic numerical investigation of
the development length in planar channels flows of Newtonian fluids
under laminar flow conditions and under the presence of hydrody-
namic wall slip. We show that a judicious choice of mesh refinement
and highly accurate numerical methods allow the prediction of highly
accurate development length values. A new non-linear correlation for
L
(

kl , Re
)

is proposed, which shows good accuracy over the range

kl ≤ 1 and Re ≤ 100. This non-linear correlation predicts a non-
monotonic behavior between the wall slip coefficient and the develop-
ment length, with the development length increasing up to kl ≈ 0.1
and kl ≈ 0.4 for creeping flow and higher inertia (Re = 100) flows,
respectively, and decreasing for higher values of kl .
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F L U I D S U N D E R S L I P

Abstract1

In this work we present a numerical study of the channel development
length, L, required to obtain the fully developed flow conditions, for a vis-
coelastic fluid modeled by the Upper Convected Maxwell (UCM) model.
Instead of the usual Dirichlet no-slip boundary condition, we consider the
linear Navier slip model ss boundary condition at the wall, with the normal-
ized slip length (kl) varying in the range [0, 1]. To perform the simulations
we used an in house finite volume code that couples velocity, pressure and
stress fields by solving iteratively the Cauchy and the rheological constitu-
tive equation (Oliveira et al., (1998) “Numerical simulation of non-linear
elastic flows with a general collocated finite-volume method”, Journal of
Non-Newtonian Fluid Mechanics, 79 pp. 1-43.). To deal with the discon-
tinuity issues at the entrance region close to the channel wall, where steep
stress variations are expected to occur, we use the Log-Conformation ten-
sor approach. The simulations were carried out for two different elasticity
numbers, El = 0.1 and 1 with Reynolds (Re) and Deborah (De) numbers
varying in the range [0.1, 5] and [0.01, 0.5], respectively. We also performed
simulations for creeping flow conditions (Re = 0.001) with a varying Deb-
orah number De ∈ [0.01, 0.5]. For each of these simulations five different
dimensionless slip coefficients were employed, kl = 0, 0.001, 0.3, 0.1 and 1 .
We found that the development length decreases with the increase of the slip
coefficient.

10.1 introduction

The real nature and type of interaction between a liquid and a solid
is a subject of intense research. Even with the great advances in
technology that occurred over the last decade, it seems impossible to
find a physical law that describes accurately the flow characteristics at
the interface between solids and liquids, valid for all types of fluids
and wall materials. Even the friction law for solids is empirical.

In the absenceof such universal law for the boundary between liq-
uids and solids, the empirical law proposed by Navier (1822) seems
to be a good approximation, specially for polymer melts, for which
several studies indicate the existence of slip velocity at the wall (Ra-

1 L.L. Ferrás, A.M. Afonso, J.M. Nóbrega, M.A. Alves, F.T. Pinho (2012), Delopment
length in planar channel flows of UCM viscoelastic fluids under slip, to be submitted
to Journal of Fluids Engineering;
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mamurthy, 1986; Kalika and Denn, 1987; Mitsoulis et al., 2005; Dealy
and Kim, 2005; Denn, 2001) .

The Nature of the boundary conditions is of major importance to
accurately describe the fluid flow, as is also the development length
required for the fluid to attain the the fully developed flow conditions.
As an example we have the production of thermoplastic profiles by
extrusion. If the length of the extrusion die parallel zone is not long
enough for the fluid to attain its fully developed condition, the process
is more prone to be unstable and more sensitive to the variations of the
upstream flow conditions. This applies to several other flow systems.

In the available literature we can find several works regarding
the development length for Newtonian fluids with no-slip boundary
conditions. A good review is given by (Durst et al., 2005), where a
correlation that predicts the development length as a function of the
Reynolds number is also presented, valid in the range 0 < Re < ∞
(provided that the flow remains laminar). Considering slip velocity at
the wall, it seems that we only have the work of (Ferrás et al., 2012b).
This happened because the no-slip boundary condition was for long
time universally accepted as a physical “law”, and because only for
specific wall materials and fluids apparent slip was detected (Neto et al.,
2005).

For Non-Newtonian flows, assuming no-slip velocity at the wall, the
literature is scarcer and only few works could be found. For inelastic
fluids modelled by the “power law” model most of the available works
are summarized in the work of (Poole and Ridley, 2007). In his work,
(Poole and Ridley, 2007), develops a new correlation that outstands the
previous works published in the literature by presenting a correlation valid in
the range 0.4 < n < 1.5 and 0 < Re < 1000. For the case of yield stress fluids,
(Poole and Chhabra, 2010) presents a systematic numerical investigation
of developing laminar pipe flow of yield stress fluids for models of the
Bingham-type.

For viscoelastic fluids, (Liang, 1998), investigated the entry flow of a
viscoelastic fluid in a channel experimentally, (Alves et al., 2003b) studied the
4:1 contraction flow of a fluid obeying the Phan Thien Tanner (PTT) linear
viscoelastic model, expressing the entry length as a function of the Deborah
(De) number, (Na and Yoo, 1991) examined the effects of the elasticity and
inertia on the entry length and more recently Kerim et al. (Yapici et al.,
2012) studied the flow development of steady flow of Oldroyd-B and Phan-
Thien-Tanner (PTT) fluids through a two-dimensional rectangular channel
considering the effects of effects of mesh refinement, inlet boundary con-
ditions, constitutive equation parameters, and Reynolds number. In their
(Yapici et al., 2012) work they used a regularization function to account for
the discontinuities at the channel entrance. For the same urpose in this study
we use the log-conformation tensor approach (Fattal and Kupferman, 2004;
Afonso et al., 2009a).

The development length, L = L f d/H, is here defined as the length
(measured from the entrance of the channel) required for the fluid to
reach 99% of its fully developed velocity at the center of the channel.
The stress relaxation length, Lτxx , was also studied and is here de-
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fined by
∣∣τxx − τxx− f d

∣∣ ≤ 0.01 with τxx = τxx/ (η0U/H) and τxx− f d
representing the fully developed (fd) solution.

The paper starts with this brief introduction. In the next section
we present the governing equations and boundary conditions, to-
gether with the transformation needed in the momentum equation
to implement the log-conformation tensor approach. In Section 3 we
briefly describe the solver used to couple velocity, pressure and the
slip boundary condition and we also describe the geometry and flow
characteristics. In Section 4 the results obtained for a viscoelastic fluid
modeled by the UCM model are presented and discussed. The closure
of the paper is made with the conclusions in Section 5.

10.2 governing equations

The flow is assumed to be laminar and the fluid is incompressible. The
governing equations are those expressing the conservation of mass,

∇ · u = 0 (10.1)

and momentum,

ρ

[
∂u
∂t

+∇ · uu
]
= −∇p ++βη0∇2u +

η0

λ
(1− β)∇ ·A (10.2)

where u is the Cartesian velocity vector, p is the pressure, ρ is the
fluid density, t is the time, A is the polymer conformation tensor and λ

is the relaxation time of the polymer. The total fluid extra stress tensor
is the sum of a solvent and a polymer contributions and η0 = ηs + ηp

is the zero shear rate total viscosity with ηs and ηp being the solvent
and polymer contributions, respectively. The coefficient β is defined as
β = ηs

η0
, in such a way that if β = 1 we have a Newtonian fluid and for

β = 0 we have only the contribution from the polymeric part of the
total stress tensor. The polymer stress contribution is here described
by the Oldroyd-B constitutive equation, which includes the particular
case of the UCM model.

The extra stress tensor τ can be written in terms of A by,

τ =
ηp

λ
(A− I) (10.3)

leading to an evolution equation for A of the form,

A + λ

[
∂A
∂t

+∇ · uA
]
= I + λ

[
(∇u)T .A + A.∇u

]
(10.4)

where I is the unitary tensor. If β = 0 than the UCM model is
recovered.
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Fattal and Kupferman (Fattal and Kupferman, 2004) suggested a
simple tensor-logarithmic transformation that features the decom-
position of the velocity gradient (∇u)T into a traceless extensional
component, E, and a pure rotational component , R, together with the
transformation Θ = log A, leading to the following evolution equation
in Θ,

∂Θ

∂t
+ (u · ∇)Θ− [R.Θ−Θ.R] =

(
e−Θ − I

)
λ

(10.5)

To recover A from Θ the inverse transformation is used A = eΘ. This
transformation is importante because it increases the critical Deborah
number at which divergence occurs.

Additionally, an appropriate boundary condition that considers
the slippery characteristic of some polymer melts was assumed. The
chosen slip model was the linear Navier slip model (Navier, 1822),

uws = −klτw (10.6)

where uws is the slip velocity vector (the subscript “ws” stands
for “wall slip”) that points in the tangent stress τw (the subscript
“w” stands for “wall”) opposite direction, and kl is a positive slip
coefficient, known as the slip length, that allows to control the amount
of slip in the simulation.

10.3 numerical method

The system of differential equations, Eqs. (10.1-10.6), is discretized
and solved within a finite volume method framework, described with
great detail in the work of (Oliveira et al., 1998). The code is based on
the SIMPLEC method of (Van Doormaal and Raithby, 1984) to couple
velocity and pressure fields, and uses high resolution methods for
the representation of the convective terms in the constitutive equation
(Alves et al., 2000). The implementation of the log-conformation tensor
approach is well described in the work of Afonso et al. (Afonso et al.,
2009a).

For the implementation of the slip boundary conditions we assume
a Couette flow in the vicinity of the wall (the flow near the wall is
mostly viscometric) (Azaiez et al., 1996) thus,

τw = η0
du
dn

∣∣∣∣
w

(10.7)

leading to the following slip boundary condition,

uws = −klη0
du
dn

∣∣∣∣
w

(10.8)

For the discretization of Eq. 10.8 we use a one-sided finite difference
approximation for the derivative,
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u

vnδ

P

wsu

Figure 10.1: Typical computational cell near the wall.

uws = klη0
uP − uws

δn
(10.9)

where uws, uP are the first component of the slip velocity vector and
the velocity at the center of the adjacent computational cell, respec-
tively, δn is the distance between the center (P) of the adjacent cell and
the wall boundary (see Fig. 10.1).

To couple this equation with the momentum equation we use two
slightly different methods. The first one, more stable (but more itera-
tion consuming), corresponding to the implicit implementation of the
slip boundary condition,

uws =
klη0

δn + klη0
uP (10.10)

into the discretized system of equations, and a second method, that
uses a similar approach, but the boundary condition is updated at
each iteration i, with the velocity of the adjacent computational cell,
ui−1

P , that comes from the previous iteration,

ui
ws =

klη0

δn + klη0
ui−1

P (10.11)

where i is the iteration number. For a detailed description see (Ferrás
et al., 2012d).

To solve the system of equations the following iterative procedure was

used:

(1) Set the boundary conditions, the initial velocity and pres-
sure fields;

(2) Solve Eq. 10.5 to obtain the discretized version of Θ at the
new time level;

(4) Recover the discretized version of the the conformation
tensor A and calculate the extra stress tensor τ with Eq.
10.3
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(a) Compute the slip velocity with the discretized slip model
Eq.10.11.

(4) Solve the linearized momentum equations and the equa-
tion for pressure using the SIMLEC method;

(6) Correct velocity and pressure fields;

(7) Check for convergence in the system of equations residuals;

(8) If convergence is not achieved proceed to step 2.

(b) If convergence is achieved then calculate the slip velocity
values at each wall cell using Eq. 10.10.

In this work we are interested only in the stationary solution, so
the time evolution is fictitious, being used just for relaxation purposes.
Each time step represents one iteration i. With this method there is no
need for direct relaxation of the slip velocity and the computations
are stable. In the algorithm Step (b) is employed just for the implicit
implementation of the slip boundary condition , while Step (a) is used
just for the explicit implementation.

A schematic of the geometry used in our simulations is given in
Fig. 10.2. The flow is two-dimensional and we impose symmetry at

x

y

U

Lfd

H

Figure 10.2: Schematic of the geometry.

the centerline, therefore only half of the geometry was considered in
the simulations. At the inlet, a mean velocity profile, U, is imposed to-
gether with null stress components, and at the outflow a zero gradient
boundary condition is assumed.

The problem was solved using three meshes, designated by M1,
M2 and M3, with consistent consecutive refinement, in the sense
that the number of cells was doubled in each direction, with mesh
spacing being approximately halved. This way we can measure the
accuracy of our results by using Richardson’s extrapolation technique
(Richardson, 1910; Richardson and Gaunt, 1927). The mesh refinement
near the walls and at the channel centerplane was intensified, in order
to capture well the development length, L. More details on the mesh
characteristics are given in Table 10.1 where the notation nx and ny

is used to represent the number of cells in the x and y directions,
respectively, and fx, fy are the mesh ratio of expansion/contraction
between two consecutive cells in the x and y direction, respectively.
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fx fy nx ny

M1 ������ ������ ��� ��
M2 ������ ������ ��� ��
M3 ������ ������ ��� ���

Table 10.1: Mesh Characteristics for ME1, ME2, ME3.

For this study a large number of simulations was performed. Two
different elasticity numbers, El = De

Re , were used, El = 0.1 and El = 1
together with several different numbers of De = λU/H and Re =

ρUH/η0. For El = 0.1 we have used the following set of De and
Re numbers ratio, De

Re ∈
{ 0.01

0.1 , 0.1
1 , ..., 0.5

5

}
, and for El = 1 we have

De = Re with De
Re ∈ {0.0, 0.1, ..., 0.5}. Additionally we also performed

simulations for creeping flow conditions (Re = 0.001) and a varyind
Deborah number, De ∈ {0.0, 0.1, ..., 0.5}. For each of these simulations
we havealso also used five different dimensionless slip coefficients,
kl = kl

η0
H , with kl = 0, 0.01, 0.1, 0.3, 1.

10.4 results and discussion

The aforementioned numerical method was applied to the study of the
development-length requirements for fully developed laminar channel
flow of a viscoelastic fluid modeled by the UCM model. The results
are discussed in terms of elasticity and inertia effects, combined with
the slip boundary condition.

