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Abstract 

 

 This dissertation has the purpose of describing the tire production methods, 

production variations, quality issue, specification details and the how the tire will behave. 

 It is noted that due to the nature of the internship in the Continental Group several 

details cannot be described in full detail to avoid publication of trade secret details. 

  

 Tires are one of the most important components in the composition of an automobile, 

because tires are the only connection between the car and the road.  With a bad set of tires it 

doesn’t matter how developed car braking and power systems are unless they can transmit 

the necessary forces to the ground.  

 During this internship the proponent of this dissertation helped and learnt from the 

industrialization department verifying several tires for specification purposes. Also a database 

was developed in order to automatically maintain the industrialization process papers. 

 Once the proponent noticed the cause of the highest cause of scrap, a solution was 

developed and presented to the department.  
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Introduction 

 

 

 This dissertation has as a background the proponent’s internship at a Continental’s 

manufacturing plant situated in Lousado. Here he was integrated within the department of 

product industrialization at the subsection dedicated to construction. 

 The purposes appointed for this dissertation include understanding how PLT 

(Passenger and Light Truck) tires are produced and try to identify possible issues.  

 For this purpose the proponent gathered several materials throughout the internship 

months. 

 The internship was developed at DIP (Department of industrialization) which is 

responsible for the “in factory” development of the intermediary products in order to achieve 

the final product as specified by central R&D of Continental tires.  

 Unfortunately it wasn’t possible to follow an article from compounding to construction 

due to trademark confidentially issues, therefore the production of tires will be approached as 

a whole. 
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1. Theoretical introduction 

 To better understand the manufacture process it is important to understand rubber 

and its processability difficulties and limitations. Tire construction is dependent on millimetric 

precision of its intermediary components, which in turn means rubber components need to 

have samples accurately measured with precision before and after the two last stages of 

construction and vulcanization.  

 The most interfering properties of rubber for dimensional stability are viscoelasticity, 

slow tensions recovery (swelling) and dimensional variations with temperature. Also 

unvulcanized is very adhesive to other unvulcanized rubber components, this is positive for tire 

building but can also be a problem if layers aren’t well aligned when entering the construction 

drums. 

  

1.1.  Linear Viscoelasticity 

Viscoelasticity is a polymer property common to a wide range of polymers. Such common 

phenomena as stress relaxation, creep, compression set (and unrecovered deformations, in 

general), mechanical irreversibility and energy losses during a deformation cycle ("hysteresis"), 

limited rebound, heat generation, and temperature rise during flexing are manifestations of 

the viscous properties of Elastomers.  [8] 

Ideal linear elastic materials follow Hooke’s law in which stress is proportional to strain 

while ideal viscous liquids obey Newton’s law in which stress is proportional to the rate of 

change of strain with time. Rubber properties lay in between these two physical states.  

A Hookean solid may be represented by a spring described by Hooke’s law. 

   F = k x    (eq.1) 

Newton’s law of viscosity may be written in the form (eq. 2) where c is the viscous 

dampening coefficient. Newtonian viscous behavior is usually illustrated by a viscous element 

called dashpot. 

   � = �	 �
��

��
�  (eq. 2) 

 These laws may also be written in the following forms (eq. 3 and 4) where σ is the 

tensile strength, ε is the tensile strain, E is the elastic tensile modulus and ηe is the Newtonian 

viscous coefficient in tension.  

   � = �	�  (eq. 3) 

   � = �� �
��

��
�  (eq. 4) 

Traditionally, viscoelastic behavior has been described by means of phenomenological 

approaches by employing Maxwell and Voigt elements. Most materials exhibit behavior that is 
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more complex than either of these two simple models. For this reason, it is necessary to use 

generalized models to describe the viscoelastic behavior of a material quantitatively. 

 

  

Table 1 
 [8] 

Maxwell Representation 
(series) 

Voigt Representation 
(parallel) 

Equation of motion  ��

��
=
1

�
�
��

��
� +	

�

�
 � = �	� + �	 �

��

��
� 

Additive terms  Deformations  Forces 

Equal terms  Forces Deformations 

� = � �⁄  Relaxation time Retardation time 

Stress relaxation  
(�� ��⁄ = 0	��	� = �	��������) 

� = ���
�� �⁄  � = �	� 

Creep 
(�� �� = 0	��	� = �	��������⁄ ) 

� = �� +	
�	�

�
 � =	 �

��
1
� �1 − ��� �⁄ � 

Constant rate of deformation  
(�� �� = �⁄ ) 

� = �	��1 − ��� �⁄ � � = �(� + �	�) 

 

A generalized Maxwell model consists of an infinite number 

of simple Maxwell elements in parallel and is characterized by the 

so-called distribution of elastic module E(τ) as a function of the 

relaxation time � = �� �⁄  of the simple Maxwell elements. The 

generalized Voigt model consists of an infinite number of simple 

Voigt elements in series and is described by the distribution of 

compliances D(τ) as a function of the retardation time � =	 �� �⁄  of 

simple Voigt elements. Both these models (Fig. 1) (and other 

generalized systems) are completely equivalent and, in theory, 

any may be used to describe all linear viscoelastic behavior. [9] 

Linear viscoelastic behavior means Boltzmann superposition principle can be applied. 

This means strain due to the action of a number of stresses � = �� + �� + ��+. . +��	 is equal 

to the sum of strains ��, ��, ��, . . , �� that would result of ∑�� acting alone. 

Usually for convenience Maxwell model is used to describe stress relaxation and Voigt 

for creep experiments. Both generalized models can be used for dynamic mechanical 

experiments with good results although Voigt model is more commonly used. 

 

 

 

 

  

Figure 1 – Maxwell and Voigt Representations [8] 
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The following relations show how both models theoretical describe certain aspects 

.  

Figure 2 - Behaviour of Maxwell and Voigt elements: Stress relaxation [8] 

 

Figure 3 - Behaviour of Maxwell and Voigt elements: Creep [8] 

 

Figure 4 - Behaviour of Maxwell and Voigt elements: force required to maintain a constant rate R of 
deformation[8] 

 

1.2. Non-linear Viscoelasticity  

Although the previously presented models are good approximations real polymers do 

not relax with a single relaxation. This is due to different molecular segments lengths, in 

which the shorter segments relax faster than longer chains. The different segments lengths 

relaxing at different time periods cause a distribution of several simultaneous relaxations 

at different speeds thus increasing the complexity. 
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Figure 5 - Wiechert Model  [9] 

When applying this model the 

engineer will add as many spring-dashpot 

Maxwell elements as necessary to 

approach the distribution satisfactorily to 

the real experimental curve. 

The superposition of several Maxwell elements will create a nonlinear model with 

different linear time dependent functions acting together.  

 

� = �� +���
�

 

 

 Another well known model is the four element model which is a combination of the 

Maxwell and Voigt elements assembled in series. Actually any combination that helps creating 

a mathematical model to approach and explain a certain polymeric chain or viscoelastic 

material stress/strain and relaxation curves is a workable model. For the study of wood a used 

model is the four element burger model with a fifth element to account for shrinkage. (Fig. 7)  

[10] 

 

Figure 7 - Burger model with a four element model and a fifth shrinkage element [10] 

 

 

 

Figure 6 – General viscous deformation and relaxation 
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1.3. Effect of temperature on a Polymer viscosity, Tg (Glass Transition) 

Polymeric chains are affected by temperature at a molecular level, this causes these 

materials to have two different phases depending whether the temperature is above or below 

Tg. If the temperature drops below the glass transition point molecular chains low energy 

reduces molecular vibration and the material becomes stiffer and at severely low temperature 

even brittle. If on the other hand temperature is above Tg the polymeric material becomes 

relaxed, softens and becomes able to expand without fracturing. At temperatures below Tg 

rubber is more elastic, but less capable of stretching due to the reduced molecular flow.[4, 11] 

Counter intuitively rubber polymers actually contract when heated unlike metal materials 

which expand. This detail is important when several rubber components with millimetric  

 Tg is the point at which the material changes phase and is used as a reference in order 

to evaluate compounds and their properties. Along with other characteristics obtained 

through rheological tests, such as speed of vulcanization (for compounds equalization), as well 

as stress, strain and relax responses. All these parameters must be within certain preset values 

defined by central R&D for each polymeric raw material and compound. (Fig. 8) 

 

 

Figure 9 – Full spectrum of rubber viscoelastic properties: where tan δ represents 
hysteresis. 

 

Apart from raw materials and intermediary compounds quality control, ambient 

temperature variations affect components and green tires causing the last to partially collapse 

under their weight and partially deformation of the unvulcanized tire walls. This might cause 

the tire walls unequal deformation (while the green tire is stored on a flat 

surface waiting to be vulcanized) not to recover in time for the press and 

vulcanization (Fig. 9). As demonstrated on previous chapters rubber as a 

viscoelastic material means both relaxation and deformation are time 

dependent, which implies that while the green tire (unvulcanized) is stored 

Figure 8 - Green tire loading in 
front of the vulcanization press [1] 

Figure 10 - Irregular bead [1] 
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on a flat surface for intermediary storage it will sit on its own weight with enough time to 

allow tire walls deformation. According to procedure tires are to be hanged by tire wall which 

was settled on the flat car for the duration of the previous tire vulcanization cycle to relax the 

tire walls before entering the press. 

