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 Abstract 
 Protein disulphide isomerase (PDI) is an enzyme that catalyzes thiol-disulphide exchange reactions among a broad spec-
trum of substrates, including proteins and low-molecular thiols and disulphides. As the fi rst protein-folding catalyst 
reported, the study of PDI has mainly involved the correct folding of several cysteine-containing proteins. Its application 
on the functionalization of protein-based materials has not been extensively reported. Herein, we review the applications 
of PDI on the modifi cation of proteinaceous substrates and discuss its future potential. The mechanism involved in PDI 
functionalization of fi brous protein substrates is discussed in detail. These approaches allow innovative applications in 
textile dyeing and fi nishing, medical textiles, controlled drug delivery systems and hair or skin care products.  

  Keywords:   Protein disulphide isomerase (PDI)  ,   ribonuclease A (RNase A)  ,   keratin fi bres  ,   biotechnology  ,   cosmetics   

  Correspondence: Artur Cavaco-Paulo,Textile Engineering Department, University of Minho, Campus of Azur é m, 4800-058, Guimar ã es, Portugal. Tel:  � 351-
253-510-271. Fax:  � 351-253-510-293. E-mail: artur@det.uminho.pt  

  Introduction 

 Recent emphasis on environmentally friendly pro-
cesses has led to increased use of enzymes for mod-
ifi cation of polymeric and proteinaceous materials, 
as an alternative to conventional chemical methods. 
The advantages of enzymatic methods over chemical 
ones are high selectivity, ability to operate under 
mild conditions, catalyst recyclability and biocom-
patibility (Puskas et al. 2009). 

 Protein disulphide isomerase (PDI) is able to 
catalyze the modifi cation of several proteinaceous 
substrates. It has been mainly studied for the folding, 
assembly and post-translational modifi cation of 
polypeptides in the Endoplasmic reticulum (ER). 
However, applications outside of its  in vivo  function 
have not been extensively reported, so this review 
highlights applications of PDI as a bio-tool to target 
disulphide bond linkages. These linkages are of par-
amount importance in proteins, being responsible 
for the stabilization of protein structure (Wedemeyer 
et al. 2000) and in keratins, acting as a disulphide 
crosslinker that holds the cortical superstructure 
together (Plowman 2007). 

 We examine the published literature and (a) pro-
vide background on the chemistry of disulphide 

bond formation and rearrangement in proteins; (b) 
elucidate the structure of PDI, highlighting the 
important concept of redox potential; (c) detail the 
thiol-disulphide exchange reactions that are cata-
lyzed by PDI  in vitro ; (d) and fi nally describe the 
PDI-assisted functionalization of keratinous fi bres 
and proteinaceous substrates aiming cosmetic, tex-
tile and biomedical applications.   

 Disulphide bonds and protein folding 

 Understanding the role of disulphide bonds in pro-
tein folding is important to recognize the ability of 
PDI to functionalize proteinaceous substrates. The 
chemistry involved in the formation of disulphide 
bonds includes a two-electron reaction between two 
thiol groups ( � SH), which requires an oxidant or an 
electron acceptor. Disulphide bonds are formed 
spontaneously  in vitro  by the loss of electrons from 
two cysteine thiols coupled with the gain of electrons 
by an available acceptor, such as molecular oxygen. 
 In vivo , however, the most common mechanism for 
disulphide bond formation is a thiol-disulphide 
exchange reaction between a free thiol and a 
disulphide- bonded species. This reaction may occur 
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in the ER of eukaryotic cells or in the periplasmic 
space of prokaryotic cells, playing an important role 
in correct protein folding and stability (Sevier  &  
Kaiser 2002). 

 Disulphide bond formation is one of the key rate 
limiting steps in oxidative protein folding (Hatahet 
 &  Ruddock 2009; Welker et al. 2001). The proximity, 
reactivity and accessibility of the disulphide bonds 
(S – S) and thiol groups ( – SH) have been identifi ed 
as the three most important structural factors for 
proper folding of proteins and biological activity 
(Wedemeyer et al. 2000). Numerous studies agree 
that disulphide bonds play one of the most impor-
tant roles in the folding process (Witt 2008). They 
are thought to control the conformational fl exibility 
of unfolded proteins, decreasing conformational 
entropy and favouring the protein-folded state (Bulaj 
2005; Jungbauer  &  Kaar 2007). However, protein-
folding pathways are still the subject of much research 
and one of the major challenges in genetic and pro-
tein engineering (Freedman 1995). One theory relies 
on a funnel energy landscape concept (Bryngelson 
et al. 1995) that describes folding as the inevitable 
consequence of the requirement to lower the free 
energy (increased stability) as more native interac-
tions are formed. In this view of folding (Figure 1), 
the denatured state of the protein populates a higher 
energy-state area in the funnel. The polypeptide 
chain may then fold by numerous pathways, poten-
tially adopting multiple partially-folded ensembles 
 en route  to the native state, thus lowering the 
structure- energy (Onuchic  &  Wolynes 2004). A pro-
tein can theoretically exist in a nearly infi nite num-
bers of conformations along its energy landscape, 

but in reality they fold into a unique conformation 
that possesses the lowest possible free energy (Anfi n-
sen 1973). The ruggedness of the energy landscape 
arises from the fact that protein structures are stabi-
lized by thousands of weak interactions that cannot 
all be satisfi ed simultaneously during folding (Bar-
tlett  &  Radford 2009). During the process, many 
metastable intermediates often include non-native 
interactions, which need to be overcome before the 
native state can be achieved (Hartl  &  Hayer-Hartl 
2002) (Figure 1). 