10.4.1 Slip and elasticity effects

�

���

�

���

�

� ��� ��� ��� ��� ���

�����������L

De

kl =0

kl =0.1

kl =1

Figure 10.3: Variation of the streamwise velocity component development
length, L, with De and kl .

In this subsection we present the study of the elasticity effect on the
development length of the velocity, u, and normal stress, τxx, assuming
creeping flow (Re = 0.001) and using three different slip coefficients,
kl = 0 (no-slip boundary condition) and kl = 0.1, 1.
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For the development of the streamwise velocity component, u, Fig.
10.3 shows that for small values of De (0 < De < 0.1) it decreases, and
that starts to increase for 0.1 < De < 0.5. This hapens for the no-slip
velocity case, assuming slip velocity at the wall, the minimum of L
shifts to De ≈ 0.3 for both slip coefficients used here.

The minimum value of L shifts from De 0.1 to De 0.3 , when slip is
considered. This result evidences that the presence of slip affects the
diffusion of momentum along the flow channel thickness, as reported
in Ferrás et al. (Ferrás et al., 2012b) for Newtonian fluids. As shown
also in Fig. 10.3, the difference between the no-slip and slip boundary
conditions increase with the growth of elasticity. While for the no-slip
boundary L increases significantly with De, when slip is considered,
for high values of De, the influence of elasticity is less pronounced.
This is a direct consequence of the steep stress variation that occur near
the flow channel inlet (see Fig. 10.4), which is faded by the presence
and incrase of slip.

kl =0

kl =0.1

kl =1

x/H

u/
U

De=0.01 Re=0.001

0.99ufd

1.01ufd

���

���

���

���

���

���

���

� � � � 	 ��

(a)

����

���

���

���

���

���

���

� � � � � 	

t
xx

/(
h

0U
/H

)

x/H

De=0.01 Re=0.001

0.01

kl =0

kl =0.1

kl =1

(b)

Figure 10.4: Variation of the development length, L, with De and kl for Re =
0.001 and De = 0.01. (a) dimensionless streamwise velocity com-
ponent, u/U (b) dimensionless normal stress, τxx/ (η0U/H).

It is also interesting that for very small Deborah numbers, the fluid
behaves as a Newtonian fluid, and for this case the development
length increases with the slip velocity (Fig. 10.3 ), in agreement with
the results obtained for Newtonian fluids in (Ferrás et al., 2012b). For
the no-slip case with Re→ 0 and De→ 0 we obtained a development
length value of L = 0.6270, which is in agreement with Durst et al.
(Durst et al., 2005).



10.4 results and discussion 207

���

�

���

���

� � � � � �

�����������������������	�����

���

�

���

���

� � � � � �

�����������������������	�����


��	�

��
�

� � � � � �

De=0.01 De=0.5

x/H x/H

x/Hx/H

x/H x/H

u/
U

u/
U

u/
U

u/
U

u
w

s/U

u w
s/U

(a) (b)

y/H
0
0.1
0.2
0.3
0.4

y/H
0
0.1
0.2
0.3
0.4

kl =0

kl =1

kl =0

kl =1

kl =1 kl =1

�

���

�

���

�

� � � � � �

�

���

�

���

�

� � � � � �

��	�

��
�

� � � � � �

Figure 10.5: Variation of velocity along the streamwise direction at different
positions y/H, for different values of the slip coefficient, kl =
0, 1. (a) De = 0.01 (b) De = 1.

In Figs. 10.4 (a), (b), we can see the variation of velocity and normal
stress at the channel centerplane for Re = 0.001 and De = 0.01. Notice
that the fully developed solution depends on the slip coefficient, with
the centerplane velocity and stress decreasing with kl . These results
evidence that the presence of slip counteracts the effect of elasticity,
being the development length a balance between slip and elasticity
intensities, with a minimum value that depend on both properties
values (see Fig. 10.3 ).

Fig. 10.5 shows the variation of velocity along the streamwise di-
rection at different positions y/H, for different values of the slip
coefficient, kl = 0, 1 and different Deborah numbers, De = 0.01, 0.5.
As expected, the velocity decreases as we increase y/H for both kl = 0
and kl = 1. For kl = 1, due to high slip velocity, the range of the veloc-
ity field is smaller. The slip velocity profile shows a different behavior
depending on the Deborah number. For De = 0.5 it decreases drasti-
cally in the entrance of the the channel and then suddenly increases
until it converges to the fully developed state, while for De = 0.01 it
decreases smoothly to the fully developed solution. The streamwise
velocity at different positions along the flow channel thickness shows
a similar behaviour ( see Fig. 10.5).

Fig. 10.6 shows the transverse profiles of the dimensionless stream-
wise velocity for various positions along the x−direction for De = 0.5
and two slip coefficients. The non-monotonic evolution of the velocity
for this De is again evident, initially the velocity increases, but as we
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Figure 10.6: Velocity profiles at different axial locations for Re = 0.001, De =
0.5 and kl = 0, 1.

move towards the exit of the channel it stabilizes. This hapens for both
cases considered, with and without slip velocity. For kl = 1 we obtain
an almost plug like profile, meaning that the transfer of momentum
by diffusion and convection occurs mainly in the streamwise direction
which leads to a reduction of the development length.

We also studied the effect of slip velocity and Deborah number on
the development length, Lτxx , required for the dimensionless normal
stress to become fully developed. From the analysis of Fig. 10.7 we see
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L
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Figure 10.7: Variation of the normal stress development length, Lτxx , with
De and kl .

that Lτxx increases with De and decreases with kl , except for very small
De. This can be explained as a result of a smaller deceleration near
the wall due to the existence of slip velocity. This way the “relaxation
time” is reduced, in comparison to kl = 0, because the fluid suffers a
smaller deformation, resulting in a faster transport of momentum to
the centerplane.

We propose a correlation (see Fig. 10.7) that is able to predict the
development length of the dimensionless normal stress τxx/ (η0U/H)
in the range 0 ≤ kl ≤ 1 for low Deborah numbers of 0 ≤ De ≤ 0.5.
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Lτxx =

1.254
(

1−0.873k
4.477
l

1+0.002Dek
−2.538
l

)
0.157 + 1.204 exp (−4.086De)

+ kl De0.003 (10.12)

The error was quantified as the sum of the square relative errors,
for each slip coefficient and Debora number tested, and a global error
of 0.015 was obtained.

10.4.2 Slip and inertia effects

kl ������� ������ ������ ������ ������ ������

� ��	�
� ������ ��
��� ������ ������ ������

���� ��	�
� ������ ��
�		 ����

 ���	�� ������

��� ��	��� ��	��� �����	 ���
�	 ������ ������

��� ��		
� ��	��� ���	�� ����	� �����	 ����
�

� ������ ���
�� ����
� �����
 ������ ������

Table 10.2: Development length values for a constant elasticity number, El,
of 0.1 and five different slip coefficients, kl .

To study the inertia effects combined with the slip velocity two differ-
ent elasticity numbers, El, of 0.1 and 1, were used.

For the first two Deborah numbers shown in Table 10.2 (El = 0.1) we
see that the Newtonian behavior is present. The velocity development
length values obtained for De = 0.01 match the data from (Ferrás
et al., 2012b) for De = 0. For De = 0.1 the development length starts to
deviate from the Newtonian behavior but the results are qualitatively
similar. The development length varies non-monotonically with the
slip coefficient, with a maximum in the range 0 ≤ kl ≤ 1.

For higher Deborah and Reynolds numbers, the development length
increases with Re and De, and decreases with kl .

kl ������� ������ ������ ������ ������ ������

� ��	�
� ����	� ��
��� ������ ���	�� ������

��� ��	��
 ��	��� ������ ����
	 ���
�
 ��	
�


� ������ ���	�� ������ ������ ������ ��	���

Table 10.3: Development length values for a constant elasticity number, El,
of 1 and three different slip coefficients, kl .

As expected (Barbosa, 2012), the presence of inertia leads to the
appearance of oscillations (see Figs. 10.8 and 10.9) in both velocity and
normal stress. These oscilations are smoothed by the presence of slip
velocity. In Fig. 10.8, specially for De = 0.5 these oscillations are very
intense for kl = 0 and become smother as klincreases. According to
(Barbosa, 2012), these oscillations occur because of the convective ve-
locity and the characteristic time for convection. These two prpoperties
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enhance the importance of the elastic Mach number, Mae =
√

Re.De.
Based on (Barbosa, 2012), these oscillations occur for Mae ≥ 1.
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Figure 10.8: Variation of velocity, u, along the centerplane of the channel,
for a contant elasticity number, El = 0.1, and three different
Deborah numbers, De = 0.01, 0.2, 0.5.

These oscillations require a different criterion for determine L,
which is given by

∣∣u− u f d
∣∣ ≤ 0.01u f d.

For El = 1 the results are qualitatively similar to the ones obtained
for El = 0.1. We see in Table 10.3 that the development length is
smaller for El = 1, specially for high values of De. Notice that the
oscillations shown for El = 0.1 are not present for El = 1 and 0 ≤



10.5 conclusions 211

De ≤ 0.5. This happens because the Reynolds numbers used for El = 1
are smaller than the the ones used for El = 0.1, thus reducing the
effect of inertia.
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Figure 10.9: Variation of the dimensionless normal stress, τxx/ (η0U/H),
along the centerplane of the channel, for a contant elasticity
number, El = 0.1, and three different Deborah numbers, De =
0.01, 0.2, 0.5.

10.5 conclusions

Simulations were performed to evaluate the influence of the slip
boundary condition on the entry flow of viscoelastic fluids, following
a UCM stress model. Except for very small Deborah numbers, the
presence of slip velocity leads to a reduction of the development length
for both streamwise velocity component and normal stress. This was
verified both for creeping flow and for an elasticity number of 0.1 and
1. For very small Deborah numbers the behaviour approaches the one
of the Newtonian fluids, showing a maximum of the development
length. For a Mach number greater than one, Mae ≥ 1, oscillations
occur for both velocity and normal stress, and the presence of slip
velocity smooths the oscillations.
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introduction to part v

In this Part, the following papers based on analytical solutions for
mixed electro-osmotic/pressure driven slip-flows of Newtonian and
viscoelastic fluids, are presented:

.A.M. Afonso, L.L. Ferrás, J.M. Nóbrega, M.A. Alves, F.T. Pinho
(2012), Mixed electro-osmotic/pressure driven slip-flows of viscoelas-
tic fluids in hydrophobic microchannels, to be submitted to Journal of
Non-Newtonian Fluid Mechanics;

.A.M. Afonso, L.L. Ferrás, J.M. Nóbrega, M.A. Alves, F.T. Pinho
(2012), Pressure-driven electrokinetic slip-flows of viscoelastic fluids
in hydrophobic microchannels with assymetric zeta potential, to be
submitted to Journal of Colloid and Interface Science;
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M I X E D E O / P D S L I P - F L O W S O F V I S C O E L A S T I C
F L U I D S

Abstract1

Analytical solutions are presented for the flow of viscoelastic fluids in hy-
drophobic microchannels under the combined influences of electrokinetic and
pressure forcings using the Debye-Hückel approximation and accounting for
wall slip. The viscoelastic fluids used are described by the simplified Phan-
Thien\textemdash{}Tanner model with linear kernel for the stress coefficient
function, or the FENE-P model based on the kinetic theory for finitely exten-
sible dumbbells with a Peterlin approximation for the average spring force.
The slip boundary conditions are described using the linear and nonlinear
Navier slip laws. The combined effects of the slip boundary conditions, fluid
rheology, electro-osmotic and pressure gradient forcings on the fluid velocity
distribution and streaming potential are discussed.

11.1 introduction

The no-slip boundary condition is usually accepted as a law, and not
as an empirical formula (Lamb, 1932). This happens because of the
good agreement between experiments and theory over a large number
of experiments made with Newtonian fluids since the early stages of
fluid dynamics. With the evolution of fluid mechanics toward micro
and nano-scales together with evidence of wall slip during experimen-
tal works with Newtonian and non-Newtonian fluids, and with the
help of numerical simulations, the velidity of the no-slip law was ques-
tioned. Nowadays, the wall slip velocity phenomenon in fluids is an
accepted fact and the observation of wall slip in viscoelastic fluid flows
is a fact that has been reinforced consistently in the literature over the
years. Denn (2001) and (Lauga et al., 2005) provided a good account
of slip effects including measurements and theoretical approaches for
Newtonian and non-Newtonian fluids. Kazatchkov and Hatzikiriakos
(2010) and (Hatzikiriakos, 2012) provide new physical models that are
able to capture the slippery characteristics of certain viscoelastic fluids.
Hatzikiriakos (2012) also showed the good agreement between nu-
merical and physical data for the multimode dynamic slip boundary
conditions. All these works refer to for pressure-driven flows.
For electro-osmotic driven flows the existence of slip velocity was more
readily accepted (Zhu and Granick, 2001; Tretheway and Meinhart,

