
PuReWidgets: A Programming Toolkit for Interactive Public
Display Applications

Jorge C. S. Cardoso
CITAR – Portuguese Catholic University,
Rua Diogo Botelho 1327, Porto, Portugal

jorgecardoso@ieee.org

Rui José
Algoritmi – University of Minho,

Campus de Azurém, Guimarães, Portugal
rui@dsi.uminho.pt

ABSTRACT
Interaction is repeatedly pointed out as a key enabling
element towards more engaging and valuable public
displays. Still, most digital public displays today do not
support any interactive features. We argue that this is mainly
due to the lack of efficient and clear abstractions that
developers can use to incorporate interactivity into their
applications. As a consequence, interaction represents a
major overhead for developers, and users are faced with
inconsistent interaction models across different displays.
This paper describes the results of a study on interaction
widgets for generalized interaction with public displays. We
present PuReWidgets, a toolkit that supports multiple
interaction mechanisms, automatically generated graphical
interfaces, asynchronous events and concurrent interaction.
This is an early effort towards the creation of a programming
toolkit that developers can incorporate into their public
display applications to support the interaction process across
multiple display systems without considering the specifics of
what interaction modality will be used on each particular
display.
Author Keywords
Human-Computer interfaces; User Interface Design;
Programming toolkits; Public displays
ACM Classification Keywords
D.2.2 [Software Engineering]: Design Tools and Techniques
– Software libraries, Modules and interfaces;
INTRODUCTION
Public digital displays have become increasingly ubiquitous
artefacts in public and semi-public spaces. Most of them,
however, do not support any interactive features, even
though interaction is clearly recognised as a key element in
making them more engaging and valuable. A key reason
behind this apparent paradox is the lack of efficient and clear
abstractions for incorporating interactivity into public display
applications. While interaction can be achieved for a specific
display system with a particular interaction modality, the
lack of proper interaction abstractions means that there is too
much specific work that needs to be done outside the core

application functionality to support even basic forms of
interaction. This is an effort that must be replicated by each
developer, representing a wasted effort. This also leads to
inconsistent interaction models across different displays and,
as a result, people are not able to develop, based on previous
experiences, any expectations and practices regarding their
interaction with public displays.
It seems reasonable to make an analogy between this
situation and the time when desktop computer programmers
had to make a similar effort to support their interaction with
users. This was quickly recognised as a problem and
addressed with the emergence of reusable high-level
interaction abstractions, such as the WIMP model and its
associated controls, that provided consistent interaction
experiences to users and shielded application developers
from low-level interaction details [12]. Nowadays, with the
wide availability of interaction widgets, developers can
benefit from ready-to-use interaction elements that deal with
input, encapsulating behaviour and visual appearance, and
users have learned to interpret their affordances in a way that
enables them more easily to tackle new interfaces and
programs by building on their previous experience.
In this work, we studied new interaction abstractions for the
development of interactive applications for public displays.
Our early results are instantiated in a programming toolkit
that developers can incorporate into their public display
applications. The main contributions of this work are the
elicitation of the requirements for public display interaction
abstractions and an architecture and software library system
for application developers that provides high-level
abstraction that can be incorporated into interactive public
display applications.
This paper is organized as follows. We first characterize the
interaction environment of public display applications; then
we describe the main steps that we took while developing
this work; we present work related to our own; then we
define the requirements that an interaction abstraction should
meet; we present the design of PuReWidgets; we provide an
initial evaluation of the toolkit; and, finally, we conclude.
Interactive Public Display Applications
Applications for interactive displays are still an emerging
topic with a lack of widely accepted and well-defined
concepts. In this section we characterise our assumptions
regarding the properties of the ecosystem of interactive
public display applications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EICS’12, June 25–26, 2012, Copenhagen, Denmark.
Copyright 2012 ACM 978-1-4503-1168-7/12/06...$10.00.

Display ecosystem
Using the concept of "ecosystem of displays" introduced by
Terrenghi et al. [22], we could generally describe the public
display environment as perch/chain1 sized ecosystems for
many-many interaction: and environment composed of
displays of various sizes (from handheld devices, to
medium/large wall mounted displays), and where “many
people can interact with the same public screens
simultaneously”. The different sized displays afford different
types of interaction but they can function in an integrated
way in this ecosystem. The bigger displays (perch/yard
sized) can function as the main information outlets of a
place, providing a shared information and interaction point
for the whole place – they are public, visible to everybody at
all times (usually located in high-visibility locations), and
can function as the reference display in a place. Normally,
these displays are not meant to be appropriated by single
users; they should be perceived as always available to
everybody [9]. Medium-size displays (yard/foot sized) can
also be present and dedicated to particular uses such as for
allowing users to interact with the information on the main
display, or for presenting some particular kind of
information. These smaller public displays can be used, for
example, to provide an interaction point (e.g., using touch
interaction) that shows some of the most important
interactive features that are locally available. The person that
is responsible by the place – to whom we will refer to as the
place owner – typically owns both large and medium
displays. Small displays (foot/inch sized) are typically the
personal mobile devices such as smart-phones, tablets, or
laptop computers. Users that own these kinds of devices will
want to take advantage of them to interact with their
environment, including the available public display
applications. The small personal devices will most likely be
used as input devices to the public display application,
allowing users to interact in a more opportunistic way by
sending an SMS message to the application, using Bluetooth
naming, or even a custom mobile application to interact.
Personal tablets and laptops will most likely be used for
more lengthy interactions allowing users to interact with an
application via a place web page or directly through the
application’s web page, perhaps for configuring a user
profile, or for upload or downloading large content files.
Applications
We want this display environment to be open to place
owners, to application providers (or more generally, content
providers), and to users. We have targeted our toolkit at web-
based public display applications that can be hosted on third-
party servers to serve content to many displays, but take
advantage of the locally available interaction resources.
Software developers will create these applications and will
want to be able to distribute them globally. Place owners will
be able to browse, select, and configure the applications they
want to display in a given location. An application selected