 It is known that,  in vivo , correct protein folding 
is dependent on cellular catalysts that promote the 
formation of new disulphides (oxidation) and the 
rearrangement of non-native disulphide bonds 
(isomerization) and on chaperones to inhibit aggre-
gation (Hartl  &  Hayer-Hartl 2002; Kulp et al. 2006; 
Wang  &  Tsou 1998). Early in folding, disulphide 
formation is error-prone and the protein-folding 
process may not occur properly (Wilkinson  &  Gil-
bert 2004) due to the formation of incorrect cysteine 
linkages (Creighton 1979; Rothwarf et al. 1998), or 
that the correct cysteines are paired but in a tempo-
ral order that inhibits folding (Creighton 1992a; 
Weissman  &  Kim 1991). This could cause the accu-
mulation of misfolded proteins in the cell and lead 
to loss of function. This phenomenon is observed in 
a number of diseases (Dobson 2001; Thomas et al. 
1995; Koo et al. 1999), including Alzheimer ’ s 
(Harper  &  Lansbury 1997), goiter (Kim et al. 1996), 
emphysema (Cabral et al. 2001) and prion infections 
(DebBurman et al. 1997). The eukaryotic cell, how-
ever, uses a number of mechanisms to protect against 
protein misfolding. These include chaperones and 
folding catalyst that inhibit aggregation and stimu-
late folding, such as PDI and specialized redox envi-
ronments, such as the ER environment (Hwang et al. 
1992; Fassio  &  Sitia 2002).   

 Protein disulphide isomerase 

 First identifi ed in 1963 and characterized based on 
its ability to catalyze the refolding of a protein with 
four disulphide bonds, the Ribonuclease A (RNase A) 
(Goldberger et al. 1963; Venetianer  &  Straub 1963), 
PDI (E.C. 5.3.4.1) was later found to be a multifunc-
tional enzyme able to catalyze disulphide bond forma-
tion, breakage and rearrangement. Playing a critical 
role in promoting native disulphide bond formation 
 in vivo , PDI introduces disulphides into proteins (oxi-
dase activity) and catalyzes the rearrangement of 
incorrect disulphides (isomerase activity). It recog-
nizes a large number of cysteine-containing substrates 
including a multitude of native like, partially unfolded 
and non-native states (Wilkinson  &  Gilbert 2004; 
Lyles  &  Gilbert 1991; Gilbert et al. 1991; Freedman 

  Figure 1.     Schematic representation of a protein folding funnel 
energy landscape, adapted from Bartlett and Radford (2009). 
Nascent chain polypeptides can initially explore a wide range of 
conformations. Certain conformations occupy a lower energy 
state and are more stable, representing intermediates in the 
folding pathway. The native state is usually the lowest energy and 
most stable state.  
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1995) and is thought to induce a state of lower 
energy on misfolded proteins, promoting their proper 
folding.  

 PDI structure: domain organization and 
thioredoxin fold 

 PDI from rat liver was fi rst sequenced by Edman and 
co-workers, who found that this mature polypeptide 
in mammals had approximately 491 amino acids and 
a molecular weight of approximately 56 kDa (Edman 
et al. 1985). This led to further analysis and defi ni-
tion of the modular structure of PDI. The analysis 
of its amino acid sequence revealed the multidomain 
nature of PDI in which four domains denoted a, b, 
b’   and a ’ , were identifi ed (Edman et al. 1985). These 
four structural domains were followed by a stretch 
of acidic residues at the C-terminus (designated c) 
(Figure 2). 

 From the DNA sequence information of the 
enzyme, two segments with homology to thioredoxin, 
a small ubiquitous protein that catalyzes reduction 
of protein disulphides, were identifi ed (Holmgren 
1985). These segments were defi ned as the catalytic 
active domains of PDI (a and a’ domains, Figure 2), 
each possessing a Cys-Gly-His-Cys active-site motif 
(Wilkinson  &  Gilbert 2004). 

 Although the two active sites can function inde-
pendently, they do not have equivalent catalytic 
properties (Lyles  &  Gilbert 1994). It has been 
reported that at a saturating concentration of sub-
strate, the amino-terminal domain is capable of pro-
viding almost all of the catalytic activity for the 
oxidative refolding of reduced, denatured RNase A, 
while the carboxy-terminal domain contributes more 
to the steady-state binding of the substrate. How-
ever, at lower substrate concentrations (near Km) 
both active sites contribute almost equally to cataly-
sis (Walker et al. 1996). 

 The domains b and b’   (Figure 2) are similar in 
sequence to each other but not to thioredoxin and, 
therefore, are considered inactive. Studies have 
shown that b ’  domain is important in the overall 
catalytic ability of PDI, providing the principal pep-
tide binding site of the enzyme (Klappa et al. 1998). 
In combination with a and a ’  domains, b ’  domains 
were found to be essential for simple isomerization 
reactions (Ellgaard  &  Ruddock 2005). These studies 
indicated that a and a ’  domains are active domains 
responsible for the main PDI activities towards 

 non-native proteins, whereas the b ’  domain contains 
a higher affi nity binding site by which PDI holds 
substrates during isomerization reactions.   

