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Abstract
This paper presents a spectral normalisation based

method for extraction of speech robust features in additive 
noise. The method has two main goals: 

1) The “peaked” spectral zones, where the most speech 
energy is concentrated must be preserved (from clean to 
noisy speech features) as much as possible by the feature 
extraction process. Usually, these spectral regions are the 
most reliable due to the higher speech energy, and the 
frequently assumption of independence between speech 
and noise. 

2) The speech regions with less energy need more 
robustness, since in these regions the noise is more 
dominant, thus the speech is more corrupted. Usually these 
speech regions correspond to unvoiced speech where are 
included nearly half of the consonants. The proposed 
normalisation will be optimal if the corrupted and the noise 
process have both white noise characteristics. Optimal 
normalisation means that the corrupting noise does not 
change at all the means of the observed vectors of the 
corrupted process.

For Signal to Noise Ratio greater than 5 dB the results 
show that for stationary white noise, the proposed
normalisation process where the noise characteristics are 
ignored, outperforms the conventional Markov models 
composition where the noise must be known. Additionally,
if the noise is known, a reasonable approximation of the 
inverted system can easily be obtained by performing noise 
compensation and still increasing the recogniser
performance.

1. Introduction

Noise robustness can be accomplished either at the feature 
representation level using robust parameterisation or at the 
model compensation level. Generally, in the feature analysis
process, only a lightly knowledge about the noise
characteristics is needed. Some approaches consider that the 
corrupting noise is by nature unknown, thus it is meaningless 
compensate for it. Therefore, the search for a robust speech 
representation that diminishes the distortions caused by the 
environment seems to be the most promising solution to deal 
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 noise conditions. Noise pre-filtering [1] [2], projection 
d distortion measures [3], vector space mapping [4] [5], all 
 modelling of the autocorrelation sequence [6] [7] [8] [9] 
, speech representation motivated by the human auditory 
em knowledge (Perceptually Linear Prediction analysis
P)) [11] [12], and more recently, complementing the PLP 
nique with a band-pass filter (RASTA-PLP) [13], have
 the more successful techniques used for robust speech
esentation. However, in spite of the effort dedicated last 
s in the field of the robust parameterisation, conceiving
ems with acceptable performance in environments for
ch they were not trained, has been far too difficult. 
rom a theoretical point of view, the spectral regions with 
ll energy would need more noise robustness, given that for 
same noise level they are more corrupted. The spectral 

ons of small energies usually correspond to unvoiced
ds regions, which are spectrally not very well defined.
ghly speaking nearly half of the consonants can be
sified as unvoiced, while the other half and the vowels are 
erally classified as voiced. Generally the importance of the 
els in classification and representation of written text is
 low; however, most practical automatic speech
gnition systems rely heavily on vowel recognition to
eve high performance. Consequently, the spectral regions
ch contains higher speech energy seems to be usually more 
ortant in speech recognition under difficult conditions once 
 are generally less corrupted. On the other hand, the
tral regions with small energy are more corrupted, thus
 need a larger degree of robustness. This approach was
wed in the development of the spectral normalisation

hod suggested in this paper.

2. Spectral Normalisation

is spectral normalisation is motivated by the fact that the 
itive noise is not a narrow band noise, thus its spectrum is 
onably dispersed in frequency. The goal is preserving as
h as possible the speech features against noise. The
ess consists in a division of the frequency band in sub-

ds given that usually a very fine detail in frequency is not 
ired for speech recognition applications. The method is
d on the power spectral density components and consists 



in dividing the speech power inside each sub-band by the total
short-time speech power. The power in each sub-band is
obtained summing the components of the power spectral
components inside the sub-band. All the sub-bands have the 
same number of spectral components and any spectral
component is shared by different sub-bands, thus avoiding
increases of statistical dependence between sub-bands (feature 
components). The background noise contributes
simultaneously to increase the sub-band and total power,
which contributes for stabilising the feature values.

To best understand this reasoning, consider Si denoting the 
speech power in sub-band i and S denoting the short time 
speech signal power of the considered segment. Similarly, let 
Ni and N denote the power of the noise in sub-band i and the 
short time noise power, respectively. So, the ith component of 
the observation vector for clean and noisy speech are given 
respectively by
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Figure 1 shows the clean speech and noisy speech spectral 
power normalisation features for 240 ms of the word “zero” 
where each sub-band has 16 power spectral components. The 
SNR is 0 dB. 