1 A.M. Afonso, L.L. Ferrás, J.M. Nóbrega, M.A. Alves, F.T. Pinho (2012), Mixed electro-
osmotic/pressure driven slip-flows of viscoelastic fluids in hydrophobic microchan-
nels, to be submitted to Journal of Non-Newtonian Fluid Mechanics;
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2002, 2004; Tandon et al., 2008; Park and Kim, 2009). For flows with
charged walls and polar fluids a thin electric double layer (EDL) is
formed in the vicinity of the walls, where the imbalance of positive
and negative ions results in an electric force that affects the fluid flow.
At the scales typical in microfluidics, the interaction between the wall
and the fluid leads to electrokinetics phenomena, which are strongly
dependent on surface and fluid chemistry, the possible existence of
gas near the wall, wall roughness and other local properties. If the
wall surface is treated either by physical or chemical means, with the
purpose of modifying its surface properties, the wall hydrophobicity
or the slip characteristic can be tuned. This modification of the inter-
facial condition may result in a change in the wall zeta potential, but
since it is difficult to model the details of the surface condition, such
as roughness or gas bubble attached, the resultant fluid slippage is
usually described by using the Navier law (Navier, 1822) with slip
length as an index just like the slippage data listed by (Voronov et al.,
2008). Churaev et al. (2002) presented a simple linear relationship
between zeta potential and slip length. In a study of simultaneously
determining slip and zeta potential, (Yang and Kwok, 2002) obtained a
modified expression by introducing a modification factor, appropriate
for low zeta potentials in the Debye-Hückel model. Using molecular
dynamics simulations, (Joly et al., 2004) disclosed that the immobile
layer disappears in the cases of non-wetting (i.e., hydrophobic) sur-
faces, and the zeta potential deduced from electrokinetic effects is thus
considerably amplified by the existence of slippage at the solid surface.
More recently, a nonlinear expression for a dilute z–z symmetric elec-
trolyte was proposed in the review article by Tandon et al. (Tandon
et al., 2008).
In order to assess if the proposed slip models are reliable, analytical
solutions and numerical simulations are important tools, and, even
for the latter, the analytical solutions are again of major importance
for code verification under simplified flow conditions. These facts, to-
gether with the urge of understanding slip in fluid flows, are the main
motivations of this work. On what concerns analytical solutions for
viscoelastic fluids with slip boundary conditions, we can distinguish
two cases: the pressure-driven viscoelastic fluid motion and the vis-
coelastic fluid motion driven by a combination of electro-osmotic and
pressure forcings. For the first case we have a wide range of literature
contributions, such as (Fujita, 2002) who looked at the well-posedness
of the Navier-Stokes system of equations with slip boundary condi-
tions, (Mitsoulis and Hatzikiriakos, 2009; Hatzikiriakos and Mitsoulis,
2009) who investigated generalized non-Newtonian fluid flows and
the non-linear Navier slip boundary condition and (Pereira, 2009) who
analysed microfluidic flows for Newtonian, generalized Newtonian
and viscoelastic fluids governed by the White-Metzner model using
the linear Navier slip boundary condition. For the simplified Phan-
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Thien—Tanner (sPTT) (Phan-Thien and Tanner, 1977; Phan-Thien,
1978) and Giesekus (Giesekus, 1982) models, analytical solutions with
slip boundary conditions were discussed by (Ferrás et al., 2012c), who
extended several previous investigations to other common slip laws
(four different slip boundary conditions were used). Naturally, in the
absence of wall slip there is a wealth of analytical solutions and for
the PTT fluid we single out the solutions for channel and pipe flows
(Oliveira and Pinho, 1999a; Alves et al., 2001a).
For the second case, viscoelastic fluid motion driven by a combination
of electro-osmotic and pressure forcings in the presence of wall slip,
we are only aware of analytic solutions for Newtonian fluids. Ngoma
and Erchiqui (2007) investigated numerically and analytically the ef-
fects of heat flux and boundary slip on electrokinetic flows invoking
the Debye-Hückel approximation. Yang and Kwok (2004) presented
analytical solutions of time-dependent microfluidic flow in rectangular
hydrophobic microchannels by combining electrokinetic effect with
wall slip. Soong et al. (2010) analysed pressure-driven electrokinetic
flows in hydrophobic microchannels using a nonlinear slip-dependent
zeta potential for dilute z–z symmetric electrolytes, and (Jamaati et al.,
2010) investigated pressure-driven electrokinetic slip-flow in planar mi-
crochannels. For non-Newtonian fluids the existing analytical solutions
are for no-slip at the wall. Here,(Zhao and Yang, 2011) report a theo-
retical analysis of electro-osmotic mobility of non-Newtonian fluids
and (Afonso et al., 2009b, 2011a) present analytical solutions of mixed
electro-osmotic/pressure driven viscoelastic fluids in microchannels,
including for the case of electro-osmotic flow under asymmetric zeta
potential. (Sousa et al., 2011) considered the formation of a skimming
layer without polymer additives near the walls, and (Dhinakaran et al.,
2010) analysed the channel flow for the full PTT model with non-zero
second normal stress difference, but only considering EOF without
an imposed pressure gradient. Recently,(Afonso et al., 2012) derived
the analytical solution for fully-developed electro-osmosis driven flow
of polymer solutions described by the sPTT and FENE-P (Bird et al.,
1980) models with a Newtonian solvent.
The objectives of this work are then to fill this gap in the literature and
to add some enlightenment to the understanding of the slip velocity
phenomena in combined electro-osmotic/pressure- driven viscoelastic
flows. The paper starts with the set of governing equations, including
the nonlinear Poisson –Boltzmann equation governing the EDL field
and the added body force to the momentum equation caused by the
applied electrical potential field. The simplifications required to obtain
the analytical solution are discussed, the solutions are presented and
a discussion of the effects of the various relevant nondimensional
parameters upon the flow characteristics are presented before the
conclusions of the work.
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Figure 11.1: Schematic of the flow in a microchannel.

11.2 governing equations

The steady, isothermal and fully-developed flow of an incompressible
viscoelastic fluid is sketched in Figure 12.1. The basic governing equa-
tions describing this fully-developed flow for incompressible fluids
are the continuity equation,

∇ · u = 0 (11.1)

and the momentum equation,
−∇p +∇ · τ + ρeE = 0 (11.2)

where u is the velocity vector, p the pressure, ρ the fluid density and
ø the polymeric extra-stress contribution. The ρeE term of equation
(11.2) represents a body force per unit volume, where E is the applied
external electric field and ρe is the net electric charge density in the
fluid. The electric field is related to the electric potential, Φ, by

E = −∇Φ (11.3)

while the electric potential is governed by,

∇2Φ = −ρe

ε
(11.4)

where ε is the electrical permittivity of the solution. Two electric fields
are relevant in EOF flows: one is the applied electric field, φ, generated
by the electrodes at the inlet and outlet of the flow geometry; the
other electric field is due to the net charge distribution in the EDL, ψ,
associated to the charge acquired by the fluid near the walls. The total
electric field is given by linear superposition of these two contributions,

Φ = φ + ψ (11.5)

Equations (11.4) and (11.5) can be rewritten as two separate equations
(Bruss, 2008),

∇2φ = 0 (11.6)
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and
∇2ψ = −ρe

ε
. (11.7)

In many circumstances, when the flow (and the ionic distribution) is
stationary, the electric double layer does not overlap at the center of
the channel and significant variations of ψ occur only in the normal
direction to the channel walls, in which case the stable Boltzmann
distribution of ions in the electric double layer can be assumed. In
this situations the electric charge density can be obtained by a Pois-
son–Boltzmann equation, by the following distribution (Bruss, 2008):

ρe = −2noez sinh
(

ez
kBT

ψ

)
(11.8)

where no = CNA is the bulk number concentration of ions in the elec-
trolyte solution, C is the molar concentration of ions, NA is Avogadro’s
number, T is the absolute temperature and kB is the Boltzmann con-
stant. For small values of ezζs/kBT, synonymous of a small ratio of
electrical to thermal energies, equation (11.8) can also be linearized,
since sinh x ≈ x (ζs is the maximum value of ψ, at the wall). This is the
so-called Debye-Hückel approximation for which the electric charge
density equation becomes

ρe = −εκ2ψ (11.9)

where κ2 = 2noe2z2

εkBT is the Debye-Hückel parameter, related to the
thickness of the Debye layer, (also referred to as the EDL thickness,
λD = κ−1).

11.2.1 Constitutive equations

The polymer extra-stress ø tensor in equation (11.2) needs to be de-
scribed by an appropriate constitutive equation, and in this work we
consider two models to be described in the next sections.

PTT model

The first model here considered was proposed by Phan-Thien and
Tanner (Phan-Thien and Tanner, 1977; Phan-Thien, 1978) , based on
network theory arguments, in the form:

f (τkk)τ + λ
∇
τ = 2ηD (11.10)

where D =
(
5uT +5u

)
/2 is the rate of deformation tensor, λ is the

relaxation time of the fluid, η is a polymer viscosity coefficient and
∇
ø

represents the upper-convected derivative of ø, defined as
∇
τ =

Dτ

Dt
−5uT.τ − τ.5 u (11.11)
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The stress coefficient function, f (τkk), is given by the linear form
(Phan-Thien and Tanner, 1977)

f (τkk) = 1 +
ελ

η
τkk (11.12)

where τkk represents the trace of the extra-stress tensor and ε is the
extensibility parameter that imposes an upper limit to the elongational
viscosity. For ε = 0 the upper-convected Maxwell model (UCM) is
recovered.

11.2.1.1 FENE-P model

The second viscoelastic model used in this work is the FENE-P equa-
tion, based on the kinetic theory for finitely extensible non-linear
elastic (FENE) dumbbells with a Peterlin approximation for the aver-
age spring force. In this case the polymer extra-stress is given by (Bird
et al., 1980):

Z(τkk)τ + λ
∇
τ − λ

(
τ − b

b + 2
nkBTI

)
D ln Z

Dt
= 2η

(
b + 5
b + 2

)
D

(11.13)
where I is the identity tensor, b is a parameter that measures the
extensibility of the dumbbell, kB is the Boltzmann constant, T is the
absolute temperature and n is a parameter of the model (Bird et al.,
1980). The stress coefficient function, Z(τkk), is given by (Bird et al.,
1980),

Z(τkk) = 1 + 3
(

1
b + 2

+
λ

3η

τkk

(b + 5)

)
(11.14)

Note that for fully-developed flows D ln Z/Dt = 0 and equation (11.13)
becomes considerably simplified.

11.2.2 Boundary conditions and slip-flow assumptions

Since we assume that the microchannel walls are hydrophobic, and
therefore the immobile layer disappears in the cases of non-wetting
surface, we have the necessity of slip boundary conditions at the wall.
The chosen slip boundary condition is the non-linear Navier slip law
(Navier, 1822; Schowalter, 1988) given by

u‖y=H = Lssign

(
du
dy ‖y=H

) ∣∣∣τxy‖y=H

∣∣∣m (11.15)

where Ls represents the non-linear Navier slip coefficient. For m = 1,
the classical linear Navier slip law (Navier, 1822) is recovered.
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11.3 analitical solution

11.3.1 Analytical solution for the PTT model

For fully developed channel flow of viscoelastic fluids driven mixed
electro-osmotic/pressure driving forcings, the momentum equation -
equation (11.2) - reduces to

dτxy

dy
= −ρeEx + p,x (11.16)

where y is the transverse coordinate, p,x ≡ dp/dx, Ex ≡ −dφ/dx
and φ is the electric potential of the applied external field, which is
characterized by a constant streamwise gradient under fully-developed
flow conditions. Note that in this flow the external electrical field
is positive according to Fig. 12.1, and negative otherwise. In this
flow the Poisson-Boltzmann distribution is valid and additionally we
invoke the Debye-Hückel approximation (see (Afonso et al., 2009b) for
justifications). Since eq. (11.7) can be solved subjected to dψ/dy = 0 at
the symmetry plane/axis and the zeta potential at the wall, ζs, leading
to

ψ = ζs
cosh (κy)
cosh (κH)

(11.17)

for 0 ≤ |y| ≤ H. The net charge density distribution, equation (11.9),
in conjunction with equation (11.17) reduces to

ρe = −εζsκ
2 cosh (κy)

cosh (κH)
(11.18)

which is a positive quantity for a negatively charged wall (ζs < 0).
Noting that the shear stress at the centerline is zero, Eq. (11.16) can be
integrated to yield the following linear contribution of electro-osmotic
and pressure gradient contributions to the shear stress distribution

τxy = εζsExκ
sinh (κy)
cosh (κH)

+ p,xy (11.19)

For the same fully-developed flow conditions, the non-zero extra-stress
components for the PTT model are defined as,

f (τkk)τxx = 2λ
du
dy

τxy (11.20)

f (τkk)τxy = ηp
du
dy

(11.21)

where τkk = τxx, since τyy = τzz = 0 (Phan-Thien and Tanner, 1977) ,
and du

dy is the velocity gradient. Then, upon division of equation (11.20)
by equation (11.21) the specific function f (τxx) cancels out, and the
following relation between the normal and shear stresses is obtained,

τxx = 2
λ

ηp
τ2

xy. (11.22)
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Using these relations, an explicit expression for the normal stress
component can be obtained,

τxx = 2
λ

η

(
εζsExκ

sinh (κy)
cosh (κH)

+ p,xy
)2

(11.23)

To determine the velocity gradient, equations (11.21), (11.19) and
(11.23) are combined to give

·
γ ≡ du

dy =

[
1 + 2ελ2

(
κεζsEx

η
sinh(κy)
cosh(κH)

+ p,x
η y
)2
]

.(
κεζsEx

η
sinh(κy)
cosh(κH)

+ p,x
η y
) (11.24)

It is often more convenient to work with the dimensionless form of
equation (11.24). Introducing the normalizations, ū = u/ush, ȳ = y/H
and κ̄ = κH, the dimensionless velocity gradient can be written as
·
γ

ush/H
≡ du

dy
=

[
1 + 2

εDe2
κ

κ2

(
Γy− κ

sinh (κ̄y)
cosh (κ̄)

)2
](

Γy− κ
sinh (κ̄y)
cosh (κ̄)

)
(11.25)

where Deκ = λush
ξ = λκush is the Deborah number based on the EDL

thickness and on the Helmholtz-Smoluchowski electro-osmotic veloc-
ity, defined as ush = − εζsEx

η . In Poiseuille flows a different Deborah
number is usually defined (Oliveira and Pinho, 1999a) based on the
bulk velocity for the Newtonian flow under the sole influence of pres-
sure gradient and the channel half-height, DeN = λUN

H with UN =

−H2 p,x
3η . A third alternative Deborah number for electro-osmotic flow is

based again on ush, but considers the channel half-height, Desh = λush
H .