1 1 chain ≈ 20 meters; 1 perch ≈ 5 meters; 1 yard ≈ .9 meters; 1 foot ≈ .30

meters; 1 inch ≈ 0.025 meters (or ≈ 2.5 cm)

for a place will be sometimes visible on a public display. We
assume that each display will show content from multiple
applications and will iterate through those applications based
on some pre-defined scheduling criteria. Even though an
application may not be continually visible on the public
display, it will be accessible via many other displays and
interaction mechanisms. Once selected for a place, the public
display application will be able to receive and process
interaction events and produce place specific content that can
be accessed in different ways (on a public display, through a
web page, through a custom mobile application, etc.).
RELATED WORK
Interactive public displays are not new, and there are many
systems that explore different interaction mechanisms that
can be used by applications for public displays. For example,
Rohs [4] has implemented a set of widgets for visual marker-
based interaction that allows users to activate actions or
select options encoded in a visual marker and send it via
SMS (using a custom mobile application). The visual marker
encodes the type (menu, radio or check button list, sliders,
etc.) and layout (vertical or horizontal menu, number of
options, etc.) of the widget, so that the mobile phone
application can immediately superimpose graphical
information about the currently selected item or value.
Dearman & Truong [4] developed Bluetone: a widget that is
activated through dual tone multi-frequency (DTMF) over
Bluetooth. Users interact with an application by changing the
Bluetooth name of their device to a system command, wait
for the display to pair with the user’s phone as an audio
gateway, and then pressing the keys on the keypad of their
phone. Bluetone supports several users, being limited only
by the Bluetooth protocol. This widget is limited to the
DTMF interaction mechanism, and has been developed for
an environment where a single application executes at a
time; graphically, it consists of a single widget that
encapsulates all the interactive features of the application.
SMS interaction has also been used frequently with public
display applications. Jumbli [11], for example, is a word
puzzle game that allows users to form words with the letters
presented on the public display and send those words, via an
SMS message with the word sent to a pre-defined number.
Bluetooth (BT) naming is another approach for providing
interactivity to public displays. Lancaster University’s e-
Campus display system [21], for example, explored
Bluetooth naming as an explicit input mechanism. BT
scanners on each display continually discover devices in the
vicinity and send these sightings information to a content
scheduler. To interact, users need only to change the BT
name of their personal mobile device using a pre-defined
command structure and wait for the BT scanner in the place
to pick up the change.
All these are good examples of how to provide users with
specific interaction channels to public displays. However
they do not address the question of providing useful
interaction abstractions to applications so, they don’t help the
application developer who wishes to deploy a public display
application without worrying about the specificities of the

available interaction mechanisms of the various places where
his application may run. In all the previous examples, the
assumption was that a specific mechanism would be
available.
There has also been much work on input middleware for
ubiquitous systems. Magic Broker [7], for example, is an
event-based input infrastructure that allows applications to
subscribe to input from different sources such as SMS, Voice
(using Voice XML), and web interactions. However, it
provides a lower level of abstraction than the one we wish to
achieve. For example, it does not define how users can
address individual applications or interactive features, or
how the web interface would be generated. Other input
middleware such as ICON [6], allow the dynamic mapping
of input devices to applications. However, these mappings
are created for individual applications, and they work for
local input devices. Also, it does not defined high-level
controls suitable for public display applications.
Various interaction abstraction models have been used for
different purposes and computing platforms. In the WIMP
widget based interaction abstraction for GUI, widgets
provide a high-level interface to the application in the form
of widget events, triggered by user actions, which invoke
callback functions in the application. The application does
not know the specific action that was used to trigger the
event; it has only access to the high-level data exposed by
that specific widget. In the dynamic user interface
generation, more appropriate for smart environments,
programmers describe the application/service interface using
an abstract language, which is then used to generate various
interfaces for different devices (e.g. widgets for graphical
devices; speech interfaces; etc.). Communication between
the device and application is usually accomplished via some
form of remote method invocation. The abstract language
usually allows developers to specify which functions and
parameters are associated with a particular interactive
feature. There is also the data-driven interaction approach,
usually used in cases where we want a single application to
be able to receive input from various, different, “dumb”
input devices. This approach is usually implemented using a
tuple space data structure where input devices and
application programmers define their own tuples and a
mapping software component maps tuples from input
devices to tuples for applications. Thus, programmers are
free to define whatever tuples they need and applications
simply react to the data-type (and parameters) of the
incoming tuples.
SCENARIOS
To provide a better image of the type of interaction we
envision of public display applications, we describe next
some usage scenarios.
John is a software developer in charge of creating an
interactive public display application that will integrate with
an existing social news platform developed by the same
company. The existing platform allows an institution to post
news items on a web page and allows users to “like” and