If the noise has white noise characteristics the environment 
will shift the clean speech vector by a noise dependent vector 
Ci(N), which can be calculated by subtracting equations (1)
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 If the noise is stationary then its short time power equals its 
long time power. Note that this is not true for the speech due 
to its non-stationary property, but as an approximation we will 
consider that the short time speech signal power equals the 
long time speech signal power. Under this constraint, S and N
can be related by the signal to noise ratio (SNR). Therefore the 
next expression holds
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Figure 1. White noise effect in the power
spectrum density normalization domain in the 
beginning of digit “zero”. Dashed line
represents noisy speech features.

Sub-band
et l, the number of components in each sub-band and L the 
 length. Then N and Ni, considering flat noise spectrum, 
related by the quotient l/L. Using these considerations, the 
ulation of the shift vector imposed by the environment is 
mplished by subtracting equations (1) and becomes [14]
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quation (4) shows that if the speech has a flat power 
trum density, the means of Ci(N) become null as Si/S

als l/L. Thus, this normalisation process becomes optimal 
e sense that the environment does not affect the means of 
speech features. This means that this normalisation

edure provides some noise robustness to unvoiced speech 
ents, where neither the speech nor the noise are spectrally

 defined.
igure 2 shows the relative deviation caused by the
ironment (additive white noise at 0 dB) in the suggested 
er spectrum normalisation domain and in the power
trum density domain. The relative deviation was
puted as 
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re Zi is the ith component of the observation vector for 
y speech and Xi has the same meaning but for clean 
ch. It is evident by comparing figure 1 and figure 2 that 
“peaked” spectral regions of the clean speech are more 
st against additive white noise than the rest of the band. 
itionally the proposed normalisation shows more
stness (less deviation in the features) for all the

uency sub-bands.

Markov models composition in the 
pectral normalisation domain

he basic idea of the HMM composition is to recognise 
current signals simultaneously. Parallel HMMs are used to 

Figure 2. Relative deviation caused by additive
white noise at 0 dB at the beginning of digit “zero” 
when working in the power spectral density
domain (normal line) and in the power spectral 
density normalisation domain (dashed line). 
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model the concurrent signals while the composite signal is
modelled as a function of their combined outputs. To perform
Markov models composition one has to know the composite 
signal distribution and the statistical model of the corrupting 
environment.
1) Distribution of the composite signal (noisy speech): Usually 
the corrupting Gaussian additive white noise process is
considered in the time domain. As the Fourier Transform is a 
linear operation then the distribution is maintained from time 
to  frequency domain.  It is well known from the statistics 
theory that if a random variable has a Gaussian distribution 
then the square of its modulus (power spectral density) has a 
chi-square distribution with two degrees of freedom, also
known by exponential distribution. As the speech and noise 
are considered additive in the time domain, the additivity is 
maintained in the power spectrum density (PSD) domain. The 
clean speech is modelled as Gaussian in the PSD domain and 
the distribution of the noisy speech becomes the convolution 
between a Gaussian and an exponential function. Reference 
[14] shows that the noisy speech distribution fz(z) is 
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where the y vector refers to the clean speech signal, λ is the 
parameter of the exponential distribution and erf stands for the 
well known error function.

To reduce the observed vector dimensionality when
working in the spectral density space, it is commun grouping 
by sum some contiguous components. The number of
components considered must be a compromise between the 
training database size and the required frequency resolution. 
In our case we used 16 components in each sub-band.
Therefore equation (5) holds for the noisy speech distribution, 
and it would be still necessary to develop the distribution of 
the sum of 16 random variables each one with the distribution 
given by this equation. As equation (5) is complex to handle
by convolution, an easier solution is to develop the probability 
density function of the sum of 16 exponential distributed
random variables (noise in sub-bands) and perform the
convolution of this function with a Gaussian function which 
models the sum of 16 spectral components of the clean
speech. By mathematical induction it is easy to prove [14] that 
the distribution of the sum of 16 random independents and 
identically distributed variables is
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The integral of convolution between the above equation and 
a Gaussian function becomes very difficult to calculate due to 
the w15 term. Using the Central Limit Theorem, equation (6) 
can be approximated by a Gaussian function with mean equal 
to 16λ and variance equal to 16λ2.

