Synthesis of glycoconjugates containing a 1,2,3-triazole unit

Silvia Cunha, Sofia Pereira, Maria J. Malheiro, Lígia M. Rodrigues, Ana M. Oliveira-Campos, Ana P. Esteves*

Chemistry Centre, School of Sciences, University of Minho

e-mail: aesteves@quimica.uminho.pt

Abstract:

The preparation of several alkynyl esters, derived from amino acids, coumarins and an alkynyl derivative of acetylated D-glucose is described. Eight new glycoconjugates containing the 1,2,3-triazole unit were obtained, by a click approach from the above referred alkynyl derivatives with tetracetyl-β-D-glucosylazide, prepared in situ from α-acetobromoglucose.

Keywords: glycoconjugates, click chemistry, triazole, alkynyl esters

Introduction

The glycoconjugates have an enormous potential in drug design\(^1\). Between them, glycopeptides are particularly important as they combine the structural features of amino acids and carbohydrates in the same molecule. Glycoconjugates containing the 1,2,3-triazole unit find application in medicinal chemistry, particularly in those cases where this unit acts as a bridge between an amino acid/peptide and the sugar moiety.\(^2\)

In this work the synthesis of several glycoconjugates containing the 1,2,3-triazole unit as a bridge between a sugar (D-glucose) moiety and an amino acid or heteroaromatic unit is described. The 1,2,3-triazole unit was formed by an azide-alkyne 1,3-dipolar cycloaddition, catalysed by a Cu(I) species, a chemical process usually known as click chemistry.\(^3,4\) The azido component was prepared in situ from α-acetobromoglucose.\(^4,5\)

Conclusions

Glycoconjugates containing the 1,2,3-triazole unit were obtained by an azide-alkyne 1,3-dipolar cycloaddition, catalysed by Cu(I). The azide component, glucosylazide, was obtained in situ from α-acetobromoglucose and the alkynyl components were prepared by reaction of propargyl bromide with N-protected glycine, tyrosine and phenylalanine,
7-hydroxycoumarin and 7-hydroxy-4-methylcoumarin with high yields. The final glyconjugates were isolated with a wide range of yields, varying from low, 14% to as high as 80%.

Acknowledgements
To the Foundation for the Science and Technology (FCT, Portugal) for financial support to the NMR Portuguese network (PTNMR, Bruker Avance III 400-Univ. Minho) and to FCT and FEDER (European Fund for Regional Development)-COMPETE-QREN-EU for financial support to the Research Centre, CQ/UM [PEst-C/QUI/UI0686/2011 (FCOMP-01-0124-FEDER-022716)]

References