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Chapter 1

Introduction

The aim of this thesis is to investigate how behavior-based robots can be mod-
eled by non-linear dynamical systems. Taking the example of navigation as a case
study, dynamic control architectures are developed and implemented on low-level
vehicles. These architectures combine a number of behaviors and lead to flexible
and smooth overt behavior which is stably coupled in closed loop with sensory infor-
mation. Moreover, these architectures also comprise dynamical representations of
information which enable the vehicles to exhibit cognitive behaviors such as decision
making, memory, forgetting and robustness against noisy sensory information. The
design of the individual behaviors, of the representations of particular types of infor-
mation, as well as of their coupling is based on the qualitative theory of dynamical
systems and dynamic field theory. These provide a general theoretical language in
which autonomous robot architectures can be built.

1.1 Autonomous robotics

A robot is frequently viewed as an artificial worker that executes tasks traditionally
performed by humans based on detailed action plans. In modern industrial robots
these action plans take the form of digital computer programs. Control and sensing
is used primarily to assure the precise execution of these plans. The programming of
a robot is done by the engineer and/or the operator through various programming
interfaces, including, in their most advanced form, highly interactive interfaces.

From the very beginning of robotics, the idea of autonomous robots has fasci-
nated researchers. An autonomous robot would essentially program itself, that is,
develop adequate action plans based on sensory information acquired by the robot
itself. Autonomous robots would come close to a machine version of intelligently
acting human operators. In particular, operation in non-engineered or natural en-
vironments as required in many maintenance, construction, repair, or supervision
tasks, necessitates some degree of autonomy of the robot. Because of the elevated
anticipated cost of such “intelligent” agents, their use has been initially projected
to be primarily in areas where human operation is either extremely expensive or

1
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dangerous such as in underwater, outer space, or radioactive environments. It is,
however quite thinkable, that such robots, once viable, would find a large field of
applications right down to the classical “household” robot that has been the topic
of so many amusing science fiction fantasies and science fact.

For researchers the challenge has been to enable a machine to emulate the be-
havioral, perceptual, and cognitive skills of humans and animals, and to investigate
how an artifact can successfully interact, in real time, with an uncertain, dynamic
environment.

The classical approach to the problem of autonomous robotics has been devel-
oped since the fifties in close alliance with the discipline of artificial intelligence
(McCarthy, Minsky, Rochester and Shannon, 1955; Nilson, 1969). The
basic idea is that an intelligent robot requires an abstract model of the environ-
ment where it is supposed to operate. In this approach a robot is structured along
the stream of information through the system, from sensing and sensory processing,
through a central representation of the world (often symbolic in nature) that is to be
derived from the processed sensory data, to a planning stage, which is read out to a
layer of controllers that bring about the actual execution of the action plan. In these
systems behavioral responses emerge from the interplay of the planner with given
goals, and the particular world model that has been constructed from the sensory
data. The main strength of this approach is the high degree to which it has been
formalized theoretically. Its main drawback remains the frustratingly limited prac-
tical success of robots based on this idea when the goal is to behave autonomously
in dynamic, non-engineered environments. The problem of deriving a general pur-
pose representation of the world as well as of devising action plans within such a
representation have turned out to be exceedingly difficult to solve. For example, it
turned out that an accurate metric or symbolic model of the environment is very
hard to obtain from noisy sensor data. In addition, building such representations is
extremely time consuming.

1.2 Behavior-based robotics

Since the mid-eighties, an initially radical alternative has been proposed that has
since gradually become one of the main stream views. This approach has become
known as behavior-based robotics 1 (review e.g., Brooks, 1991; Mataric, 1992;
Brooks, 1997; Mataric, 1998; Arkin, 1998). Brooks proposed that autonomous
robot architectures should be organized in a manner that is essentially orthogonal to
the classical architecture: Rather than structuring the system along the information
stream into stages of feed-forward information processing, the system is divided into
multiple behavioral modules, each of which entails all stages of information process-

1Although radical at the time this approach was not in fact entirely new. The work of Walter

(1953) on building electronic machines as a tool to unravel the intricacy and complexity of the
brain is prototypical of this approach to robotics.
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ing, but each with a particular different task or behavior in mind. The individual
behaviors would not by themselves possess any form of “intelligence”. However, by
providing an architecture that couples the various behavioral modules, the complete
system would exhibit the property of flexible reorganization under the influence of
its own sensory information that is the defining feature for an autonomous robot.
The architecture of elementary behavioral modules and their interaction is therefore
the backbone of behavior-based robots. Representations when needed are adapted
to the specific ability of a behavioral module.