discuss on those individual items. There are already two
clients that want to use this new public display application: a
university’s communication department and a local coffee
shop. John has already developed much of the logic for the
application and is now on the process of adding the “like”
feature. He fires up his favourite IDE – Eclipse, and opens
up the application project. In the project settings he
configures the application to use an interaction library for
public displays. The application creates and displays a list of
text items and for each item John needs to associate a “like”
action by instantiating an action widget which, when
activated, will contact the server to update news platform
with the indication that a user liked the news item. He does
not need to worry about the specific input mechanisms that
will be used to “press” the action button; the interaction
library handles all that...
Sophia is waiting for her friends at the university’s main
hall. Looking at the large display across the hall, one of the
entries of the school-related news catches her eye - it’s about
Adam, a friend on the robotics class, which has won the
national robot-dancing contest. There is a button next to the
news entry’s header that Sophia recognizes: is a ``like’’
button with three letters underneath. The instructions on the
top of the display tell her how to interact so she fetches her
mobile phone and sends a text message to the number on the
instructions. A few seconds later, a popup near the button
appears with a phone number. Some digits do not show, but
she recognizes it as her own. She knows her ``like’’ will
increase the news visibility on the school’s website and on
the display. Adam deserves it!
Sarah and George took a break from work to grab a snack at
the coffe shop across the street. They sit down and order an
entry from the menu that is on their table – the latte+muffin
menu. While they’re eating and talking, Sarah notices a
familiar symbol next to each entry in the menu: a QR code.
The description says that they can post a comment. George is
not sure how that works, but he pulls his smartphone,
launches the default app for visual codes, and scans the
code. A webpage opens with a textbox. He enters: “Best
blueberry muffin, ever!” and presses Send. A confirmation
message pops up thanking and telling him that he can check
the result of his interaction in a nearby display. A few
moments later they notice that the display in the coffee shop
is showing photos of the various menu entries and comments
from customers: George’s comment appears next to the
latte+muffin entry!
RESEARCH METHODOLOGY
This work proceeded in three phases. In the first phase, we
elicited the main requirements for interaction abstractions for
public displays. For this, we collected academic publications
about interactive public display systems by searching online
databases (such as ACM, IEEE, Google Scholar) and
filtering publications by keywords such as “public display”,
“interactive display”, from the last 20 years. In our analysis
dataset, we also included references from these publications
to other public display systems (in total, we analyzed about

50 different display systems). We focused on the
descriptions of the requirements, functionalities, and
properties of the described display systems to extract
relevant common features and synthesize them in a set of
high-level requirements (cf. Requirements for Public Display
Interaction section).
In a second phase, we investigated existing ways of
providing interaction abstractions to application
programmers, taking note of their main properties and
paying particular attention to how they could support our
requirements. We analyzed specifically the widget
abstraction model, the dynamic interface generation model
and the data-driven interaction model (cf. Related Work
section). This phase resulted in a set of design guidelines that
incorporated features from the various existing interaction
abstractions to form a new interaction abstraction for
interactive public displays.
In a third phase, we re-analyzed the interactive public display
systems of phase 1, but this time focusing on analyzing the
types of high-level data generated by different types of
interactions with public displays [2], and then examining
various interactive features proposed in different display
system to extract the fundamental properties of those
features. This resulted in a set of control types that serve as
the basis for the various controls in our toolkit (cf.
PuReWidgets System section). While designing the toolkit
we made a decision to support control types that would not
impose a direct manipulation interaction style.
REQUIREMENTS FOR PUBLIC DISPLAY INTERACTION
The main objective of an interaction abstraction is to
facilitate the programmer’s task of developing an interactive
public display application by abstracting away the details of
the multiple interaction mechanisms that may exist in a
place, and which may vary across places. At the same time,
the abstraction should allow developers to specify what kind
of high-level interaction data their applications need.
Achieving this objective for public display applications
entails addressing several requirements. Some of these
requirements are common to other interactive systems, but
others are very specific to public displays.
Multiple interaction mechanisms
Unlike desktop systems, which usually rely on a very small
set of input devices – most often just a keyboard and mouse
– public display interaction can take advantage of several,
very different input mechanisms. Many public displays have
been developed that use very different input mechanisms,
such as SMS [24], email and instant messaging [16],
Bluetooth naming [10], Twitter [11], RFID [13], body
movement [18], gestures [23], face detection [8], custom
mobile applications [19], etc. These different input
mechanisms have different costs and requirements and a
single place cannot be expected to provide all of them nor
can we expect to encounter the same set of input
mechanisms in all places. Additionally, not all input
mechanisms have the same data capabilities so they may not
all be capable of providing the same high-level input

