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Abstract 

Biodegradable poly(L-lactide acid) (PLLA) nanofiber membranes were prepared by 

electrospinning of PLLA and poly(ethylene oxide) (PEO). The selective removal of 

PEO by water allows to obtain smaller fiber diameters and to increase the porosity of 

the membranes in comparison to PLLA membranes obtained under the same 

electrospinning conditions. After removal of PEO membranes with fiber sizes of 260 

nm and average porosity close to 80% are obtained. Thermal and infrared results 

confirm the poor miscibility of PLLA and PEO, with the PEO randomly distributed 

along the PLLA fibers. On the other, PLLA and PEO mixing strongly affect their 

respective degradation temperatures. The influence of the PEO in the electrospinning 

process is discussed and the results are correlated to the evolution of the PLLA fiber 

diameter.  
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Introduction  

When the average diameter of polymer fibers are shrunk from micrometers to 

nanometers, there appear several interesting characteristics such as larger surface area to 

volume ratio, flexibility in surface functionalities and superior mechanical properties, 

when compared to any other known form of the material [1-2]. 

It has been found that morphological characteristics such as fiber diameter and the 

uniformity of the electrospun polymer fibers are dependent on parameters such as 

processing conditions, solution properties and environmental conditions [2]. 

Electrospinning has proven to be an excellent method for the synthesis of submicron- or 

nano-fibers from polymer solutions for a wide range of polymeric materials. The 

electrospinning process was described by Formhals at the beginning of the 1930s, 

towards the commercialization of textiles yarns [3]. This technique is relatively 

versatile, simple, fast and efficient. Electrospinning membranes have attracted interest 

to be used in biomedical applications, such as scaffolds for tissue engineering, sutures, 

implants and controlled drug delivery systems, but also in other applications including 

filtration, sensors, batteries, cell phones and for chemical warfare protection, among 

others. [1, 4-5]. In all these applications fiber diameter and membrane porosity are 

among the key factors defining membrane performance. 

Several processing parameters can influence the morphology and properties of the 

electrospun fibers. The most important ones are those corresponding to the initial 

polymer solution, the solution concentration and the  molecular weight of the polymer  

[1]. Moreover, the parameters that control the jet formation and solvent evaporation are 

the flow rate through the needle, the needle diameter, distance from the tip to the 

collector, temperature, applied voltage, and the collection procedure, static or dynamic, 

using a rotating drum collector [6]. 

Poly(L-lactic acid) (PLLA) is a biodegradable polyester that has been used as a 

biomaterial for temporary therapeutic applications, controlled drug release, support for 

cell culture and tissue engineering. Its degradation by simple hydrolysis of the ester 

backbone in aqueous environments such as body fluids makes it a good candidate for 

the implementation of temporary applications. 

There are several works showing the effect of the electrospinning processing parameters 

on the morphology of PLLA fibers [7-10]. Tsuji et al. found that the fiber diameter 

decreases with increasing applied voltage [11]. Tomaszewski et al. studied the effect of 
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poly(L-lactide) molecular weight and viscosity of spinning solutions in fiber thickness 

[12]. Gu and Ren investigated the influence of applied voltage and polymer 

concentration on fiber diameter, and found that fiber diameter tended to increase with 

increasing polymer concentration and decreases with increasing applied voltage [13]. 

The influence of solution viscosity and electrical conductivity on fiber diameter and 

morphology was also investigated [14]. It was found that by reducing the PLLA 

concentrations in the solution the fiber diameter decreases but, on the other hand, the 

formation of beaded fibers was observed. The formation of beads can be reduced 

nevertheless by increasing the electrical conductivity of the solution.  

Despite these efforts, the precise knowledge for controlling the electrospinning 

parameters in order to obtain fibers with the desired morphology, crystallinity and 

molecular structure is still lacking, in particular in the case that nanosize fibers are to be 

obtained. 

The processing of an inorganic nanocomponent or polymer into another kind of 

polymer or inorganic matrix by using electrospinning has been also studied by several 

authors [10]. By co-electrospinning of two components that can be dissolved in a 

common solvent, composite nanofibers can be obtained after the solvent evaporation. 