These three Deborah numbers are related by Deκ = κ̄Desh = − 3
Γ κ̄DeN ,

where the dimensioless parameter Γ = − H2

εζs

p,x
Ex

represents the ratio of
pressure to electro-osmotic driving forcings. Equation (11.25) can be
integrated subject to the dimensionless slip boundary condition at the
wall,

u
ush ‖y=1

= Ls
(
κD− Γ

)m (11.26)

where Ls = Ls
( η

H

)m
(ush)

m−1 and the resulting dimensionless velocity
profile is

u
ush

= Ls
(
κD− Γ

)m
+ (1− 2CεDe2

κ)(1− A) +
2
3

εDe2
κ(1− A3

)

− 1
2

Γ
(
1− ȳ2) [1 +

εDe2
κ

κ̄2 Γ2 (1 + ȳ2)]
+

3
2

εDe2
κ

κ̄2 Γ
[
1− A2

+ (κ̄2 − (κ̄ȳ)2)C + 2κ̄D
(
ȳA B− 1

)]
− 12εDe2

κ

κ̄4 Γ2
[

κ̄D
(
1− yB

)
+ (1 +

1
2
(κ̄ȳ)2)A− (1 +

1
2

κ̄2)

]
(11.27)
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where A = cosh(κ̄ȳ)
cosh(κ̄) , B = sinh(κ̄ȳ)

sinh(κ̄) , C = 1
cosh2(κ̄)

and D = tanh (κ̄).
Equation (11.27) couples the Poiseuille and electro-osmotic flows with
terms that are simultaneously proportional to p,x and Ex. This contri-
bution only exists because the fluid is nonlinear, i.e., no such effect is
present if the fluid is Newtonian or a quasi-linear viscoelastic fluid,
such as UCM fluid. Equation (11.27) shows that the superposition
principle valid for Newtonian and quasi-linear viscoelastic fluids is no
longer valid for the PTT and FENE-P fluids, as proposed by (Afonso
et al., 2009b, 2011a).
Flow problems are usually of direct or indirect/inverse type. In a
direct problem the pressure gradient p,x and the applied electric
potential gradient Ex are known (or instead the ratio of pressure to
electro-osmotic driving forces is known) and the flow rate, or the cross-
sectional average velocity, is required. The flow rate can be determined
from integration of the normalized velocity profile, equation (11.27),
thinking ahead on the benefit this brings to the inverse problem, where
the aim is the determination of Γ for a given dimensionless flow rate.
The expression for the normalized flow rate is

Q = Q
Hush

= 2u
ush

=
∫ 1
−1

u
ush

dy = 2
∫ 1

0
u

ush
dy = 2Ls

(
κD− Γ

)m

+2
(
1− 2CεDe2

κ

) (
1− D

κ̄

)
+ 4

3 εDe2
κ

(
1− 1

3
D
κ̄

(
1 + 2C

))
−2Γ

(
2
5

εDe2
κ

κ̄2 Γ2 + 1
3

)
+ 3 εDe2

κ

κ̄2 Γ
(

2− D
κ̄ − C + 2

3 Cκ̄2 − 2κ̄D
)

− 24εDe2
κ

κ̄4 Γ2
(
−3 + 3 D

κ̄ + 3
2 κ̄D− 1

2 κ̄2
)

(11.28)
For Navier slip coefficient with m = 1, 2 and 3, this is a cubic equation
on Γ and the solution of the inverse problem (calculation of Γ for a
given Q) involves the determination of Γ, which can be done using
the Cardan-Tartaglia solution for cubic algebraic equations. Within
the assumptions invoked in the previous sections, the analysis in this
section is general, but relies on the Debye-Hückel approximation. Here,
as in many practical applications the finite electric double layer is very
small, about 1 to 3 orders of magnitude smaller than the thickness
of the microfluidic channel (10 . κ̄ . 103). In these circumstances
cosh (κ̄) � 1 and D = tanh (κ̄) ≈ 1, so the above equations for the
velocity profile can be further simplified. In particular the normalized
flow rate becomes

Q ' 2Ls (κ − Γ)m + 2
(

κ̄ − 1
κ̄

)
+

4
3

εDe2
κ

(
3κ̄ − 1

3κ̄

)
−
(

4εDe2
κΓ3

5κ̄2 +
2Γ
3

)
+ 3

εDe2
κ

κ̄2 Γ
(

2κ̄ − 1− 2κ̄2

κ̄

)
− 24εDe2

κ

κ̄4 Γ2
(

κ̄

2
(3− κ̄) +

3− 3κ̄

κ̄

)
(11.29)

which is simpler than equation (??), but still cubic in Γ for m = 1, 2

and 3. This expression can be written in compact as
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Γ3 + a1Γ2 + a2Γ + a3 = 0 (11.30)

for m = 1, 2 or 3. The explicit solution of the inverse problem, giving
the ratio of pressure to electro-osmotic driving forces as a function
of the dimensionless flow rate, viscoelastic model parameters and
relative microchannel ratio is obtained using the Cardan-Tartaglia
solution,

Γ =
3

√√√√−b1

2
+

√
b2

1
4
+

a3

27
+

3

√√√√−b1

2
−

√
b2

1
4
+

a3

27
− a1

3

a = a2 −
a2

1
3

b1 = a3 −
a1a2

3
+

2a3
1

27
(11.31)

with

a1 =
24 εDe2

κ

κ̄4

(
κ̄
2 (3− κ̄) + 3−3κ̄

κ̄

)
− 2 (m− 1)Ls

( 3
2 κ
)m−2(

4
5

εDe2
κ

κ̄2 + 2δm3Ls

)
a2 =

2
3 − 3 εDe2

κ

κ̄2

(
2κ̄−1−2κ̄2

κ̄

)
+ 2mLsκ

m−1(
4
5

εDe2
κ

κ̄2 + 2δm3Ls

) (11.32)

a3 =
Q− 2

(
κ̄−1

κ̄

)
− 4

3 εDe2
κ

( 3κ̄−1
3κ̄

)
− 2Lsκ

m(
4
5

εDe2
κ

κ̄2 + 2δm3Ls

)
where δm3 is a Kronecker delta that assumes the value of 1 only for
m = 3 and 0 for m = 1 and 2.
The explicit expressions for the dimensionless shear and normal stress
components are obtained from normalization of equations (11.19) and
(11.23),

τxy

3ηushκ
=

1
3

[
Γ

y
κ̄
− sinh (κ̄y)

cosh (κ̄)

]
(11.33)

τxx

3ηushκ
=

2
3

Deκ

(
Γ

y
κ̄
− sinh (κ̄y)

cosh (κ̄)

)2

(11.34)

Wall values for all these quantities are useful and are obtained after
setting y = 1 (and tanh (κ̄) ≈ 1 for κ̄ & 10):

τxy

3ηushκ

∣∣∣∣
w
' 1

3

(
Γ
κ̄
− 1
)

τxx

3ηushκ

∣∣∣∣
w
' 2

3
Deκ

(
Γ
κ̄
− 1
)2

(11.35)
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11.3.2 Streaming potential solution

In the solution of the previous section, the electrical field Ex can be
applied externally or be a consequence of electric potentials created
by the flow. In the absence of an externally applied electrical field,
the imposed pressure difference causes a flow containing ions in
motion, hence it causes an electrical current, called the streaming
current, I′s. The streaming current accumulates counter-ions at the
end of the channel therefore setting up an electric field, Ex,sp which
is associated with the so-called streaming potential, φsp via Ex,sp =

−∆φsp/l. Therefore, this induced electric field opposes the flow and
creates an opposite current, I′c, called conduction current. The net
electrical current, I′, is the sum of the streaming current with the
electrical conduction current and in steady-state should be zero:

I′ = I′s + I′c ≡ 0 (11.36)

The electrical streaming current (per unit of width) is of the form:

I′s = 2
∫ H

0
u(y)ρe(y)dy (11.37)

which for the particular case of the PTT fluid leads to

I′s
εζs

= 2Ls
(
εζsExκD + p,x H

)m (
κD
)

+κ
[

εζsEx,sp
η

] [
D− κHC + κ2ελ2

[
εζsEx,sp

η

]2 [
D + 3

2 κHC2 − 5
2 D C

]]
+ 2

κ

[
p,x
η

] [
κH − D +

[
p,x
η

]2
2ελ2

κ2

(
κ3H3 − 6D− 3κ2H2D + 6κH

)]
+4κελ2

[
εζsEx,sp

η

]2 [ p,x
η

] [
− 1

3 D + κHD2 − 2κHC + 7
3 D C

]
+

2ελ2

κ

[
εζsEx,sp p2

,x
η3

] [
3κ2H2D− 12κHD2

+ 3D
2 − (κH)3 C + 9κH − 21

2 κHC
]

(11.38)
The electrical conduction current in the channel can now be expressed
as:

I′c = 2σtEx,spH (11.39)

where σt is the total electric conductivity. Note that the conduction
current can now flow back through both the fluid as well as the
channel walls, depending on the corresponding electrical conduc-
tivities. The total electrical conductivity can be calculated as σt =

σf luid + σsurPsur/Achan, where Psur and Achan are the wetting perimeter
and cross section area of the channel, respectively and σf luid and σsur

are the fluid bulk and wall surface conductivities, respectively. This
equation and the condition imposed by equation (11.36) leads finally
to the expression that defines the relation between the imposed pres-
sure gradient and the ensuing streaming electric field, Ex,sp. This ratio
is Γsp = − H2

εζs

p,x
Ex,sp

and such relation is given by equation (11.40)
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−2Υ1 = 2LsκD
(
κD− Γsp

)m

κD− κ2C + 9
κ3εDe2

N
Γ2

sp

(
D +

3
2

κC2 − 5
2

D C
)

− 2
κ

Γsp

[
κ − D +

18εDe2
N

κ2

(
κ3 − 6D− 3κ2D + 6κ

)]
− 36

κεDe2
N

Γsp

[
−1

3
D + κD2 − 2κC +

7
3

D C
]

+ 18
εDe2

N
κ

[
3κ2D− 12κD2

+
3
2

D− κ3C + 9κ − 21
2

κC
]

(11.40)

with Υ1 = H2ησt
ε2ζ2

s
. This new dimensionless number quantifies the effect

of electric conductivity. Equation (11.40) is a cubic equation in Γsp for
m = 1, and for such linear Navier slip law can be rewritten in compact
form as

Γ3
sp + a1Γ2

sp + a2Γsp + a3 = 0 (11.41)

with coefficients

a1 =

2Υ1+κD−κ2C+2Lsκ2D2

2
(

D−κ
κ

)
−2LsκD− 36εDe2

N
κ3 (κ3−6D−3κ2D+6κ)

+

+
18

εDe2
N

κ

[
3κ2D−12κD2

+ 3
2 D−κ3C+9κ− 21

2 κC
]

2
(

D−κ
κ

)
−2LsκD− 36εDe2

N
κ3 (κ3−6D−3κ2D+6κ)

a2 =
−36κεDe2

N

[
− 1

3 D + κD2 − 2κC + 7
3 D C

]
2
(

D−κ
κ

)
− 2LsκD− 36εDe2

N
κ3

(
κ3 − 6D− 3κ2D + 6κ

)
a3 =

9κ3εDe2
N

(
D + 3

2 κC2 − 5
2 D C

)
2
(

D−κ
κ

)
− 2LsκD− 36εDe2

N
κ3

(
κ3 − 6D− 3κ2D + 6κ

) (11.42)

Equation (11.31) is also the solution of equation (11.41) for Γsp, but
with the coefficients a1, a2 and a3 given by equation (11.42). For large κ̄,
cosh (κ̄)� 1 and D = tanh (κ̄) ≈ 1, and the above equations simplify
to become

a1 =
2Υ1 + κ + 18 εDe2

N
κ

[
3κ2 − 12κ + 3

2 + 9κ
]
+ 2Lsκ

2

2
( 1−κ

κ

)
− 2Lsκ − 36εDe2

N
κ3

(
κ3 − 3κ2 + 6κ − 6

)
a2 =

−36κεDe2
N
[
κ + 6

3

]
2
( 1−κ

κ

)
− 2Lsκ − 36εDe2

N
κ3

(
κ3 − 3κ2 + 6κ − 6

)
a3 =

9κ3εDe2
N

2
( 1−κ

κ

)
− 2Lsκ − 36εDe2

N
κ3

(
κ3 − 3κ2 + 6κ − 6

) (11.43)

As expected, equations (11.41) -(11.42) reduce to the solution without
slip, as found in (Afonso et al., 2009b), when Ls → 0, and to the
Newtonian fluid solution, when ε→ 0:
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Γsp = Υ1

1 + 1
2

κ2

Υ1

(
D
κ − C

)
1− D/κ

 (11.44)

11.3.3 Analytical solutions for the FENE-P model
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Figure 11.2: Velocity profiles for various ratios of pressure to electro-osmotic
driving forcings, Γ, and various slip coefficients, L̄s = 0 and
0.002, for Newtonian fluids with relative microchannell ratio of
(a) κ̄ = 20 and (b) κ̄ = 100.