The main argument in favor of this approach was its impressive and rapid practi-
cal success. Tasks that were previously considered very difficult, such as navigation
of a walking machine in an environment containing non-geometrical obstacles, were
solved by relatively small and inexpensive robots that had been developed within
a few months (Brooks, 1989). As the field matured it became apparent, however,
that there are also a number of serious problems that must be solved for the approach
to be ultimately viable for real world applications. The main source of trouble seems
to be the rather untheoretical nature of the entire approach. This makes it very hard
to design such robots other than by having extensive experience with the prototype.
This also severely limits, of course, the generalization of the architectures beyond
the simple experimental robots that have been produced and studied. This problem
is exacerbated by the intrinsic difficulty encountered when attempting to debug and
diagnose failures in an autonomous robot: The artifact will react non-trivially and
non-locally by reorganization to errors in any of its modules, not unlike nervous
systems do. Another drawback of this approach is the surprise emergence of un-
predictable overt behavior. Although emergent behaviors might be interesting in
the study of artificial organisms, is an objectionable feature when the robot must
behave in a particular and desired purposive way. Such emergent phenomena arise
because the internal behavior structure of the system does not necessarily mirror
its externally manifested behavior. Behaviors are activated in response to external
and/or internal conditions, that is, sensory inputs and internal state. The system
as a whole activates subsets of behaviors so that parallelism can be exploited in the
resulting dynamics. As pointed out by Mataric (1998) in a recent review this is
still a critical aspect of behavior-based control: as multiple behaviors or modules
are active, dynamics of interaction arise both within the system itself (from the
interaction among the behaviors) and within the environment (from the interaction
of the behaviors with the external word). Still another problem is how dedicated
representations appear within the architecture of an autonomous robot and how
they couple to behavioral modules to which they are dedicated.

This dissertation aims to contribute to the solution of these central problems of
the behavior-based approach to autonomous robotics. The motivation comes from
recent studies which show that methods from dynamical systems theory can be used
as a tool, conceptual framework and theoretical language to describe the dynamic
coupling between the robot and its environment (Schöner, Dose and Engels,

1995; Beer, 1995; Smithers, 1994). The potentiality of these approaches to
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develop autonomous robotic systems became not yet fully evident nor accepted.
Brooks (1997), in his paper “From earwigs to humans”, when referring to these
approaches writes:

“The jury is still out as to whether these analysis tools will lead to great conceptual
or practical advances.”

The goal of this thesis is therefore to investigate how dynamical systems can
be used in the design, specification, analysis, simulation and implementation of
behavior-based robots.

1.3 The Dynamic Approach: Aims of this disser-

tation

The work presented in this thesis is based on the so called Dynamic Approach to
Robotics proposed by Schöner and Dose in 1992 (see Schöner, Dose and

Engels, 1995, for a review). The basic ideas of this approach are:

a) Describe and parameterize behaviors through task-related variables, called be-
havioral variables, that abstract from effector degrees of freedom and periph-
eral sensor coordinates and in addition have an appropriate degree of invariance
under changes in the environment the system interacts with.

b) Generate behavior in time as attractor solutions of dynamical systems, which
take the form of ordinary differential equations.

c) Erect these dynamical systems from sensory information or from internal rep-
resentations.

d) To generate representations the dynamics take the form of dynamic fields.

The approach was developed initially as a method of planning within representa-
tions of the navigable space (Schöner and Dose, 1992; Engels and Schöner,

1995). Previous implementations involved large scale platforms with several on-
board and off-board computer systems. Sensory information was visual and provided
high precision information. The implementations required extensive computations
and were not always realized in closed loop with sensory information. More re-
cently, surprisingly complex behavior has been achieved but only at the simulation
level (Steinhage, 1998).

Implementations on low-level platforms is a non-trivial task and has not been at-
tempted before. Some questions concerning the extension of the Dynamic Approach
to low-level robots are:
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• Is the approach essentially limited to high-level systems, more in the line with
the classical approach, or conversely, can it be made to function in compu-
tationally weak systems based on very low-level sensory information, more in
the line with the behavior-based approach?

How can this approach be applied to lower level vehicles, which know nothing
about external reference frames, nothing about objects resting in the world,
but have only their own low-level (noisy and uncalibrated) sensory information
to generate behavior?

• What is the capacity of the dynamic approach to generate cognitive properties
in low-level robotic platforms? Specifically, can continuous metric representa-
tions be derived from low-level sensory information, decisions be stabilized on
such representations, sub-symbolic memory and processes operating on memo-
rized information (e.g. suppression of outdated information) be implemented?

• How can integration of representations with stable action planning and control
be achieved within the dynamic approach?

• How can different goals be derived from the same sensors?

• How can this approach solve the architectural problem of the behavior-based
approach? How can multiple and goal-conflicting behaviors be combined in a
way that leads to smooth and stable overt behavior, and in a away such that
the internal state of the system is observable and hence overt behavior mirrors
the internal state?

This dissertation describes a project in which these questions are systematically
investigated. As a case study we choose the classical problem of navigation in ordi-
nary non-engineered environments. This problem contains control-like behaviors, for
instance obstacle avoidance, target acquisition and wall-following. It also contains
basic cognitive behaviors like: Detection of a target only if sensory information is
sufficiently consistent and persistent in time, target localization through interpola-
tion of sensory data, selection of one target out of multiple detected targets; moving
toward an occluded target, forgetting about a target if renewed sensory information
is not received within a particular time span, detection of a wall only if sensory
information is convergent, wall orientation estimation and wall selection.