The basic idea is to synthesize composite nanofibers allowing to provide new properties 

to the composite materials or to control the fiber morphology [10]. Several studies 

prove that it is possible to control the morphology of the composite nanofibers by 

proper understanding the electrospinning process. As an example, Jing and coworkers 

prove to obtain core/shell nanofibers of PEO/PEG-PLA by electrospinning [15]. It was 

observed that the polymer with higher viscosity moves into the center of the electrospun 

fibers and the component with lower viscosity is located outside. Additionally, as 

solvent evaporation is fast, the formation of core/shell fibers occurs in blend system 

with high molecular mobility. In this way, polymer blends with lower molecular weight 

tend to form core/shell fibers rather than a co-continuous structure, as a result of their 

higher molecular mobility [16]. 

Poly(ethylene oxide) (PEO) is a semi-crystalline  hydrophilic polymer with high 

potential for biomedical applications, due to its good biocompatibility and low toxicity. 

Miscibility and phase separation of PLLA and PEO have been studied by several 

authors [7, 9, 17]. It was found that melting point reduction of both PLLA and PEO 

polymers occurs, in particular at PEO contents below 0.2 weight fraction. It was also 

suggested that the inclusion of the two polymer molecules occurs in the amorphous state 
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[9]. Nakafaku studied the melting and crystallization behavior under pressure, assuming 

its semi-miscible behavior. However, it is claimed that the melting and crystallization 

behavior under different synthesization parameters is different depending on the 

molecular weight of the PLLA and PEO [18]. 

 

Although the influence of the parameters of the electrospinning process on fiber 

diameter has been well analyzed in PLLA, the information on the conditions required to 

obtain ultra-fine nanofibers is scarce yet. In this work, PLLA and PEO blends were 

prepared by electrospinning in order to achieve PLLA membranes with nanosize fibers. 

The influence of the PEO in the blend electrospinning process is discussed, and the 

results are correlated to the evolution of the PLLA fiber diameter. The selective removal 

of PEO by water gives origin to smaller fiber diameter and to increased porosity of the 

membranes in comparison to the PLLA membranes obtained under the same 

electrospinning conditions. This study shows therefore an easy route to obtain 

nanosized fiber PLLA porous membranes with large application potential in the 

biomedical field. 

 

2. Experimental  

Materials: Poly(L-lactic acid) (PLLA) with a average molecular weight of 217.000 – 

225.000 g/mol, Purasorb PL18 purchased from Purac (Netherlands) and Polyethylene 

oxide (PEO) with an average molecular weight of 100.000 g/mol supplied by 

Polysciences (USA) were dissolved in a mixture of N,N-dimethylformamide (DMF, 

from Merck) and dichloromethane (MC, from Sigma-Aldrich) (3/7 vol/vol) to achieve a 

polymer concentration of 10 wt% of the total solution. The PLLA/PEO blends used in 

this work contained 75% and 50% by weight respectively of PLLA. The polymer blend 

was dissolved at room temperature in a magnetic stirrer until complete polymer 

dissolution. 

 

Electrospinning: The polymer solution was placed in a commercial plastic syringe (10 

ml) fitted with a steel needle with 500 µm of inner diameter. Electrospinning was 

conducted at 20 kV with a high voltage power supply from Glassman (model 

PS/FC30P04). A syringe pump (from Syringepump) was used to feed the polymer 
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solution into the needle tip at rate between 2 ml.h
-1

. The electrospun fibers were 

collected in a ground collecting plate (random fibers), placed at 15 cm from the needle. 

 

Characterization: Electrospun fiber samples after and before PEO removal in water 

were coated with a thin gold layer using a sputter coating (Polaron, model SC502 

sputter coater) and their morphology was analyzed using a scanning electron 

microscopy (SEM) (model JSM-6300, JEOL) with an accelerating voltage of 5 kV. The 

nanofibers average diameter and its distribution was calculated over approximately 50 

fibers using de SEM image (5000X magnification) and the Image J software [19]. A 

scanning probe microscope (Model 5500 from Agilent) was employed for the AFM 

analysis of the samples before and after PEO removal. 

