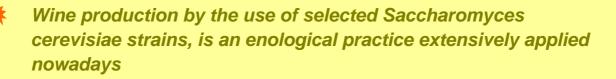
XXXI Jornadas de Genética

SURVEY OF MOLECULAR METHODS FOR THE TYPING OF WINE YEAST STRAINS

D. Schuller¹, E. Valero², S. Dequin² and M. Casal¹

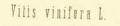
¹ Centro de Biologia Universidade do Minho Portugal



Universidade do Minho Escola de Ciências

² Institut Nacional de la Recherche Agronomique UMR Sciences pour l'Oenologie France.

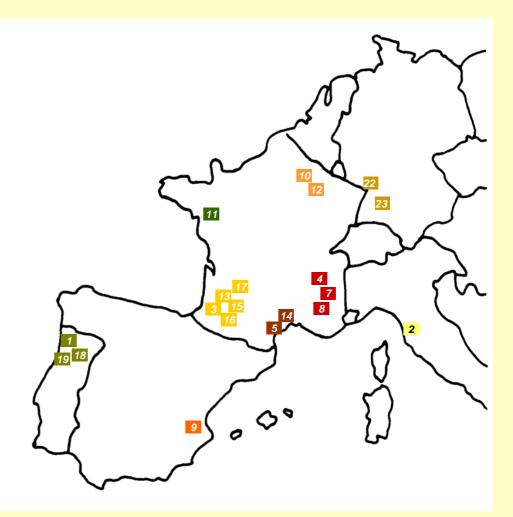
Commercial Saccharomyces cerevisiae *strains*


Isolation of wild yeasts from the natural environment associated to the winemaking area of interest

Enological aptitude of the isolates

Ability to dominate the fermentation process Enhance the sensorial characteristics of wines originating from different grapewine cultivars Owing other biotechnological properties that are important in winemaking

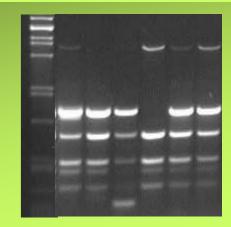
The use of techniques that enable to distinguish the inoculated strain from the remaining yeast flora present in the grape must is regarded with great practical interest

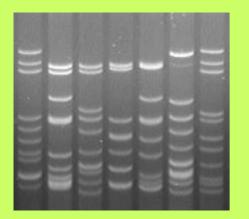


Materials and Methods

Strain	Origin
1	P - Minho
2	I - Tuscany
3	F - Bordeaux
4	F - Côtes du Rhône
5	F - Midi
6	SA - Stellenbosh
7	F - Côtes du Rhône
8	F - Côtes du Rhône
9	E - Valencia
10	F - Champagne
11	F - Loire
12	F - Champagne
13	F - Bordeaux
14	F - Midi
15	F - Bordeaux
16	F - Bordeaux
17	F - Bordeaux
18	P - Dão
19	P - Bairrada
20	D – not known
21	Not known
22	D - Pfalz
23	D - Baden-Würtenberg

PCR-based interdelta-analysis


Location transactivating region (LTR) flanking retrotransposons TY1 and TY2


Separate elements dispersed throuhgout the genome

300 delta elements in strain S288C

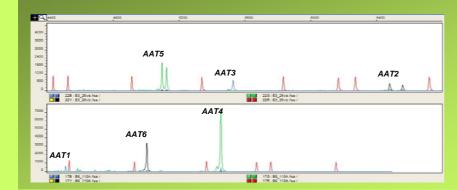
Good targets for identification of polymorphisms

primer pair $\delta 1 - \delta 2$	(Ness et al., 1993)		
primer pairδ12- δ2	(Legras et al., 2003)		

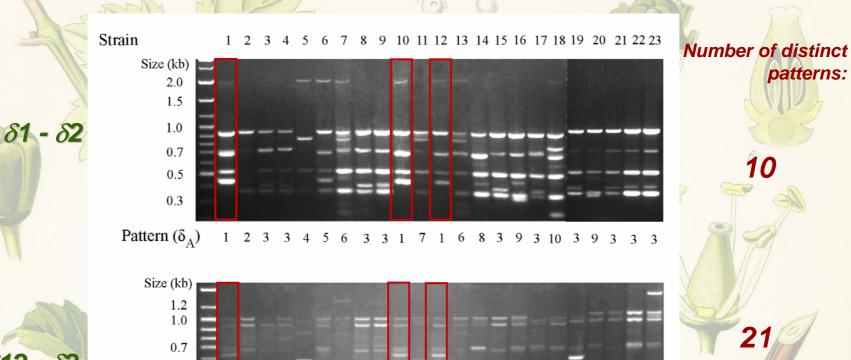
Mitochondrial DNA restriction analysis (mtDNA RFLP) (Querol et al., 1992; Lopez et al., 2001)