The natur e of the Central Limit theorem approximation and 
the required number of variables for a specified error bound, 
depend on the form of the densities of the summed random 
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ables. For most applications a number of 30 random 
ables is adequate, however, for smooth distributions a
ber as low as 5 can be used. In our case we have 16 
om variables and no smooth distributions, so a

siderable difference between the real and approximated
tion can be expected. This difference is shown in figure 4 
λ=10. However, in real situations λ is greater, (order of 107

0dB), the variance is in order of the square of λ and the 
ssian function fits better to the function defined by
ation (6) than is expected by the inspection of figure 4.

nder this approximation the noisy speech distribution
mes
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Noisy speech distribution in the spectral normalisation
e: As shown above, the noise can be approximately
ssian modelled in the sub-band PSD domain and so, the 
y speech has also a Gaussian distribution. Similarly, we 
consider that if the clean speech spectral normalisation can 
Gaussian modelled then the noisy speech spectral
alisation also follows a Gaussian distribution. So Ci(N)

a Gaussian distribution given the distribution of the speech 
ures is Gaussian and all the other terms involved in the 
ation (2) are considered constants for white noise. The 
wledge of the Ci(N) statistics is then reduced to the
wledge of its mean and variance. Using equation (4) the 
t expression holds for the mean
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re k is given in equation (4).
he variance of the corrupted process can be similarly 
ulated, considering white noise and that each sub-band is 
posed by summing 16 power spectral density components
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Figure 4. Approximation of the sum of 16
random i. i. d. variables with λ=10, by a
Gaussian.



Updating the clean speech HMM distributions according to 
equations (8) and (9), that is, performing Markov model
composition for stationary white noise in the spectral
normalisation domain, the recognition accuracy was increased 
as shown in table 1.

4. Experimental Results

The proposed algorithm was tested in an Isolated Word
Recognition system using Continuous Density Hidden Markov 
models. The database of isolated words used for training and 
testing is from AT&T Bell. The used speech was acquired
under controlled environmental conditions band-pass filtered
from 100 to 3200 Hz, sampled at a 6.67 kHz and analysed in 
segments of 45 ms duration at a frame rate of 66.67
windows/sec. Only the decimal digits were used. The noise 
has white noise characteristics, is speech independent and
computationally generated at various SNR as shown in table 1. 
The goal is to compare the performance of the proposed and 
contemporary speech robust features. Some of these robust 
features are the OSALPC (One-Sided Autocorrelation Linear 
Predictive Coding), the conventional cepstrum with liftering
(CEPS + liftering) and the well known MFCC (Mel-
Frequency Cepstral Coefficients). In table 1, MMC stands for 
conventional Markov model composition in the power
spectrum density domain, Norm. stands for the proposed
normalisation procedure and N. + MMC stands for Markov 
model composition in the proposed power normalisation
domain. Table 1 shows that the suggested spectral
normalisation features are more effective against additive
white noise than some robust features used nowadays.  For 
SNR greater than or equal to 5 dB the spectral normalisation 
outperforms the conventional Markov model composition
(MMC) when the noise parameters are learned from the
periodogram method in a data segment of 100ms without 
speech. As in the Parallel Model Combination, the distortion 
can be integrated (compensated) in the composite model
increasing thus the recogniser performance. On the first six 
entries of the table 1, all the features are 8 static, energy and 
dynamic features excepting * (12 static + energy + dynamics) 
and ** (13 static + energy + dynamics).

Table 1 – Performance of the spectral normalisation
SNR (dB) 15 10 5 0 -5
LP 56.5 39.5 30 16.25
OSALPC 98.25 92 65.75 32.25
CEPS * 97.5 95 72 34.5
+liftering 98.25 95 75.25 39
MFCC ** 97.75 94.75 72.25 37.5
OSALPC* 98.5 96.25 74.25 32.5
MMC 98 96.75 92.5 91 78.5
Norm. 98.5 97.75 93.75 88 42.5
N.+ MMC 99.5 98.75 97.25 92.25 84.75

5. Discussion

The main advantage of this normalisation process is the 
recognition performance obtained when no knowledge of the 
noise statistics exists. As a robust extraction features, the
suggested method seems to be superior to the most used
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adays. Additionally, for white noise and at SNR greater 
 or equal to 5 dB it presents better performance than a 
dard noise compensation technique. In fact for high Signal 
oise Ratios the spectral normalisation where the distortion 
nored outperforms the Markov model composition where 

distortion is learned from a small amount of isolated noise 
ples and incorporated into the system. If isolated noise 
ples exist, the noise can be estimated and this knowledge 

be incorporated into the system, and consequently
easing the recogniser performance. 
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