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The polymorphism of a new microsatellite locus (CAI) was investigated in a total of 114 C. 

albicans strains, including 73 independent clinical isolates, multiple isolates from the same 

patient, isolates from several episodes of recurrent vulvovaginal infections and two reference 

strains.  

PCR genotyping was performed automatically, using a fluorescent labelled primer and, in the 

73 independent isolates, 26 alleles and 44 different genotypes were identified, resulting in a 

discriminatory power of 0.97.  

CAI revealed to be species specific and with a low mutation rate, since no amplification 

product was obtained when testing other pathogenic Candida species and no genotype 

differences were observed when testing over 300 generations. 

When applying this microsatellite to the identification of strains isolated from recurrent 

vulvovaginal infections in eight patients, it was found that 13 out of 15 episodes were due to 

the same strain. When multiple isolates obtained from the same patient and plated 

simultaneously, were typed for CAI, the same genotype was found in each case, confirming 

that the infecting population was clonal. Moreover, the same genotype appeared in isolates 

from the rectus and the vagina, revealing that the former could be a reservoir of potentially 

virulent strains. 

This new microsatellite proves to be a valuable tool to differentiate C. albicans strains. 

Furthermore, when compared to other molecular genotyping techniques, CAI proved to be 

very simple, highly efficient and reproducible, being suitable for low quantity and very 

degraded samples and for application in large scale epidemiological studies. 
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It is known that opportunistic yeast pathogens are common residents of the mucosal surfaces 

of the gastrointestinal tract, genitourinary system and oral cavity in warm-blooded animals. 

Although several yeast species can be associated to infection, the predominant causal agent of 

candidiasis is Candida albicans. This yeast causes several infections in humans including a 

wide variety of life threatening conditions triggered by bloodstream infections, especially in 

immunocompromised patients. Since pathogenecity and antifungal susceptibility often vary 

among strains, a rapid and accurate identification of the disease causing strains of C. albicans 

is crucial for clinical treatment and epidemiological studies. 

Advances in molecular biology in the last two decades have allowed the development of rapid 

molecular genotyping techniques for clinical and epidemiological analysis. Several molecular 

typing methods have been developed to differentiate C. albicans strains, including 

electrophoretic kariotyping (2), the use of species-specific probes such as Ca3 or 27A in 

restriction enzyme analysis (20, 23, 27, 29, 32, 33) and PCR-based methods (1, 10, 21, 24, 28, 

37). More recently, short tandem repeats (STRs) or microsatellites have assumed increasing 

importance as molecular markers in fields so diverse as oncogenetics, population genetics and 

strain identification and characterisation. They occur in several thousands of copies dispersed 

throughout the genome and display high polymorphism, Mendelian co-dominant inheritance 

and PCR typing simplicity. Only a few polymorphic microsatellite loci have been identified 

so far in C. albicans genome and most of them located near or inside coding regions and 

exhibiting a discriminatory power between 0.77 and 0.91 (3, 4, 7, 19, 25). However, it is 

known that the degree of polymorphism is much higher in microsatellite loci from non-coding 

regions and, to date, few studies have been developed towards the analysis of loci from those 

regions in C. albicans (18, 19). 

The aim of this work was to identify and describe a new highly informative microsatellite 

locus (CAI), outside a known coding region, in the genome of the pathogenic yeast C. 

albicans and evaluate its applicability to accurately differentiate strains. Another goal of this 

study was to use this microsatellite marker to assess genetic relatedness of C. albicans isolates 

obtained from sequencial episodes of recurrent vaginal candidoses and from multiple 

simultaneous isolations of the same patients. 
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METHODS 1 
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Microsatellite selection and design of PCR primers. A search in Candida albicans genome 

sequences, available in databases from Stanford´s DNA Sequencing and Technology Centre, 

(http://www-sequence.stanford.edu/group/candida) was conducted for sequences containing 

microsatellite repeats. The aim of this search was to select repetitive sequences that were 

expected to have a very high degree of polymorphism, based on two criteria, the number of 

simple repeat units (more than 20) and the location, outside a coding region. Ten 

microsatellites were selected and primers were designed, in the non variable flanking regions, 

for locus-specific amplification. Based on the results of preliminary studies on amplification 

efficiency, species specificity and observed polymorphism, a sequence containing 32 CAA 

repeats, 396062C04.s1.seq, was selected for further characterisation and for application in 

strain identification purposes. 
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Yeast strains. A total of 112 clinical isolates of Candida albicans, obtained from two 