 This is one of the main reasons why compound formulas are tweaked to adjust the 

summer and winter ambient temperatures and avoid scrap tires due to “irregular bead / heavy 

toe”. (Figure 10 - Irregular bead) 

This is done whether by increasing the stiffness of wall compounds allow the walls to hold 

the weight of the tire and therefore not deform during storage or by reducing the stiffness of 

the wall compounds which will enable full equal deformation all around the tire avoiding 

unequal deformations which cause “Heavy toe” scrap issues. [1] 

 

1.3.1.  Glass Transition point variation effect on tire characteristics (Vulcanized Rubber) 

Tire adhesion to the surface consists of three main mechanisms. 

 

Figure 11 - Net contact area tire/road, role of surface roughness  [3] 

1) Low frequency macroscopic deformation in which the tire  

a) Mechanism – compression, deformation and shear upon rolling of blocks through the 

footprint patch. 

b) Length scale is macroscopic and independent of slip, i.e. > 1mm, corresponding to 10 

Hz - 102 Hz 

c) Some block deformation mechanisms reduce tire grip by reducing contact area 

2) High frequency deformation 

a) Mechanism – viscoelastic compression and elongation caused by slip over topology. 

b) Length scale of road topologies depends on road surface type: 

i) macro roughness 0,2 mm - 10 mm, corresponding to 102 Hz - 5x104 Hz 

ii) micro roughness 1 µm - 0,1 mm, corresponding to 5x104 Hz - 5x106 Hz 

3) Molecular adhesion 

a) Mechanism – bond formation, bond stretching, bond breaking, relaxation 

b) Length scale for adhesive forces upon slippage: 1 Å - 50 Å, corresponding to106 Hz - 

109Hz 

c) Prerequisites for effective adhesion mechanism: clean and dry contact surfaces, i.e. 

inactive at wet braking. 
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The glass transition point of a certain compound is of the upmost importance because it 

will directly determine the hardness of the tire (Fig. 12). This parameter can be affected by a 

number of different polymers and additives and depending on 

which tire component it will be comprise the Tg target may 

differ. Regarding adhesion the only active component is the 

thread, while other components will be engineered with 

rolling resistance and heat build-up issues in mind.  

As a rule of thumb the lower the Tg the softer the tread will be, therefore if the compound 

is hardened by being exposed to low temperatures it can still maintain enough Viscoelasticity 

to adhere to the ground by the low and high frequency deformations. On the other hand a 

regular summer/rain tire will be hardened by the low temperatures and severely unable to act 

on any adhesion mechanism dangerously increasing the chances of slip.  

 

Figure 13 – Wet breaking at 100 Km/h speed with summer vs. winter tires [12] 

As previously stated, generally speaking (because other tire characteristics such as sipes 

and block edges, pattern, pitch, and void also play a part on breaking) the lower the Tg the 

better adherence at lower temperatures due to maintaining the rubber at usable stiffness. 

Below 7 oC winter tires are on their operational range and summer tires start phasing out due 

to compound stiffness increase. Conversely winter tires shouldn’t be used during the summer 

because the compound will soften below operating range with an increase in wear and 

reduction of breaking tension capabilities. (Fig. 13)  [12] 

 

 To understand how the Tg acts on snow tires, one must also understand the breaking 

mechanisms present while breaking on snow. 

 There are 4 main root-causes that affect snow traction. 

a) Milling effect 

Depends on the sheer force of snow block edges/sipes   

    Figure 14 - milling effect[3] 

b) Snow-snow interaction 

Depends on the dynamical friction coefficient snow-snow 

    Figure 15 - Snow-snow interaction [3] 

 

Figure 12 - Vertically soft compound 
adherence [3] 
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c) Snow-rubber interaction 

Depends on the friction coefficient between snows and tread rubber at tire 

surface and at the flanks of the circumferential grooves 

   Figure 16 - Snow rubber interaction [3] 

 

d) Liquid layer effects 

Melted snow produces a liquid layer as lubricant. (snow melts under pressure and 

to a lower extent also due built up heat due to hysteresis) 

   Figure 17- Liquid layer effects [3] 

 

 As can be interpreted from [Figure 18 - Patter effects - Snow Grip] the rubber snow 

friction is the most important factor at low slip conditions, before milling and snow-snow 

friction effects become more relevant. Over 30-40% slip the tread design gains significance 

becoming responsible for more than 50% of the grip conditions, although sipes deformation 

(necessary for snow milling interaction) does depend rubber stiffness and therefore also on Tg. 

 

 

  

 

 

 

 

 

 Snow adhesion through molecular adhesion between rubber and snow is under study 

and its advantages being weighted (Fig. 18). Although there is a potential adhesion 

improvement up to µ ≈ 0.5 on soft snow which 

has a high friction coefficient, if the tire surface 

covered with snow melts (due to heat buildup or 

under pressure) the friction goes down to µ ≈ 

0,01. [3] 

 

 Although Tg is most relevant at high 

temperature variations such as those between 

Figure 18 - Patter effects - Snow Grip [3] 

Figure 19 - Relationship between glass transition point to loss tangent 
and to friction on a wet cement surface [4] 
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summer and winter, it is also very important for other characteristics. As previously stated 

molecular adhesion isn’t significant during wet breaking, therefore low and high frequency 

deformation gain responsibility.  

 

 Due to this a tire with a target Tg 

prepared for winter temperatures will be too 

soft for regular summer temperatures 

suffering from excessive block deformation 

which reduces grip and increases wear.  

 

  

 

1.4. Compression recovery after extrusion (Swelling) 

 

As referred on chapter 1.1 rubber compounds are 

viscoelastic. This means the reaction is time dependent, this 

means after extrusion there will be a fast recovery which 

relates to the elastic response with a secondary expansion 

over time (as previously described) and also while the 

extruded components cools down it suffers further 

expansion (Fig. 21). 

 Extrude products need a reliable dimensional stability 

especially if these are sub-products which must further 

interlink with other rubber components (Fig. 22). Due to this 

need extrusion of treads and side walls is somewhat critical 

and severely controlled through laser profile scans. [13, 14]  

 

 Another issue relating to rubber swelling after 

extrusion is that expansion isn’t equal all over the sample, but 

instead it differs with the die geometry.[15] 

 Controlling die swell during extrusion is very 

dependent on the applied shear rate. Usually the higher the 

shear rate to a rubber compound during extrusion, the higher 

the die swell will be. The amount of shear rate applied to the 

rubber is determined by the geometry of the die and the screw 

speed. This means that if the speed of the screw is reduced die 

Figure 20 - The dependence of Wear as function of Tg is apparent 
from “simple” DIN Wear measurements. [4] 

Figure 21 - rubber reaction to heat [4] 

Figure 22 - Viscoelastic extrusion expansion [4] 

Figure 23 - The SLS5000 noncontact industrial 
gauging sensor is shown in a scanning frame 
system as it profiles extruded rubber tread. 
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swell should also decrease. [14] 

 The die land length is also another parameter that will interfere with the extruding 

shear rate. It should be 5 to 6 times longer than the die opening with a 30o to 60o degrees 

inclination and if feasible coated with anti adherent materials such as Teflon. The state of the 

mixture might also affect the degree of die swelling. Also compounds with higher amounts of 

carbon black or with higher structured carbon black tend to display less swell during extrusion.  

 

 

1.5. Effect of pressure on a Polymer viscosity 

 

The effect of pressure on the polymer is the opposite the effect of temperature because it 

reduces the free volume and molecular mobility. This effect is particularly important on 

injection molding due to the high pressures applied, but it is also significant in extruding 

processes.   [15]  

 Some studies [16-18] were done to determine the variation of viscosity in relation to 

the temperature at constant pressure as well as the variation of viscosity in relation to the 

pressure with constant temperature. It was concluded that these variations are linear when 

represented on a semi-logarithmic scale. Therefore it was suggested that the effect of pressure 

should be represented as an equivalent to a variation of temperature but with an opposite 

effect. 

 As result equivalence coefficients of temperature-pressure were generated at constant 

viscosity for several polymers. This means the increment of pressure equates a drop in 

temperate in the context of viscosity, on the other hand the increment of pressure also 

increases the polymer temperature due to viscous dissipation.  

 This counter effect which reduces the impact of pressure and the inherent 

experimental study complexity of these two opposing variable properties leads to the frequent 

omission of the effect of pressure on viscosity.[15] 

 The prediction of this effect is important for dimensional precision during extrusion, at 

least for the original die as these are often corrected after the first profile laser measurements 

or due to die wear. 
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1.6. Curing systems 

These are the components responsible for the vulcanization in the curing process.  

The purpose of vulcanization is to create bonds between the long polymeric chains of 

NB, SBR, BR and IIR. This way the soft and almost inelastic, which is easily deformed with small 

tensions becomes hardened, with a 

higher tensile strength and elastic.  

By creating these bonds these 

chains become stranded in place and 

loose the liberty to deform with breaking 

either the bonds or the polymeric chain 

(Fig. 24). 

 

By far the most common vulcanizing methods depend on sulphur. Sulphur, by itself, is 

a slow vulcanizing agent. Sulphur alone is not enough for a satisfactory vulcanization of rubber, 

because the process will require large amounts of sulphur, high temperatures along with long 

periods of curing time. Even then the final product will not have created enough bonds 

between the polymeric chains, while being vulnerable to the aging process (which will result in 

surface cracks).  

A proper vulcanization can only be achieved through the use of reaction accelerators 

(catalysts), these will enhance the vulcanization speed and increase the reactions obtained, 

therefore increasing the linkage between polymeric chains. 