1.4 Outline of the dissertation

The remainder of the dissertation is organized as follows:
Chapter 2 gives an overview of the main concepts and principles of the dynamic

approach to behavior generation as it is applied in the domain of robotics.
Chapter 3 presents the two robotic vehicle platforms and the simulator we worked

on.
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Chapter 4 demonstrates that attractor dynamics can be used to control motion
based on low-level distance sensors such as infra-red sensors and sonars.

Chapter 5 proves that the dynamic approach can be implemented in computa-
tionally very weak platforms. Obstacle avoidance and photo-taxis are implemented
on an 8-bit micro-controller. As a technical novelty, we demonstrate the integration
of dynamics of two different levels of temporal derivative.

Chapter 6 presents a dynamic field model for target representation based on
low-level sound sensors. We show how dynamic fields can be used to interpolate
sensory information. We also show how the robotic system stabilizes decisions in the
presence of multi-valued sensorial information, and how it activates and deactivates
memory. Integration of target representation with target acquisition, in the form of
phono-taxis, and obstacle avoidance is demonstrated.

Chapter 7 presents a dynamic field module for sub-symbolic wall representation
based on low-level distance sensors such as infra-red detectors and sonars. It endows
a robot with the following capabilities: wall detection, wall orientation estimation,
insensibility to noisy sensor data and wall selection. This representation is integrated
with a behavioral dynamics for wall-following. Results show the ability of the vehicle
to follow walls with various shapes and to steer at a constant distance to the wall.

Chapter 8 addresses the integration of the wall-following module with the module
for phono-taxis and obstacle avoidance. Results that demonstrate the stability of
the complete control architecture are shown.

Finally, a summary of the results, conclusions, relation to other works and future
work are given in Chapter 9.



Chapter 2

The dynamic approach to
behavior generation

The dynamic approach to behavior generation, presented in detail by Schöner,

Dose and Engels (1995), provides a number of concepts and principles that are
based on the mathematical theory of dynamical systems and on the elements of
neural networks. These concepts can be used as a theoretical language in which
autonomous robotic architectures can be built. The basic ideas of this language
are: (1) The concept of behavioral variables, which consist of variables that can
describe a particular behavior and define behavioral dimensions along which beha-
vior can change. Specific values of these variables correspond to task constraints;
(2) The concept of behavioral dynamics according to which behaviors are generated
as attractor solutions of dynamical systems; (3) Neural field dynamics extends the
previous principles to the concept of neural representation of information.

In this chapter we provide a brief review of the main concepts and principles of
this approach as it is applied in the domain of robotics.

2.1 Basic principles

2.1.1 Behavioral variables

To design a behavior in the context of the dynamic approach, the first step is to
find variables that can describe, parameterize and internally represent the behavior
(state of the system). These variables are called behavioral variables. They define
behavioral dimensions along which behavior can change. A specific instance of the
behavior corresponds to a point in the space of the behavioral dimensions. Beha-
vioral variables must be chosen such that the following requirements are fulfilled:

a) At any time a behavior must be associated with particular values of its corres-
ponding behavioral variables and task requirements must be expressed as val-
ues or set of values of these variables.

7
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b) The specified values for a behavioral variable, that express the task, must be
independent of its current value.

c) It must be possible to specify the values by the on-board sensors or by another
behavioral model (for example a representation system).

d) Finally, and very important, the behavioral variables must enable the design
of control systems that impose their values on an effector system.

Now we give an example that aimes to clarify these requirements. In the task of
autonomous robot navigation in the plane the movement must be controlled such
that locations of obstacles are avoided while a particular target position is reached.
To express the behavior that this movement represents the heading direction, φ,
in the world (i.e. relative to some arbitrary but fixed world axis), is an adequate
variable since (see Figure 2.1):

First, task requirements of moving toward the target while avoiding collisions with
obstacles can be expressed as particular independent values of the heading
direction. The direction Ψtar represents the orientation at which the target lies
from the current view point relative to the world axis, while Ψobs represents
the direction at which the obstacle is seen. Moving toward the target, which
is a desired behavioral state, is associated with φ = Ψtar. Conversely, moving
toward an obstacle is associated with φ = Ψobs, and is of course an undesirable
behavioral state.

Second, if the robot turns on the spot the specified values Ψtar and Ψobs, either
desired or to be avoided, for the heading direction are kept invariant, i.e. the
specified values Ψtar and Ψobs do not depend on the current value of the beha-
vioral variable (i.e. φ). Since the values expressing the task to be performed
(φ = Ψtar expressing target acquisition and φ �= Ψobs expressing obstacle avoi-
dance) are independent from the current value for the heading direction the
individual behaviors can be designed independently from each other.

Third, on-board sensors may specify the values Ψobs and Ψtar as long as an estimate
of the current orientation of the robot in the world is maintained (in reality, the
correct calibration of this value is not fundamental as long as the calibration
drift is slow, this will be demonstrated later in Chapters 4 and 6).

Finally, the heading direction can be easily controlled by providing incremental
commands to the vehicle’s motors or to a steering module.