Infrared measurements (FTIR) were performed at room temperature in a Perkin-Elmer 

Spectrum 100 apparatus in ATR mode from 4000 to 650 cm
-1

. FTIR spectra were 

collected with 32 scans and a resolution of 4 cm
-1

. 

The thermal behavior of the electrospun fiber mats was analyzed by differential 

scanning calorimetry (DSC) measurements with a Perkin Elmer Diamond DSC 

apparatus. The samples were cut into small pieces from the middle region of the 

electrospun membranes, placed into 40 µl aluminum pans and heated between 30 and 

200 ºC at a heating rate of 10 ºC.min
-1

. All experiments were performed under a 

nitrogen purge. The glass transition temperature (  ), cold-crystallization temperature 

(   ), melting temperature (  ), cold-crystallization enthalpy (    ), melting enthalpy 

(   ) and degree of crystallinity (   ) of all electrospun samples were obtained. 

Thermogravimetric analysis (TGA) was carried out in a Perkin-Elmer Pyris-1 TGA 

apparatus from 30 to 700 ºC at 20 ºC.min
-1

 under a nitrogen atmosphere.   

Due to the porous nature of the membrane, which is fully opened and interconnected, a 

suitable method to estimate the porosity of the samples is the pycnometer test. In this 

work, and due to nature of the polymers used (PEO is water soluble), the porosity of the 

samples were measured by an improved weight-method. The weight of the pycnometer, 

filled with ethanol, was weighted and labeled as W1; the sample, whose weight was Ws, 

was immersed in ethanol. After the pores of the membranes were saturated by ethanol, 

additional ethanol was added to complete the volume of the pycnometer. Then, the 

pycnometer was weighted and labeled as W2 and the sample filled with ethanol was 
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taken out of the pycnometer. The residual weight of the ethanol and the pycnometer was 

labeled W3. The porosity of the scaffold was calculated according to   
        

      
. 

The porosity of each membrane was obtained as the average of the values determined in 

three samples.  

 

3. Results and discussion 

3.1 Scanning Electron Microscopy 

Electrospinning of PLLA generally results in fibers with diameters in the range between 

0.6 – 6.0 m, depending on the variation of the selected processing parameters [20, 21]. 

Ultra-fine nanofibers with average diameter lower than 100 nm are obtained using a 

mixture of solvents like dichloromethane/pyridine [2].  

A quite high number of parameters have influence in the electrospinning process and 

any study must fix some of them [1, 22]. In this work, solutions of PLLA and PEO in a 

blended solution of MC and DMF has been used. The high polarity of the DMF 

facilitates the fiber formation while the high volatility of the MC allows a quick 

evaporation from the fiber, maintaining theintegrity of the fiber during the traveling 

from the tip of the needle to the target. 

Once the PLLA-PEO membranes are obtained, PEO was removed by immersing the 

membranes in deionized water. After 24 hours, the samples were dried at 40 ºC until 

they reach a constant mass. The PEO was in this way fully removed from the PLLA-

PEO electrospun fiber mesh, which is accompanied by a mass reduction of 25 and 50 % 

of the membrane, respectively. Figure 1 shows the SEM images of the obtained 

membrane for the PLLA-PEO samples with 50 and 75% of PLLA, before the PEO 

removal, and the respective fiber diameter distribution. It is observed that all fibrils 

present a very smooth surface and that the obtained membranes are very porous. 
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Figure 1 – Morphology of the PLLA-PEO membranes before PEO removal: a) SEM 

image of the sample with 50% of PLLA, b) Fiber distribution for the 50/50 PLLA-PEO 

membrane, c) SEM image of the sample with 75 % of PLLA sample, d) Fiber 

distribution for the 75/25 PLLA-PEO scaffold. 

 

From figure 1, it is possible to observe that the amount of PEO in the sample strongly 

influences the fiber distribution in the electrospun mesh. For the sample with 75% of 

PLLA and 25% of PEO, the fiber average diameter was 447 ± 115 nm (figure 1c and d), 

but for the sample with 50% of PLLA and 50% of PEO a reduction of the fiber average 

diameter to 262 ± 70 nm (figure 1a and b) was observed. The samples obtained under 

the same processing conditions for pure PLLA sample has an average fiber diameter of 

1000 nm ± 300 nm, as can be observed in figure 2. 

a) b) 

d) c) 
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  Figure 2 – PLLA membrane obtained for the pure polymer by electrospinning at 20 

kV with a 0.5 mm inner diameter needle placed at 15 cm from the collector. 