Hospitals and a Health Center located in Braga and Porto (North Portugal), the reference 

strain WO-1 as well as the type strain PYCC 3436 (ATCC 18804), were selected for this 

study. All isolates were previously identified by their assimilation patterns on ID 32C strips 

(Biomerieux, SA, Marcy – L’Étoile, France) and by PCR fingerprinting with primer T3B 

using the methodology described by Thanos et al., (37). The type strains of C. parapsilosis 

PYCC 2545 (ATCC 22019), C. krusei PYCC 3343 (ATCC 6258), C. tropicalis PYCC 3097 

(ATCC 750), C. glabrata PYCC 2418 (ATCC 2001), C. guilliermondii PYCC 2730 (ATCC 

6260), C. lusitaniae PYCC 2705 (ATCC 34449) and C. dubliniensis CBS 7987 (ATCC 

MYA-646) were also tested. All reference strains were obtained from the Portuguese Yeast 

Culture Collection (PYCC), New University of Lisbon, Portugal except the isolates of C. 

dubliniensis that were from Centraalbureau voor Schimmelcultures (CBS),The Netherlands. 

Stock cultures were maintained on Sabouraud glucose agar medium at 4°C.  

DNA isolation and PCR amplification. Prior to DNA isolation, cells were grown overnight 

on Sabouraud medium at 30°C. DNA extraction followed procedures previously described 

(15). PCR reactions were performed in 25 µl reaction volume containing 1x PCR buffer (20 

mM Tris HCl, pH 8.4, 50 mM KCl), 0.2 mM of each four dNTPs (Promega), 0.25 µM of each 

primer (Forward: 5’- ATG CCA TTG AGT GGA ATT GG -3’, Reverse: 5’- AGT GGC TTG 

TGT TGG GTT TT -3’), 25 ng of genomic DNA and 1 U of Taq DNA polymerase (Gibco). 

For automatic allele size determination, the forward primer was 5´ fluorescently labelled with 

FAM. 
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Amplification was carried out in a DNA thermocycler 2400 (AB Applied Biosystems) with a 

program consisting of an initial denaturing step at 95°C for 5 min; followed by 30 cycles of 

30 s at 94°C, 30 s at 60°C and 1 min at 72°C; and a final extension step of 7 min at 72°C. 

Fragment size determination. For allele size determination, the PCR products were run in 

an ABI 310 Genetic Analyser (AB Applied Biosystems). Fragment sizes were determined 

automatically using the GeneScan 3.1 Analysis software. Alleles have been designated by the 

number of trinucleotide repeats (Table 1). 

DNA sequence analysis. After PCR amplification, DNA fragments were separated by 

electrophoresis in 6% polyacrylamide gels in denaturing conditions (6.5M Urea) using the 

buffer systems described by Gusmão et al. (12), and visualised by the silver staining method 

(5). Allele bands were cut individually from the gel, eluted in 250 µl of TE buffer, frozen and 

thawed three times, reamplified and purified with Microspin S-300 HR columns (Pharmacia). 

The purified products were submitted to dideoxy cycle sequencing reaction using the BigDye 

Terminator Cycle Sequencing Ready Reaction Kit (AB Applied Biosystems). Sequence 

analysis was performed on an ABI 377 Genetic Analyser using the Data Collection Software 

377-18. 

Stability. To test the stability of the marker, three different clinical isolates and the type strain 

were grown over 300 generations in 1-liter Erlenmeyer flasks containing 500ml of Sabouraud  

medium and incubated at 30ºC in an orbital shaker (169 rpm). At the end of the exponential 

phase, a 1/10 dilution with new medium was made in order to allow continuing of cell 

duplication. This procedure went on for 4 weeks until completion of around 300 generations. 

Cells were harvest at the end of approximately 100, 200 and 300 generations, and DNA was 

extracted for amplification.  

Reproducibility. Reproducibility of the method was assessed by testing three strains ten 

times in three separate experiments. 

Statistical analysis. Genotype frequencies were estimated by genotype counting. Statistical 

analysis for Hardy-Weinberg equilibrium was performed using an exact test (11), running the 

statistical software package GENEPOP. The discriminatory power of the marker was 

calculated according to Hunter and Gaston (14). 
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With the aim of identifying highly informative microsatellite polymorphisms for molecular 

discrimination of Candida albicans, a search for short repetitive sequences was conducted as 

described in Methods. It is well established that a higher degree of polymorphism is expected 

for microsatellites outside coding regions (26) as well as for long tracts of simple repeats (34). 