 

1.6.1.  Compounding. 

Compound formulation is dependent on each factory conditions, such as suppliers, 

year round temperature average, machinery and factory floor conditions and targets. Due to 

this compounding mix formulas seldom can be exported between plants and often need to be 

locally developed and fine tuned to achieve lower raw material costs, increased processability 

and achievement of target finished product properties. This means all materials received are 

sampled and tests to assure contracted properties which must be met by the suppliers and 

also to fine-tune the mixing formulas in which these raw materials will be used. [19] 

Since rubber elastomers have no usable application unless their properties are 

tweaked in order to achieve certain target properties these are added during the mixing 

stages. Compounding adds sulphur as a cross linking agent (after the initial mixing stages to 

avoid premature vulcanization), addictive fillers which act to either to enhance rubber’s 

mechanical properties (reinforcing fillers) or to extend the rubber to reduce cost (non-

reinforcing fillers). Compounding will affect properties, cost and processability. 

Figure 24 – Polymeric chains cross linked with sulphur chains. [4] 
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Rubber compounding is made up of the following constituents. 

1) Base polymer or blend of polymers 

2) Cross linking agents 

3) Accelerators of the cross linking reaction 

4) Accelerators modifiers (activators and retarders); zinc oxide and stearic acid form a 

common activator system for sulphur-vulcanized systems. 

5) Antidegradants (antioxidants, antiozonants, inhibitors of metal catalyzed oxidation, 

protective waxes). 

6) Reinforcing fillers (black, mineral and organic) 

7) Processing aids (chemicals peptisers for polymers, softeners, plasticizers, dispersing aids, 

tackifiers, factice and lubricants) 

8) Diluents (inert mineral fillers, organic materials and extending oils) 

 

When different types of rubber need to be vulcanized together at the same conditions 

of pressure, temperature and time, each individual rubber compound needs to be either 

accelerated in order to align their vulcanization timings to a single frame. 

Also these compounds need to be inhibited to avoid vulcanization and oxidation 

(aging) at previous stages that might generate high pressures and/or temperatures, such as 

mixing or extrusion or being stored as unvulcanized components vulnerable to oxidation. 

Because even with oxidation inhibitors unvulcanized rubber is still vulnerable these 

components have a short storage life to avoid compromising the quality of the finished 

products.   

To avoid pre-vulcanization in the compound mixing stages in which high temperatures 

are often obtained (aprox. 150 oC) pre-vulcanization inhibitors (PVI) are used. 

 

1.6.2.  Cross linking agents 

These cross linking agents are the main players in the vulcanization reaction by 

regenerating new chains that will anchor the rubber compound polymeric chains increasing its 

tensile strength and reducing plasticity. As presented on chapter 1.6 the cross link agent used 

in tire manufacture is sulphur. 

In order to sulphur act effectively as a cross linking agent elastomers must have double 

bonds with allylic hydrogen. All rubber elastomers used in tire build, such as BR, SBR, NR and 

IIBR meet this requirement. 

Rubber grade sulphur has a purity of 99.5%, with less than 0.5% of ash. Also it is acid 

free, which is important since acidity retards curing. To be effective sulphur must be well 

dispersed in the compound rubber, otherwise it will lead to lack of homogeneity on the final 

product with over vulcanized or incomplete vulcanized areas. As it would be expected such 

flaws increase the probability of failure initiation during serviced life. 
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An elastomer with high solubility will facilitate dispersion. NR and SBR have a greater 

solubility than BR, therefore it is easier to disperse sulphur in the former two elastomers, 

particularly at high levels of sulphur. [20] 

Sulphur is presented either as a soluble (rhombic crystal form) or insoluble 

(amorphous) form in rubber. Although soluble sulphur is easier to disperse than insoluble 

sulphur, the latter is sometimes used to prevent sulphur blooming. At temperatures below 

120oC insoluble sulphur does not dissolve, instead it is presented in discrete particles which 

cannot readily diffuse through rubber. At high temperatures elastomer solubility increases 

absorbing high amounts of sulphur, but as temperature decreases solubility decreases and the 

excessive sulphur migrates to the surface and crystallizes. This effect results on surface 

precipitation which causes tack reduction, a needed property during tire construction to pile 

up several layers of rubber components during construction.  

In order to prevent bloom soluble sulphur needs to be complemented with insoluble 

sulphur, this way after the compound cools down soluble sulphur has little bloom with 

insoluble sulphur dispersed throughout the compound and unable to migrate due to its 

particle size. Insoluble sulphur becomes soluble at temperatures above 120 oC achieved during 

curing procedures, for this reason mixing stages are refrigerated to control the process 

temperature.  [20]  

 

1.6.3.  Activators 

Activators are both inorganic and organic chemicals used to activate or extract the full 

potential of accelerators. Actually in the absence of accelerators zinc oxide and stearic acid are 

unable to effectively increase the number of cross links generated during curing. [21] 

The most common accelerators used in the curing process are zinc oxide and Stearic 

acid, although lead and magnesium oxides can also be used. Activators (along with 

accelerators) allow the reduction of activation energy necessary for the vulcanization process 

from 210 kJ/mole to the of range 80 - 125 kJ/mole. [22] 

Activators and accelerators facilitate the breaking of sulphur chain and the 

“accelerated sulphur” vulcanization system requires only 5 to 15 sulphur atoms per crosslink as 

compared to 40 - 55 sulphur atoms per crosslink for un-accelerated sulphur vulcanization. 

 

Figure 25 - Zinc oxide interaction [4] 

 

 In order to for the zinc oxide to be fully effective it must be in a form that is able to 

react with the accelerator system, which means ZnO particle sized must be very fine or the zinc 

must be in soluble form (Fig. 25).  
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 Most natural rubbers and some synthetics contain enough fatty acids to form soluble 

zinc salts which are able to react with the accelerators.  

 To ensure there are enough fatty acids it is common to add 1 to 4 parts per hundred of 

stearic acid. The fatty acid acts as a plasticizer or lubricant to reduce the viscosity of the 

compound, besides being a solute to zinc oxide.[21] 

 

1.6.4.  Accelerators 

 

Accelerators are typically classified as primary or secondary. Generally primary 

accelerators provide considerable scorch delay, medium to fast cure and good modulus 

development, while secondary accelerators produce scorchy, very fast curing stocks 

Nowadays the most used primary accelerators are thiazoles and sulfonamides, being 

the latter a reaction product from MBT or MBTS and amines. Examples of these amines are 

CBS (cyclohexyl), TBBS (tertiary butyl), MBS (morpholine) and DCBS (dicyclohexylamine), the 

effects of these amines are reflected in differences in scorch safety and cure rates. 

Typically secondary accelerators are DPG, DOTG, TMTD, ZMDC and ZBPD. These are 

seldom used alone, generally being applied in combination with primary accelerators to gain 

faster cures. [21] This practice usually results in shorter scorch safety and smaller vulcanization 

plateaus, this means shorter opportunity windows on the vulcanization curve and a need for 

greater process stability and control. 

There are major differences in scorch safety, cure rates and state of cure. MBS 

provides a greater scorch safety, while TBBS provides a faster cure rate and higher state of 

cure (modulus). Similar comparative 

results are seen when secondary 

accelerators are used to speed up cure 

times.  Regarding the secondary 

accelerators TMTD and TMTM develop 

higher modulus and longer scorch safety 

than DPG or ZDMC, but are still scorchy 

than TBBS alone. (Fig. 26) 

Primary and secondary 

accelerators may be combined to 

achieve greater flexibility in processing 

and curing properties. 

Although being applied at different 

phr (parts per hundred) modulus vs time 

curves are similar both in natural rubber and SBR, which allows easy accelerators applications 

for simultaneous curing constructions such as tires.[21] 

Figure 26 - Comparison of accelerator classes in natural rubber [8] 
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The higher the torque achieved during 

the curing process, the higher is the amount of 

cross links created. 

Since the curing curve declines due to 

over vulcanization after it peaks, it is 

important to avoid small plateaus when curing 

thick sections. The reason for these details is 

the time necessary for heat to be transferred 

into the thick of the cured part as well as to be 

removed from the same.  

 When compounding a certain rubber product the engineer needs to, select a curing 

system [22] which must account for:  

- Process temperature available 

- Required target modulus achieved during curing (state of cure) 

- No reversion on over cure 

- Fast curing rate for economical production 

- Adequate processing safety for scorch free procedures 

- Accelerators solubility in rubber (high solubility to avoid bloom and improve 

dispersion) 

- No adverse effects on other required properties, such as bonding, ageing adhesion. 

- Stability of accelerator as chemical 

- No known health hazardous for production personnel  

 

Table 2 - Accelerators classifications [22] 

 

 

1.6.5.  Retarders and inhibitors 

 

Retarders are materials which provide longer scorch safety with little change to other 

properties. Acidic materials such as salicylic acid, benzoic acid and phthalic anhydride are used 

as retards, mostly with thiazole-based cure systems. This option is good to increase scorch 

Figure 27 - Comparison of primary accelerators in 
natural rubber [8] 
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delay although it reduces rate of cure. On the other hand 

when combined with sulfonamide accelerators they may act 

as accelerators instead. 

Pre-vulcanization inhibitors (PVI), N-cyclohexylthio-

phthalimide (CTP) are greatly effective on the control of 

scorch with little effect to other properties. This is of the 

utmost importance to avoid the rubber nightmare of 

unintentional vulcanization and allow better, shorter or with 

higher mixing temperatures mixing cycles. From figure 27 it 

is easy to judge CTP effect on compounds. One limitation of 

this PVI is that at levels of 0.5 phr or above it may cause 

some bloom, although such high levels are rarely used. 

 

 

1.7. Addictives 

 

Generally there are 3 different types of addictives, antioxidants (to provide oxygen 

protection), antiozonants (for ozone protection) and softeners (for processing purposes). 