 

This decrease of the nanofiber diameter with increasing PEO leads to the conclusion 

that the critical electric field needed to start the Taylor cone and consequently the 

polymer jet for the PLLA and PEO are not the same, being smaller for the PEO 

polymer. Therefore, the influence of the applied voltage on both polymer chains is not 

the same. 

The electric field is the drive motor to the jet initiation. In general, once the electric field 

is applied on the droplet of the polymer solution at the tip of the spinneret, the liquid 

surface becomes charged due to the motion of the ions through the liquid. When the 

electric field is high enough such that the electric force overcomes the forces associated 

to the surface tension, a quasi-stable, straight and electrically charged jet is ejected [1, 

22]. The balance between the surface tension and the electric force is critical to 

determine the initial cone shape of the polymer solution at the needle tip. It was 

observed in our samples that the diameter of the nanofibers for the solution with PLLA 

polymer is larger than for the PLLA-PEO blend solution.  

The mechanisms behind the electrospinning technique are not well understood in detail 

so far and some intuitive conjectures are given as follows to explain the observed facts. 

In the case of the PLLA-PEO electrospun nanofibers, the critical electric field at which 

the repulsive electrostatic forces overcome the surface tension are not the same for both 

polymers. The discharge polymer solution undergoes instability and elongation process, 

which allows the jet to become very long and thin and, in this stage, is the elongation of 

the PEO in the solution that stretches the PLLA present in the solution, giving origin to 

PLLA nanofibers with smaller diameter for the membranes with higher PEO content 

(figures 1 and 2). 
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Another explanation for the significant reduction on the fiber diameter is related to the 

viscosity of the solution that decreases in the presence of the PEO [7, 15]. 

After removal of the PEO from the polymer mesh by immersing the scaffold in water, 

the fiber distribution, morphology and geometry was characterized by SEM, and the 

results are shown in figure 3. 

It was observed that for the case of the PLLA-PEO electrospun polymer blend the 

average diameter of the nanofibers decrease in both cases after removal of the PEO, 

being more pronounced for the 75/25 PLLA-PEO polymer blend. The average diameter 

found for the samples with 75/25 of PLLA-PEO suffer a reduction from  447 ± 115 nm 

to 353 ± 80 nm, and for the 50/50 PLLA-PEO, that reduction was not so pronounced, 

and the average diameter of the nanofibers decreased from 262 ± 70 nm to 235 ± 58 nm 

(figure 3). The fact that the average fiber diameter decreases more for the fibers with 

lower PEO content shows that in this case lager amounts of PEO are located at the 

surface of the fibers than in their interior. Therefore, a complete random distribution of 

PLLA and PEO all along the fiber is not observed. Due to the semimiscible nature of 

the polymers [9], for larger PLLA contents, phase separation is more provable to occur 

and due to the lower relative density of the PEO in the solution it is drag to the fiber 

surface. This process cannot take place completely before solvent evaporation in the 

PLLA-PEO solution with 50% of each phase, where a more random polymer 

distribution all along the fibers are obtained, with larger amounts of PEO located at the 

interior of the fibers.  
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Figure 3 – Morphology of the PLLA-PEO scaffolds after PEO removal: a) SEM image 

of the sample with 50% of PLLA, b) Fibre distribution for the 50/50 PLLA-PEO 

membrane, c) SEM image of the membrane with 75 % PLLA, d) Fibre distribution for 

the 75/25 PLLA-PEO membrane. 

 

In order to understand the influence of the PEO on the PLLA electrospun fibrils, the 

topography of the samples was characterized by atomic force microscopy (AFM) 

(Figure 4). It can be observed that the electrospun fibres of the PLLA-PEO blend are 

quite smooth (figure 4a), but on the other hand, after PEO removal, the presence of 

higher roughness and porosity indicates that  when processed, PLLA and PEO 

crystallizes along the nanofiber in a random distribution, and after water dissolution of 

the PEO polymer from the membrane, the volume occupied by this one gives rise to 

small pores distributed along the fiber structure, resulting therefore in a higher 

roughness of the electrospun PLLA remaining fibers.  

a) b) 

c) d) 
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Figure 4 – AFM topographic surface images of the PLLA-PEO (50/50) sample a) 

before PEO removal and b) after PEO removal in water for 24h. 