For these reasons, our search was based upon the number of uninterrupted repeats outside 

known coding regions. Dinucleotide repeats were not considered, since they are described as 

being more prone to stutter bands due to DNA polimerase slippage during amplification (9). 

For the ten sequences selected with more than 20 uninterrupted tri to penta repeat units, 

specific primers were designed, for annealing in the non variable flanking regions, and used 

for preliminary studies on amplification efficiency and specificity and for evaluation of the 

informative content of polymorphism. Only a sequence containing 32 CAA units showed the 

required characteristics and was selected for further studies and to address the question of 

applicability in the differentiation of related strains. This new microsatellite locus was 

designated CAI. 

Sequence analysis. Sequencing analysis of 37 amplified fragments revealed that the 

consensus structure was in accordance with the originally published (396062C04.s1.seq), 

confirming locus specific amplification and structure of the alleles. The variation in length of 

the CAI alleles was always due to differences in the number of trinucleotide repeat units and, 

therefore, the alleles were designated by the total number of trinucleotide repeats. For 

instance allele 21 when it possessed a size consistent with that number of repetitions 

independently of the structure variation. The sequence analysis revealed three different levels 

of polymorphism in CAI, (i) the number of repeats, (ii) the structure of the repeated region 

and (iii) point mutations outside the repeated region (data not shown). In the context of this 

paper, the genotyping was made based only in the first level of polymorphism, but the second 

and third levels of variation may contribute to further differentiate C. albicans strains. 

 

CAI locus analysis. One hundred and twelve clinical isolates of C. albicans and two 

reference strains were genotyped for CAI (examples shown in Figure 1-A). For an easier and 

more accurate size determination, genotype analysis was performed automatically using a 

fluorescent labelled primer (Figure 1-B). In order to check for method reproducibility, for 

each of four selected samples, the PCR reaction was performed at least 10 different times 

(including different DNA extractions), displaying always the same result. 
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The PCR products obtained consisted of fragments with different lengths, varying between 

189 bp (11 repeats) and 303 bp (49 repeats). Since C. albicans is thought to be diploid, each 

fragment was assigned to an allele and, the strains showing two PCR products were typed as 

heterozygous (72.6%), while when a strain presented a single amplification product it was 

considered as homozygous.  

Using only the results obtained for the sample of 73 non related strains, isolated from non 

related patients, a significant departure from Hardy-Weinberg equilibrium expectations was 

found (P< 0.001). This finding supports the previous conclusions (10, 17) that the inheritance 

in C. albicans is mainly clonal. For this reason, the CAI diversity content and discriminatory 

power can only be evaluated using genotype frequencies rather than allele frequencies. In the 

73 non related strains, a total of 26 different alleles and 44 distinct genotypes were observed. 

The genotype frequencies vary between 0.014 and 0.082. The most frequent genotype (21-25) 

was present in only six out of the 73 non related strains (Table 1). The number of CAI 

genotypes is much higher than the ones described so far for other loci ( 3, 4, 6, 7, 13, 18, 19, 

25, 34), resulting in a discriminatory power of 0.97. 

 

Stability and specificity. In vitro stability of CAI marker was tested by growing four 

independent strains over approximately 300 generations. For all the strains tested the 

genotypes were the same after the 300 generations, suggesting that CAI has an expected 

mutation rate less than 3.33x10-3. 

The CAI microsatellite revealed also to be species specific, since no amplification products 

were obtained when using the described primers in the amplification of other pathogenic 

Candida species, namely C. glabrata, C. krusei, C. parapsilosis, C. tropicalis, C. 

guilliermondii, C. lusitaniae and C. dubliniensis. It is noteworthy to notice the specificity 

regarding C. dubliniensis which is very closely related to C. albicans and only very recently 

was recognised as a different species (36).  

Similar results were found in previously described STRs, by testing other Candida species, C. 

krusei, (7), C. tropicalis and C. glabrata (4) and C. dubliniensis (25). 
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The use of CAI for strain distinction. CAI genotyping results obtained in eight cases of 

multiple isolates from the same patient and plated at the same time are shown in Table 2. As it 

can be observed, in each case, all the strains isolated showed exactly the same genotype 

suggesting that only one strain is present in the infecting population. 
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To verify if the infecting population is the same at different body locations, isolations were 

made from the same patients displaying multiple local infections. The results showed that two 

strains from patient I, isolated from the upper respiratory tract, were identical, but different 

from the urine isolate. The same occurred for patient J, where distinct genotypes were 

observed for the two strains isolated, one from the vagina and the other from the urine. These 

results show clearly that in different body sites, patients can have different clones but the 

infecting population at each body site is monoclonal.  