1.7.1.  Antioxidants 

Oxygen reaction with elastomers can cause both chain scission and cross linking, which 

means the compound stiffness will be affected on either way. This effect may also facilitate the 

initiation of cracks and fractures that under stress may grow to become failures. For this 

reason tires are controlled by their DOT (as mandated by the United States Departement of 

Transportation) with a print of week and year of production on the sidewall. 

Although most elastomers embrittle due to oxidation due to a dominance of cross 

linking, natural rubber actually softens. Oxidation is accelerated by heat, ultraviolet light and 

some metals such as copper, cobalt and manganese. Stress also hastens oxidation by providing 

polymeric chain movement, as well as the sulphur content due to the allylic cross link. [20] 

The mechanism of oxygen attack on elastomers involves autocatalytic free radical 

chain propagation. These macro radicals are created with the abstraction of hydrogen from 

rubber chains by a proton acceptor. Oxidation then continues with the reaction of these macro 

radicals with oxygen and the subsequent generation of hydroperoxides and peroxy radicals. 

Cross linking results from the coupling of macro radicals or by macro radical addition to 

a double bond with an H abstraction. Chain scission on the other hand is somewhat more 

complex, in which after several transformations the polymeric chain is broken at β-

position.[20] 

Figure 28- Effect of CTP on cure 
profiles [8] 
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During the ageing process carbonyl, hydroperoxides and peroxides are formed and can 

be detected by an infrared spectroscopy. 

Since it isn’t feasible to run real times aging tests, these are conducted in laboratory 

conditions with accelerated aging tests. However since aging depends both on temperature 

and stress it is complicated to infer how it will evolve. For example natural rubber will stiffen 

on tests run at 50 oC, but soften at tests of 110 oC.  

Antioxidants act in two ways, the first called preventive, by reacting with 

hydroperoxides to form harmless non-radical products, during this reaction the antioxidant is 

oxidized. And the second called chain breaking anti-oxidant which destroy the peroxy chains 

radicals which would otherwise propagate  

Organic phosphites are preventive oxidants and are nonstaining, but they lose much of 

their activity during curing and are mostly used as emulsion rubber stabilizers. Common chain 

breaking antioxidants include bisphenols, thiobisphenols, hydroquinone derivates and 

hindered amines. 

To maximize the anti-oxidation effect the best option is to combine both preventive 

and chain breaking options since these act in synergy much more effectively than they would 

solo. Since during service some fluids may leach out the antioxidants, polymer-bound 

variations are now in use to avoid this issue. [20] 

 

1.7.2.  Antiozonants 

Ozone even at a few parts per hundred million readily breaks carbon-carbon double 

bonds in elastomers. If an unsaturated vulcanized elastomer suffers strain in the presence of 

ozone it will quickly develop cracks, with the severity of the same increasing with the strain. 

Paraphenylenediamines (PPD) are effective in reduction of ozone cracking, oxygen, as 

well as fatigue, heat and metal ions. These are relatively expensive but due to the large 

spectrum of protection against degenerative forces, they are widely used in several 

variations.[21]  there is good evidence that PPDs react directly with the ozone, thereby 

providing competition for the ozone-rubber reaction. 

Standard formulations are 6PPD, IPPD, DTPD and TMQ 

 Since PPDs are expensive and react directly when exposed other more affordable 

solutions are used to the extent of their capabilities. These are the petroleum waxes, which do 

not offer any protection against oxygen and due to their inextensibility can’t protect the tire 

during cyclic stress-relaxation. In the case of cycle loadings the way surface film ruptures 

exposing the polymer to the atmosphere, on this occasion protection is secured by PPDs. 

 Petroleum waxes are supplied as two major types: paraffin and microcrystalline. Each 

of these two is characterized by an optimum migration temperature where the mobility and 

solubility of the wax in the rubber are balanced so sufficient bloom can form at the surface to 

provide optimum protection. Microcrystalline waxes have higher molecular weights compared 
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to paraffin waxes and exhibit optimum bloom levels at higher ambient temperatures. To 

provide the best protection both of these two waxes are applied usually at different particle 

sizes to provide blooming at different temperatures.[21]  

1.7.3.  Softeners (process aids) 

The purpose of softeners is to aid the processing stages of the compound by reducing 

its viscosity and therefore reducing the energy necessary and reducing the temperatures. 

These are presented in two general kinds, chemical peptizers and physical plasticizers. 

The former are used with 1 to 3 phr and act by reducing molecular weight by increasing the 

rate of oxidative chain scission. Sulfonic acids and pentachlorothiophenol are part of this group 

and particularly effect on natural rubber, although in excess it may reduce the vulcanized 

strength by breaking its chains. 

 

Physical plasticizers soften the 

compound by reducing entanglement 

and decreasing internal friction. The 

entanglement plateau modulus depends 

on the concentration of rubber in a 

rubber-plasticizer mixture to the power of 

2.0 to 2.3. An additional benefit of physical 

plasticization may be the improvement in low temperature flexibility.[20] Plasticizers must be 

carefully selected to have good compatibility, otherwise they may “bleed” from the compound 

at low temperatures when the solubility is reduced. 

Common plasticizers include oils, fatty acids and esters. 

Softeners reduce mixing torques and extrusion defects, such as shark skin, by reducing 

the elastic effect of the compound and improving its plasticity. They are also responsible for 

the reduction of green compound viscosity, improved filler dispersion and adjustment of cured 

rubber modulus. [4] 

 

1.7.4.  Tackifiers 

Tack is necessary for tire construction because during tire assembly several different 

layers of rubber are overlapped to create a green tire. 

Generally there are several types available: [20] 

 Rosin derivates, which are chemical mixtures of abietic and related acids. 

 Coumarone – indene resins consisting of indene, coumarone, styrene, methyl styrene, 

methyl indene, and other hydrocarbons which are obtained from coal coke oven light 

oils. 

 Aliphatic petroleum resins made from unsaturates obtained while cracking crude oil 

Figure 29 - Softeners interaction with rubber 
compounds [4] 
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 Terpene oligomers obtained from pine tree stumps 

 Alkyl modified phenol – formaldehyde resins 

Tackifiers are used to prevent the loss of tack a compound suffers after being 

processed and also to improve it, as well as to improve adhesion of different rubber 

compounds (NR/SBR) which might otherwise not be so easily bonded. Tackifiers usually have 

molecular weights spread across 500-2000 and have limited compatibility to the elastomer 

they are added.[20] 

 

2. Tire components 

 Most PLT tires are all built with the same base components. What differs tires from 

each other is the construction and the composition of the rubber, this is what segregates a 

budget from a brand tire.  

 Construction wise there are some significant variations, although the most significant 

aspects of a tire performance are the rubber behavior while in contact with surface, tread 

pattern and the stiffness of the walls. 

 This will be explained further on along with the compromises that each of these 

aspects has. 

 

 Different components have different purposes. Both the tread and the sidewalls have 

a mix of several components which results in several different compounds, with the exceptions 

of the textile and steel components. 

 

2.1. Compounds 

Although passenger car 

tires and truck tires are similar in 

construction there is a huge 

difference in the weight of 

materials used. (Fig. 30) 

 

 

 

 

Figure 30 - Compound weight of passenger 
car tires and truck tires [2] Components involved in 

compound mixing 
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 These four elastomers present excellent 

qualities in some areas but need the combination 

or overlapping of other compounds to 

complement each other (Fig. 31). This is why tire 

construction combined several layers of these 

elastomers. 

 

 

 

 

2.2. Elastomers  

Elastomers are polymers with viscoelastic properties.  

This means that these materials behave both as viscous and as elastic materials. 

 

There are 4 main types of Elastomers used in the car tire industry: 

-Natural Rubber (NR) 

- Styrene-Butadiene or Styrene-Butadiene-

Rubber (SBR) 

- Polybutadiene (BR) 

- Isobutylene Isoprene Rubber (IIR) 

 

 

2.2.1.  Hysteresis 

 

A pure elastic element (a) will deform, within the elastic phase, and when the applied 

tension is removed it returns to its original dimension. 

On the other hand, the viscoelastic component (b) will demand more energy to 

achieve a certain deformation than it gives back when returning to the original deformation 

(Fig. 33). This means that the energy difference is dissipated as heat, through a process known 

as hysteresis. 

 

This effect is responsible for the heat 

generation on the tire during service as well as loss of 

energy. The reduction of this effect will save the tire 

from unnecessary exposure to heat and increase the 

car millage, being a central point in the development of 

new car tires. 

 It also increases the air temperature inside the 
Figure 33 – Hysteresis [4] 

Figure 32 - raw rubber materials [4] 

Figure 31 - comparison between elastomers properties. 
The lowest the number the better the polymer in the 
referred properties [2] 
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tire, causing raise of internal pressure inside the tire because the air is unable to expand. This 

effect is countered by the tire and the textile ply contraction due to the heat buildup. 

 

 

2.2.2.  Natural rubber (NR) 

Natural Rubber (NR) is obtained through the farming of Pará rubber tree (Hevea 

brasiliensis) which is most frequently referred simply as rubber tree.  

NR Derives from the milk like liquid of the Heavea Brasiliensis tree, this natural rubber 

latex contains many organic and inorganic impurities. [21] 

 

The Monomer chain if the natural rubber is Isoprene CH2=C(CH3)–CH=CH2 

 

 

Natural rubber is mostly used in the tread due to its vitrification (glass transition) 

properties which are important for wet grip.  

Also Natural rubber has a high resistance to cut resistance, elasticity (when vulcanized) 

and high tensile strength. Due to this property it is used on the upper half of the external side 

of the sidewall to protect the tire from lateral contact. 