Finally, the porosity of the membranes was calculated according to equation 1 and the 

results are presented in table 1. 

 

Table 1 – Porosity of the PLLA-PEO samples for different PEO contents before and 

after PEO removal. 

PEO Amount Porosity before 

PEO Removal 

Porosity After 

PEO Removal 

% % % 

0 66 ± 3 - 

25 70 ± 3 75 ± 3 

50 71 ± 3 79 ± 4 

 

The electrospun mats of the PLLA with PEO have similar porosity than the one found 

for the pure PLLA polymer membrane. Just a slight increase of the porosity is observed 

for the PLLA-PEO membranes, when the PEO was removed. These facts support that, 

despite larger amounts of PEO are at the surface of the fibres for the PLLA-PEO 75/25 

samples, as the fibre average diameter decreases more than in the 50/50 membranes, 

basically a random distribution of PEO and PLLA along the fibres is observed. Other 

ways, larger diminution of the fibre diameter and increase of the fibre porosity will 

occur by removing the relatively large quantity of PEO material from the membranes. 

 

 

a) b) 

Formatada: Não Realce

Formatada: Não Realce

Formatada: Não Realce



3.2 Thermal Behavior 

Figure 5 shows the thermo-gravimetric analysis for the pure PLLA, PEO and blends. 

For the pure materials, as expected, one single degradation process was observed. The 

degradation of PEO occurs at higher temperatures when compared to pure PLLA. In the 

case of the polymer blends, two main degradation processes were observed. The first 

one was due to the PLLA and the second one to the PEO thermal degradation processes, 

respectively (Figure 5). It was also observed that the blends have less thermal stability 

than the pure PLLA and the Tonset of the blends occurs at lowest temperatures when 

compared to the pure polymers. It is also noticed that the increase of the PEO content in 

the polymer blend decreases the Tonset of the blend (figure 6).  
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Figure 5 – a) TGA data for pure PLLA and PEO samples, as well as for the PLLA-PEO 

and b) DTG curves for the obtained scaffolds. 
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Figure 6 – Evolution of the Tonset for the PLLA-PEO blends. 
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The jet instability and deformation with fast solidification during the electrospinning  

process often results in a meta-stable phase [23]. Since PLLA is a slowly crystallizing 

polymer and its glass transition temperature is above room temperature, the samples 

collected at room temperature maintain a stable crystalline fraction. As mentioned in the 

literature [24-25], PLLA electrospun fibers from solution usually exhibits a cold-

crystallization peak in DSC heating scans performed at 10 ºC.min
-1

. Figure 7 shows the 

first run of the DSC heating scans performed on electrospun PLLA, PEO as well as for 

the electrospun blends. 
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Figure 7 – DSC normalized thermograms of: a) electrospun PLLA and blend samples 

and b) first heating scan of the pure PEO mesh. 

 

In figure 7, the endothermic peak of PEO appears at about 56 ºC. One method to 

evaluate the miscibility of the polymers in the blend is the measurement of the variation 

of Tg with the change of the weight fraction of the blend. The glass transition 

temperature in the miscible amorphous polymer blend changes continuously between 

the Tg temperatures of the polymer components. In the case of the immiscible pair of 

blends, two glass transition temperatures appear separately due to the mixed polymers, 

and they not change with the weight fraction [26]. In this polymer blend, the Tg of the 

PLLA appears in the same temperature range and the variations of the glass transition 

temperature of the PLLA with the weight faction is very difficult to detect, as it can be 

observed in figure 7a.  

Tg of the PEO appears at about -60 ºC and the changes in the Tg of the PEO should be 

detected. Nakafuku [9] showed that the Tg of the PEO increase slightly with the 

decreasing of the weight fraction of the PEO, but the increasing rate was very small, 

a) b) 
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much smaller than the value that could be predicted using Fox equation. The authors 

concluded that PLLA and PEO molecules are semimiscible [9].  

