Glycerol has been shown to cross Saccharomyces cerevisiae plasma membrane through (1) a H+exporter detected in cells grown on non-fermentable carbon sources, (2) the uncharacterized expressed Fps1p channel, and (3) by passive diffusion. Fps1p channel has been named a facilitator, for mediating glycerol low affinity transport of the facilitated diffusion type. The present experimental evidence that this kinetic is an artefact caused by glycerol kinase activity. Instead, the channel is shown to mediate the major part of glycerol passive diffusion. This is not incompatible with Fps1p major role in vivo, which has been previously shown to be the control of glycerol export under osmotic stress or in reaction to target changes. Furthermore, YEpD and Gluc containing strains were equally affected by exogenously added ethanol, being the control passive diffusion sustained. For the first time, to our knowledge, a phenotype attributed to the functionality of Fps1p gene is presented. Glycerol passive diffusion is thus apparently channel mediated. It is discussed according to physiological considerations, which contains the widely spread concept of glycerol (or triose phosphate) asos. Comparing the multiple roles that glycerol metabolism from glycerol, most probably as a central key to metabolism control and how tight as pathway regulation appears to be, it is consistent that glycerol and its fluxes are also closely controlled by the cell.