 The thioredoxin superfamily 

 PDI is a member of a large family of dithiol/disulphide 
oxidoreductases, the thioredoxin superfamily. This 
family of thioredoxin-like enzymes includes prokary-
otic enzymes, such as DsbA, DsbC, eukaryotic 
enzymes, such as Erp72, glutaredoxin, as well as the 
prototype of this family, thioredoxin (Ellgaard  &  
Ruddock 2005). These enzymes share the Cys-X1-
X2-Cys active-site motif and have a functional sim-
ilarity: they are involved in sulfur-based redox 
reactions in the cell. During catalysis of disulphide 
formation in its substrates, PDI has two catalytically 
active thioredoxin domains while other family mem-
bers have one (DsbA), two (ERp57), three (ERp72) 
(Mazzarella et al. 1990) or four (ERdj5) (Cunnea 
et al. 2003). The residues between the two active-site 
cysteines vary between each protein family and are 
important in determining the active-site potential 
and hence the physiological function of each enzyme. 
This can be modulated by mutations in the XX 
residues, which in part explains why enzymes with 
overall structural similarity can be reducing such as 
thioredoxin (Cys-Gly-Pro-Cys), highly oxidizing 
such as Dsba (Cys-Pro-His-Cys) or act as an 
isomerase such as PDI (Cys-Gly-His-Cys). PDI is 
the most versatile family member, capable of catalyz-
ing oxidation, reduction and disulphide isomeriza-
tion (Wilkinson  &  Gilbert 2004).   

 The catalytic domains of PDI and the redox potential 

 The modulation of the redox potential of PDI is an 
important feature to understand the physiological 
relevance of the  in vitro  and  in vivo  reactions that 
PDI can catalyze. Each active site in a and a ’  domains 
of PDI contains two cysteines in the sequence Cys-
Gly-His-Cys that mediates all the activities of the 
enzyme. The cysteines in the form of vicinal thiol 
groups are essential for catalysis of redox reactions 
and can either form an intramolecular disulphide 
(S – S) or exist in dithiol form ( – SH). 

 The redox potential indicates the tendency of a 
chemical species to either gain or lose electrons when 
it is subject to a change by another molecule. It is an 
important characteristic that will defi ne the propensity 

 

 Figure 2.     Domain organization of PDI. Catalytic domains a and a  ’  ; and non-catalytic domains b, b  ’   and c. The active-site sequence of a 
and a’     domains are also shown.  
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of two thiols to form a disulphide bond or of an 
existing disulphide bond to be broken (Gough  &  
Lees 2005). The currently accepted redox potentials 
of various species, including a range of thioredoxin-
superfamily members are shown in Figure 3 ( Å slund 
et al. 1997). These enzyme- properties are responsible 
for the highly reducing environment in the thioredoxin 
(E °   �   � 270 mV) (Moore et al. 1964), the quite oxidiz-
ing one in DsbA (E °   �   � 90 to  � 110 mV) (Wunderlich 
 &  Glockshuber 1993) and the intermediate redox 
potential in PDI (E °   �   � 180 mV) (Wunderlich  &  
Glockshuber 1993; Lundstroem  &  Holmgren 1993). 

 However, the redox potential of a species cannot 
be seen in isolation. By itself, the number is mean-
ingless; it must always be seen in the context of a 
reaction with another species and the fact that is 
usually involved in an equilibrium reaction in which 
the relative concentrations of the species present 
plays a major role in the net reaction. PDI has a 
higher redox potential (E °   �   � 180 mV) than the 
redox potential of denatured proteins and peptides 
(E °   �   � 200 – 220 mV), and so it is expected to always 
promote the oxidation of the substrate, being reduced 
in the process (Hatahet  &  Ruddock 2009). In this 
case, PDI would act as a protein dithiol – disulphide 
oxidant toward the denatured protein (Figure 4A). 
However, this is not always the case because of the 
infl uence of concentration on the net reaction. 

 The enzyme, thioredoxin, has the lowest redox 
potential of the thioredoxin superfamily members 

(i.e. it is the most reducing enzyme). Thermody-
namically, it reduces disulphide bonds in proteins, 
and this is its primary physiological role  in vivo  
(Lillig  &  Holmgren 2007) because its redox poten-
tial is E °   �   - 270 mV, 50 mV lower than that of dena-
tured proteins and peptides ( Å slund et al. 1997). 
However,  in vitro , it is able to catalyze the oxidation 
of dithiols to disulphides in folding proteins by using 
oxidized glutathione disulphide (GSSG) as the net 
electron acceptor (Figure 4B). Because of this, all 
thioredoxin-superfamily members have the potential 
to act as catalysts of protein – disulphide bond forma-
tion, reduction and isomerization. 

 The redox potential of these enzymes depends 
on the stability of the reduced ( – SH) and oxidized 
(S – S) state of the active site. Therefore, factors that 
stabilize the dithiol state of active site will lower the 
redox potential and thus make the enzyme a better 
reductant; the enzyme is destabilized by having the 
active-site dithiol, and so it is preferential to donate 
it to a non-native protein substrate (i.e. to reduce it). 
Similarly, factors that stabilize the disulphide state 
of PDI active site will increase the redox potential 
and will make the enzyme a better oxidant, and so 
it is preferential to take it from non-native protein 
substrates (i.e. to oxidize them) (Figure 5) (Wunder-
lich  &  Glockshuber 1993). 