 

Its Tg is about -70 oC and due to its stereo regularity NR crystallizes a low temperatures 

and upon straining. Straining crystallization imparts outstanding green strength and tack and 

provides vulcanization with high cut growth resistance at severe deformations. [20]  

This allows for a good green strength and tack which enable the uncured component 

to hold its shape during building and green tire storage. As rule of thumb, compounds with a 

durometer between 30 and 95 can be produced by using NR [21] 

 

 NR holds its strength during deformation it is highly resilient and experiences little heat 

buildup, being a material of choice when shock and dynamic load requirements are important. 

 Its shortcomings are poor resistance to ozone, high temperatures, weathering, 

oxidation, oils and concentrated bases and acids. When compounded with other chemicals 

such as Antidegradants (antiozonants and antioxidants) a usable finished product is 

achieved.[21] 

 

 

2.2.3.  Styrene-Butadiene Rubber 

Styrene-Butadiene or Styrene-Butadiene-Rubber (SBR) is a combination of two 

different polymers Styrene and 1,3-Butadiene. This polymer has similar properties to natural 

rubber and is used to cover natural rubber shortages and also in combination with the same 

due to its properties. 

 

SBR has a high resistance to abrasion and traction, chipping, aging along with a low 

vitrification temperature which allow good wet grip (better traction). 



Characterization of the factors involved in the tire production process 

- 27 - 

 

SBR is a copolymer of styrene and butadiene. It is synthesized via free radical emulsion 

polymerization or anionically in solution, most common using butyllithium initiator. A typical 

SBR contains 23% styrene and has a Tg of -55 oC. The molecular weight of the emulsion SBR is 

controlled (to prevent gelation) by mercaptan chain transfer. 

Hot lattices are produced when the emulsion polymerization temperature is elevated 

to approximately 50 oC. The rate of radical generation and chain transfer is high which causes 

the polymeric chains to be much branched. These hot SBR have low vulcanized strength. Due 

to this another process with a polymerization temperature around 5 oC (called cold SBRs) allow 

the production of a polymer with less branching which adds up to a vulcanized final product 

with higher strength than hot SBRs 

Anionically prepared SBR molecular weight is readily controlled by initiator 

concentration and molecular weight distribution is narrow. The resulting solution rubber is 

purer than emulsion SBR, because of the absence of emulsion residues.[20] 

2.2.3.1. Styrene/vinyl  

In order to improve Styrene properties 

small percentages of vinyl may be added to tweak 

the glass transition point and the compound 

service characteristics. (Fig. 34) 

High vinyl content will have negative 

effects on wet grip and tear resistance of SBR, 

while increasing its rolling resistance and tear 

resistance. [2] 

 

2.2.4.  Polybutadiene Rubber 

 

Polybutadiene (BR) is a synthetic rubber compound formed through the 

polymerization of the monomer of 1,3-Butadiene. 

Historically it was first synthesized in 1910 and became industrial since 1950. 
Polybutadiene is capable of absorbing more energy during the elastic phase of 

deformation than NR and SBR, and release it again as force and not so much as heat. BR is 

more resilient and therefore more elastic, which means the hysteresis loop, has lower energy 

dissipation. BR also has a high resistance to abrasion. 

Due to more elastic behavior BR is used on tires sidewalls to provide a lower rolling 

resistance. It has positive wear, rolling resistance and winter characteristics but is bad for wet 

grip. 

 

Figure 34 - Styrene / vinyl evolution of Tg [4] 
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Free-radical polymerization of butadiene gives polymers of low stereoregularity of 

little interest ot the rubber manufacturer. Commercial polymers are prepared in solution using 

either alkyllithium or Ziegler-Natta catalysts. [8] 

Polybutadiene is produced by emulsion process or by a solution process. The material 

offers the best low-temperature resistance of any organic elastomer (with the expction of 

silicone). Due to this property it suffers extensive cold flow at room temperature which causes 

bales to deform if not properly stored in specially reinforced containers. It is often blended 

with NR and SBR to improve low temperature flexibility of those compounds. Internal mixing is 

the process of choicce when compounds contain high proportions of BR. 

The choice of a high-vinyl BR results in a slower cure rate for the compound compared 

to conventional BRs. Therefore the use of primary and secondary accelerators is suggested and 

recommendations include sulfenamides and possibly thiuram type accelerators to acchieve 

good curing times and properties. 

BRs have a fair resistance to oxidation despite their low saturation, although most 

compounders prefer to add Antidegradants to improve ozone resistance.[21] 

 

 

2.2.5.  Butyl Rubber (IIR) 

Butyl rubber (Isobutylene Isoprene Rubber or IIR) is used to replace tire tubes, which 

have become absolutely obsolete in the last decades. 

Historically it was firstly synthesized in 1939 and became since industrial 1941 
IIR has a low gas permeability, very low elasticity and excellent high heat aging 

properties. Due to this it is used in the inside of the tire in a layer called Inner liner to keep the 

air trapped and under pressure. 

Nevertheless this is not an impermeable layer to air, which means air pressure needs 

to be regularly verified.  

 

IIR usually has low resilience at room temperatures for an elastomer with such a low 

Tg (approximately -70 oC). Since IIR is largely saturated the rubber has excellent aging 

properties.[20] 

Butyl rubber is a copolymer of isobutylene with a small percentage of isoprene, which 

provides sites for curing.[20]  

This elastomer is made via low temperature cationic polymerization. The halogenated 

forms which are produced in hexane solution by using chlorine or bromine, provide the 

compounder with greater flexibility in cross linking and enhanced cured compatibility along 

with general use elastomers. [21] 

Because of its chemical inertness butyl polymers tend to not experience molecular-

weight breakdown during processing. This allows operations such as heat transfer treatment 

or high temperature mixing to affect the vulcanizate characteristics of a compound. Because of 

its properties it is the choice polymer for curing bladders. 

In addition, flexibility is increased by the addition of some mineral fillers in the clay 

talc, and silica families along with promoters. Such promoters improve resilience and 

processing and can also increase compound modulus. [21] 
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2.3. Fillers 

Fillers are used to reduce the cost of Elastomers, while at the same time increasing 
processability, increasing the resistance to abrasion, tensile strength and Young modulus. 

There are 2 types of fillers, active and inactive. 

In the inactive branch we have clay, argyle and chalk. These are simply used reduce 

costs while maintaining the necessary properties. 

 Within the active fillers we have 2, Carbon black and Silica. 

 

2.3.1.  Carbon Black 

 Carbon Black is produced through the incomplete combustion of heavy oils in the 

presence of ammonia (NH3). (Fig. 36) 

 

Figure 36 - Carbon black production [4] 

 

 When combining carbon black with rubber, through the mixing process, it is important 

that the structure of the carbon black to be high. This will provide a better absorption by the 

rubber polymers, due to the higher active surface. Carbon black absorption is noticeable on 

the tire’s black color. [4, 23] 

 The higher the structure, the higher the tread durability, the better the wet-grip and 

rolling resistance (Fig. 35). 

The dispersion of Carbon black in the compound is mechanical. 

  

Figure 35 - Carbon black grain size [4] 
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The presence of carbon black increases the tensile resistance of the rubber compound. 

 

 

 

Due to the low electrical conductivity of the silica compounds and rubber, carbon black 

is used to discharge static electricity into the ground and avoid its discharge through the cars 

passengers while boarding or unboarding the vehicle. 

For this purpose the base of the tread is a carbon rich compound connected to the 

surface of the tread by one (or more) center carbon beam. Cars using tires with this carbon link 

to the ground will be immune to static electricity discharges. 

 

Figure 38 - close up of the carbon center 

 

  

Figure 37 - carbon black reinforcement [2] 
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Reinforcement is achieved by interlocking of the very rough carbon black surface with 

the polymer chains.  

 

Figure 39 - Carbon black effects on wet skid, RR and wear [2] 

Target conflict: Wet-Skid vs RR , Wear  

The use of carbon black improves wet-skid tire properties, but reduces rolling 

resistance and wear. Due to this target conflict when a tire is developed it is thought out for a 

specific range of application. (Fig. 39)   

2.3.2.  Silica 

Silica addition increases the elasticity of the compounds (better rolling resistance, less 

hysteresis), increases breaking distances and winter compounds performance and also 

increased resistance to cuts. 

 Silica is produced through the precipitation of silica from dissolution SiO2. 

 Silanes form covalent bonds to the silica surface during mixing, facilitating filler 

dispersion. When curing the rubber composite, highly stable silica-sulphur-polymer cross links 

are formed. (Fig. 40) 

 

Figure 40 - Silica and silane interaction with rubber elastomers [4] 
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 The dispersion of Silica fillers is dependent on presence of silane which acts as an 

activator for the primary reaction. The primary reaction is extremely fast and occurs with 

temperatures around 155°C if a good dispersion is obtained during the first mixing process. 

 The second reaction is slower and only occurs in the presence of water. 

During the curing process silica will attach itself to several polymer chains, increasing 

polymer linkage which increases the elasticity of the whole by creating anchoring points.  

Silica has no target conflicts, it slightly increase wet-breaking and significantly increases 

rolling resistance. 

 

 

3. Reinforcements 

 

3.1. Metal reinforcements 

Steel reinforcements are used in the bead core and tread in PLT tires and most 

CVT tires, although some CVT and high performance PLT tires also use steel 

reinforcements on the sidewall or as a mesh from bead to bead. (Fig. 41)   

 

Figure 41 - Metal reinforcements [5] 

  

Figure 42 - steel cord components and wrap [5] 
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Steelcord Construction Types 

 

Regular Cord 

Direction of Strands in 

opposite to direction of Cord 

 

Lang’s Lay Cord 

Direction of Strands and Cord 

is the same 

 

Open Cord 

Filaments are loosely 

associated to enable a high 

compound penetration. 