Mitochondrial DNA of S. cerevisiae: ~ 70 kb Enological yeast strains have a large mtDNA diversity Digestion with Hinfl or Rsal

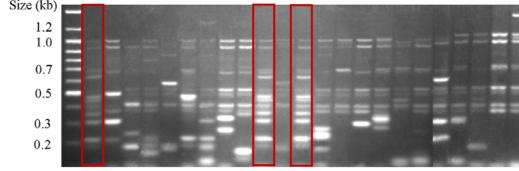
Materials and Methods



Karyotype analysis


(Carle and Olson., 1995; Blondin and Vezinhet, 1988)

Differentiation of strains according to the size distribution of their chromosomes by Pulse-field electrophoresis


Microsatelite analysis – 6 loci (Pérez et al., 2001) SSR (Simple Sequence Repeats) short (1-10 nucleotides) DNA tandem repeats dispersed throughout the genome high degree of variability

AAT1	FAM	145-246 pb	
AAT4	TET	278-335 pb	
AAT6		249-267 pb	2 multiplex
AAT2		370-406 pb	reactions
AAT3	FAM	247-445 pb	
AAT5	TET	216-225 pb	

Interdelta analysis

R

Ε

S

U

T

S

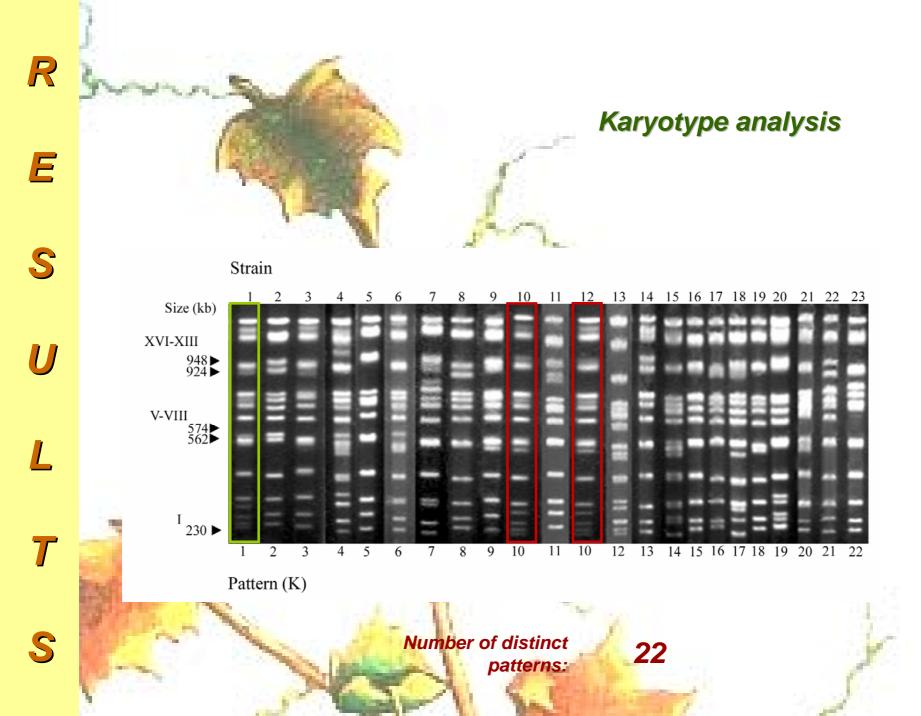
δ12 - δ2

Pattern ($\delta_{\rm B}$) 1 2 3 4 5 6 7 8 9 1 10 1 11 12 13 14 15 16 17 18 19 20 21

Substitution of primer δ **1 by primer** δ **12: 2-fold increase in the number of patterns**

mtDNA RFLP

Strain 1 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2 7 8 -3 -5 6 Size (kb) 6.0 S 5.0 4.0 Hinf/ 3.0 U 2.0 Pattern (m_H) 1 2 78 9 1 10 1 11 12 13 14 15 16 17 18 19 20 21 3 5 4 6 L Size (kb) 10.0 7.0 5.0 **Rsal** 4.0 T 3.0 Pattern (m_R) 1 2 3 4 5 6 5 7 7 1 5 1 6 8 9 10 11 12 13 14 15 16 17 S