Path velocity and angular velocity are also appropriate behavioral variables for
the example given above (Neven and Schöner, 1996; Bicho and Schöner,
1997a; Bicho and Schöner, 1997b; Bicho, Mallet and Schöner, 1999a;
Bicho, Mallet and Schöner, 1999b). This will become clear as we present the
material in this dissertation.
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Figure 2.1: An adequate behavioral variable for the task of moving in the plain toward a
target location while avoiding to run into obstacles.

2.1.2 Behavioral dynamics

The next step is to generate values for the behavioral variables in time, which
control the robot’s action. For this purpose a dynamical system for the behavioral
variables is designed. Mathematically such dynamical system is time-continuous
and is defined by a differential equation in which the dynamical state variables are
the behavioral variables. For example, for the heading direction, φ, a dynamical
system defines the temporal rate of change of the heading direction as a function of
the current value, i.e.

dφ(t)

dt
= f (φ(t), parameters) (2.1)

The function f(·) defines a vector field ; i.e. to each point in the state space it assigns
a vector f(φ). Each of these vectors determine the direction in which and the rate
with which the system will move from the point where the vector is anchored.

Fixed points: Attractors and repellers

As a design principle, we are interested in a particular type of solutions of dynamical
systems called fixed points or equilibrium solutions. These are the points at which
the vector field is null,

dφ

dt
|φ=φfixed point

= f(φfixed point) = 0 (2.2)

Fixed points are, in other words, constant solutions of the dynamical system: The
system does not change state in time. But the system being “stuck” in a state does
not mean that it is stable. This is depicted in Figure 2.2.

For a dynamical system in one variable the stability of the fixed points can easily
be investigated graphically. This is illustrated in Figure 2.3.
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Figure 2.2: Unstable and stable equilibrium points. Initially the two balls are in rest. The
black ball is at an equilibrium point at the top of a hill. This is an unstable equilibrium
point since a very small perturbation will send it down. By contrast the grey ball is at
stable equilibrium point. Once the perturbation ceases to act the ball returns to its initial
point.

Panels A and B in Figure 2.3 depict a linear and a non-linear dynamical system,
respectively. These two dynamical systems exhibit a fixed point at φ = φA. Because
the slope at this fixed point is negative, the fixed point is an asymptotically stable
state. In this case the fixed point is also called an attractor because it attracts the
behavioral variable to the value specified by the fixed point. To see this consider
a value slightly to the right of the fixed point φA, i.e. φ1. At this point because
the rate of change of the behavioral variable is negative the system is driven toward
decreasing values of the behavioral variable, i.e. toward the fixed point. Analogously,
at points starting to the left of this fixed point, for example φ2, the rate of growth
is positive thus driving the system toward increasing values, i.e toward the fixed
point again. When the system arrives at this fixed point it stays there. The vectors
fields of both these dynamical systems behave as attractive forces that drive the
system to the state specified by φ = φA. Thus, for example, in the target acquisition
behavior in which the direction at which the target is seen is a desired value for the
heading direction of the robot, we can make that direction an attractor by erecting a
attractive force-let (vector-field) with a zero at that direction and a negative slope.
The range of the behavioral variables over which a force-let exerts its attractive
influence can be unbounded (Panel A) or limited (Panel B). Thus, an important
concept related to the idea of attractors is the basin of attraction. For a given
attractor this refers to the region in the state space in which all initial conditions
will converge to the attractor.

Conversely, when the slope at a fixed point is positive, (Panels C and D in
Figure 2.3), the fixed point is an unstable state and is called a repeller because
it repels the system from its value. This can be read on the phase plots of the
dynamics: consider a value slightly to the left of the fixed point φB, i.e. φ3. At this
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Figure 2.3: Four phase plots of one dimensional dynamical systems: the rate of change
dφ/dt is plotted as a function of φ. The points at which dφ/dt is zero (φA and φB) are the
fixed points of the dynamics and the slope of dφ/dt there indicates their nature. Panel
A: The system is linear with a fixed point at φ = φA. The slope at this fixed point is
negative. This makes that fixed point an attractor. The system converges in time to the
state defined by the fixed point. Panel B: A non-linear system with a fixed point attractor
also at φ = φA. As for the linear case, the system converges in time to φA. Panel C: The
system is linear with a fixed point at φ = φB. The slope at this fixed point is positive
thus making this fixed point a repeller. The system diverges away in time from the state
specified by the fixed point. Panel D: A non-linear system with a fixed point repeller also
at φ = φB. As for the linear case, the system diverges from φB as time increases. The
direction of the arrows indicate the evolution of the behavioral variable as time increases.

point negative rate of growth for the behavioral variable drives the system toward
decreasing values, thus driving the system away from the fixed point. Analogously
for a value of the behavioral variable starting to the right of the fixed point, φ4,
the system is driven toward increasing values because the rate of change is positive.
Once again the system is driven away from the fixed point. In such a case the vector
field is called a repulsive force. At the value of the fixed point the rate of change is
zero but an arbitrary small perturbation immediately causes the system to diverge
from the state (unstable) defined by the repeller. Now for example, an obstacle can
be modeled by erecting a repulsive force-let at the direction at which the obstacle
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lies, because one has to prevent the heading from taking that direction.
The range of repulsion, i.e. the region of points over which a repulsive force-let

wields its influence, can be unbounded (Panel C) or limited (Panel D).