 

Compact Cord 

Same direction of Strand and 

Cord 

 

High Elongation Cord 

Preformed Filaments (picture) or short lay length (~3mm) for ensuring high structural 

elongation 

 

3.1.1. Filament pre-formation 

A common method for achieving the requirements of an Open Cord (high compound 

penetration) and a High Elongation Cord (high total elongation) is the filament pre-formation 

as shown below. A 2-dimensional, with 2 teeth wheels, or a 3-dimensional, with 4 teeth 

wheels, pre-formation is possible. The distance of the teeth wheels as well as the teeth shape 

allows several grades of pre-formation. With regard to fatigue a round teeth shape should be 

preferred. 

  

Figure 43 - steelcord construction types [5] 
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3.1.2. Production Steps 

 

 

 

Figure 44 - First Drawing [5] 

 

  

Wire Rod Æ 5.5 mm  

-Basis material for all steel cord constructions. 

-Different quality depending on required tensile strength (NT, HT, ST). 

-Depending on the supplier the surface is phosphated. 

 

Cleaning/Coating/Drying  

-Cleaning by mech. descaling and brushing for removing oxide films and scales. 

-Coating with a product based on borax secures a well adhesion of dry 

lubricant. Not needed if wire is phosphated. 

-Drying by air pressure. 

 

1st Drawing  

-In 8 steps the diameter is reduced from 5.5 to 2-3mm. Thereby the wire 

passes 8 drawing dies with a more and more reduced diameter. 

- Soap powder is used as lubricant for reduced friction. 

- During the drawing the dies and the cabestans are cooled with water. 

- The drawing speed depends on the wire quality: High C-ratio results into 

decreased speed.  

 

 

Figure 45 - Second Drawing and Patenting [5] 

2nd Drawing  

-Same process as in 1st drawing. 

- Reduction of diameter from 2-3mm down to 1-2mm in around 8 drawing 

steps. 

- Drawing speed is also here depending on the C-ratio (around 9m/s). 

Patenting (Normalizing)  

- Chemical cleaning for reducing remaining soap. 

- Steam drying. 
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- Normalizing of the crystal structure by passing an oven with 1000°C for 

getting an austenitic structure. The speed is depending on the wire diameter. It 

increases with lower diameters. The process is possible for diameter from 0.94 

to 2.40mm. 

- The next step is passing a quench of lead at around 590°C.  

 

 

Figure 46 – Patenting [5] 

 

Plating 

 

Figure 47 – Plating [5] 

 

Cleaning  

-The wire passes 4 cleaning bathes with   Water+NaOH  -  Water  - Hydrochloric 

Acid  -  Water. In the last step the wire is dried by air pressure. 

 

Plating  

Method 1: 

 -Cleaning quench with NaOH. 

 -In an electrolytic Na cyanide quench the brass layer is generated. 16 

electrolytic cells are in series connected. The thickness of the layer is controlled by the 

amount of quenches. For generating a lower thickness some of the quenches will be 

omitted. 

 -For removing rests of the cyanide, a water quench and a drying by air pressure 

follows. 

 -Plating speed is depending on the wire diameter (around 60m/min.). 

Method 2: 

 -After cleaning the wire in the first step only the copper layer will be generated 

electrolytic. In the same way the zinc layer will be generated afterwards. 
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 -Finally the brass layer will be generated by thermal diffusion with conductive 

or inductive warming at 400-500°C. 

 -Remaining oxide films are removed by a pickling bath afterwards.  

 

Fine Drawing 

 

 

Figure 48 - Fine Drawing [5] 

-Depending on the required diameter 

the wire passes up to 26 carbon dies. 

The speed is depending on the wire 

quality and the final diameter (around 

12m/min.). 

- For reducing the friction a wet 

lubricant is used at 45-47°C.  

 

Cabling 

 

 

Figure 50 – Cabling [5] 

~ 

Stranding/Cabling/Wrapping 

-Depending on the required product up to 3 steps are necessary for processing 

a cord. 

- Stranding generates simple constructions like 2x0.30. 

- During cabling two or more strands are combined together to a cord like 

3x0.20+6x0.35 

- With spiral wrapping finally a spiral is wound around the cord. 

- The twisting speed is 3300 turns/min. The cabling speed depends on the 

cable construction (around 1200-1500 turns/min.). 

- The lay length is controlled by the extraction (let off) speed.  

Figure 49 - Fine Drawing [5] 
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Figure 51 – Cabling [5]   

Crystal Structure 

 

Figure 52 - Crystal structure before and after drawing [5] 

 

 

Original structure at Æ 5.5mm 

 

 

 

 

Slight textured structure after pre-drawing to Æ 1.0mm 

 

 

Normalizing (Patenting) back to austenite structure at 900-

1000°C 

 

 

 

Final textured structure after fine drawing to e.g. Æ 0.30mm 
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After Pre-Drawing from 5.5mm to ~ 1mm a further diameter reduction would destroy 

the material due to too high brittleness related to the textured structure. 

 Therefore a Normalization of the crystal structure is necessary. By increasing 

the temperature up to 1000° the textured orientation will be lost. Further drawing to 

lower diameter is possible.  

 

Adhesion Mechanism 

To improve adhesion between the rubber compound and the steel cords, 

these are covered with a layer of brass which capable of bonding with the sulphur 

present during the curing process. (Fig. 53)    

Bonding System of Copper from Brass Layer together with Sulphur from 

Compound to CUxS Layer. 

 

Figure 53 - Adhesion Mechanism [5] 
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3.2. Textile reinforcements 

 

In tires industry textiles are used to increase the resistance to expansion. This is the 

only component which is held between both beads and provides a counter force to expansion 

during the pressurized phase of curing process. This effect is due to this elastomer contraction 

when heated, this way it will counter act the internal increase in air pressure due to the same 

increase in heat.  

Another purpose of this textile reinforcement is to hold the assembly in place during 

construction. 

 

Figure 54 - Tire section with textile reinforcements visible between the bead metal cores and all around the tires 

 

Textile cords are responsible for holding the air pressure inside the tire. For 

this purpose the innerliner (rubber layer which with a high impermeability to air) is 

placed on the inwards side of the 

layered construction next to the 

textile cords.  

 

The fact that textile cords 

suffer no or little compression 

makes this component relevant 

to vibration, as well as to 

maintaining the shape limits. (Fig. 

55)   

 

 

 

Figure 55 - textile reinforcement’s contribution to 
shape [2] 
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 These are the four of the most used textiles and their details used in tire construction: 

Table 3 - Textile strengths and constructions [2] 

Nylon (Polyamide) 

dtex 14001  -  110 epdm  

           -  140 epdm  

dtex 14002  -    90 epdm  

dtex 9401    -  120 epdm  

dtex 9402    -  101 epdm  

 

Polyester 

dtex 11002  -110 epdm  

dtex 11002  - 100 epdm  

dtex 14402  -   95 epdm  
                        - 105 epdm  
                        - 121 epdm  

dtex 22002  -  94 epdm 
 

 
Rayon 

dtex 18402 - 118 epdm  

                       - 125 epdm  

          - 110 epdm  

dtex 24402 - 104 epdm 

 
Aramid 

dtex 16702-90 epdm  

dtex 16702-75 epdm  

 

Dtex  - Liner density of the thread (gr/10000m of thread) 

Xn – cord composed of n threads. 

epdm – nº of cords by decimeter. 

 

 

Depending on the application different textile materials are used as nylon and 

polyester are the textiles with less tensile strength, while rayon and aramid are on the high 

end of the scale in textile tensile strength.  

Aramid is used in high performance and critical situations for heavy aircraft tires. To 

better understand the scope of its usage the same textile used to produce Kevlar. 
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4. Tire construction 

 To understand how a tire is built it is first necessary to know how the components 

come together. For this purpose here are the main components involved in the tire 

construction. 

 Some details, such as bead core may change from brand to brand since different 

solutions are in use in different tires. 

 

Figure 56 - Tire components [6] 

 

The innerliner (Fig. 57) is a relatively new 

introduction to tire industry and has replaced the 

inner tube. The rubber compound in use is IIR due 

to its impermeability to air. 

It also protects the cords from possible 

degradation due to atmospheric moisture absorption. It is usually calendared as a two layered 

laminate having stepped edges. The overall gauge may be as high as 2 to 5 mm and the with 

must ensure that edges are over lapped by the inner edges of the chaffer.[19] 

 

 As previously described the textile 

ply (Fig. 58) has the function of holding the 

construct together during construction, 

providing a counter action to air expansion. 

 Also the textile ply helps on the 

transfers breaking and sideways forces to the 

rim. 

 

 

 

 

Figure 57 – Innerlinner [6] 

Figure 58 - textile ply [6] 
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 The purpose of the bead core (Fig. 

59) is to make sure the tire is well settled on 

the rim. 

 

 

 

 The apex (Fig. 60) is a compound 

with high elasticity which provides good 

rolling resistance properties, which 

maintaining the tire shape during steering 

maneuvers. 

 

 

 

This is textile reinforcement (Fig. 61) 

for the apex area applied on high 

performance tires. Its contributions are the 

same as that of the apex.  

Note: Apex reinforcement is not always 

present.  

 

 This is a hard and elastic compound 

wrapped around the bead core to allow the 

tire to sit on the rim and transfer all forces 

between the rim and the tire. 