For the FENE-P fluid in fully-developed shear flow between two
parallel plates, i.e., subjected to the velocity field u = {u(y), 0, 0},
equations (11.13) and (11.14) reduce to

Z(τkk)τxx = 2λ
·
γτxy (11.45)

Z(τkk)τxy =

(
b + 5
b + 2

)
η
·
γ (11.46)

Again, the trace of the extra-stress tensor becomes økk = øxx, thus
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Z(τxx) =

(
b + 5
b + 2

) [
1 +

λ

η

(b + 2)
(b + 5)2 τxx

]
(11.47)

The relation between the normal and shear stresses is,

τxx = 2
λ

η

(
b + 2
b + 5

)
τ2

xy (11.48)

For fully-developed channel flow there is similarity between the solu-
tions for the PTT and the FENE-P models as found by (Oliveira, 2002).
Comparing the equations for the PTT model with equations (11.45)
and (11.46) for the FENE-P model, and since the momentum equation
(11.16) is independent of the constitutive equation, there is an exact
equivalence of the solution in the sense of a parameter to parameter
match, as explained in detail in (Cruz et al., 2005). Hence, the solution
of the previous sections also applies to the flow of FENE-P fluids,
provided the following change of variables are made:

f (τxx)→
(

b + 2
b + 5

)
Z(øxx)

λ→ λ

(
b + 2
b + 5

)
(11.49)

ε→ 1
b + 5

η → η

11.4 results and discussion

In the previous section, general equations were derived for fully-
developed flow of viscoelastic fluids, described by the sPTT and
FENE-P models, under the mixed influence of electrokinetic and
pressure-gradient forcings, including the account of microchannel
wall hydrophobicity. The different influences of the driving forces
and fluid rheology on the velocity profile have been identified in
equation (11.27) and in this section we discuss in detail some limiting
cases in order to understand the fluid dynamics. The following cases
included in the general solution that will be discussed next are: (a)
Newtonian fluid with mixed electro-osmotic/pressure driving forc-
ings with wall slip; (b) Viscoelastic fluid under the sole influence of
an electro-osmotic driving forcing with wall slip; (c) Poiseuille flow
of a viscoelastic fluid with wall slip; (d) Viscoelastic fluid with mixed
electro-osmotic/pressure driving forcings with wall slip. Case (c) was
studied in detail by (Ferrás et al., 2012c), and so was case (a) by (Soong
et al., 2010) and (Jamaati et al., 2010), but this latter situation is briefly
revisited here as a starting point.
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11.4.1 Newtonian fluid with mixed driving forcings with wall slip
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Figure 11.3: Dimensionless velocity profiles of a PTT fluid for various values
of
√

εDeκ under pure electro-osmotic flow (Γ = 0) (L̄s = 0 solid
lines, L̄s = 0.02 dashed lines). (a) κ̄ = 20 and (b) κ̄ = 100.

For a Newtonian fluid the relaxation time is zero and the Deborah
number vanishes (Deκ = 0), thus equation (11.27) becomes

u
ush

= Ls
(
κD− Γ

)m
+ (1− A)− 1

2
Γ
(
1− ȳ2) (11.50)

under the mixed influence of electro-osmotic and pressure driving
forcings. For linear Navier slip law (m = 1), equation (11.50) reduces
to that shown in (Jamaati et al., 2010). For Γ → 0, the last term on
the right-hand-side of equation (11.50) vanishes, the flow becomes
governed solely by the electro-osmosis and the velocity profile is only
a function of the wall distance and the relative microchannel ratio,
κ̄. For 1

Γ → 0, pressure forcing dominates the momentum transport,
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and the classical laminar parabolic velocity profile is recovered. Figure
11.2 shows velocity profiles for various ratios of pressure gradient
to electro-osmotic driving forcings at κ̄ = 20 and κ̄ = 100 for two
different values of the slip coefficient, Ls = 0 and 0.002. When Γ = 0
the velocity profiles correspond to a pluglike flow. The cases Γ <

0 and Γ > 0 correspond to Poiseuille electro-osmotic flows with
favorable and adverse pressure gradients, respectively. Equation (11.50)
predicts negative velocities at ȳ = 0 when Γ > 2

2Ls+1

(
cosh(κ̄)−1

cosh(κ̄)

)
+

2Ls
2Ls+1

κ tanh (κ̄) for linear Navier slip law, m = 1. For small Debye
lengths, κ̄ & 10 , the velocity becomes negative in the central region
of the channel for Γ & 2+2Lsκ

2Ls+1
, which, as expected, reduces to the

solution without slip, Γ & 2, as found in (Afonso et al., 2009b) when
Ls → 0. When comparing with the no-slip solutions, we can see that
the presence of slip velocity changes the velocity profile and requires
larger adverse pressure gradients to obtain negative velocities.
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Figure 11.4: Dimensionless velocity profiles of a PTT fluid for various values
of
√

εDeκ , m and L̄s and constant κ̄ = 20 under pure electro-
osmotic flow (Γ = 0).

11.4.2 Viscoelastic fluid driven bu electro-osmosis with wall slip

The discussion in this paper on viscoelastic flows is for a PTT fluid, but
the analysis is identical for a FENE-P model provided the substitutions
given before are made. For pure electro-osmotic flow (Γ = 0) of a
viscoelastic fluid, equation (11.27) reduces to

u
ush

= Ls
(
κD− Γ

)m
+ (1− 2CεDe2

κ)(1− A) +
2
3

εDe2
κ(1− A3

)

(11.51)
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Figs. 11.3(a) and (b) show the dimensionless velocity profiles as a
function of

√
εDeκ for two relative microchannel ratios κ̄ = 20 and κ̄ =

100, with and without slip velocity. By comparing with the Newtonian
case we see that a pluglike velocity profile is again obtained, but now√

εDeκ and Ls both contribute to an increase of the velocity plateau,
especially for κ̄ = 100 where the effect of the slip velocity is more
significant. The influence of κ̄ on the velocity profile is restricted to the
effective EDL thickness, with the velocity profiles for higher values of
κ̄ exhibiting thinner EDL layers and consequently stronger velocity
gradients (or shear rates). In Fig. 11.4 we analyse the effect of the slip
law exponent m on the velocity profile. The profiels shown that an
increase in m leads to an increase of the velocity plateau, with the
influence of m being more important than Ls in the increase of the
flow rate.

11.4.3 Viscoelastic fluid with mixed driving forcings with wall slip

The viscoelastic flow characteristics under the combined action of
electro-osmosis and pressure gradient forcings are discussed in this
section, based on equation (11.27). Figs. 11.5(a) and (b) present di-
mensionless velocity profiles for flows with favorable and adverse
pressure gradients, respectively. For both Γ < 0 and Γ > 0 the velocity
profiles increase with

√
εDeκ and Ls, and, as also shown in Fig. 11.3,

the increase due to the slip coefficient Ls contribution is more intense
for higher values of

√
εDeκ.

The effect of the slip velocity on the velocity profile can be easily seen
when imposing a constant flow rate Q. Figs. 11.6(a) and (b) present
velocity profiles as a function of Ls at flow rate Q = 1, for the cases√

εDeκ = 0 and
√

εDeκ = 2. The presence of viscoelasticity leads to a
decrease of the centerline velocity (see Fig. 11.6(b)) when compared to
the Newtonian case (see Fig. 11.6(a)), and the slip velocity enhances
this effect. Simultaneously, an increase of the velocity gradients in the
EDL layers are observed in for higher

√
εDeκ and Ls. Figs. 11.6(c) and

(d) show similar results, but now for a higher dimensionless flow rate,
Q = 3.
In order to see the influence of Γ on the flow rate Q , in Fig. 11.7 we
show the variation of Q/QN (QN is the flow rate that would be observed
for a Newtonian fluid with no slip velocity for each Γ) with Γ for κ = 20
and different values of L̄s and

√
εDeκ. For

√
εDeκ = 0 (Newtonian

fluid) we can see that the dimensionless flow rate always increases
with Γwhile for the other values of

√
εDeκ and L̄s the dimensionless

flow rate in non-monotonic. Again, we obtain higher flow rates for
the case with slip velocity. This can also be seen in Figs. 11.8(a) and
(b) which illustrate the variation of Q/QN as a function of

√
εDeκ and

L̄s, for two different values of Γ. The parameter
√

εDeκ leads to a
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Figure 11.5: Dimensionless velocity profiles for a PTT fluid under the mixed
influence of electro-osmotic/pressure driving forcings as func-
tion of

√
εDeκ and L̄s with a relative microchannel ratio of

κ̄ = 20: (a) favorable pressure gradient (Γ = −1) and (b) adverse
pressure gradient (Γ = 2.5).

significant increase of Q/QN and an increase of the slip velocity also
enhances Q/QN as expected.
We now discuss the streaming potential, working with the reciprocal
of ΓSP , Γ−1

SP . Figs. 11.9(a) and (b) show that Γ−1
SP increases with the

viscoelasticity for different values of L̄s, Υ1 and κ, and that the am-
mount of electrical streaming current asymptotically converges to a
saturation point. We can also see that the increase of Υ1 leads to a
decrease of Γ−1

SP as also discussed by (Afonso et al., 2009b), but now
the slip velocity has a nonlinear relationship with both Υ1 and κ. In
Fig. 11.9(a) we see that for Υ1 = 1 the slip velocity leads to a decrease
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Figure 11.6: Dimensionless velocity profiles for Newtonian (
√

εDeκ = 0) and
PTT fluids (

√
εDeκ = 2) under the mixed influence of electro-

osmotic/pressure driving forcings for different values of the slip
coefficient L̄s and κ = 20: (a) Q=1 and

√
εDeκ = 0; (b) Q=1 and√

εDeκ = 2; (c) Q=3 and
√

εDeκ = 0; (d) Q=3 and
√

εDeκ = 2.
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ent values of the slip coefficient, L̄s, and

√
εDeκ .

of Γ−1
SP , but for Υ1 = 100, Γ−1

SP increases with L̄s. For κ = 100 (Fig.
11.9(b)), Γ−1

SP decreases with L̄s for both Υ1 = 1 and Υ1 = 100.

11.5 conclusions

In this work, we derived analytical solutions for channel flows of
viscoelastic fluids in hydrophobic microchannels under the combined
influence of electrokinetic and pressure forcings using the Debye-
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Figure 11.8: Variation of the dimensionless flow rate Q/QN rate with
√

εDeκ

and the slip coefficient L̄s for the pressure driven/electro-
osmotic flow of a PTT fluid for relative microchannel ratio
κ = 20: (a) favorable pressure gradient (Γ = −1) and (b) ad-
verse pressure gradient (Γ = 2.5).

Hückel approximation, including the limiting case of pure electro-
osmotic flow and the account of wall slip. The analysis is restricted
to cases with small electric double-layer, where the distance between
the walls of a microfluidic device is at least one order of magnitude
larger than the EDL. The viscoelastic fluids used are described by the
sPTT model, with linear kernel for the stress coefficient function and
the FENE-P model.
The combined effects of the slip boundary conditions, fluid rheology,
electro-osmotic and pressure gradient forcings on the fluid velocity
distribution and streaming potential are also discussed. We results
demonstrate that the presence of the slip velocity and viscoelasticity
both induce an increase the in dimensionless velocity profiles and the
flow rate.
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E O / P D S L I P - F L O W S O F V I S C O E L A S T I C F L U I D S I N
H M W I T H A S S Y M E T R I C Z P

Abstract1This work investigates the slip flow of viscoelastic fluids in hy-
drophobic microchannels under the combined influence of electro-osmotic
and pressure gradient forcings with asymmetric zeta potentials at the walls.
For the analytic solutions, the Debye-Hückel approximation for weak po-
tential is assumed. To model the viscoelastic fluids, the simplified Phan-
ThienTanner (sPTT) and the Finitely Extensible Non-linear Elastic model
with a Peterlin approximation for the average spring force (FENE-P), con-
stitutive equations were chosen. Because of the different hydrophobic char-
acteristics of the microchannels walls, we study the influence of the Navier
slip boundary condition on the fluid flow, by considering different slip co-
efficients at the walls and varying the electrical double-layer thickness, the
ratio between the applied streamwise gradients of electrostatic potential and
pressure, and the ratio of the zeta potentials.

12.1 introduction

The exponential growth of technology, together with a rapid dissemi-
nation of knowledge, made us question the validity of some “empirical
laws” that were considered an absolute truth in the past. The no-slip
boundary condition is one of these cases. Based on experiments with
Newtonian fluids, the no-slip boundary condition became popular
and above all, it became a law, as stated in many books on the subject
of fluid Mechanics. The truth is that the no-slip boundary condition is
nothing but an empirical model.

For non-Newtonian fluids such as polymer melts, it is nowadays a
known fact the existence of slip velocity between the fluid and the solid
wall (Brochard and De Gennes, 1992; De Gennes, 1979; Denn, 2001;
Inn and Wang, 1996; Kraynik and Schowalter, 1981; Migler et al., 1993;
Schowalter, 1988; Wang, 1999). The same applies to electro-osmotic
flow (Marry et al., 2003; Herr et al., 2000), flow in microfluidic devices
(Gad-el Hak, 1999; Stone et al., 2004), biological processes (Zhang et al.,
2003; Beebe et al., 2002), and Gas flow (the assumption that gases may
exhibit wall slip was first introduced by (Maxwell, 1879)).

Even for Newtonian fluids, where the no-slip boundary condition
fits well the macroscopic experimental data, new experiments in mi-
crofluidics showed that for specific cases such boundary condition are

1 A.M. Afonso, L.L. Ferrás, J.M. Nóbrega, M.A. Alves, F.T. Pinho (2012), Pressure-driven
electrokinetic slip-flows of viscoelastic fluids in hydrophobic microchannels with
assymetric zeta potential, to be submitted to Journal of Colloid and Interface Science;
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inaccurate (Pit et al., 2000; Craig et al., 2001; Zhu and Granick, 2001;
Horn et al., 2000; Baudry et al., 2001; Bonaccurso et al., 2002).

In the last decade we have witnessed a fast evolution in micro and
nanofluidics and therefore the electro-osmotic flow has attracted the
scientific community, specially due to its applicability to chemical
analysis, medical research and possibly in the mixing of fluids at
microscales.

Several works have been published on the subject of electro-osmotic
flow, such as the works of (Soong et al., 2010) and (Jamaati et al.,
2010) regarding the Newtonian pressure-driven electrokinetic flows
in hydrophobic and planar microchannels. For non-Newtonian fluids,
(Afonso et al., 2009b, 2011a) presented analytical solutions of mixed
electro-osmotic/pressure driven viscoelastic fluids in microchannels
for the case of electro-osmotic flow under symmetric and asymmetric
zeta potential (they used the Phan-Thien and Tanner model (Phan-
Thien and Tanner, 1977; Phan-Thien, 1978) to describe the viscoelas-
ticity), (Dhinakaran et al., 2010) analysed the full PTT model with
non-zero second normal stress differences, and (Afonso et al., 2012)
derived the full analytical solution for fully developed electro-osmosis
driven flow of polymer solutions described by the sPTT and FENE-P
models with a Newtonian solvent.