 The catalytic role of PDI is based on the follow-
ing: when PDI catalyzes the oxidation of two cysteine 
thiol groups, it becomes reduced. Likewise, when 

  

Figure 3.     Biochemical standard redox potentials, including thioredoxin-superfamily members, adapted from ( Å slund et al. 1997).  
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A 

B 

  Figure 4.     Catalysis of protein dithiol oxidation by (A) PDI, based 
on its redox potential ( � 180 mV) and by (B) thioredoxin also 
based on its redox potential ( � 240 mV), and by using GSSG as 
the electron acceptor.  

PDI catalyses the reduction of a disulphide bond, it 
becomes oxidized. To complete both catalytic activi-
ties, PDI must complete the cycle, that is, it should 
be re-oxidized when acting as an oxidase or  re-reduced 
when acting as a reductase. For that, a redox genera-
tor such as glutathione should be present to act as an 
electron acceptor (GSSG-oxidase activity) or donor 
(GSH-reductase activity) (Hatahet  &  Ruddock 2009) 
(Figure 5). 

 The presence of these species is used for redox 
modulation, to promote the active-site redox bal-
ance, mimicking the ER environment  in vivo . The 
occurrence of glutathione in the ER provides a rela-
tively reducing environment (GSH/GSSG  �  3 – 5) 
(Hwang et al. 1992; Taniyama et al. 1990; Bass et al. 
2004) that allows disulphide formation (oxidation) 
while maintaining suffi cient reducing power to break 
incorrect disulphides. 

 Besides the amino-acid sequence of the PDI 
active site in a and a ’  domains and the equilibrium 
between the active-site cysteines on stabilizing the 
disulphide (oxidized) or dithiol (reduced) state, the 
other important factor that infl uence the redox 
potential of thioredoxin-superfamily members is the 
pKa of the active-site cysteine. One domain is located 
near the amino terminus while the second is located 
near the C-terminus (Figure 2). The N-terminal 
active-site cysteines are reported as having an unusu-
ally low pKa, ranging from 4.4 to 6.7, such that the 
active-thiolate state ( – S  �  ) predominates at physio-
logical pH (Hawkins  &  Freedman 1991; Kortemme 
et al. 1996). Thiols of low pKa leave more rapidly 

from a disulphide and are ionized more often, being 
therefore highly nucleophilic. Such an extremely low 
pKa value stabilizes the reduced state of PDI active 
site making the protein an excellent disulphide bond 
donor (Chivers et al. 1997). Therefore, when disul-
phides on active sites are reduced to the dithiol state, 
the cysteine residues present at the N-terminal active 
site are predominantly in the thiolate ( – S  �  ) state. 
These conditions provide a suffi ciently high redox 
potential to allow effi cient protein-dithiol oxidation 
and to have effi cient kinetics for the initial steps of 
catalysis of thiol-disulphide exchange. The C-terminal 
active-site cysteines, however, are less reactive 
because they are buried and react only with the 
nucleophilic cysteine from the N-terminal (Walker 
et al. 1996) and are usually cited as having a high 
pKa, such that the inactive thiol ( – SH) predominates 
at physiological pH (Hawkins  &  Freedman 1991). 
The pKa values of cysteine residues thus play a crucial 
role in PDI-assisted disulphide bond formation. While 
thiols are weak nucleophiles, thiolates are more potent, 
and hence the kinetics of thiol-disulphide exchange is 
much faster once deprotonation of the cysteine side 
chain has occurred. 

 In summary, there are three prominent determi-
nants of the redox potential of PDI to promote its 
enzymatic activity: the active-site sequence; the 
presence/absence of a redox generator that modulates 
the state of the N-terminal active site as disulphide 
(S – S) or dithiol ( – SH) and the pKa of the active-site 
cysteines that induce the presence of a reactive thio-
late ( – S  �  ). Therefore, PDI allows predictions to be 
made about the types of reaction it performs.   

 Catalysis of thio- disulphide exchange: isomerization 

 PDI is one of the most abundant proteins in the ER, 
and it has been characterized as being mostly in its 
oxidized state (Frand  &  Kaiser 1999), suggesting a 
primary role for its oxidase activity. In addition to its 
oxidase activity, evidence shows that the most impor-
tant activity  in vivo  arises from its isomerase activity 
(Pollard et al. 1998). Disulphide formation that 
occurs early during protein folding is often prone to 
error, resulting in the pairing of two cysteines that 
are not connected in the native structure or in the 
paring of correct cysteines but in a temporal order 
that impedes further folding (Wedemeyer et al. 2000). 
When incorrect disulphides are formed, their isomer-
ization is required to provide correct protein folding 
(Figure 6). This involves the breakage of a substrate 
disulphide and its reformation with different cysteines 
connected. The effi cient action of PDI as an isomerase 
arises, in part, from the unusually low pKa of the 
N-terminal active-site cysteine residues that initiates 
isomerization by attacking a substrate disulphide. 

  Figure 5.     Enzymatic reaction catalyzed by PDI. The regeneration 
of the oxidoreductase can be accomplished by a small thiol buffer, 
such as glutathione.  
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 After the initial reaction, two different mecha-
nisms could result in substrate isomerization depend-
ing on how the covalent PDI-substrate intermediate 
reacts. In the fi rst mechanism (Figure 6, full arrow) 
intramolecular rearrangement within the substrate 
may occur when the sulphydryl in the substrate 
cysteine, generated by PDI reacts with another dis-
ulphide from the substrate. In this mechanism, PDI 
facilitates intramolecular reactions between the thiols 
and disulphides of the substrate while the substrate 
is covalently bound to PDI. The intramolecular rear-
rangement is concluded with PDI displacement from 
the covalent complex and formation of another dis-
ulphide in the substrate together with the regenera-
tion of reduced PDI for another round of catalysis. 
In the second mechanism (Figure 6, dotted arrow), 
PDI can resolve the covalent intermediate by reduc-
ing it. Cycles of substrate reduction and re-oxidation 
in a different confi guration lead to isomerization, 
eventually leading to the native structure.   