 

 

 

 

 

 

 

Figure 59 - Bead core [6] 

Figure 60 – Apex [6] 

Figure 61 - apex reinforcement [6] 

Figure 62 - Bead wrap / flange rib protection [6] 
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 Along with the tire tread the side 

is one of the most critical components of 

a tire because it will impact rolling 

resistance, steering and must protect the 

tire of small impacts and shearing forces 

that may occur due to sidewall impact 

during parking maneuvers. 

 

 Steel breakers are 

responsible for shape at high speeds, 

transferring breaking forces to the 

rest of the tire and providing 

directional stability and increased 

durability 

Note: Not present in temporary 

tires, which are supposed to be used 

under 80 Km per hour and for no 

more than 100km. 

 Cap ply is responsible for high 

adaptability and to protect the rubber 

from the sharp edges of the metal 

reinforcements. 

 It will also maintain the 

breakers in place during construction 

allowing better production 

characteristics. 

 Tread is composed of three 

areas. 

 The top layer is in contact 

with the ground and has the prime 

rubber components for a target tire 

purposes.  

 The base layer which aims to 

reduce rolling resistance and is often 

composed of work-off components. This is a purely structural component as it 

shouldn’t be in contact with the ground. 

 Shoulder area is composed of the same rubber as the side wall and has the purpose of 

improving the adherence between the tread and the sidewall during curing.  

Figure 64 – Sidewall [6] 

Figure 63 - Steel belt (breakers) [6] 

Figure 65 - Cap ply [6] 

Figure 66 – Tread [6] 
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4.1. Production stages 

 

 There are 5 stages in a tire manufacturing plant. 

4.1.1.  Mixing 

 This is the area in which the different compounds are weighted and mixed according to 

meticulous recipes which are constantly under control to compensate ambient temperature 

changes, new developments, raw materials variations and process variations.  

 Since the specific characteristics of the rubber compounds are critical this is one of the 

most important stages. 

 

Figure 67 – Mixer [12] 

 

 There are 3 types of mixing, dispersive and distributive mixing.  

 

Figure 68 - Distributive mixing [4] 

Distributive mixing creates a homogeneous material which provides the necessary 

interaction between the different materials.  In this mixing shape and size of particles remains 

the same.  
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Figure 69 - Dispersive mixing [4] 

Dispersive mixing on the other hand is the effect by which particles shape and size are 

changed due to shear forces.  

 

Figure 70 - laminar mixing [4] 

 Laminar mixing elongates and shears materials which increase contact surfaces 

between materials. 

 

In reality all of these effects have to occur simultaneous to enable a good compound 

homogeneity. 

To achieve all these mixing effects different mixers are used during the mixing stages. 

 

Figure 71 - mixing types and screws [4] 
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 Following the mill the compounds is cooled down and packed into transportable 

batches. 

 

Figure 72 - Mixing sequence [4] 

 

Mixing is done in 3 stages and with different settings. 

  1st stage 

 Polymers and fillers are loaded and the mixing process reduces viscosity and increases 

the dispersion of fillers. 

 This stage is characterized by high shear forces and high temperatures.  

  2nd stage 

 Chemicals and softeners are loaded and dispersion and distribution of all materials 

increases. 

 This stage is characterized by medium shear forces and high temperatures. 

3rd stage 

 Vulcanizations are loaded and further distribution of all materials. 

 This stage is characterized by low shear forces and low temperatures. 

This stage is carried out separately from the previous stages because it has to be done 

at low temperatures, because with the addition of vulcanization agents (i.e. sulphur) the 

polymers are in danger of unwanted curing.  
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Below is an example of the mixing process in stage 2 and the silanisation reaction in 

which silica bonds with the rubber polymer. 

 

Figure 73 - mixing effects over time [12] 

 

 

4.1.2.  Preparation 

 This is the stage in which all intermediary components are created to be conjugated on 

the III stage. 

Textile ply 

 The production of this component starts with the extrusion of a final mix directly 

followed by slicing to prepare the compound for the mill. This extrusion and milling may seem 

excessive but is necessary to provide a fine rubber compound. 

 

Figure 74 - Compound preparation. [7] 
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Figure 75 - Compound Calendaring [7] 

  

 Once compound is ready and ply rolls are feed into the Calendaring machines both 

textile and rubber are compressed together to form a single pane. 

 At this stage (depending on the production setting) the textile ply is stored or follows 

through the preparation of cap ply (cap strips). 

Cap strip 

Cap strip is cut on a dedicated machine called slitter 

and then rolled on cassettes by the mini-slitter. These 

cassettes are then feed to several singular P.U. machines to 

be applied over the Steel Breakers. 

 

  

Steel breaker wire is imported from external 

sources and mounted in parallel supports to allow 

simultaneous feeding to a continuous calendaring 

process in which the steel wires are assembled into a 

continuous thread. 

 

 

Nowadays steel breakers are used as pairs of 

over posed layers with opposite angles. 

For this purpose the continuous thread built 

by calendaring is cut at specific angles and stored to 

be used at P.U. construction machine.  

  

Figure 76 – Slitter [7] 

Figure 77 - Steel breaker calendar feed [7] 

Figure 78 - Steel breaker angle cutter [7] 
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Apex 

Apex reinforcements are constructed in two stages, first the bead and then the apex.  

This type of reinforcement is composed 

by wire wrapped with rubber compound. 

Due to the many different 

configurations of wire matrix and wedge size 

these are built at separate stages. 

 Firstly the bead is extruded with 

a matrix of steel wires. 

 

 These rectangular extruded 

beads are then rolled into the size of the rims to 

which they will be mounted in the future. Once 

rolled the extra is cut and the bead is ready to 

receive the wrap which will be the apex 

 

 

The second stage of the apex building is 

the extrusion and wrapping of the previously 

prepared wire bead. 

 

Figure 81 - extruded rubber and its wrapping around the bead core to form the apex [7] 

Once the process is complete apex is ready to be transported to K.M. 

  

Figure 79 - Bead core [7] 

Figure 80 - Bead core to rim size production [7] 
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Tread preparation 

Treads are extruded from several different extruders, once for each rubber compound, 

and shaped into a single dye.  

Treads have at least 3 feeder to a single die, in order to produce the tread, base and 

wing tips. 

 

Figure 82 - Piggy back extruder with compounds [7] 

This is a very critical process due to dimensional 

tolerances and porosity which can appear in the compound. 

For identification color lines are added to the extruded 

tread for identification.  

 

 

During extrusion compounds are heated due to the 

shearing forces and rubber-rubber friction. This may generate pre-vulcanization reactions if 

the temperature goes above 150oC. To avoid this problem pre-vulcanization inhibitors (PVI) are 

added to compound while at the same time the entire process is cooled down through the use 

of water after the extrusion. 

 Porosity may appear in the extruded 

compound due to insufficient cooling after the 

extrusion. Which maintains the compound high 

solubility while exposed to the atmosphere, this will 

cause the compound to absorb air and when cooled 

to release it due to the fall of solubility. The 

released air will be trapped and cause porosity. 

Porosity is a real issue to avoid because it may force the compound out 

of specified dimensions and generate air bulges due to trapped air 

expansion during vulcanization. 

  

Figure 83 - Tread markings with painted lines 
for later identification [7] 

Figure 84 - Tread with a 
high level of porosity 
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Sidewall preparation 

 Sidewall preparation is very 

similar to the tread extrusion with 

the difference that only two 

compounds enter the sidewall 

composition. The rim compound 

composed of synthetic rubber and 

the lower sidewall composed of 

natural rubber. The lower sidewall 

and the tread wingtips are 

composed of the same compound 

mixture to improve components 

bonding. 

 

  

 After extrusion sidewalls are cooled and stored into cassettes for transport. 

 

4.1.3.  Construction 

The first stage of construction is the carcass which will be the base in which the tread is 

applied. When combined both tread and carcass form a green tire, which is the common name 

for un-vulcanized tires. 

 

Figure 86 - Construction drums [7] 

  

Figure 85 - Sidewall extruder with 2 feeders [7] 
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1) Firstly the drum separates itself from the left 

support so that the operator can introduce 

both apex reinforcements on each side of the 

working area. 

 

 

2) Innerliner - The drum then starts to rotate and 

the innerliner is stretched throughout the drum 

diameter. 

 

 

 

 

 

3) Ply -The ply placed over the innerliner  

 

 

 

 

 

  

Figure 87 - open construction drum for apex 
placement [7] 

Figure 88 – Innerlinner [7] 

Figure 89 - textile ply over innerlinner [7] 
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4) Bead Setting - In this stage the drum expands and 

stretches the combination of innerliner and ply 

slightly increasing its diameter. This is done to provide 

the correct position for the apex reinforcement. After 

the drum expansion the apex, which were previously 

placed on each side of the drum are moved into position 

with the use of compressed air. 

 

 

 

 

 

 

 

 

 

5)  Turn up – After the apex placement the machine 

collapses from both sides. 

 

After the ply turn up the innerlinner covers both apex 

reinforcements and the center of tire and with 

enough turn up it provides resistance to the 

combination. On this stage the bead is trapped  

 

 

 

between the ply and set in place. 

The ply tackiness allows it to 

adhere together and maintain this 

construction. 

 

 

 

 

6) Sidewall setting - This is one of the most critical stages in the production of tires. 

The position is guided by the PU machine feeder with the operator being responsible 

to confirm its placement with the help of guiding lasers. 

 Once the sidewall is set all around the drum and its position confirmed the next stage 

is to roll the sidewall around the apex. This is done automatically and it depends only on the 

machine settings for this operation. Therefore it is very important to control all the procedures 

to correct any issues that may occur.  