The existence of slip velocity between the fluid and the wall is an
interfacial phenomenon that influences the hydrodynamics of micro
and nano flows, as explained in the works of (Tretheway and Meinhart,
2002, 2004; Tandon et al., 2008), and, therefore, apropriate boundary
conditions should be used to model such physical phenonmenon. The
Navier slip boundary condition, (Navier, 1822), is the most widely
used formula to describe such effect.

In microfluidics it is common to find channel with walls made from
different materials. For instance, in soft lithography the channels are
often made polydimethylsiloxane (PDMS) except for the to wall that
is often made of glass for optical access, therefore the need to study
asymmetric flows.

In this work we present an analytical solution for pressure-driven
electrokinetic slip-flows of viscoelastic fluids in hydrophobic microchan-
nels with assymetric zeta potential, and under the influence of the
Navier slip boundary condition at the channel wall.

The paper starts with the set of governing equations including
the nonlinear Poisson –Boltzmann equation governing the electric
double layer (EDL) field and the added body force to the momentum
equation caused by the applied electrical potential field. In subsection
3 we present the analytical solution for the PTT and FENE-P models ,
including the particular case of streaming potential. A discussion of
the effects of the Navier slip coefficient upon the flow characteristics
closes this work.
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12.2 governing equations

The basic equations describing the flow are the continuity equation,

∇ · u = 0 (12.1)

and the momentum equation,

ρ
Du
Dt

= ∇ · τ −∇p + F (12.2)

where u is the velocity vector, p the pressure, t the time, ρ the fluid
density (assumed constant) and τ the polymeric extra stress contri-
bution. The body force F in the momentum equation (12.2) is given
as

F = ρeE (12.3)

where E is the applied external electric field and ρe is the net electric
charge density associated with the spontaneously formed electric
double layers, which are assumed here not to be affected by the
imposed electric field. The electric field is related to a potential (Φ),
by E = −5Φ, with Φ = ψ + φ, where φ is the applied streamwise
potential and ψ is the equilibrium/ induced potential at the channel
walls, associated with the interaction between the ions of the fluid and
the dielectric properties of the wall.

12.2.1 Slip boundary conditions

Ex

2H

y

x

Wall 1 (reference)

Wall 2

Figure 12.1: Schematic of the flow in a parallel plate microchannel.

In this work, we assume that the microchannel walls are made of
different materials (e.g. glass and PDMS), leading to different hy-
drophobic characteristics, different zeta wall potentials (see Fig. 12.1)
and different slip boundary conditions. For this work, we chose the
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linear Navier slip law with different slip coefficients (Navier, 1822), L1

and L2, for the bottom and top walls, respectively,
u‖wall1 = −L1τt‖wall1

u‖wall2 = −L2τt‖wall2

(12.4)

These slip models are written in vector notation and basically state
that the slip velocity vector, u‖wall , points in the tangent stress, τt‖wall ,
opposite direction.

12.2.2 Constitutive equations

12.2.2.1 sPTT model

The sPTT model ( (Phan-Thien and Tanner, 1977; Phan-Thien, 1978),
can be expressed by

f (τkk)τ + λ
∇
τ = 2ηD, (12.5)

where D is the rate of deformation tensor (D = 1
2

(
5u +5uT)),

λ is a relaxation time, η is the constant viscosity coefficient, økk =

øxx + øyy + øzz is the trace of the extra stress tensor, and
∇
τ represents

the upper-convected derivative, defined by

∇
τ =

Dτ

Dt
−5uT.τ − τ.5 u. (12.6)

For the stress coefficient function, f (økk), the linear form was chosen,

f (τkk) = 1 +
ελ

η
τkk, (12.7)

12.2.2.2 FENE-P model

The FENE-P constitutive equation is based on the kinetic theory for
finitely extensible dumbbells with a Peterlin closure for the average
spring force (Bird et al., 1980), and can be written as,

Z(τkk)τ + λ
∇
τ − λ

(
τ − b

b + 2
nkBTI

)
D ln Z

Dt
= 2

b
b + 2

nkBTλD

(12.8)

where
∇
τ represents the upper convected derivative defined by equation

(12.5), b is a parameter that measures the extensibility of the dumbbell,
kB is the Boltzmann constant, T is the absolute temperature and n
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is a parameter of the model (Bird et al., 1980). The stress coefficient
function, Z(økk) can be expressed as

Z(τkk) = 1 + 3
(

1
b + 2

+
λ

3η

τkk

(b + 5)

)
. (12.9)

12.2.3 Poisson-Boltzmann equation and slip-dependent zeta potentials

One of the most significant effects of the charged surface is the attrac-
tion of ions with opposite sign of the charge (counter-ions) and the
repulsion of the ions with the same sign (co-ions). Near the charged
wall we can distinguish two different types of layers. The first layer is
called Stern layer and is composed of counter-ions. The second layer is
called diffusive layer where the ions have the ability to move around
freely. This two layers near the wall form what is called the Electrical
Double Layer (EDL, see (Bruss, 2008) for more details. The different
concentrations of counter-ions and co-ions leads to the creation of a
varying potential field within the electric double layer, that can be
expressed by means of a Poisson equation:

∇2ψ = −ρe

ε
(12.10)

where ψ denotes the EDL potential and ε is the dielectric constant of
the solution. The net electric charge density in the fluid, ρe, is described
by the following Boltzmann distribution

ρe = −2noez sinh
(

ez
kBT

ψ

)
(12.11)

where, no is the ion density, e is the electronic charge and z the valence
of the ions. In order to obtain the velocity field, first we need to solve
for the net charge density distribution (ρe). The charge density field can
be calculated by combining equation (12.10), which for fully-developed
steady flow conditions reduces to

d2ψ

dy2 = −ρe

ε
, (12.12)

and equation (12.11) to obtain the the well-known Poisson–Boltzmann
equation,

d2ψ

dy2 =
2noez

ε
sinh

(
ez

kBT
ψ

)
. (12.13)

If we assume a flow between parallel plates with charged walls and
the existence of a current potential difference between two electrodes
at the inlet and outlet, than an electric field is generated that exerts
a body force on the counter-ions of the EDL, which move along
the channel dragging the neutral liquid core. The distribution of the
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charged species in the domain is governed by the potential at the
walls and by the externally applied electric field. However, when
the EDL thickness is small and the charge at the walls is not large,
this distribution is essentially governed by the potential at the wall,
ψ0, and the charge distribution near the walls can be determined
independently of the applied external electric field.

In this work, the charge redistribution is exactly null as is also the
inertial term of the momentum equation. Then, for small values of
ψ it is also possible to conduct further simplifications because the
Debye–Hückel linearization principle (sinh x ≈ x) can be invoked.
This means that the electrical potential is small compared with the
thermal energy of the ions, and the Poisson–Boltzmann equation for
the channel flow under investigation becomes:

d2ψ

dy2 = κ2ψ, (12.14)

where κ2 = 2noe2z2

εkBT is the Debye–Hückel parameter, related with the
thickness of the Debye layer, ξ = 1

κ (normally referred as the EDL
thickness). This approximation is valid for 10 . H/ξ . 103.

Equation (12.14) can be integrated subject to different zeta potential
at the walls, ψ‖y=−H = ζ1 and ψ‖y=H = ζ2 (cf. Fig. 12.1), leading to:

ψ(y) = ζ1
(
Ψ1eκy −Ψ2e−κy) (12.15)

with Ψ1 =
(Rζ eκH−e−κH)

2 sinh(2κH)
and Ψ2 =

(Rζ e−κH−eκH)
2 sinh(2κH)

, and where Rζ = ζ2/ζ1

denotes the ratio of the zeta potentials of the two walls with −H ≤
y ≤ H . For Rζ = 1 the symmetric potential profile of (Afonso et al.,
2009b) is recovered.

A combination of Eqs. (12.11) and (12.15) gives the net charge density
distribution,

ρe = −εκ2ζ1
(
Ψ1eκy −Ψ2e−κy) = −εκ2ζ1Ω−1 (y), (12.16)

where the operator Ω±p (y) = Ψp
1 (e

κy)p ± Ψp
2 (e
−κy)

p is a hyperbolic
function of the transverse variable y, and depends on the ratio of zeta
potentials and on the thickness of the Debye layer.

12.3 analytical solution

12.3.1 sPTT constitutive equation

Assuming the fully developed flow of a fluid modeled by the sPTT
model, Eqs. (12.6) and (12.7), can be further simplified leading to,

f (τkk)τxx = 2λγ̇τxy (12.17)
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f (τkk)τxy = ηγ̇, (12.18)

where τkk = τxx is the trace of the stress tensor and
·
γ = du/dy is the

velocity gradient. If we consider τyy = 0 unphysical solutions may
appear (Oliveira et al., 1998), so the stress coefficient function becomes
an explicit function of the normal stress τxx only. Upon division of the
expressions for the two nonvanishing stresses (equations (12.17) and
(12.18)) the following relation is obtained,

τxx = 2
λ

η
τ2

xy (12.19)

12.3.2 FENE-P constitutive equation

For the FENE-P fluid in fully developed channel flow conditions,
equations (12.8) and (12.9) reduce to

Z(τkk)τxx = 2λ
·
γτxy (12.20)

Z(τkk)τxy =

(
b + 5
b + 2

)
η
·
γ. (12.21)

with τkk = τxx, and

Z(τxx) =

(
b + 5
b + 2

) [
1 +

λ

η

(b + 2)
(b + 5)2 τxx

]
. (12.22)

The relation between the normal and shear stresses is given by,

τxx = 2
λ

η

(
b + 2
b + 5

)
τ2

xy. (12.23)

12.3.3 Analytical solution for the sPTT model

From the previous simplifications, the momentum equation (12.2), for
fully developed channel flow reduces to

dτxy

dy
= −ρeEx + p,x, (12.24)

where p,x ≡ dp/dx, Ex ≡ −dφ/dx and φ is the electric potential of the
applied external field, which is characterized by a constant streamwise
gradient. Note that in this flow the external electrical field is positive
according to Fig. 12.1, and negative otherwise.

Integration of Eq. (12.24) yields the following expression for the
shear stress,

τxy = εκζ1ExΩ+
1 (y) + p,xy + τ1, (12.25)
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and making use of Eq.12.19 the normal stress component is given
by,

τxx = 2
λ

η

(
εκζ1ExΩ+

1 (y) + p,xy + τ1
)2 (12.26)

where τ1 is a shear stress integration constant to be quantified later
from the slip boundary conditions.

If we combine Eqs. (12.18), (12.25) and (12.26) we arrive to the
velocity gradient distribution, given by

·
γ ≡ du

dy =

[
1 + 2ελ2

(
εExζ1

η κΩ+
1 (y) +

p,x
η y +

·
γ1

)2
]

.(
εExζ1

η κΩ+
1 (y) +

p,x
η y +

·
γ1

) (12.27)

where for compactness we use the shear rate asymmetry coefficient
defined as

·
γ1 = τ1/η. Equation (12.27) can be integrated subject to the

slip boundary condition at y = −H (where we assume, for the sake of
simplicity, that τxy‖y=−H > 0) ,

u‖y=−H = L1τxy‖y=−H (12.28)

and the resulting velocity profile is given by,

u = L1
(
εκζ1ExΩ+

1 (−H)− p,x H + τ1
)

+
·

γ1 (y + H)

(
1 + 2ελ2 ·γ

2
1

)
+

[
εExζ1

η

] (
1 + 6

·
γ

2
1ελ2

)
Ω−1,1(y)

+ 2ελ2
[

εExζ1

η

]2

ˇ
·

γ1

(
6Ψ1Ψ2κ (y + H) +

3
2

Ω−2,1(y)
)

(12.29)

+ 2ελ2
[

εExζ1

η

]3

κ2
(

1
3

Ω−3,1(y) + 3Ψ1Ψ2Ω−1,1(y)
)

+
1
2

[
p,x

η

] (
y2 −H2) (1 + 6ελ2 ·γ

2
1 + ελ2

[
p,x

η

]2 (
y2 + H2))

+ 2
·

γ1ελ2[ p,x
η

]2 (y3 + H3)+ 12ελ2
[

εExζ1
η

] [
p,x
η

] ·
γ1

(
Ω−1,2(y)−Ω+

1,1(y)
)

κ

+ 6
ελ2

[
εExζ1

η

] [
p,x
η

]2

κ2

(
Ω−1,3(y) + 2Ω−1,1(y)− 2Ω+

1,2(y)
)

+ 6ελ2
[

εExζ1

η

]2 [ p,x

η

] (
Ψ1Ψ2κ2 (y2 −H2)+ 1

2
Ω−2,2(y)−

1
4

Ω+
2,1(y)

)
where the operator Ω±p,q(y) is defined as

Ω±p,q(y) = (κy)(q−1) Ω±p (y)− (−1)(q+1) (κH)(q−1) Ω±p (−H). (12.30)

The second slip boundary condition, at y = H, is given by
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y

x

(a) (b)

txy>0txy<0

u >0y=H

u        =- 2txyy=H L

u <0y=H

u        =- 2txyy=H L

txy>0 txy>0

Figure 12.2: Schematic of the slip flow at the upper wall.

u‖y=H = −L2τxy‖y=H (12.31)

and this can be understood by looking at Fig. 12.2 (a), (b). Depending
on the flow direction, τxy‖y=H can be either positive or negative. The
slip velocity vector points in the tangent stress opposite direction, and
because of that Eq. 12.31 works for both flow directions.