 PDI substrates and functions 

 Many proteins have been identifi ed as substrates for 
PDI  in vitro , like soybean trypsin inhibitor (Steiner 
et al. 1965), insulin (Varandani  &  Nafz 1970), immu-
noglobulins (Murkofsky  &  Lamm 1979), vasopressin 
and oxytocin (Varandani et al. 1975), bovine serum 
albumin (Teale  &  Benjamin 1976), cholera toxin 
(Moss et al. 1980), bovine pancreatic trypsin inhib-
itor (BPTI) (Creighton 1992b), ricin (Barbieri et al. 
1982) and procollagen (Forster  &  Freedman 1984). 
Besides catalyzing the oxidation, reduction or isomer-
ization of disulphide bonds in a broad range of sub-
strates, PDI also possess chaperone activity inhibiting 
aggregation of misfolded proteins and stimulating 
the correct folding, thus preventing serious diseases 

associated with protein misfolding (Hartl  &  Hayer-
Hartl 2002). 

 All PDI substrates share one structural character-
istic: the presence of cysteine residues. PDI is thought 
to be able to interact with a broad range of cysteine-
containing compounds (CCC) to promote oxidation 
of free thiols and reduction or isomerization of disul-
phide bonds. Keratin fi bres and Ribonuclease A are 
examples of such compounds, and their structure, 
properties and applications will be elaborated below.    

 Ribonuclease A 

 Ribonuclease (RNase A) was used in the early stud-
ies of PDI refolding of non-native proteins to their 
native confi guration (Goldberger et al. 1963; Vene-
tianer  &  Straub 1963). It is a small enzyme consist-
ing of 124 amino acids with a molecular weight of 
13.7 kDa (Berisio et al. 2002; Raines 1998). Native 
RNase A in aqueous solution is a folded, monomeric 
protein with three  α -helices and six  β -strands, the 
structure of which is stabilized by four disulphide 
bonds linking cysteines (Figure 7). It is one of the 
classic model systems of protein science and was the 
third protein to have its structure solved (Wyckoff et al. 
1967). With several high-affi nity binding sites, RNase 
A is a possible target for many organic and inorganic 
molecules (Neira et al. 1999; Leonidas et al. 2003). 
Various forms of this protein, including its oligom-
ers, have been demonstrated for antitumor and other 
biological activities (Soucek et al. 1999; Matousek 
et al. 2003; Fu et al. 2004). The oxidative refolding 
of RNase A has been thoroughly investigated and led 
to the creation of the thermodynamic hypothesis of 
protein folding, which claims that the folded form of 
a protein represents the minimum of its free energy 
(Anfi nsen 1973). 

  

Figure 6.     Mechanisms of PDI-catalyzed disulphide isomerization.  Full arrow:  in the intramolecular pathway, disulphide isomerization 
occurs through intramolecular rearrangement.  Dotted arrow:  the reduction oxidation pathway involves repeated cycling of substrate 
reduction and reoxidation in an alternative confi guration.  

B
io

ca
ta

l B
io

tra
ns

fo
rm

at
io

n 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ita

t P
ol

ite
cn

ic
a 

de
 C

at
al

un
ya

 o
n 

01
/2

4/
12

Fo
r p

er
so

na
l u

se
 o

nl
y.



102    M. Fernandes and A. Cavaco-Paulo   

  Figure 7.     RNase A structure showing the three  α -helices, the six 
 β -strands and the four disulphide bonds, represented by the 
yellow spheres, taken from protein data bank.  

  Figure 8.     Schematic scale structure of the cuticle showing the 
major components, adapted from (Feughelman 1997).  

 The PDI-induced refolding of RNase A micro-
spheres developed by an ultrasonication methodology 
was the main objective of a recent study (Fernandes 
et al. 2011c). Application of ultrasound was shown to 
cause loss of 35% of RNase A enzymatic activity, prob-
ably due to the breakage of disulphide bonds, and PDI 
was able to restore it. Furthermore, the application of 
PDI on a RNase A microspheres emulsion, in the pres-
ence of an appropriate oxidative environment, sug-
gested that the refolding of microspheres into the 
aqueous medium was occurring (Fernandes et al. 
2011c). The novelty of this study relies on the fact that 
biologically active RNase A microspheres may have 
potential application as an anti-tumour and immuno-
suppressive agent, as reported for several of its oligom-
ers (Fu et al. 2004; Matousek et al. 2003). Moreover, 
the ultrasonication method is a low-cost and highly 
effi cient one-step procedure, compared to the mini-
emulsion polymerization method (Tan  &  Tong 2006), 
that produces particles at high concentrations with high 
stability and long shelf life (Gedanken 2008). 