controls. Application programmers, however, should be able
to specify their interaction necessities in a way that is
independent from the specific interactive modalities or input
mechanism that will be available at each specific place. A
good interaction abstraction should be applicable, in a
consistent way, to multiple input mechanisms.
Concurrent interaction
Given the many-many nature of the social interaction with
public displays, public displays must explicitly support
multiple, concurrently interacting users, possibly using
different input mechanisms. Many applications will, at least,
require information about the input events that allows them
to differentiate users. An interaction abstraction for public
displays should give support for concurrent input by multiple
users, possibly using different input mechanisms. This is in
sharp contrast to desktop systems were the assumption is
that, generally, a single user is interacting – in control of the
keyboard and the mouse – and applications are indifferent to
which user is interacting. This has implications in the public
display system support for the interaction because it means
that there is a need to differentiate input events for different
users.
Shared interaction
Shared interaction works on two levels: the first means that
users are aware of each others interactions and, so, may
decide to adapt their own behaviour in light of what others
are doing; the second means that the display system is able,
not only to accept concurrent interaction, but also to
conciliate those interactions in its response. In a many-many
interaction setting, being aware of each others actions is
fundamental to the success of the interaction because it can
act on two important aspects of public display interaction:
attention and motivation [14]. The first barrier to interaction
with a public display is understanding that it is interactive –
moving from an unwitting bystander to a witting bystander
(as defined by Dix and Sas [5]). If the display system
provides some kind of public awareness regarding
interactions, it can help attracting users’ attention and
making users aware that the display is interactive. It can also
add to the collaboration motivation factor for interacting with
public display, because “collaboration is especially
motivating if individual behaviour is recognized by others”
[14].
Asynchronous interaction
Our assumptions regarding the life cycle of a public display
application are very different from traditional desktop
applications. The life-cycle of a desktop application is
completely controlled by the desktop user, which decides
when the application should run, when it should be in the
foreground receiving input, and when it should be
terminated. In a public display ecosystem, users may not, in
general, control applications. Once an application is
associated with a particular place, it should be available for
interaction at all times, or at least have that possibility. Also,
a public display application should generally be available for
users independently of whether there any public display
currently showing any of its content. Contrary to desktop

applications, the display is not the only interaction point with
a public display application. A good interaction abstraction
for public displays must support this kind of asynchronous
interaction environment and allow interaction to happen at
any time. This kind of interaction can help mitigate the
“conflict of pace” mentioned by Dix and Sas [5], which
happens because users are not in full control of the public
display. An asynchronous interaction environment
guarantees that, at least, the display’s scheduling does not
impose the pace for the interaction with an application.
Clear and decoupled affordances
The interaction abstraction should convey clear affordances
in a way that people may easily learn to recognize, enabling
potential users to become aware of the existence of the
interactive features and their properties. Even when facing a
display or an application for the first time, the interaction
alternatives should always be clear, even if the semantics of
the operation for an unknown application are not. This is a
generic interaction guideline and a key function of an
interaction abstraction, common to other interactive systems.
It responds to the basic interface design principle of
visibility, which helps bridging the gulf of evaluation of a
system [15]. It is especially important for public displays
because, unlike what happens with desktop computers where
people are aware of the computer, when facing a public
display, users may not even realize it is interactive. The
interaction abstraction can partly address these issues and
help users move from unwitting bystanders to participants,
by providing identifiable graphical representations for
widgets on the public display. However, given the
environment in which public display applications will
operate, we can’t expect applications to be continuously
shown on a public display nor to have the ideal screen space
available to display an application’s content. This requires
that the affordances for the interactive features be decoupled
from the public display screen, because it may not always be
possible or desirable to show the graphical representations
for the interactive features on the public display. The
interaction abstraction should be flexible enough to allow the
interactive features of applications to be rendered in other
platforms such as web pages, or mobile devices. Ideally, this
should be done with minimal or no extra effort needed from
the application developer.
Multiple, public display specific, interactive features
A good interaction abstraction for public display must allow
applications to have many different and individually
addressable interactive features, just like standard desktop
applications. Desktop applications typically need several
interactive features of different types of controls. A single
desktop form screen, for example, may require several text
boxes, list boxes, radio buttons, and action buttons. The
different types of controls allow programmers to choose the
ones that best fit the application’s data needs. There are
many different controls for desktop applications such as data
entry, selection, imperative, and display controls [3], and
each type may have several variations that provide
applications with different high-level data and give users

different affordances. Public display applications also need a
set of controls for developers to choose from, but these
controls must be appropriate for public display interaction.
An interaction abstraction should provide a set of useful
control types that allow a wide range of meaningful
interactions. Programmers should be able to specify any
number of interactive features that the application needs, and
users should be allowed to address those features
individually.
PUREWIDGETS SYSTEM
The PuReWidgets system is composed of a widget library
and web service that handles interaction events. A widget is
an interaction abstraction that: provides developers with
high-level interaction data, hides the specific details of the
underlying input mechanism; and can have different
graphical representations in different platforms. The
development process of a public display application that uses
PuReWidgets is similar to the development of a regular web
application. The developer includes an external code library
in his project and uses the available functions of the library
to code the application, instantiating widgets and registering
interaction event callback functions. The developer then
deploys the set of HTML, CSS, and Javascript files on a web
server. The life cycle of a public display application (start,
stop, and reacting to input events), however, is very different
from the life cycle of a traditional application: the application
is instantiated and terminated by a scheduler software that
drives all the content of the public display, and interaction
events can be generated via multiple local or remote sensors.
When a widget is instantiated by an application, some
metadata about the widget are sent to the PuReWidgets
service. A remote I/O infrastructure is responsible for
accepting raw input events from users. This I/O
infrastructure can serve multiple displays, or even places,
and its function is mainly to provide an initial abstraction
over several sensor data such as SMS, Bluetooth naming,
OBEX, etc. These input events are then used by the
PuReWidgets service, which routes them to the
application/widget that was addressed by the user. This
service acts as an input event queue, storing the widget input
until the application is ready to receive them, allowing
applications to receive widget events even if they were
generated when the application was not executing at the
public display. When the PuReWidgets library asks for input,
the service replies with the stored input. The library (running
within the application) then forwards the input to the correct
widget instance so that it can trigger the high-level
application event. This requires a distributed architecture in
which some widget information is kept by remote services,
effectively decoupling widgets from applications.
PuReWidgets provides two application models depicted in
Figure 1, and described next.
PuReWidgets Library
The library provides high-level interaction abstractions to
applications (widgets), and it is actually composed of two
separate libraries: one for server-side code, and one for
client-side code. This allows programmers to develop