Figure 90 - Bead setting [7] 

Figure 91 - Bead setting during 
Ply turn up [7] 

Figure 92 - Ply interaction during ply 
turn up [7] 

Figure 93 - Carcass after ply turn up. [7] 
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 Once the sidewall is turned around the apex the drum collapses and releases the 

construct. This construct is called Carcass. 

 

Figure 94 - sidewall setting and roll over apex [7] 

 

7) Belt/Tread assembly 

In this stage a separate set of drums is used to combine 2 belts of steel breakers which 

are laid on top of each other then covered with cap ply and finally with the tread. 

 These steel breakers are composed of an extrusion of steel wires and rubber, which 

are then trimmed to length and an angle. On some constructs the first breaker (the breaker on 

bottom) has its edges wrapped in rubber to encapsulate the steel wires edges. 

This angle is used to provide extra resistance to deformation.  

On top of the steel breakers a layer of cap ply, composed of a stronger textile, is 

positioned with the double purpose of holding the construction together and protecting the 

surrounding rubber layers from the steel wires.  

This protection is important because the radius of the steel breakers changes in the 

flat spot due to the weight which acts upon it. This radius variation creates a width variation on 

the steel wires.  

 

The process in this stage uses two drums mounted on a vertically rotating support, a 

carcass support which emulates the rim supports and a transfer ring which slides between 

both previously described components. 

Construction sequence: 

Firstly the belt is feed to the drum which has access to the transfer ring side, and then 

the drums vertical support rotates for the cap ply servicer. 
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This step increases productivity because the application of cap ply is the operation 

with the longer period of time in this stage. Cap ply is applied in cap strips, this means the cap 

ply (or cap strips due to the application method) is feed unto a rotating drum while the cap ply 

feeder moves in a perpendicular motion, in relation to the rotation of the drum.    

There can be either one or two cap ply feeders, depending on the tire construct. 

 

Once both the steel breakers 

and cap ply are applied the drum 

vertical support rotates once more, 

back to the original position and the 

tread is now applied. 

Once this assembly is 

complete the drum collapses while 

magnets on the transfer ring carry the 

assembly to the carcass. Here the 

tread assembly and the carcass are 

compressed and combined through 

knurling from the center to the edges. 

 

The tread is placed on top of the 

two belts covered with cap ply.  

 

 

 

 

  

Figure 95 - on the right the tread construction drums and on the left the 
assembly of the carcass and the tread [7] 

Figure 96 - Tread assembly with two breakers, cap ply and on 
top of it the tread. [7] 
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8) Carcass and Belts/tread combination. 

 

Figure 97 - tread and carcass assembly [7] 

In this stage the operator places the carcass (which placed in a chute feed by the 

operator on stage 7) on the right support of the KM machine. Here the carcass is fixed on two 

rings similar to rims and once held together in place it is inflated.  

 

During inflation the carcass beads are held in place and become air tight due to the 

pressure of inflation itself. This will shape the carcass into a recognizable tire shape while the 

tread assembly is placed on the outside of the carcass. 

 

 Once the assembly of the green tire is complete the tread assembly is 

compressed to hold the construct in place and shape the tread into position. 

This a very important stage and the compression start from the center of the tread 

with two rolls moving sideways to the outer edges.  The purpose of this procedure is to 

squeeze any trapped air between the layers, because when trapped air is heated during the 

curing process it expands and creates bulges.  

 

Figure 98 - tread rollers [7] 

 

  



Characterization of the factors involved in the tire production process 

- 57 - 

 

9) Green tire 

 

Green tires are prepared for transport to the curing area.  

  

Figure 99 - green tire storage and transfer [7] 

 

The main issue during this stage is green tire storage, because green tires are still 

vulnerable to plastic deformations. 

 In a perfect situation green tires should be stored in holed trailers to avoid sidewall 

collapsing. In reality holed cars occupy too much space and are rim size specific and aren’t 

interchangeable, because if the holes aren’t correct for the stored tire it will be damaged. 

 Flat bed trailers can be used and reassigned to different tire sizes without creating 

extra complexity, which is the main reason for the continued use of these transport cars. 
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4.1.4.  Curing 

 The procedure of the tire production in this stage is quite simple in terms of 

procedure. 

1- Green tires are carried in flat bed trailers (or trailers with holes) to the presses 

2- The operator hangs the tire in front of the curing press  

3- The press robotic arm extracts the hot tire into a conveyer belt and loads the next 

green tire hanging in front of the press for the next curing cycle. 

4- Periodically after a certain amount of curing cycles the rubber Bladders are stretched 

without tires to improve the uniformity elasticity. 

 

 

Figure 100 -Curing press with inflating curing bladder and robotic arm to extract the tire [7] 

 

 When a new mold is mounted or when production is restarted molds need to heat up 

to operating temperatures which depend on the curing cycles defined for each article. 

 Articles curing cycle with similar time periods and of which only a mold is in production 

are frequently assigned to the same press. This is relevant because presses are designed in 

pairs, having two cavities for tire curing. Also this stage has the longer time per tire ratio, 

therefore optimization is essential. 

 There are several types of molds, nowadays the most used are segmented molds. 

These consist of 2 solid sidewall plates (top and bottom) and 8 segments which close under 

pressure against the green tire. This enables the mold segments to move in direction to the 

center of the circumference. 
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Figure 101 -Curing reaction overtime [24] 

 Once the tire is set on the press and the curing bladder inflated the curing process 

begins. For a passenger tire the curing time is approximately 15 mins. 

 It is important to notice that if the press cycle is too short the tire will be under cured 

or if the opposite happens the tire will be over cured and suffer a reversion of the achieved 

properties during the curing.  

 Since rubber isn’t a very good heat conductor, tires come out of the about 2/3 of the 

curing cycle and finish the curing cycle outside of the press while cooling down. This effect as 

to be taken into account since rubber stores large amounts of heat and releases it quite slowly. 

4.1.5. Curing maintenance and accessories  

 

 

4.1.5.1. Mold cleaning 

 

 After several cycles moulds are cleaned 

with dry ice (while heated) to remove oils, 

lubricants and rubber which stain the cured tire. 

Dry ice (CO2) method is the solution used while 

the molds are mounted,  

 There are several solutions using laser to 

clean molds, but they aren’t very used because 

air vents cavities aren’t easily cleaned with lasers. 

This is due to lasers only acting upon surfaces 

with direct line of sight. Figure 102 - open mould [7] 
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Figure 103 - Dry ice (CO2) machine for mould cleaning and a mould section before and after cleaning [25] 

 

 

4.1.5.2.  Air vents. 

 Air vents are necessary to expel trapped air while the 

bladder expands and during air expansion due to the increase of 

temperature. 

 The modern air vents do not create flash of rubber, instead 

they are barely noticeable. These air vents are similar to counter 

pressure valves used in   

  

 Using air vents reduces the force necessary to pull the tire 

from the curing press, because there are less grabbing points. Also the 

finished product (see below) is of greater quality and ready to be used at 

full performance, while the flash from the old air vents increases pass by noise and reduces 

certain performance qualities.  

 

Figure 105 - On the left a tire moulded with micro vents and on the right a tire moulded with airvents. 

 

 

Figure 104 – Airvents [2] 
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4.2.  Final inspection 

 This is the last stage in the tire assembly line and is composed of two different 

operations.  

 Tires need to be visually inspected by a qualified inspector which has the responsibility 

of detecting bulges, blisters blemish, cords penetration (visible cords) trapped air between the 

mold and the green tire, residues of lubricants and oil used during the curing process, visible 

dimensional deformations and overall imperfections. 

 

Figure 106 - Manual inspection [7] 

 

 The second stage is called uniformity consists of automatically verifying each tire for 

conicity, roundness, inflated dimensions, strength of the bead in relation to the rim and in 

general how the tire will behave during operation. 

 

Figure 107 - Automatic uniformity robot [7] 

 In order to be able to inspect the uniformity of thousands of tires per day all this process 

is automatic. Tires are feed into conveyer belts and separated accordingly; in the informatics 

system the information is stored in relation to each tire bar code.  

 To verify how the tire behaves once inflated; the tire is automatically mounted into a 

rim and inflated to 4 bars (which is about the double of the inflation while mounted) and 

several laser measure the most critical points while the tire rotates.  
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4.3. Conclusion 

 

Due to its properties rubber components have increased complications when assembled 

on a multi-layered construction. Since rubber dimensions alter with temperature a constant 

certification of extruded components is necessary after said parts have cooled down to room 

temperature. Since the average room temperature varies between winter and summer 

adjustments are necessary on the mixing ratios. 

Also, due to rubber tackiness there is usually only one attempt to join two components 

together at the correct dimensions. 

A large part of unvulcanized discarded rubber components are reutilized for new batches 

where an exact mixture isn’t crucial for performance or safety. 

As a consequence of a large amount of articles being produced at the same time an 

impeccable organization on the factory floor is paramount. Failure to do so could result in 

articles with switched over components or construction settings from other articles. 

Everyday tire engineering is based on mixture of base knowledge and experience which 

inform a trial and error approach until all specifications comply with the original design. 

Because of its nature it’s very difficult to predict how all components will behave until the first 

test tire is cured. 

Overall it is an efficient system with low waste and with the added advantage of most 

being recyclable. 

The interconnection between university departments and enterprises is to be encouraged 

because it provides a better integration between these two realities. This opportunity was of 

an enormous value providing a great change for practical learning and curriculum valorization. 
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Tread dimensions profile for the extrusion product and die settings 

 