R

Ε

Number of distinct patterns:

21

17

Microsatellite analysis

R

Ε

S

U

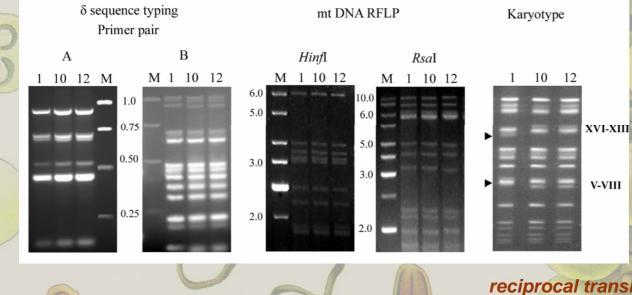
L

7

S

Man	Strain	Microsatellite					
		SCAAT1	SCAAT2	SCAAT3	SCAAT4	SCAAT5	SCAAT6
	1	189, 237	375	250, 346	302	219, 222	250, 256
-	2	201	378	247	329	216	256
-	3	204, 222	372, 378	259, 265	317, 329	216, 219	256, 259
	4	165	384	262, 304	302, 329	216, 219	256, 259
4	5	246	378	262	329	216	259
Ĩ	6	189, 228	375, 378	250, 262	302, 329	216, 222	256
Ī	7	222	369, 384	247	302, 329	216	256
	8	195	378	241	332	219	256
	9	195, 216	375, 381	256	329	216	256
	10	189, 237	375	250, 346	302	219, 222	250, 256
Contraction of the second	11	195	375	256	329	222	256, 259
	12	189, 237	375	250, 346	302	219, 222	250, 256
AL BO	13	216, 219	372, 378	247, 265	329	216, 219	256, 259
	14	174	387	247	338	222	259
1	15	204, 219	372, 381	265	329	219, 222	256, 259
	16	195	378	265	329	222	256
No.	17	201	378	247	329	222	256
	18	171, 201	375, 378	259, 268	329	219	256
1	19	204	369	259, 271	329	219	259
1	20	192	378	247, 271	329	216	256, 259
1	21	207	378	262	329, 332	216	256
1	22	219	381	259	329	219	256
	23	189	381	247	290	219	256
	N° alleles	15	7	11	6	3	3
	N° genotypes	18	11	14	8	6	4

Ε


S

U

12

COMPARISON OF STRAINS 1, 10 AND 12

13

14

Vitis vinifera L

reciprocal translocation between chromosomes VIII and XVI, generating two new chromosomes VIII^{XVI} and XVI^{VIII}

rearrangement in wine yeast strains involved in their adaptative evolution, since the translocation results in higher expression of SSU1

Conclusions

Microsatellite typing (loci ScAAT1-6), Optimized interdelta sequence analysis mtDNA RFLP of mitochondrial DNA (Hinfl)

Karyotype analysis originated 22 patterns, thereby allowing the discrimination of one of the three strains that were not distinguished by the other methods.

Due to the equivalence of the results obtained in this survey, any of the methods can be applied at the industrial scale

Summarizing ...

depending on the technique used, distinct levels of discrimination were obtained, varying from 10 to 22 different patterns

R

Ε

S

U

L

T

S

	Pattern						
Strain	δ seq	sequence mt DNA RFLP Microsatellite SCAAT		Karyotype			
	δ _A	δΒ	m _R	üΉ	1-6		
1	1	1	1	1	1	1	
2	2	2	2	2	2	2	
3	3	3	3	3	3	3	
4	3	4	4	4	4	4	
5	4	5	5	5	5	5	
6	5	6	6	6	6	6	
7	6	7	5	7	7	7	
8	3	8	7	8	8	8	
9	3	9	7	9	9	9	
10	1	1	1	1	1	10	
11	7	10	5	10	10	11	
12	1	1	1	1	1	10	
13	6	11	6	11	11	12	
14	8	12	8	12	12	13	
15	3	13	9	13	13	14	
16	9	14	10	14	14	15	
17	3	15	11	15	15	16	
18	10	16	12	16	16	17	
19	3	17	13	17	17	18	
20	9	18	14	18	18	19	
21	3	19	15	19	19	20	
22	3	20	16	20	20	21	
23	3	21	17	21	21	22	