Stability measures or strength of fixed points

For a linear dynamical system (Panels A and C in Figure 2.3) the slope determines
how strongly attractive or repulsive a fixed point is. When the fixed point is an
attractor the steeper this slope, the stronger the restoring force and the faster the
system relaxes to the attractor after a perturbation. For a repeller the steeper the
slope the faster the system relaxes away from the repeller after a perturbation. Thus
the slope represents the stability of the system in the fixed points.

Since relaxation is exponential it can be characterized by a time scale. For
instance, if an initial perturbation puts the linear system depicted in Panel A at
point φ1, then the system evolves in time according with the solution

φ(t) = φA + (φ1 − φA)e−
t
τ (2.3)

where τ determines the relaxation time with which the systems approaches the
fixed point φA. When shifted to a distance |φ1 − φA| from the attractor, the system
reduces this distance by a factor of e (e is the natural number) in a time interval of
τ . Relaxation is faster, the smaller the time scale τ is. Therefore, τ can be used to
characterize quantitatively the stability of the system in the fixed points. τ can be
obtained from the reciprocal of the slope of the linear vector field at the fixed point

τ = −
[
df(φ)

dφ
|φ=φfixed point

]−1

(2.4)

Negative values for τ indicate that the corresponding fixed point is a repeller. τ = 0
denotes that the fixed point is semi-stable.

For non-linear dynamical systems (Panels B and D in Figure 2.3) with hyperbolic
fixed points 1 we can use the linearization method to characterize the stability of the
fixed points (Perko, 1991; Crawford, 1991). For example, a stability measure
of the attractor φA of the non-linear dynamical system depicted in Panel B may be
obtained by approximating this system to a linear system near φA. This approxima-
tion represents in essence the behavior of the non-linear system in the neighborhood
of the attractor. Expanding the vector field f(φ) in a Taylor series around the fixed
point φA and keeping only the terms up to first order yields a dynamics with a linear
vector field,

dφ

dt
= f (φ) ≈

(
df(φ)

dφ
|φ=φA

)
(φ − φA) (2.5)

the solution of which has the form of Equation 2.3 and where the time scale, τ , is
again given by the inverse of the slope of the (non-linear) vector field at the fixed

1Fixed points are called hyperbolic when they have no eigenvalues on the imaginary axis.
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point as for the linear case. Thus, τ as given by Equation 2.4 can also be used
to characterize quantitatively the local stability of the fixed points of a non-linear
dynamical system. Strong behavioral states have very short local relaxation times.

Integration of elementary behaviors

The complete behavioral dynamics is build up from individual contributions (i.e.
force-lets), which are added to shape the complete vector field. Each force-let rep-
resents a constraint on the behavior that we are designing. Because the range of
the force-lets are limited the resulting dynamical system in non-linear. By design
one makes the system to be at all times in, or very near, an attractor so that the
overt behavior is really generated by attractor solutions of the dynamical system.
This way powerful theoretical tools from the qualitative theory of dynamical systems
(Perko, 1991; Crawford, 1991; Scheinerman, 1996), such as local bifurcations
analysis, can be used to design autonomous robot architectures and quantitatively
evaluate their compliance with specifications.

Each force-let models an elementary behavior. The time scale of each elementary
behavior determines how strongly that behavior contributes to the vector field of the
behavioral variables. Thus the hierarchy of time scales also determines the hierarchy
of behaviors. Prior behaviors have smaller time scales.

Moving attractors

When attractors are static the requirement that the system must be in or near
an attractor at all times is trivially fulfilled. For a robot moving around in the
environment the specified values either desired (e.g. Ψtar) or to be avoided (e.g.
Ψobs) as well as of their strength of attraction or repulsion vary. Thus the individual
contributions to the vector field change in time and as a consequence the attractors
from the resulting dynamical system move. Since by design the system must be in
or near a stable state (attractor) at all times, the rate with which the attractors
move must be controlled so that the system is able to track the moving attractors.
This is accomplished by making the relaxation time of the dynamics much faster
than the time associated with the moving attractors. This will be discussed in detail
in Chapter 4 where a solution is proposed.

Bifurcations

The shape of the vector field in Equation 2.1 is dependent on the parameters. Thus
changing the parameter values in time may lead to bifurcations in the underlying
behavioral dynamics. Bifurcations correspond to qualitative changes in the number,
nature or stability of fixed points. Local bifurcation theory helps to make design
decisions around points at which the system must switch from one type of behavioral
state to another. By driving the system through bifurcations the robot is able to
flexibly “decide” the appropriate behavior at any given time.
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2.2 Principle of neural representation

More abstract forms of behavior or processes, like for example representations of
information and memory, cannot be realized with attractor dynamics of the type
described above. Dynamical systems of the type presented above have a unique state
at all times (each variable has exactly one value) and change state continuously in
time, i.e. to attain a new value each variable must pass through all intermediate
values. Such dynamical systems are thus incapable of representing graded amounts
of information about a behavioral variable. For instance:

• The absence of any knowledge about a particular variable cannot be expressed.

• Nor can the presence of ambiguous, multi-valued information be expressed in
a manner that does not yet reflect a decision.