The analysis of 15 cases of recurrent vulvovaginal infections in eight patients revealed that 

the infecting C. albicans strains isolated sequentially in different relapses of the illness 

displayed the same CAI genotype, except in two cases (Table 3). The second and third strain 

isolations from patients L and N presented a different genotype from the first episode 

indicating possible cases of strain replacement. However, further analysis with three 

additional STRs, including the one described by Bretagne, EF3 (4) confirmed that all three L 

isolates had the same genotype (data not shown). So, most probably, they do not represent 

different strains, and just differing by a mutation at CAI locus. The microvariation observed 

inside one of the alleles, from 30 to 32 repetitions, shows a different scenario of recurrent 

vaginitis with maintenance of a strain which is undergoing microevolution. For patient N a 

case of strain replacement had really occurred and was confirmed with further analysis using 

the same additional STRs (results not shown). These observations are in accordance with the 

literature (16) where three basic scenarios are described for the genetic relatedness of strains 

isolated from patients with recurrent vaginitis, (i) maintenance of the same strain, (ii) 

maintenance of a strain which is undergoing microevolution and (iii) strain replacement.  

In five patients with recurrent vulvovaginal candidoses, anorectal and vulvovaginal isolates 

were simultaneously obtained and typed with CAI (results on table 3). In all cases, the strains 

shared the same genotype, confirming that the anorectal region can be a reservoir of C. 

albicans infecting strains, in accordance with previous observations (16, 31, 33). 
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Many investigations were undertaken in order to search for molecular variation in the genome 

of C. albicans for a large set of applications, such as identification, phylogenetic analysis, 

resistance development and gene association studies (4, 17, 25). As referred in the 

introduction, nowadays there are different DNA-based methodologies available for these 

purposes. It has been demonstrated that STR-PCR based methods have several advantages 

over the other methodologies used in strain identification, since microsatellites are known to 

be highly polymorphic, the PCR is a less time-consuming technique and results can be easily 

reproduced and compared between laboratories (4, 6). 

Numerous microsatellites have been reported in various organisms (8, 13, 34, 38), but, until 

now, only a few polymorphic microsatellite loci were described in C. albicans, most of them 

located near, EF3 (4), CDC3 and HIS3 (3), or inside coding regions, ERK1, 2NF1, CCN2, 

CPH2 and EFG1 (25). The discriminatory power calculated for these STRs, was between 0.77 

(for CDC3) and 0.91 (for HIS3), and, the most discriminant microsatellite approach was 

obtained when combining three STRs in a single multiplex amplification reaction, yielding a 

discriminatory power of 0.97 (3), the same obtained for CAI in the present work. Thus, CAI 

revealed to be more polymorphic than other STRs described so far for C. albicans, this result 

confirming that the criteria we defined to choose this microsatellite proved to be adequate. A 

probable explanation lies in the fact that CAI is, as far as it is now known, probably located in 

a non coding region, thus being less prone to selective forces (26) and presents a long non 

interrupted repetitive tract, as an evidence of previously accumulated diversity. 

This high degree of polymorphism exhibited by CAI could be correlated to a high mutation 

rate which would result in a limitation for its use in strain identification. However, our results 

demonstrate that CAI is stable not only in laboratory culture but also in vivo, since in most 

cases of recurrent infections we found the same CAI genotype, including in one patient where 

strains from five recurrent episodes were genotyped. 

Development of multiplex systems, co-amplifying several STRs, in order to test rapidly and 

reproducibly a great number of isolates, is of great importance in biomedical mycology. CAI 

and EF3 STRs clearly stand out as candidates to be included in such a multiplex system since 

they are very well characterised and the same typing methodology is used. A special care 

must be paid to typing standardisation since the use of different primers or separation 

techniques have shown to prevent the comparison of results from the same locus. 

Standardisation of allele nomenclature, based on the repeat number rather than fragment size, 

 9



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

is also essential for the construction of public databases in light of what is already in current 

use in human genetics (22, 30). 

It is clear that the analysis of multiple STR loci may enable high-speed typing in the near 

future, and the high number of available markers allows a previous selection of the best 

markers to be included in multiplexes, based on typing performance, mutation rates and 

discriminative power. 