different types of applications, depending on the particular
needs. The server-side library (Figure 1, top) allows
developers to create applications than run mainly on the web
server (i.e., their main logic resides on the server). These
applications can run independently of the public display
scheduling, e.g., they react immediately to user input,
updating their internal state or calling external services, that
may affect the content that it will display next, even if the
application is not currently showing content on the display.
The client-side library (Figure 1, bottom) allows developers
to create applications that are more tightly coupled with the
public display in the sense that their main, or even only,
content output is on the display itself. These applications
may not need to react immediately to interactions if they are
not currently showing content on the public display so the
widget life cycle, in this case, is coupled to the scheduling of
the application in the public display. For these cases, it
makes more sense for the main application logic to reside in
the client code that is transferred to the public display so that
it can create and control the necessary widgets. The
PuReWidgets toolkit support this development mode by
providing a client-side library (even though the code is still
transferred from the application server in the form of
Javascript, HTML, and CSS).
Control types
Widgets are provided in the form of an object-oriented
library in which each widget has a type that defines the type
of high-level data that it exposes to the application.
Programmers can choose which widgets to use, according to
the application’s data needs (in some case there may be
alternative widgets for the same data need), by instantiating

the respective widget class and registering a callback to
receive the high-level events generated by the widget
instance. The toolkit also allows programmers to extend the
existing widgets and provide new ones, more suited to some
specific interactive features needed by a particular
application. We have based our toolkit’s controls on the
analysis of different types of high-level information
generated by interaction with public displays [2], and
categorized them in five categories: imperative/selection,
entry, download, upload, and check-in controls.
Imperative/Selection controls
Imperative/selection controls allow users to trigger actions or
select options in the public display application. From the
abstraction point of view, an imperative control can be
viewed as a selection control with just one option. The high-
level event generated by these controls just needs to identify
the option that the user selected. Many concrete widgets such
as different types of buttons, list boxes, and check boxes, are
of this type. Currently, PuReWidgets provides a button and a
listbox widget.
Entry controls
Entry controls allow users to input simple data such as free
text or bounded values. These controls generate high-level
events that contain the input data. In this category we can
include widgets such as textboxes, but also bounded data
widgets such as number boxes. We have currently
implemented a textbox widget that accepts unbounded text.
Upload controls
An upload control allows users to submit media files to the
public display application. The high-level event generated by
these controls includes an URL to the uploaded file so that
the application can then process it. Concrete widgets can be
specialized in particular media types, providing high-level
events only is the media type of the uploaded file matches
the required one.
Download controls
Download controls allow the application to provide files that
users can download to their personal devices, or forward to
their email, etc. This type of control generates a high-level
event that simply signals that a user wants to download the
item. The process of actually sending the file to the user is
handled transparently by the toolkit. When instantiating the
widget, applications are required to specify the location (an
URL) of the associated media file.
Check-in controls
Check-in controls allow users to signal the application that
they are present. In this case, the high-level event is just the
identification of the user that has just checked-in.
Decoupled widgets
Decoupled widgets are widgets that do not depend on the
application that created it for graphical representation or
interaction. A decoupled widget allows the public display
system to provide alternative graphical representations and
interaction points to a widget created by an application.
PuReWidgets provides automatic generation of desktop,
mobile, and QR code interfaces for all widgets. The desktop

Figure 1: Application models for the PuReWidgets toolkit.

and mobile interfaces are web-based and provide a rich
graphical interface to an application’s widgets (the interfaces
are kept in synchronization with the widgets created by the
application). The QR code generation can be used by place-
owners who wish to draw attention to specific interactive
features by printing the codes and distributing them locally.
The codes can also be explicitly used by applications that
wish to provide an alternative QR code based graphical
interface on the public display itself.
This decoupling is accomplished by using a PuReWidgets
service that stores metadata and input information about the
instantiated widgets and exposes this information to system
applications. All this is done transparently to the application
and to the application developer. Whenever a widget is
instantiated or updated by an application, the PuReWidgets
toolkit sends the widget description data to the PuReWidgets
service. The data that is sent to the server includes the widget
unique id within the application, the type of control
(imperative, entry, upload, download, check-in), a short and
long textual description of the widget (used to give
contextual information to the user), and a list of possible
widget options (for widgets with several options). A widget
option is composed of an option id, and short and long
descriptions.
Public display applications are still responsible for creating
and destroying widgets, during the course of their lifetime,
allowing applications to behave much like desktop
applications, which are responsible for graphically laying out
their widgets and rendering them on the display, but it also
allows the display infrastructure to keep track of the widgets
that each application is using and providing alternative
interaction points. It should be noted, however, that this does
not preclude application developers from creating a custom
web or mobile interface to their applications. Both can even
be integrated in the display system, which can provide users
with the custom application web or mobile interface, but fall
back to the dynamically generated one if the former does not
exist.
Addressing an input routing
PuReWidgets takes advantage of an I/O infrastructure that
provides input data acquisition and basic level parsing to
third-party components. This infrastructure manages a
variety of sensors and input mechanisms and pre-processes
the data input coming from these sensors. The I/O
infrastructure works on two levels. On the lower level, the
infrastructure is able to parse the raw input data and structure
it into abstract “commands”, using a pre-defined command
syntax. As an example, the SMS, email or even Bluetooth