The principal of neural representation was proposed to overcome this limitation
(see Engels and Schöner, 1995; Schöner, Dose and Engels, 1995, for a
review). We present the main ideas next.

2.2.1 Field dynamics

The first idea is that behavioral variables are now conceived of as behavioral di-
mensions, spanning a space of possible values of these variables. Over that space
of behavioral dimensions a field of activation is defined. At each location along
a behavioral dimension, the level of activation represents the extent to which the
particular value of the behavioral variable is presently specified. Well defined states
of the behavioral variable are thus represented by peaks of activation, centered over
the appropriate location in the field, that is, at the specified values on the behavioral
dimension. For instance, the direction, ψ, at which a target lies as viewed from the
robot but referenced to an external frame can be used as a behavioral dimension
(taking values in the interval [0, 2π] rad). An activation variable, u(ψ), can be de-
fined for each possible value of target direction, ψ. The function u(ψ) is now the
dynamical state variable and represents if a target in direction ψ is present. Positive
values of activation, u(ψ) > 0, indicate that a target near ψ is detected, negative
values of activation, u(ψ) <= 0, indicate that no target was detected near ψ. The
larger the activation, the more certitude about the detection of a target at direction
ψ. A single target is represented by a single localized distribution of activation in
the neural field centered over the value at which the target lies. This conceptualiza-
tion also permits to deal with the absence of information (u(ψ) <= 0 ∀ψ ∈ [0, 2π])
about a target and the representation of multiple instances. This is illustrated in
Figure 2.4.

The second idea is to evolve the activation, u(ψ), continuously in time as a
dynamical system:

τ
du(ψ, t)

dt
= F [u(ψ, t), parameters] (2.6)
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Figure 2.4: The principle of neural representation: the behavioral variable defines a
behavioral dimension, ψ. An activation variable, u(ψ), represents the extent to which
values along the behavioral dimension are present. Left: The presence of one target is
represented by a localized peak of activation centered over the direction value, ψA, at which
it is detected. Middle: The state of negative activation along the entire field represents
that no target is present. Right: Multiple targets are represented by multiple peaks along
the behavioral dimension. Two targets at directions ψB and ψC are represented.

The concepts of attractor dynamics and bifurcation are now implemented at the
level of a dynamics of the entire field. Particular patterns of activation (like the
ones depicted in Figure 2.4) are made attractor solutions by choosing particular
types of interaction in the field, i.e. making the activation u(ψ, t) at a point ψ,
dependent on the activation u(ψ′, t) at other points ψ′ in the field.

2.2.2 Amari neural field model: a biological inspiration

A convenient form for the dynamics of the activation variable is given by the fol-
lowing non-linear integro-differential equation:

τ
du(ψ, t)

dt
= −u(ψ, t) + S(ψ, t) +

∫
w(ψ, ψ′)Θ(u(ψ′, t))dψ′ + h. (2.7)

This equation was first proposed in the seventies to model activity patterns in the
cortical surface, in which a large number of interacting neurons creates a network
that is almost homogeneous along the cortical surface and can thus be approximated
as a continuous field of neural activation (Wilson and Cowan, 1973; Amari,
1977). Because in Chapter 6 we present a detailed analysis of the use of this equa-
tion in building dynamic representations of information we give here just a brief
description.

The linear part of this dynamics defines the time scale, τ , of the field. S(ψ, t) is
the input activation and excites (S(ψ, t) > 0) regions of the field for which values
in the behavioral dimension are defined and inhibits (S(ψ, t) ≤ 0) sites of the field
where no value is specified. The integral term introduces interaction within the
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field. The type of interaction is determined by the shape of the interaction kernel
w(ψ, ψ′). A typical form of interaction that guarantees the existence of localized
peaks of activation is a local excitatory and longer ranged inhibitory process. Θ(·)
is a non-linear threshold function and makes that only points of the field that are
above a certain threshold can contribute to the interaction. Parameter h determines
the resting level (always negative) of the field, which together with the non-linear
threshold function, also controls the number of sites that actually contribute to the
interactions.

The qualitative behavior of the field of activation changes with a change of the
parameters on which the field depends. In Chapter 6 we discuss how the parameters
resting level h, strength of input, shape of input (mono-modal or multi-modal) affect
such behavior. The equation has been analyzed mathematically by Amari (1977)
and then by Kishimoto and Amari (1979). Their studies provide valuable insights
about the different regimes of stability and the role of the different parameters for
the existence and stability of localized activity patterns.



Chapter 3

The robotic vehicles and the
simulator

Previous implementations of autonomous robot architectures based on the dynamic
approach (Schöner and Dose, 1992; Schöner, Dose and Engels, 1995;
Neven and Schöner, 1996) involved relatively large scale platforms with sev-
eral on-board and off-board computer systems. Sensory information was visual,
required extensive computation and potentially provided high precision informa-
tion. By contrast the platforms used in this thesis project rely on computationally
modest systems based on very low level sensory information. This chapter presents
the two platforms we worked on. The first is one of the simplest platforms, a MIT
rug-warrior type micro-controller based vehicle whose sensors consist of infra-red
detectors and light dependent resistors. The second is a mid-size 486 PC based
platform equipped with infra-red detectors, sonars and microphones.