Furthermore, they can be used to complement studies such as RAPDs and DNA 

fingerprinting, by which evolutionary related strains can be distinguished, particularly when 

searching for micro-evolutionary events (4, 25). 
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Table 1 – Frequency of genotypes identified for CAI microsatellite. 

Observed 
Genotype 

Number of 
strains 

 

Frequency Observed 
Genotype 

Number of 
strains 

Frequency 

11-18 2 0.027 22-34 1 0.014 
11-28 1 0.014 23-24 1 0.014 
13-32 1 0.014 23-27 2 0.027 
16-27 2 0.027 24-24 1 0.014 
17-17 1 0.014 24-26 1 0.014 
17-21 3 0.041 24-27 1 0.014 
17-23 3 0.041 25-25 2 0.027 
18-18 3 0.041 25-26 1 0.014 
18-25 2 0.027 25-27 2 0.027 
18-27 1 0.014 26-26 3 0.041 
18-34 1 0.014 26-33 1 0.014 
18-47 1 0.014 27-27 2 0.027 
20-20 1 0.014 27-42 1 0.014 
20-27 1 0.014 27-45 1 0.014 
20-28 3 0.041 27-47 1 0.014 
20-37 1 0.014 27-49 1 0.014 
21-21 2 0.027 28-28 1 0.014 
21-22 3 0.041 28-47 1 0.014 
21-25 6 0.082 30-30 1 0.014 
21-26 4 0.055 36-36 1 0.014 
21-27 1 0.014 39-46 1 0.014 
22-22 2 0.027    
22-23 1 0.014    
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Table 2- Multiple strains isolated from the same patient and cultured simultaneously. 
 

 

Each patient is referred as a letter (A to J) and the isolates distinguished 
by a number followed by an M (laboratory designation). 

Patient Isolate Body location 
 

CAI genotype 

A 1M Urine 21-25 
 2M Urine 21-25 
 31M Urine 21-25 

B 4M Peritoneal exsudate 26-26 
 15M Peritoneal exsudate 26-26 
 17M Peritoneal exsudate 26-26 
 19M Peritoneal exsudate 26-26 

C 10M Upper respiratory tract 17-17 
 12M Upper respiratory tract 17-17 

D 52M Urine 21-21 
 55M Urine 21-21 

E 41M Urine 21-22 
 43M Urine 21-22 
 45M Urine 21-22 
 47M Urine 21-22 
 48M Urine 21-22 

F 82M Urine  18-47 
 84M Urine 18-47 

G 49M Urine 36-36 
 51M Urine 36-36 

H 69M Upper respiratory tract 21-25 
 75M Upper respiratory tract 21-25 
 86M Upper respiratory tract 21-25 
I 64M Upper respiratory tract 22-22 
 67M Upper respiratory tract 22-22 
 88M Urine 20-28 
J 33M Vagina 23-24 
 37M Urine 17-23 
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Table 3-CAI genotypes of sequential isolates from vulvovaginal recurrent infections and 
anorectal/vulvovaginal body locations. 

 
Recurrent strains 

 
CAI genotype 

Patients Isolates  

K 3J 17-23 
 4J 17-23 
 5J 17-23 
 6J 17-23 

L 7J 30-30 
 8J 30-32 
 9J 30-32 

M 12J 18-25 
 13J 18-25 
 14J 18-25 
 15J 18-25 
 16J 18-25 

N 17J 21-21 
 18J 20-29 
 19J 20-29 

O 20J 26-26 
 21J 26-26 

P 22J 23-27 
 23J 23-27 

Q 27J 22-23 
 28J 22-23 

S 29J 20-20 
 30J 20-20 

Vagina/Rectus CAI genotype 

T 31J-V 21-26 
 32J-R 21-26 

U 35J-V 25-25 
 36J-R 25-25 

V 37J-V 18-27 
 38J-R 18-27 

X 39J-V 21-22 
 40J-R 21-22 

Z 41J-Ra 23-27 
 42J-Rb 23-27 
 43J-V 23-27 

Each patient was referred as a letter (K to Z) and the isolates distinguished by a number followed by a J (laboratory 
designation). Strains from vagina/rectus were added an additional letter, V or R for vagina and rectus, respectively.  
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Figure 1- A) Denaturing gel electrophoresis of the fragments obtained by PCR of 12 C. albicans 
clinical isolates for CAI marker B) CAI GeneScan profiles observed for four C. albicans strains 
also represented in the gel. 
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