 Novel approaches involving PDI for the development 
and functionalization of microspheres/nanoparticles 
may serve as the basis for advanced strategies in the 
stabilization of particle structures or as an agent to 
induce redox activated cleavage of disulphide bonds 
in particles. The development of redox sensitive, 
disulphide-based carrier systems is an important 
approach when considering the redox-potential gra-
dient between extra- and intracellular environments. 
Outside cells, disulphide bonds provide high stability 
to the delivery system, but these are rapidly cleaved 
inside cells, facilitating the release of therapeutic 
molecules (Bauhuber et al. 2009).   

 Keratin fi bres 

 Keratins belong to the family of fi brous structural 
proteins and are the basic building blocks of fi bres 

such as hair and wool and the key structural  materials 
of the outer layer of human skin and nails (Plowman 
2007). They are complex natural composites with a 
heterogeneous, mostly proteinaceous (95% – 97%) 
morphological structure, with structural lipids, pig-
ment and other materials representing the remaining 
fractions (Heine  &  H ö cker 1995). 

 Being of biological origin, unlike synthetic 
polymer fi bres, keratin fi bres are not formed of 
chemically homogeneous fi bre-length polypeptides, 
but a complex mixture of widely different polypeptides 
(Rippon 1992). The individual polypeptide chains 
are held together in many different ways, including 
covalent bonds, such as disulphide and isopeptide 
crosslinks, to weaker interactions such as hydrogen 
bonds, coloumbic, Van der Waals and hydrophobic 
interactions. Thus, the reactivity of keratins is complex 
and depends not only on the presence of reactive 
groups in the fi bre, but also on their availability. The 
latter is signifi cantly affected by fi bre morphology 
and molecular structure (Wolfram 2003). 

 Three distinct types of cell are produced at the 
follicle base, which eventually produce the three 
basic components of the fi bre structure: the multi-
cellular external cuticle sheath, the fi brous cortex 
and the medulla (Franbourg et al. 2003; Wolfram 
2003). A single layer of cells gives rise to the cuticle, 
a protective layer covering the core of the fi bres. It 
is mainly composed of  β -keratin and displays a scaled 
structure with the cuticle edges pointing toward the 
tip of the fi bre (Swift 1999; Koehn et al. 2010). The 
outer surface of the cuticle scale cells is coated by a 
thin membrane called the epicuticle that covers the 
exocuticle, a constituent that contains most of the 
cysteine residues present in the scales (Feughelman 
1997) (Figure 8). The endocuticle, located at the 
interface of the cortex, is mainly composed of the 
residual cell organelles and consists of proteins that, 
unlike those found in other parts of the keratin fi bre, 
have very low sulfur content and thus poor in 
cysteine, which causes the endocuticle of the scales 
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to swell considerably more in water then the cysteine-
rich exocuticle (Figure 8). This might explain the 
pronounced projection of the scales and the ten-
dency for wool felting in the presence of water 
(O ’ Connor et al. 1995). 

 The cuticle tightly encircles the cortex that forms 
the most voluminous part of the keratin fi bre. The 
cortex is made of cortical cells that comprises the 
macrofi brils, long fi laments oriented parallel to 
the axis of the fi bre. Each macrofi bril consists of 
proteins called the intermediate fi lament proteins 
(IFPs), known also as microfi brils and the interme-
diate fi lament associated proteins (IFAPs), also 
known as matrix (Plowman 2007; Bhushan 2008) 
(Figure 9). It has been established that the molecules 
that aggregate to form the IFPs in keratin fi bres are 
Type I and Type II keratin chains, arranged parallel 
to one another and in the axial register. After the 
formation of the  α -helices, it is believed that the two 
types of chain associate to form a dimer that then 
aggregates with another dimer to form a tetramer. 
Finally, the formation of a pseudo-hexagonal struc-
ture (the IFP ’ s structure) occurs by association of 
seven or eight tetramers. Type I chains are net acidic, 
with pI values in the range of 4.5 – 5.5, while type II 
are neutral – basic with pI around 6.5 – 7.5 (Smith  &  
Parry 2007; Zimek  &  Weber 2006; Parry et al. 2006; 
Jones et al. 1997). 

 The intermediate fi laments are low in cystine 
( ∼ 6%) while the matrix contains up to 20% of total 
amino acid residues (Wysocki et al. 1954; Wilson  &  
Lewis 1927; Block et al. 1939). The matrix proteins, 
that is, IFAPs, are rich in cysteine and thus link 

through intermolecular disulphide bonds to IFPs, 
holding the cortical superstructure together and 
conferring high mechanical strength, inertness and 
rigidity to keratin fi bres. High sulphur proteins, 
ultra-high sulphur proteins and high glycine – tyrosine 
proteins are present in matrix proteins ( γ -keratins), 
depending on their cysteine, tyrosine and glycine 
content (Figure 9) (Danciulescu et al. 2004; Feughel-
man 1997; Plowman 2003; Franbourg et al. 2003). 
Vacuolated cells may also be present along the axis 
of coarser  α -keratin fi bres, forming the medulla. 
These cells generally constitute only a small percent-
age of the mass of keratin fi bres and are believed 
to contribute negligibly to the mechanical properties 
of keratin fi bres. Physically, the medulla forms 
the empty space of the fi bre (Feughelman 1997; 
Bhushan 2008). 