The simulator used to test and/or illustrate relevant aspects of the designed
dynamic control architectures is also presented in this chapter.

3.1 Rodinsky: An 8 bit micro-controller based

platform

Rodinsky is a MIT rug-warrior (Jones, Flynn, 1993) type robot and it was built
during a course on mobile robotics teached by Prof. Keith Doty (from the University
of Florida in Gainsville, USA) at the University of Aveiro, Portugal, during the
spring of 1995. Figure 3.1 presents this robot.

As we can see this is a very minimal platform. It fits approximately into a 20 by
20 by 15 cm “cube” and it has a cylindrical shape. Its chassis is made of wood. It is
based on the MC68HCA11A0 (8 bits) micro-controller from Motorola, operating at 2
MHz with 32 Kbyte of RAM. It is programmable in Interactive C (compiler provided
through the MIT Media Lab, written by Randy Sargent with the assistance of Fred
Martin). The vehicle is propelled by two lateral wheels, each driven by a simple DC

17



18

Figure 3.1: Rodinsky

motor, and stabilized by a passive caster wheel. An ensemble of eight 1.2 Volt NiCd
batteries power the platform. This robot acquires sensory information through five
pairs of infra-red emitters/detectors and two light sensors. The infra-red sensors
serve to measure distances to obstructions. They have a distance range of 60 cm
and an angular range of about 30 deg. They are mounted in the front part of the
robot around its periphery. The angular separation between the infra-red sensors is
30 deg so that their sensitive cones slightly overlap. Two photo-resistors (i.e. light
dependent resistors), one mounted on the left and another mounted on the right
side of the vehicle, provide information about light targets. The output voltage at
the terminals of these photo-resistors is a monotonically decreasing function of light
intensity.

Neither motors nor sensors are calibrated other than through rough order-of-
magnitude estimation.

3.2 Robodyn: A mid-size 486 PC based platform

Robodyn was designed and built by the Dynamical Robotics group responsible en-
gineer Pierre Mallet at the CRNC-CNRS in Marseille, France. Figure 3.2 shows this
robot.

It consists of a cylindrical platform with two lateral motorized wheels and a pas-
sive rear caster wheel. It fits approximately into a 40 by 40 by 40 cm cube. The
robot has a single board computer system based on a 486DX4 processor operating at
100 MHz, equipped with 4 Mbytes of DRAM and 4 Mbytes of FLASH memory. The
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operating system is DOS 6.22. A monochrome LCD monitor, a removable keyboard
and a removable driver for 3 1/2 diskettes make the platform an autonomous work-
station. All programming, control and computation are done on-board. The control
architectures were implemented in Microsoft Quick basic V4.5 (the only compiler
that could be installed on the 4 Mbytes of FLASH memory). The two lateral wheels
are each driven by a DC brushless servo-motor, each separately controlled by elec-
tronic circuitry that guarantees accurate control of rotation speed without the use of
external shaft encoders. The relationship between input voltage and rotation speed
is approximately linear, so that generating desired robot speeds and turning rates
is easy. The motors are powered by two 12 Volt batteries in line, with two separate
12 Volt batteries supplying the computer and the on-board electronics. This yields
an average autonomy of about 1h 30 min (the computer being the bottleneck).

Figure 3.2: Robodyn

The robot is equipped with nine infra-red sensors (initially seven) and nine sonars
(initially also seven), which are used to measure distance to obstructions. Addition-
ally, it has five microphones which provide information about sound targets. The
infra-red sensors are of the same type of those used in Rodinsky. Their signal is
uncalibrated as it depends on surface reflectivity. The sonars distance range is from
45 cm to 175 cm. In both type of distance sensors the angular range over which
distances are averaged is about 30 deg. They are mounted on a ring centered on the
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robot’s axis. The sensors are arranged such that their sensitive cones just touch,
thus completely covering the forward semi-circle. The microphones are of the car-
diod type. They are most sensitive to sound arriving from the direction at which
they are pointing in space. Sensitivity decreases for sound impinging from other
directions. Sensitivity loss (in the mounted configuration) is about 6 dB for sound
sources sideways from the microphones and 20 dB for sound sources at the rear.
Microphones are spaced 45 deg apart on the upper ring around the robot.

3.3 Kinematics

The path velocity, v, and the angular velocity, w, of this type of platforms are con-
trolled by setting the rotational speeds of the two driving wheels as follows (l=left,
r=right):

wwheel,l =
1

Rwheel

(
v +

Dwheels

2
w

)
(3.1)

wwheel,r =
1

Rwheel

(
v − Dwheels

2
w

)
(3.2)

where Rwheel is the wheels radius and Dwheels the distance between the two driving
wheels.

When path velocity and angular velocity can be accurately controlled the robot
can perform dead-reckoning by using simple geometric equations to compute mo-
mentary position of the vehicle relative to a known starting position. The vehicle
position in the plane, (x,y), relative to a starting point, and its heading direction,
φ, can be computed by integrating the following equations

dx(t)

dt
= vcos (φ(t)) (3.3)

dy(t)

dt
= vsin (φ(t)) (3.4)

dφ(t)

dt
= w(t) (3.5)

where v, φ, and w are obtained from the behavioral dynamics (cf. Chapters 4 and 5).