modules can be used to send keywords to a public display,
which the I/O structures into a “keyword” command, with a
parameter consisting of the actual keywords. A client of the
I/O service is able to request a list of “keyword” commands
issued and respective parameters (along with other metadata,
such as timestamp, input mechanism id, etc.). The I/O
infrastructure is also able to extract and store media files
received via OBEX or through other mechanisms, and
provide them on request to clients. On a higher level, the I/O
infrastructure is able to associate individual input data with
user identities. This optional service allows users to register
and associate several personal input mechanisms (phone
number, Bluetooth MAC address, etc.), which the
infrastructure uses to identify which user is interacting.
Depending on the available level, the PuReWidgets service
is able to get a user id and associated nickname, or at least an
input mechanism id (such as an anonymised phone number
or Bluetooth MAC address) that allows it to differentiate
among users.
PuReWidgets relies on this I/O service to support several
low-level input mechanisms such as SMS, Bluetooth
naming, etc. We use an I/O service developed for another
project [10], but other I/O middleware such as the one by
Paek et al. [16] could have been used. For these interactions,
our approach to addressing is based on a simple referencing
scheme that relies on unique textual reference codes that are
generated for each widget instance and that become the
address of the widget. These reference codes are small (3 or
4 alphanumeric characters), and are generated automatically
by the PuReWidgets service. Widgets can have several
distinct reference codes to allow addressing options within a
single widget. These reference codes can be used explicitly
by users on an SMS, Bluetooth naming, email, and other
text-based mechanisms.
In some cases, routing behaves a little differently. For
example, the check-in widget is naturally global to the place:
users check-in to a place, not a specific application. In these
cases, routing must also be global in the sense that all
widgets of that particular type, regardless of in what
application they were instantiated, will receive the input.
This kind of routing is applied on an input mechanism basis
or using place generated reference codes. For example, all
input from a magnetic card reader may be interpreted as
global data that should be sent to all check-in widgets. In
these cases, routing the input data is a matter of associating
the input with all applications that are currently using these
types of controls.
When using the rich graphical interfaces or the QR codes for
interactions, routing is more simple: the generated interfaces
use the widget id and communicate directly with the
PuReWidgets service to create input events directly
associated with a widget instance from a particular
application.
The input sequence from the time the user issues the input to
the instant the application receives the input event is
illustrated in Figure 2.

Figure 2: Sequence diagram of user sending input.

Graphical input feedback to users’ actions
An important aspect of desktop widgets is the system-level
feedback they provide and that helps users understand the
response of the system, independently of how the application
will react.
For public displays, feedback can also be used as a way to
convey a sense of awareness about other users’ actions.
Displaying input feedback on the public display effectively
helps creating a shared interaction environment independent
of the application itself. This is an important aspect for
creating more engaging public displays [1]. However, public
display interaction also imposes practical considerations that
may require other solutions for input feedback. In some
cases, providing feedback through the main display itself
may not be the best solution, in part because the available
screen real-estate may dictate other priorities, but also
because there are other feedback channels that can be more
efficient considering the multi-user and multi-modality
nature of the interaction.
Our approach is to provide a base mechanism for presenting
feedback on the public display: the graphical representation
of a widget includes the associated graphical input feedback.
This is similar to what happens for the desktop, with the
difference that, given the multi-user scenario, feedback
information must be much more explicit for public displays,
providing an indication of which user is responsible for the
input. The feedback mechanism ensures that in a shared
interaction environment, users are able to identify the
feedback to their own input. Also, feedback can be
decoupled from the graphical representation of the widget:
programmers can choose to display feedback for a particular
widget, even if the widget itself is not displayed on the
public display.
Implementation
PuReWidgets was implemented using Google’s App Engine
platform (http://code.google.com/appengine) and Google’s
Web Toolkit (http://code.google.com/webtoolkit). The
library is provided as a GWT module that developers can
include in their GWT projects and the service is
implemented as an App Engine application that exposes a
REST API to the library. The graphical components of the
widgets take advantage of the standard GWT widgets.
Current set of interaction mechanisms
PuReWidgets is designed in a way that allows the user of
multiple interaction mechanisms. Currently, PuReWidgets
supports the following interaction mechanisms: SMS, email,
Bluetooth naming, Bluetooth OBEX, QR codes, mobile
application, and desktop web application.
Using the toolkit
To show how PuReWidgets can be used to create a display
application, we now describe a simple Hello World public
display application. Using Google’s GWT platform and
PuReWidgets, the main application class would simply be
the one in Listing 1. The code is very similar to what we
would need if we were developing a desktop application.

The main differences are in line 4, which initializes some
background data structures and processes to communicate
with the PuReWidgets service. Line 5, which creates a
button with an application defined-named ‘helloButton’.
This name is needed so that the PuReWidgets service is able
to distinguish widgets and to make sure that, if a widget was
already created, it is not recreated. Lines 7 and 8 are needed
to provide some application-specific context information in
case the widgets are used in other platforms (see Figure 3-c
for the mobile interface). Figure 3 shows the output of the
Hello World application: a) the regular output; b) the
reaction to a user input from the mobile interface; and c) the
automatically generated interface for a mobile device. The
popup on top of the button is the input feedback provided by
PuReWidgets (which can be disabled by applications).
EVALUATION
Evaluating a programming toolkit like PuReWidgets is
challenging, mainly because interactive public display
applications are a new thing, and there are no programming
communities for this platform. Given the current state of this
field, our best approach to begin evaluating the toolkit was to
develop some applications that could be deployed as real
public display applications, and try to assess, through hands-
on experience, whether the main requirements are met. We
have implemented two interactive public display
applications: a public video player, and voting application.
Public video player application
The public video player is an application that searches for,
and plays youtube videos. Search is based on tags taken from
a tag cloud that is built using tags defined by the place
owner, suggested by users, and extracted from videos that
users liked. The application is composed of three screens
(Figure 4) which iterate over time: (left) a screen for playing
the current video in full screen, (center) a screen that shows
the recent activity (played videos, liked videos, and