The restriction imposed by the second slip boundary condition
allows us to obtain an equation for

·
γ1:

·
γ

3
1 + a1

·
γ

2
1 + a2

·
γ1 + a3 = 0. (12.32)

which solution is given by the Cardan-Tartaglia (12.32) formula,

·
γ1 =

3

√√√√−b1

2
+

√
b2

1
4
+

a3

27
+

3

√√√√−b1

2
−

√
b2

1
4
+

a3

27
− a1

3

a = a2 −
a2

1
3

b1 = a3 −
a1a2

3
+

2a3
1

27
(12.33)

with coefficients
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a1 =
3
2

εExζ1

ηH
Ω−1,1(H)

a2 =
1

2ελ2 +

(
p,x

η

)2

H2 + 6
(

fflExı1


ˇ
)2

Ψ1Ψ2 +
3
4

(
εExζ1

η κ
)2

κH
Ω−2,1(H)

+ 3

(
εExζ1

η κ
)

p,x
η

κ2H

(
Ω−1,2(H)−Ω+

1,1(H)
)
+

η (L1 + L2)

4Hελ2 (12.34)

a3 =
1
2

εExζ1

η

Ω−1,1(H)

2ελ2H
+

1
2

(
εExζ1

η κ
)3

κH

(
1
3

Ω−3,1(H) + 3Ψ1Ψ2Ω−1,1(H)

)

+
3
2

(
fflExı1

 ˇ
)2 p,x

η

κ2H

(
1
2

Ω−2,2(H)− 1
4

Ω+
2,1(H)

)

+
3
2

(
εExζ1

η κ
) (

p,x
η

)2

κ3H

(
Ω−1,3(H) + 2Ω−1,1(H)− 2Ω+

1,2(H)
)

εkExζ1

4Hελ2

(
L1Ω+

1 (−H) + L2Ω+
1 (H)

)
+

p,x (−L1 + L2)

Hελ2

It is often more convenient to work with the dimensionless form of
equation (12.29). Introducing the normalizations ȳ = y/H and κ̄ = κH,
the dimensionless velocity profile can be written as

u
ush

= −L1

(
κΩ

+
1 (−1) + Γ− ·

γ1

)
+
·
γ1 (y + 1)

(
1 + 2

·
γ

2

1
εDe2

κ

κ2

)
−
(

1 + 6
·
γ

2

1
εDe2

κ

κ2

)
Ω
−
1,1(y)

+ 2
·
γ1

εDe2
κ

κ

(
6Ψ1Ψ2κ (y + 1) +

3
2

Ω
−
2,1(y)

)
− 2εDe2

κ

(
1
3

Ω
−
3,1(y) + 3Ψ1Ψ2Ω

−
1,1(y)

)
+

1
2

Γ
(
y2 − 1

) (
1 + 6

·
γ

2

1
εDe2

κ

κ2 +
εDe2

κ

κ2 Γ2 (y2 + 1
))

+ 2
·
γ1

εDe2
κ

κ2 Γ2 (y3 + 1
)

− 12
·
γ1

εDe2
κ

κ3 Γ
(

Ω
−
1,2(y)−Ω

+
1,1(y)

)
+ 6

εDe2
κ

κ2 Γ
(

Ψ1Ψ2κ2 (y2 − 1
)
+

1
2

Ω
−
2,2(y)−

1
4

Ω
+
2,1(y)

)
− 6

εDe2
κ

κ4 Γ2
(

Ω
−
1,3(y) + 2Ω

−
1,1(y)− 2Ω

+
1,2(y)

)
(12.35)
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where Ω
±
p,q(y) is the normalization of the operator introduced by

equation (12.30), defined as

Ω
±
p,q(y) = (κ y)(q−1) Ω

±
p (y)− (−1)(q+1)κ(q−1)Ω

±
p (−1). (12.36)

with Ω
±
p (y) = Ψp

1

(
eκ y)p ±Ψp

2

(
e−κ y)p.

with the dimensionless shear rate asymmetry coefficient calculated
from

·
γ

3

1 + a1
·
γ

2

1 + a2
·
γ1 + a3 = 0, (12.37)

with coeficients

a1 = −3
2

Ω
−
1,1(1)

a2 =
κ2

2εDe2
κ

+ Γ2 + 6κ2Ψ1Ψ2 +
3
4

κΩ
−
2,1(1)− 3

Γ
κ

(
Ω
−
1,2(1)−Ω

+
1,1(1)

)
(12.38)

+
κ2 (L1 + L1

)
4εDe2

κ

a3 = −1
4

κ2Ω
−
1,1(1)

εDe2
κ

− 1
2

κ2
(

1
3

Ω
−
3,1(1) + 3Ψ1Ψ2Ω

−
1,1(1)

)
+

3
2

Γ
(

1
2

Ω
−
2,2(1)−

1
4

Ω
+
2,1(1)

)
− 3

2
Γ2

κ2

(
Ω
−
1,3(1) + 2Ω

−
1,1(1)− 2Ω

+
1,2(1)

)
+

κ3

4εDe2
κ

(
−L1Ω+

1 (−1)−L2Ω(1)
)
+

κ2Γ
(
−L1 + L2

)
4εDe2

κ

,

where
·
γ1 =

·
γ1 H
ush

, L1 = L1
η
H and Deκ = λush

ξ = λκush is the Deb-
orah number based on the EDL thickness and on the Helmholtz-
Smoluchowski electro-osmotic velocity, ush = − εζ1Ex

η (Park and Lee,
2008). For simplicity the above terms were based on the zeta potential
at the bottom wall (ψ‖y=−H = ζ1, and assumed negative).

By imposing a constant flow rate Q, and performing integration of
Eq. 12.35 over the channel domain, an expression relating Q and Γ is
obtained,
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Q = Q
2Hush

= u
ush

= 1
2

∫ 1
−1

u
ush

dȳ = − 1
2L1

(
κΩ

+
1 (−1) + Γ− ·

γ1

)
+
·
γ1

(
1 + 2 εDe2

κ

κ2

·
γ

2

1

)
− 1

2 Γ
(

4
5

εDe2
κ

κ2 Γ2 + 2
3

(
1 + 6

·
γ

2

1
εDe2

κ

κ2

))
+2

·
γ1

εDe2
κ

κ2 Γ2 − 1
2

(
1 + 6 εDe2

κ

κ2

·
γ

2

1

)(
Ω

+
1,1(1)
κ − 2Ω

−
1 (−1)

)
+ εDe2

κ
κ

·
γ1

(
12Ψ1Ψ2κ + 3

2

(
Ω

+
2,1(1)
2κ − 2Ω

−
2 (−1)

))
−εDe2

κ

(
Ω

+
3,1(1)
9κ − 2

3 Ω
−
3 (−1) + 3Ψ1Ψ2

(
Ω

+
1,1(1)
κ − 2Ω

−
1 (−1)

))
−6

·
γ1

εDe2
κ

κ4 Γ
[
Ω

+
1,2(1)− 2Ω

−
1,1(1) + 2κ

(
κΩ
−
1 (−1) + Ω

+
1 (−1)

)]
+3 εDe2

κ

κ2 Γ
(

1
4κ

(
Ω

+
2,2(1)−Ω

−
2,1(1)

)
− 4

3 Ψ1Ψ2κ2
)

+3 εDe2
κ

κ2 Γ
(

κΩ
−
2 (−1) + 1

2 Ω
+
2 (−1)

)
−3 εDe2

κ

κ5 Γ2
(

Ω
+
1,3(1)− 4Ω

−
1,2(1) + 6Ω

+
1,1(1)

)
+6 εDe2

κ

κ4 Γ2
((

κ2 + 2
)

Ω
−
1 (−1) + 2κΩ

+
1 (−1)

)
(12.39)

where parameter Γ = − H2

εζ1

p,x
Ex

represents the ratio of pressure to
electro-osmotic driving forces.

The explicit expressions for the dimensionless shear and normal
stress components are obtained from normalization of equations
(12.25) and (12.26),

τxy

3ηushκ
=

1
3

Γ
y
κ
+

·
γ1
κ
−Ω+

1 (y)

 (12.40)

τxx

3ηushκ
=

2
3

Deκ

Γ
y
κ
+

·
γ1
κ
−Ω+

1 (y)

2

. (12.41)

The normalized shear rate is

·
γ

ushκ
=

1 + 2εDe2
κ

Γ
y
κ
+

·
γ1
κ
−Ω+

1 (y)

2

Γ

y
κ
+

·
γ1
κ
−Ω+

1 (y)


(12.42)

and the viscosity profile can be obtained from

µ(
·
γ) ≡

τxy
·
γ
⇒ µ(

·
γ)

η
=

[
1 + 2εDe2

κ

(
Γ

y
κ
+

τ1

κ
−Ω+

1 (y)
)2
]−1

.

(12.43)
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12.3.4 Analytical solution for the FENE-P model

The analytical solution for the FENE-P model can be easily derived
from tthe sPTT solution, provided the following substituitons are
made (Cruz et al., 2005),

f (τxx)→
(

b + 2
b + 5

)
Z(τxx)

λ→ λ

(
b + 2
b + 5

)
(12.44)

ε→ 1
b + 5

η → η

12.4 results and discussion

In order to understand the fluid dynamics influence of the slip velocity,
we present results for the velocity profiles of an sPTT fluid under
the mixed influence of electro-osmotic/pressure driving forces and
asymmetric hydrophobic wall zeta potentials, and assumig different
slip coefficients at the wall. The influence the slip velocity on the
coefficient of asymmetry is also studied.

12.4.1 Pure electro-kinetic case

For the sPTT fluid under pure electro-osmosis driving force, the so-
lution is derived by setting Γ = 0, for which equation (12.35) reduces
to

u
ush

= −L1

(
κΩ

+
1 (−1)− ·

γ1

)
+
·
γ1 (y + 1)

(
1 + 2

·
γ

2

1
εDe2

κ

κ2

)
−
(

1 + 6
·
γ

2

1
εDe2

κ

κ2

)
Ω−1,1(y)

+2
·
γ1

εDe2
κ

κ

(
6Ψ1Ψ2κ (y + 1) + 3

2 Ω−2,1(y)
)

−2εDe2
κ

(
1
3 Ω−3,1(y) + 3Ψ1Ψ2Ω−1,1(y)

)
(12.45)

For symmetric boundary conditions with no slip boundary condi-

tions (Rζ = 1, L1 = L2 = 0 and
·
γ1 = 0) the above equation reduces to

that presented by (Afonso et al., 2011a), but for Rζ 6= 1 and L1,2 6= 0

the dimensionless shear rate asymmetry coefficient,
·
γ1, depends on the

fluid rheological properties. As explained in the previous section,
·
γ1

depends on the ratio of zeta potentials, Rζ , on the relative microchan-
nel ratio, κ̄, on the ratio of pressure gradient to electro-osmotic driving
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Figure 12.3: Variation of
·
γ1 with the slip coefficients, L1, L2, for constant

values of Rζ and
√

εDeκ = 1 with a relative microchannel ratio
of κ = 20.

forces, Γ, on the slip coefficient ratio, RL, and on the fluid rheology. For
a Newtonian fluid the dimensionless shear rate asymmetry coefficient is a

linear function of Rζ , as expressed by
Ω
−
1,1(1)+L1κ

(
Ω

+
1 (−1)+RLΩ

+
1 (1)

)
2+L1(1+RL)

, that

simplifies to
·
γ1 = 1

2 Ω
−
1,1(1) =

1
2

(
Rζ − 1

)
, when L1 = 0 as predicted

by (Afonso et al., 2011a).
Assuming the no-slip boundary conditions at the walls, for a vis-

coelastic fluid and Rζ < 1,
·
γ1 is always negative, decreasing with

the increase of
√

εDeκ, an indication that the shear stress is also de-

creasing as
√

εDeκ increases. For Rζ > 1,
·
γ1 is always positive and

increases with
√

εDeκ, due to the increasing of the shear-thinning
behaviour of the fluid, leading to higher shear stress. Afonso et al.
(2011a) showed that all curves asymptote to the same limiting curve

when
√

εDeκ → ∞, with the absolute value of
·
γ1 increasing when κ̄

increases.
The dependence of the dimensionless shear rate asymmetry coefficient

on the slip coefficients L1, L2 is shown in Fig. 12.3 for the particular
case of

√
εDeκ = 1. We wanted to catpture the influence of both

slip coefficients on
·
γ1 and based on the data obtained from (Afonso

et al., 2011a) we have chosen three different values of Rζ . With these
three values,Rζ = −1, 1, 2 , we plotted two different tyes of data, the

variation of
·
γ1 with L2 ( L1 = 0) and the variation of

·
γ1 with L1 = L2.

For the first value, Rζ = −1,
·
γ1 is negative and decreases in both

situations, being smaller for L1 = L2. The same hapens with Rζ = 2,
with the difference that Rζ is now positive and increases with L2 (

L1 = 0) and L1 = L2. The decrease of
·
γ1 was expected, because the

shear stress is reduced when slip velocity is present. We can see that

the variation of
·
γ1 with the slip velocity is similar to the variation

·
γ1
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Figure 12.4: Dimensionless velocity profiles as a function of L2 for constant
L1 = 0, for the electro-osmotic flow of an sPTT fluid with
Rζ = −1, 1 and

√
εDeκ = 1.

with
√

εDeκ. It seems that the slip coefficient enhances the viscoelastic
effects.

For Rζ = 1, only the variation of Rζ with L2 ( L1 = 0) was studied

because when L1 = L2 the flow is symmetric and
·
γ1 = 0. For this

case, we found that
·
γ1 increases with L2 .

Fig. 12.4 shows the velocity profiles for asymmetric slip boundary
conditions ( with L1 = 0). Notice that for Rζ = 1, the velocity profile
is skewed because of the asymmetry imposed by the slip velocity. We
can also see, as expected, an increase in the flow rate with the slip
coefficient L2.

Because of the assumption that the slip velocity vector points in
the tangent stress oposite direction, for the Rζ = −1, the slip velocity
decreases in absolute value (increasing in magnitude).

12.4.2 Mixed driving forces

For the sPTT fluid flow under the combined action of electro-osmosis,
pressure gradient and slip boundary conditions we recall Eq. 12.29.