 The reported biological activity and biocompat-
ibility of keratins has been explored in the develop-
ment of keratin-based materials with applications in 
wound healing, drug delivery, tissue engineering, 
trauma and medical devices (Rouse  &  Van Dyke 
2010; Li et al. 2007; Sierpinski et al. 2008). The 
high content of cysteine residues leads to a high rate 
of crosslinking through disulphide bonds (Franbourg 
 &  Leroy 2005), explaining the high stability of the 
macro structure of keratin fi bres, and imparting 
good mechanical, thermal and chemical properties 
(Wilson  &  Lewis 1927; Wysocki et al. 1954; Block 
et al. 1939). Keratins can be isolated from human 
or animal hair by controlling the conditions that 
lead to disulphide bonds scission and re-formation, 
and further fabricated into various designs, such as 

 

 Figure 9.     Cross-section diagram of a keratin fi bre showing the structure at progressive magnifi cations, according to Feughelman 
(1997).  

B
io

ca
ta

l B
io

tra
ns

fo
rm

at
io

n 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ita

t P
ol

ite
cn

ic
a 

de
 C

at
al

un
ya

 o
n 

01
/2

4/
12

Fo
r p

er
so

na
l u

se
 o

nl
y.



104    M. Fernandes and A. Cavaco-Paulo   

fi lms (Vasconcelos et al. 2008; Tanabe et al. 2004; 
Yamauchi et al. 1996; Fujii et al. 2004), microcap-
sules (Yamauchi  &  Khoda 1997), sponges and 
scaffolds (Katoh et al. 2004; Tachibana et al. 2005; 
Kurimoto et al. 2003). 

 Besides the biomedical fi eld, keratins have a mul-
titude of other applications. The use of keratin from 
feather meal has been investigated as a slow nitrogen-
 release fertilizer, due to its slow decomposition rate 
(Hadas  &  Kautsky 1994; Riffel  &  Brandelli 2002; 
Brandelli et al. 2009). Also, the possibility of using 
keratin as a foaming agent for fi re extinguishers, tak-
ing advantage of the protein biomass available as 
waste from the textile industry and butchery, has 
been reported (Zoccola et al. 2009; Kittle 1998; 
Hoshino et al. 1978). 

 Knowledge of the chemical structure of keratins 
allows for the development of new technologies for 
application in the textile and cosmetic industries. 
Regarding cosmetics, as well as understanding the 
hair surface as a substrate for functionalization, the 
application of new hair care products that contain 
keratin-based compounds, such as hydrolysate or 
fragments, has been reported (Barba et al. 2009; 
Cavaco-Paulo  &  Silva 2007; Pille et al. 1998; Negri 
et al. 1993), although not extensively explored.  

 PDI-assisted functionalization of wool 

 The most characteristic structural feature of wool 
fi bres, the high content of disulphide bonds (Brad-
bury 1973), has been poorly explored for enzymatic 
modifi cation. The surface of wool should be suscep-
tible to modifi cation with enzymes active towards 
disulphide bonds, such as PDI. 

 Some studies have reported PDI treatment of 
wool fi bres. King and Brockway (1992) showed that 
PDI was able to partly restore the original properties 
of harshly treated wool. The application of PDI was 
made in the presence of a cofactor comprising a low 
molecular weight thiol, such as dithiothreitol or 
reduced glutathione. These cofactors were essential 
for the action of PDI on the  ‘ rejuvenation ’  of the 
fi bres. Wool mainly comprises keratin, which undergo 
denaturation when aged or ill-treated, resulting in 
the disruption of disulphide bonds between cysteine 
residues. As a catalyst of disulphide-bond formation 
and isomerization, PDI was able to recover part of 
the physical properties of shrunken wool. 

 The functionalization of wool was also investi-
gated by Fernandes et al (Fernandes et al. 2011b) 
for different applications, through modulation of the 
PDI active site (Figure 10). Figure 10 illustrates two 
possible reactions based on the state of the PDI 
active site. When the active site was set in its oxidized 
form, PDI was able to catalyze the formation of 

disulphide bonds and CCCs were, therefore, incor-
porated on to keratins. The release of the CCCs (dis-
ulphide scission), however, required PDI with its 
active site in the reduced form. A novel strategy for 
functionalization of keratinous fi bres based on the 
ability of PDI to catalyze formation and scission of 
disulphide bonds between substrates and functional 
molecules was developed in this study. 

 The incorporation of a cysteine-containing dye 
on wool was demonstrated by MALDI-TOF  analysis, 
after digestion of wool with a protease. Higher 
molecular weight fragments observed in the samples 
of the wool dyed in the presence of PDI suggested 
that disulphide bonding might have occurred, since 
proteases do not cleave disulphide bonds (Fernandes 
et al. 2011b). Therefore, the cysteine residues of 
wool apparently linked to the cysteine group from 
the dye would remain intact and not hydrolysed by 
proteases. The reason for the disulphide bond forma-
tion by PDI lies in the intrinsic redox potential 
(E °   �   � 180 mV) used in this study, that stabilizes 
the oxidized form of the enzyme active site, promot-
ing catalysis of the oxidation reaction (Figure 10, 
incorporation). The redox potential of PDI is 
higher than the redox potential of cystine/cysteine 
(E °   �   � 340 mV), which favoured the oxidation of 
cysteine residues between dye and wool. 

 In this case, the use of PDI established a new enzy-
matic approach for application on wool fi bres. Previ-
ously, other enzymes such as modifi ed proteases and 
transglutaminases have typically been used for wool 
functionalization, usually targeting the surface cuticle 
scales (Dybdal et al. 2001; Mcdevitt et al. 1999; Silva 
et al. 2005; Silva et al. 2006; Silva et al. 2004; Cavaco 
Paulo  &  Dos Santos 2006; Ara ú jo et al. 2009; Cortez 
et al. 2004, 2005). The application of PDI to attach 
cysteine-containing compounds via disulphide bonds, 
combined with other enzymes to prevent unwanted 
effects on wool may therefore constitute an interesting 
approach for textile dyeing and fi nishing. 