 1 public class HelloWorld implements EntryPoint {
 2 @Override
 3 public void onModuleLoad() {
 4 PublicDisplayApplication.load(this, "HelloWorld", true);
 5 GuiButton guiButton = new GuiButton("helloButton",
 6 "Hello World");
 7 guiButton.setShortDescription("Say hello!");
 8 guiButton.setLongDescription("Say hello to be greeted
 9 by the HelloWorld application");
10 guiButton.addActionListener(new ActionListener() {
11 @Override
12 public void onAction(ActionEvent<?> e) {
13 PopupPanel popup = new PopupPanel();
14 popup.add(new Label("Hello " +
15 e.getPersona() + "!"));
16 popup.show();
17 }
18 });
19 RootPanel.get(“main”).add(guiButton);
20 }
21 }

Listing 1: Hello World application main class.

a) Application output b) Reacting to input	
 c) Mobile interface

Figure 3: Hello World application.

suggested tags), and (right) a screen which shows alternative
videos to play next along with a video play queue; the last
two screens also display the current tag cloud. The
application’s interactive features are: 1) allow users to
suggest tags. This was implemented using a custom tag
cloud widget that incorporates a textbox widget. The tag
cloud widget accepts keywords and automatically creates a
tag visualisation. 2) Allow users to “like” videos. This
feature was implemented with an action button that is
displayed on the activity screen and allows users to “like” a
specific video. 3) Allow users to download a reference to a
recently played video. This feature was implemented with a
download widget by providing a link to the corresponding
youtube page. 4) Allow users to select a video to play from
the list of search results. Action buttons are displayed to
allow this. Selected videos are put in a play queue.
Voting application
The voting application is composed of two screens, depicted
in Figure 5: (left) an open polls screen which iterates through
the open polls, showing their description and options, and
(right) a closed polls screen which iterates through the closed
polls and shows their voting results. Polls are created by the
place owner in a backoffice interface. The application offers
the following interactive features to users: 1) Vote on a
specific poll. The options of a poll are presented using a poll
widget, which was built on top of a listbox widget but
additionally shows a graphical representation of the votes
when someone interacts. 2) Suggest a poll. A textbox widget
is displayed briefly after someone interacts and on the closed
polls screen, to signal that users can also suggest questions
for polls.
Analysis
Developing these two applications enabled us to observe
some important properties of PuReWidgets. The transparent
support for multiple mechanisms, for example, enabled the
place owner to create QR codes for some of the long running
polls and to place them in wall posters or flyers drawing

more attention to those polls. This was done transparently to
the application; while developing it we paid no specific
attention to this possible use.
The identification of users/interaction mechanisms was also
an important aspect of the interaction abstraction. Without it
the poll application would not be possible. In this
application, we used this identification to determine if a user
had already voted on a specific poll, thus allowing a more
correct voting count (there is still the problem of a single
user voting using different input mechanisms, in which case
multiple votes will be counted). This feature was also used in
the youtube application, allowing us to create a play queue
when multiple users selected a video to play next.
Support for asynchronous interaction was also an important
feature, specifically for the voting application. This
application is only shown on the display for a brief period at
a time, but because the toolkit supports asynchronous
interaction, users can still be aware of this application
through the printed QR codes, for example, and vote on the
existing polls.
While developing the youtube application we also
demonstrated the flexibility of the widget classes, namely the
possibility of creating new widgets by composing existing
ones. We composed the tag cloud widget by incorporating
the existing textbox widget into a new widget that
automatically keeps a list of tags and tag frequencies and
displays a tag cloud visualization. From the point of view of
the application, this is a widget just like any other.
CONCLUSION
We have created a toolkit for developing interactive public
display applications, which handles much of the work a
developer would have to deal with to develop even the
simplest interactive public display application. PuReWidgets
provides high-level interaction abstractions that suit the kind
of interaction one normally does with public display
applications and transparently supports various interaction
mechanisms. The toolkit provides a widget addressing and
an input routing mechanism, supports concurrent,
asynchronous interaction and provides decoupled graphical
affordances that can be used directly on the public display, or
on alternative platforms. This toolkit fills a clear gap in the
area of interactive public displays. Having a foundational
tool like PuReWidgets allows designers and programmers to
focus on the real creative work of designing interesting
applications and user experiences.

 Figure 4: Public video player and voting applications.

Figure 5: Voting application.

ACKNOWLEDGMENTS
Jorge Cardoso has been supported by “Fundação para a Ciência e
Tecnologia” (FCT) and “Programa Operacional Ciência e Inovação
2010” co-funded by the Portuguese Government and European
Union by FEDER Program and by FCT training grant
SFRH/BD/47354/2008. This research has also received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 244011 (PD-Net).

REFERENCES
1. Brignull, H., & Rogers, Y. (2003). Enticing People to Interact

with Large Public Displays in Public Spaces. In M. Rauterberg,
M. Menozzi, & J. Wesson (Eds.), INTERACT’03 (pp. 17-24).
IOS Press.