The melting peak of the PLLA and PEO appears in the blends but the re-crystallization 

peak of the PLLA only is clearly observed in the PLLA-PEO (50/50) blend during 

heating. The temperature corresponding to the peak of the melting of the PLLA in the 

blends is quite similar to the one observed to the pure PLLA. 

In pure PLLA, a large overshot can be observed in the region of the glass transition, 

around 54 ºC. This endothermic peak can be ascribed to the recovering of enthalpy of 

the sample stored at room temperature, around 30 ºC below Tg and thus subjected to 

physical ageing. The effect is also observed in the blends by a small peak that appears at 

low temperature just before the melting temperature of the PEO and is more pronounced 

for the blend with 75 % PLLA. The melting temperature of the PEO in the blends 

slightly increases with increasing amount of PEO present in the sample. Some authors 

attribute this effect to morphological effects (lamellar size effects) [9]. They point that 

the crystallization of the PEO is hindered by the PLLA molecule, because it is possible 

that the PEO crystallize between the lamellae of the crystallized PLLA. 

 

3.3 Infrared spectra 

Infrared measurements do not reveal any new vibrational modes or significant shifts of 

the peak frequencies with respect to the characteristic absorption bands of the pure 

components of the blends, what still supports the phase separation of the two polymers 

in the blend.   

FTIR spectra show that the PLLA-PEO membranes are composed by almost amorphous 

PLLA nanofibers and by high crystalline PEO electrospun nanofibers, in good 

agreement with DSC results and the morphology variations of the fibers after PEO 

removal. 

The absence of the absorption band at 921 cm
-1

 in pure PLLA reveals that the polymer 

crystallizes into -crystals with the distorted 103 helix conformation from solution or 

melt. Kister et al. reported that an absorption band at 921 cm
-1

 is characteristic of the -

crystals [27]. Kang et al. assigned this vibrational band associated to the transition 

moment perpendicular to the chain axis to the CH3 rocking mode combined with a 

minor contribution from the C–COO and O–CH stretching modes of the -crystals [28]. 

In our membranes there is a lack of the characteristic band of the PLLA  crystal at 908 
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cm
-1

 [29-30], which reveals the nonexistence of this kind of crystalline structure neither 

in the samples as obtained by electrospinning of the pure PLLA nor in the PLLA-PEO 

electrospun blends (Figure 8). 

After removal of the PEO polymer from the blend by immersing the scaffold in water 

for 24 h the infrared spectra of the sample only present the characteristic absorption 

bands of the PLLA, without any distinctive absorption band of the PEO polymer, which 

is in agreement with the thermal results, showing the poor miscibility of the PLLA and 

PEO and that the PEO is completely removed from the samples. 
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Figure 8 – Detail of FTIR spectra in the 650-2000 cm

-1 
region for the pure PLLA and 

for the PLLA-PEO blend membranes. 

 

 

4. Conclusions 

Electrospinning of PLLA – PEO blends can be achieved from the solution of both 

polymers in a common solvent: a mixture of MC and DMF. In this way, electrospun 

membranes can be prepared with tailored fiber diametre from some micrometers for 

pure PLLA membranes to few hundreds of nanometers by electrospinning of PLLA-

PEO solution. The mean diameter of the fibrils in the electrospun mat decreases with 

increasing PEO content in the blend, which also broadens the diameter distribution. 

This fact is due both the larger interaction of PEO with the electric field, dragging also 

the PLLA material, and to the reduction of the solution viscosity with increasing PEO 

content. The PLLA-PEO membranes are composed by almost amorphous PLLA 
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nanofibers and by high crystalline PEO electrospun nanofibers. PEO extraction from the 

electrospun blend is complete. This extraction decreases slightly the mean diameter of 

the fibers (from 260 nm to 235 nm for the PLLA-PEO 50/50 membrane) and increases 

membrane porosity (from 71% to 75% for the PLLA-PEO 50/50 membrane). These 

facts indicate that PEO and PLLA are phase separated and nearly randomly distributed 

along the nanofibers. 
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