 The contribution of the reduced form of PDI 
active site to the release of a protein, namely RNase A, 
previously attached to the wool surface by disulphide 
bonds, was also reported in this study (Figure 10, 
release). In this step, PDI was applied to modulate 
the scission of disulphide bonds created between the 
cysteine residues of the wool surface and those of 
RNase A, acting, therefore, as a switch-on agent for 
protein release (Figure 11). The application of a 
redox potential of  Δ E  �   � 260 mV promoted the 
reduction and/or the isomerisation of disulphide 
bonds (thiol/disulphide interchange reactions) cata-
lyzed by PDI, which was thought to be the reason 
for the protein release. As a general perspective, this 
suggests that PDI could be used to trigger the selec-
tive release of active compounds. 
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Figure 10.     Schematic illustration of the PDI-assisted reactions of cysteine-containing compounds (CCC) on wool.  
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  Figure 11.     RNase A activity in solution, after being released from 
the wool surface.  

 Recently, PDI was reported to act as an injury 
response signal that enhances fi brin generation in the 
wound site via tissue factor activation. The activation 
was proved to occur via catalysis of thiol-disulphide 
exchange, thus initiating the blood-clotting cascade 
at the site of wound damage (Reinhardt et al. 2008).
Together with the results mentioned above, this 
shows that PDI not only can be used as a trigger for 
release of an active agent, but can also be an active 
participant in tissue regeneration processes. 

 The reversible nature of disulphide bond forma-
tion may be exploited in several ways for drug deliv-
ery (Saito et al. 2003). The presence of a high redox 
potential difference between the oxidizing extra-
cellular space and the reducing intracellular space 
makes the disulphide bond intriguing as a potential 
delivery tool (Saito et al. 2003). In fact, the fi rst drug 
conjugate that exploits the reversible nature of this 
unique covalent bond has already been approved for 
human use (Saito et al. 2003) and an increasing 
number of drug formulations that incorporate disul-
phide bonds have been developed (Gosselin et al. 
2001; Ishida et al. 2001; Kakizawa et al. 2001; King 
et al. 1978; McKenzie et al. 2000). Indeed, any active 
substance that can be incorporated using disulphide 
bond modulation may be released in this way.   

 PDI-assisted functionalization of hair 

 Human hair has been the subject of a wide range of 
scientifi c investigations. Its chemical, physical and 
biological properties are of importance to the cos-
metic industry, forensic scientists and biomedical 
researchers. However, enzymatic modifi cation has 
not been extensively reported. 

 A recent study highlights the PDI-assisted 
 incorporation of cysteine-containing peptides through 
disulphide bonds on hair, one of which was able to 
enter into the cortex (Figure 12) (Fernandes  &  
Cavaco Paulo 2011a; Fernandes et al. 2011b). 
Besides disulphide bonding, these peptides were 
expected to restore the mechanical and thermal 
properties of hair damaged by repeated bleaching. 

 Bleaching processes are used to lighten the shade 
of hair by oxidation of pigments (eumelanin and 
pheomelanin) present in the hair cortex (Gray 2001). 

Hydrogen peroxide (H 2 O 2 ) is used as an oxidizing 
ingredient in the process, present up to 12% in alka-
line solution (Brown 1997). Despite its cosmetic 
importance, the chemical damage brought on by 
bleaching is a major drawback of this commonly 
used hair-care technique. The oxidation reaction 
destroys some of the disulphides within the keratin, 
leading to weakening of the hair structure, high 
porosity and severe wear of the cuticle layer. To 
reduce these problems, the incorporation of different 
peptides on hair assisted by PDI was accomplished 
after the bleaching treatment. These peptides were 
developed based on the amino-acid sequence of 
cuticular keratin type II from human hair (Smith  &  
Parry 2007; Naeem et al. 2006) and pulmonary-
associated surfactant protein B from mammalian 
lung (SPB) (Moore et al. 1992; Pilot-Matias et al. 
1989) and both were able to increase the hair-fi bre 
robustness. Other studies have reported the use of 
PDI to perform a curling, waving or straightening 
treatment safely under mild conditions (Brockway 
1992), while a thioredoxin-like compound (fragment 
of PDI) was used to effi ciently treat hair with low 
amounts of thioglycolic acid, a commonly applied 
agent in relaxation treatments (Pigiet 1990). 

 The cosmetic industry is constantly seeking new 
products to overcome problems brought on by con-
ventionally used hair-care processes. The incorporation 
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Figure 12.     Fluorescence images of cross sections of human hair fi bres, at 40 �  magnifi cation: (A) control (B) hair fi bres treated with a 
cysteine-containing peptide and (C) hair fi bres treated with a cysteine-containing peptide in the presence of PDI.  

of enzymes in hair formulations has yet to be 
 thoroughly investigated but may constitute an inter-
esting approach for the development of a completely 
new area of modern hair-care products. The pres-
ence of a high content of cysteine residues in hair 
makes PDI a strong candidate for these applica-
tions. The creation of stable and strong of disul-
phide linkages between hair and cysteine containing 
compounds catalyzed by PDI is certainly an 
approach to take into consideration.    
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