2. Cardoso, J. C. S., & Jose, R. (2009). A Framework for Context-
Aware Adaptation in Public Displays. In R. Meersman, P.
Herrero, & T. Dillon (Eds.), On the Move to Meaningful
Internet Systems: OTM 2009 Workshops (Vol. 5872/2009, pp.
118-127). Vilamoura, Portugal: Springer Berlin / Heidelberg.
doi:10.1007/978-3-642-05290-3_21

3. Cooper, A., Reimann, R., & Cronin, D. (2007). About face 3:
the essentials of interaction design. New York, NY, USA: John
Wiley & Sons, Inc.

4. Dearman, D., & Truong, K. N. (2009). BlueTone. Proceedings
of the 11th international conference on Ubiquitous computing -
Ubicomp ‘09 (p. 97). New York, NY, USA: ACM Press.

5. Dix, A., & Sas, C. (2008). Public displays and private devices:
A design space analysis. Workshop on Designing and
evaluating mobile phone-based interaction with public displays.
CHI2008. Florence.

6. Dragicevic, P., & Fekete, J.-D. (2001). Input Device Selection
and Interaction Configuration with ICON. In P. G. A. Blanford,
J. Vanderdonkt (Ed.), People and Computers XV Interaction
without Frontiers: Joint proceedings of IHM 2001 and HCI
2001 (IHM-HCI ‘01) (pp. 543-558). Springer Verlag.

7. Erbad, A., Blackstock, M., Friday, A., Lea, R., & Al-Muhtadi,
J. (2008). MAGIC Broker: A Middleware Toolkit for
Interactive Public Displays. 2008 Sixth Annual IEEE
International Conference on Pervasive Computing and
Communications (PerCom) (pp. 509-514). IEEE.

8. Grasso, A., Muehlenbrock, M., Roulland, F., & Snowdon, D.
(2003). Supporting communities of practice with large screen
displays. In K. O’Hara, E. Perry, E. Churchill, & D. M. Russel
(Eds.), Public and Situated Displays - Social and Interactional
Aspects of Shared Display Technologies (pp. 261-282).
Kluwer.

9. Huang, E.M., Mynatt, E.D., and Trimble, J.P. When design just
isn’t enough: the unanticipated challenges of the real world for
large collaborative displays. Personal Ubiquitous Comput. 11, 7
(2007), 537-547.

10. José, R., Otero, N., Izadi, S., & Harper, R. (2008). Instant
Places: Using Bluetooth for Situated Interaction in Public
Displays. IEEE Pervasive Computing, 7(4), 52-57.

11. LocaModa. (2010). LocaModa App Store. Retrieved March
2011, from http://locamoda.com/apps/

12. McCormack, J., & Asente, P. (1988). An overview of the X
toolkit. Proceedings of the 1st annual ACM SIGGRAPH
symposium on User Interface Software - UIST ‘88 (pp. 46-55).
NY, NY, USA: ACM Press.

13. McDonald, D. W., McCarthy, J. F., Soroczak, S., Nguyen, D.
H., & Rashid, A. M. (2008). Proactive displays. ACM
Transactions on Computer-Human Interaction, 14(4), 1-31.
New York, NY, USA: ACM.

14. Müller, J., Alt, F., Michelis, D., & Schmidt, A. (2010).
Requirements and design space for interactive public displays.
Proceedings of the international conference on Multimedia –
MM’10 (pp. 1285-1294). New York, NY, USA: ACM Press.

15. Norman, D. A. (2002). The Design of Everyday Things. Basic
Books.

16. Paek, T., Agrawala, M., Basu, S., Drucker, S., Kristjansson, T.,
Logan, R., Toyama, K., et al. (2004). Toward universal mobile
interaction for shared displays. Proceedings of the 2004 ACM
conference on Computer supported cooperative work (pp. 266-
269). New York, NY, USA: ACM.

17. Rohs, M. (2005). Visual Code Widgets for Marker-Based
Interaction. 25th IEEE International Conference on Distributed
Computing Systems Workshops (pp. 506-513). Washington,
DC, USA: IEEE.

18. Sawhney, N., Wheeler, S., & Schmandt, C. (2001). Aware
Community Portals: Shared Information Appliances for
Transitional Spaces. Personal and Ubiquitous Computing, 5(1),
66-70. London, UK: Springer-Verlag.

19. Scheible, J., & Ojala, T. (2005). MobiLenin combining a multi-
track music video, personal mobile phones and a public display
into multi-user interactive entertainment. Proceedings of the
13th annual ACM international conference on Multimedia (p.
199). New York, NY, USA: ACM Press.

20. Shneiderman, B., & Plaisant, C. (2005). Designing the User
Interface: Strategies for Effective Human-Computer Interaction
(4th ed.). Addison Wesley.

21. Storz, O., Friday, A., & Davies, N. (2006). Supporting content
scheduling on situated public displays. Computers & Graphics,
30(5), 681-691.

22. Terrenghi, L., Quigley, A., & Dix, A. (2009). A taxonomy for
and analysis of multi-person-display ecosystems. Personal and
Ubiquitous Computing, 13(8), 583-598.

23. Vogel, D., & Balakrishnan, R. (2004). Interactive public
ambient displays. Proceedings of the 17th annual ACM
symposium on User interface software and technology - UIST
‘04 (p. 137). New York, NY, USA: ACM Press.

24. Vogl, S. (2002). Coordination of Users and Services via Wall
Interfaces. (PhD Thesis). University of Linz, Linz, Austria.