In the work of (Afonso et al., 2011a) is shown (for the asymptotic
limit of

√
εDeκ → ∞) that increasing the favorable pressure gradient

(decreasing Γ),
·
γ1 increases, especially for Rζ < 1, and Increasing Γ

for adverse pressure gradient conditions,
·
γ1 also increases, especially

for −1 < Rζ < 1. Notice that for the asymtotic limit of
√

εDeκ → ∞
the cubic equation that needs to be solved is independent of the
slip boundary conditions, therefore, we followed the same procedure
adopted for the pure electro-osmotic case. For this case we studied the
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Figure 12.5: Variation of
·
γ1 with the slip coefficients, L1, L2, for constant

values of Rζ and
√

εDeκ = 1 with a relative microchannel ratio
of κ = 20 and a favorable pressure gradient Γ = −1.

variation of
·
γ1 with the slip coefficients L1 and L2 for Rζ = −1, 1, 2

and Γ = −2, −1, 0, 1, 2. The results obtained are very similar to the
ones obtained for Γ = 0 with the difference that the absolute values of
·
γ1 increased with Γ. (Fig. 12.5)

Figures 12.6 (a) and (b) present the dimensionless velocity profiles
for slip flows with symmetric (Rζ = 1) and anti-symmetric zeta po-
tentials (Rζ = 1), respectively, for a constant dimensionless number√

εDeκ of 1. For both, favorable (Γ < 0) and adverse pressure gradients
(Γ > 0), Fig. 12.6 (a) shows that the velocity profile increases with L2

, this is due th the consequent reduction of the shear stress near the
wall. For the case of Rζ = −1, Fig. 12.6 (b), shows that the slip velocity
increases in the direction of the flow. For this case, the flow near the
upper wall is in the adverse direction and therefore the slip velocity
increases (in magnitude) in that direction.

12.5 conclusions

In this work we devised analytical solutions for the fully developed
channel flow of symmetric z-z electrolyte viscoelastic fluids (sPTT and
FENE-P) under the mixed influence of electro-osmosis and pressure
gradient forcings for the case of symmetric and asymmetric wall zeta
potentials and assuming different slip coefficients at the bottom and
top walls, representing the different hydrophobic characteristics of the
microchannels walls. We found that an increase in the slip coefficient
leads to an increase of the flow rate. This increase in the slip coefficient

has also influence in the the assymetry coefficient, with
·
γ1 decreasing

for Rζ < 0 and increasing for Rζ > 0. The solution for the streaming
potential is also presented.
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Figure 12.6: Dimensionless velocity profiles as a function of L2 for constant
L1 = 0, for the electro-osmotic flow of an sPTT fluid with√
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appendix : streaming potential solution

In the solution presented before, the electrical field Ex can be applied
externally or be a consequence of electric potentials created by the flow.
In the absence of an externally applied electrical field, the applied
pressure difference induces a flow carrying ions that generate an elec-
trical current, called the streaming current, I′s. The streaming current
accumulates counterions at the end of the channel therefore setting up
an electric field, Ex,sp which is associated with the so-called streaming
potential, φsp via Ex,sp = −∆φsp/l. This induced electric field creates
an opposite current, I′c, called conduction current which induces a
flow contrary to the pressure induced flow. This is established in such
way that under steady state the net electrical current, I′, the sum of
the streaming currents and the electrical conduction current vanishes,

I′ = I′s + I′c ≡ 0. (12.46)

The electrical streaming current (per unit of width) is of the form:

I′s =
∫ H

−H
u(y)ρe(y)dy =

∫ H

−H
−u(y)εκ2ζ1Ω−1 (y)dy, (12.47)

which for the sPTT fluid leads to
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I′s
εζ1

= L1η

(
XκΩ+

1 (−H)−YH +
τ1
η

)
κΩ+

1,1(H)

− ·γ1

(
1 + 2ελ2 ·γ

2
1

)(
2κΩ+

1 (H)−Ω−1,1(H)
)
+ 6ελ2X2ˇ2 ·γ1Ψ1Ψ2

(
2Ω−1,1(H)− 4κΩ+

1 (H)
)

− 1
2

Xκ

(
1 + 6

·
γ

2
1ελ2

)(
Ω−2 (H) + Ω−2 (−H)− 2Ψ1Ψ2

(
4κ + e−2κ − e2κ

)
− 2Ψ2

1 + 2Ψ2
2

)
+ ελ2X2κ2 ·γ1

[
−Ω−3 (H)− 2Ω−3 (−H) + 3Ψ1Ψ2

(
Ω−1 (H)− 2Ω−1 (−H)

)
+ 3

(
Ψ3

1e−κ −Ψ3
2eκ + Ψ2

1Ψ2e−3κ −Ψ1Ψ2
2e3κ

)]
+

1
6

ελ2X3κ3
[
−Ω−4 (H)− 3Ω−4 (−H) + 2Ψ1Ψ2

(
Ω−2 (H)− 3Ω−2 (−H)

)
+ 4

(
Ψ4

1e−2κ −Ψ4
2e2κ + Ψ3

1Ψ2e−4κ −Ψ1Ψ3
2e4κ

)]
+ 6ελ2X3κ3Ψ1Ψ2

(
Ψ2

1 −Ψ2
2 −

1
2

(
Ω−2 (H) + Ω−2 (−H)
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+ Ψ1Ψ2

(
4κ + e−2κ − e2κ
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+

Y
κ

(
1 + 6ελ2 ·γ

2
1

)(
Ω−1,2(H)−Ω+

1,1(H)
)
+ 2

ελ2

κ3 Y3
[
Ω−1,4(H)− 3Ω+

1,3(H) + 6Ω−1,2(H)− 6Ω+
1,1(H)

]
− 2

·
γ1ελ2

κ2 Y2
[
2κ3Ω+

1 (H)− 3Ω−1,3(H) + 6Ω+
1,2(H)− 6Ω−1,1(H)

]
− 3ελ2XY

·
γ1

[
2κΩ−2,1(H)− 3Ω+

2 (H)−Ω+
2 (−H)

]
− 12ελ2XY

·
γ1

[
Ψ1Ψ2

(
−2 + e−2κ (1 + κ) + e2κ (1− κ)

)
+ Ψ2

1 (1 + κ) + Ψ2
2 (1− κ)

]
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2
ελ2XY2

κ
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6κΩ−2,2(H)− 6Ω+
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(
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1
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(
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)
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1

]
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X2YΨ1Ψ2κ2
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−Ω−1,2(H) + Ω+
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− 1
6

ελ2κX2Y
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−5Ω+

3 (H)− 4Ω+
3 (−H) + 6κΩ−3 (H)− 12κΩ−3 (−H) + Z
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ελ2κX2Y
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1Ψ2e−3κ + Ψ3
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2e3κ + Ψ3
2eκ
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. (12.48)

with X =
εEx,spζ1

η , Y = p,x
η and

Z = Ψ1Ψ2
(
27Ω+

1 (H)− 36Ω+
1 (−H)− 18κΩ−1 (H)− 36κΩ−1 (−H)

)
In equation (12.48) the electric potential Ex has already been substi-

tuted by the corresponding streaming potential, Ex,sp. The electrical
conduction current in the channel is defined as:

I′c = 2HσtEx,sp, (12.49)

where σt is the total electric conductivity. Note that the conduction
current can now flow back through both the fluid as well as the
channel walls, depending on the corresponding electrical conduc-
tivities. The total electrical conductivity can be calculated as σt =

σf luid + σsurPsur/Achan, where Psur and Achan are the wetting perimeter
and cross section area of the channel, respectively and σf luid and σsur

are the fluid bulk and wall surface conductivities, respectively. Upon
substitution of equation (12.48) and (12.49) we arrive at an algebraic
cubic equation in the streaming potential field as function of the im-
posed pressure gradient. This cubic equation has a real solution given
in equation (12.33). This cubic equation in Ex,sp can alternatively be
written in non dimensional form to give Γsp, where Γsp = − H2

εζ1

p,x
Ex,sp

.
In this case, it is customary (Afonso et al., 2011a) to normalize the
electric conductivity σt as Υ1, defined as Υ1 = H2ησt

ε2ζ2
1

.
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C O N C L U S I O N S

Because this thesis is based on articles/publications, with conclusions
at the end of each article, the main conclusions will be given here as
answers to the proposed objectives.

I Derive analytical solutions for Newtonian and non-Newtonian fluids
with slip boundary conditions. For the cases where an explicit formula
is not possible, the existence and uniqueness of the solution must be
proved;

answer : We derived analytical solutions for various Generalized
Newtonian fluids and also viscoelastic fluids. These analyti-
cal solutions are helpful for the understanding of the slip phe-
nomenon, its influence on the fluid fluid flow and its dependence
on different parameters. Some of the slip models were quite com-
plex (nonlinear models) and an explicit solution was impossible,
mainly because the resulting equations were transcendent. Be-
cause the existence and uniqueness of these simples solutions
was proved, they can also be used as a “semi-analytical” solu-
tion for the problem. The full analytical solution is an equation
that can be easily manipulated, the “semi-analytical” solution is
represented by numerical values but gives the same information
as the analytical one. The main difference is that we need to
find each of these numerical values, a task that can be easily per-
formed with any mathematics package, such as Matlab, Maple
or Mathematica.

I Derive analytical solutions for electro-osmotic flow under the influence of
slip boundary conditions;

answer : It is possible to derive full analytical solutions for the
electro-osmotic flow with slip boundary conditions. These ana-
lytical solutions allowed us to understand the influence of the
slip velocity in the electro-osmotic flow and can also be used
as a possible model for the theory of slip in the electro-osmotic
flow.

I Study the influence of the slip velocity on the development length of New-
tonian and non-Newtonian fluids;

answer : We derived a correlation to predict the development length
for channel flow of Newtonian fluids under the influence of slip.
We concluded that the development length increased with the
slip velocity, for small slip coefficients, but decreased for very
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high slip coefficients. We also studied the development length
for the UCM model. This development length study works for
both micro and macro flows (such as extrusion process).

I Is it possible to implement slip boundary conditions in the finite volume
method framework? There are any limitations?

answer : Yes. Slip boundary conditions of different types were im-
plemented in a Finite Volume Code, using three different ap-
proaches. For highly nonlinear slip laws convergence issues were
found. These issues increased with the Hatzikiriakos slip model,
a highly nonlinear model based on the sinh function. A fully
implicit numerical code could give better results, but to change
the intrinsic structure of the code was not possible during this
thesis period. For the other nonlinear models convergence could
be obtained for high values of De and Re numbers. Notice that
it is not clear, in some cases, if the divergence occurs because
of the implementation of the slip law, or because the combined
effects of De and slip velocity that could decrease the critical De
.

I Is it possible to use slip boundary conditions as a method to improve the
limits brought by the High Weissenberg Number Problem (HWNP)?

answer : Some tests were made for the case of the slip-stick flow
of an Upper Convected Maxwell fluid, with and without slip
velocity. We notice that convergence for the no-slip case could
only be achieve up to De ' 1. For the case with slip velocity,
we could obtain convergence for higher values of De as long as
we increased the slip coefficient. The idea of using a converged
solution with slip velocity, as an initial flow field for another
similar simulation but now without slip velocity was not success-
ful. In the beginning of the iterative process the residuals still
decreased but rapidly they start to diverge. This happened for
the UCM viscoelastic model, a model known to be very difficult
to work with, in the presence of singularities. For other models
no studies were made.

I Is the presence of slip velocity always helpful during the extrusion pro-
cess?

answer : On profile extrusion it is common to use external lubricants
as processing aids, which improves the possibility of polymer
melt to slip at the flow channel wall. Among other advantages,
lubricants are known to delay the onset of flow instabilities
or to contribute positively for the flow distribution, due the
reduction of the differential restriction promoted by regions of
different thickness (c.f. Fig. ?? and Fig. ??). The common referred
as single disadvantage of lubricants is their high cost. However,
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the results obtained for the sudden contraction problem, namely
the increase of the vortex dimensions with the slip intensity,
evidenced that the incorporation of lubricants can induce the
growth of the recirculation zones and, consequently, an increase
of the stagnated material extent. This information should not
restrain significantly the employment of lubricants, but should
be taken into account when working with the extrusion process.
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O U T L O O K

The modelling and numerical simulation of flows under slip is still
under development and the full understanding of this subject is still
an Utopia. Although most of the questions proposed in the objectives
were answered, there are plenty of other works under development,
or, that can be further explored.

The influence of slip velocity on the flow past a cylinder is now
under development with preliminary results showing a decrease in
the drag coefficient with the increase of the slip coefficient (for the
Navier slip law).

The complete study of a slip-stick flow together with free-surface
flow, capturing the influence on the extruded profile, of the slip-
stick velocity inside the die, seems to be a difficult task, lacking a
good physical model and numerical simulations. A model for this
phenomenon could be based on pulsating boundary conditions, thus
creating the effect of slip and stick.

The benchmark solutions of slip flows in a lid-driven cavity are still
missing in the literature. The proof of existence of analytical solutions
for different viscoelastic fluids and different slip models can be further
developed, to allow the validation of computational codes equipped
with slip models

The optimization of extrusion die design accounting for the slip ve-
locity is already under development. Preliminary results showed that
slip velocity, affect directly the flow distribution in profile extrusion
dies. Additionally slip minimizes the differential restrictions promoted
by regions with different thicknesses, thus contributing positively to its
optimization. These results were obtained for generalized Newtonian
fluids, thus lacking the relaxation times, a characteristic of viscoelastic
fluids. In the near future this feature should be further investigated.

This optimization is being done without free-surface, by looking at
the velocity profiles at the exit of the die. The implementation of free
surface in the numerical code is another indispensable feature.

For the electro-osmotic flow, more analytical solutions can be found
assuming different slip boundary conditions, but more important, is
the need to find a theory connecting the slip boundary conditions
with the underlying physics of the electro-osmosis.

It can be said that this journey has just begun, with a vast number
of studies to be performed, so that the slip velocity phenomenon can
be truly understood.
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