3.4 Simulator

Whenever considered important, simulations are used in this dissertation, to illus-
trate relevant aspects of a control architecture. The simulations were generated by
a software simulator written in MATLAB. This simulator is depicted in Figure 3.3.

In the simulation a robot is represented as a triplet (x, y, φ), consisting of the two
Cartesian coordinates and the heading direction. Cartesian coordinates are updated
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Figure 3.3: The simulator: Here a snapshot of the screen when a simulation is running
is depicted. The window on the bottom of the screen depicts the simulated environment
where the robot operates. The environment is represented by an occupancy grid recorded
in a file (there exists one file for each simulated environment) which can be selected and
loaded through the menu World on this window’s tool bar. On the right side of this
window a set of interactive buttons and control slices are displayed.These are used for
setting the robot’s position and heading direction (can be changed any time during a
run), selecting and setting a target position (up to three different targets are possible and
their position can be changed at any time), setting the number of cycles that the simulation
will run, selecting the visualization of the internal dynamics (which is displayed on the
top window), choosing the visualization of the behavioral variables values, and finally
setting the control architecture to run (which can also be changed at any time). On the
top window is displayed (when selected) the behavioral dynamics and the dynamic fields
activity when these are part of the architecture.

by a dead-reckoning rule ((ẋ = vcos(φ), ẏ = vsin(φ)), see Chapter 4 for details)
while heading direction, φ, and path velocity, v, are obtained from the behavioral
dynamics. All dynamical equations are integrated with a forward Euler method
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with fixed time step, and sensory information is computed once per each cycle.
Distance sensors are simulated through an algorithm reminiscent of ray-tracing.

The target information can be provided into two different forms depending on the
selected architecture. The target can be defined by a goal position in space when this
information is supposed to be known a priori, or it can be a simulated light or sound
source. Light targets are modeled as point sources with hyperbolic radiance decay
(no reflections taken into account). Sound sources are also modeled as point sources
assuming fixed frequency and exponential intensity decay (again no reflections taken
into account).



Chapter 4

Using attractor dynamics to
control motion based on low-level
distance sensors

This chapter demonstrates (see also Bicho, Mallet and Schöner, 1999b) that
the dynamic approach to path planning (Schöner and Dose, 1992) lends itself
naturally to implementation on simple autonomous vehicles using only low-level
sensory information such as distances sensed by infra-red detectors or sonars. It
also shows how theoretical design and hardware implementation are enchained ef-
fortlessly. The chapter starts with a review of the literature in the domain of path
planning so that we can position the dynamic approach to path planning with respect
to the other approaches. Section 4.2 presents a dynamical system that generates a
time series of the vehicle’s heading direction. Each sensor is assumed to contribute a
repulsive force-let to the vector-field of this dynamical system and their sum leads to
obstacle avoidance. Movement toward the target is achieved by adding an attractive
force-let. Next, Section 4.3 explains how the vehicle’s path velocity can be controlled
such that the system is near an attractor at all times. Section 4.4 presents some
implementation details. Experimental results that demonstrate the properties of
the path generating system and the velocity control system are presented in Section
4.5. Finally, the chapter ends with conclusions.

4.1 Introduction

Motion planning is an essential part of an autonomous robot system (Latombe,
1991). In the basic variation of motion planning for a mobile robot, the task is
to generate a collision-free vehicle path that brings the robot system to a specified
target location. The majority of the research in this domain has been conducted, in
the field of robotics, under the title of path planning. Even-though motion planning
has been studied for two decades and a large body of research reported in the
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literature exists, the design of a simple and reliable path generating (planning and
motion control) system is still a challenge.

The problem has been addressed in theoretical work by isolating the path plan-
ning aspect from the aspects of obtaining sensory information about the world and
controlling vehicle motion to generate the path (review, e.g., in Latombe, 1991;
chapters 4 and 7 in Cox, Wilfong, 1990; Kortenkamp, 1998; Pruski, 1998).

Classical theoretical approaches to the problem, also called model-based plan-
ning, assume that complete knowledge of the world’s geometry is known prior to
the planning stage (Lozano-Perez and Wesley, 1979; Schwartz and Sharir,
1983; Cameron, 1998). The objective is to find a connected sequence of collision-
free spaces for a finite-size object (a robot), from an initial position to a target
position, typically based on polygonal representations of the objects in the world.
Some of these theoretical approaches propose algorithms that guarantee that kine-
matic and dynamic constraints are fulfilled and that a path is found if one exists
(Gilbert and Jonhson, 1985; Shin and Mckay, 1985; Kim and Shin, 1985;
Kedem and Sharir, 1988). A path is then generated by piecing together the
free spaces or by tracing around the forbidden areas (Brooks, 1983; Singh and

Wagh, 1987; Takahashi and Schilling, 1989) .

After the planning stage, the robot has to control its motion along the nominal
path. The major difficulty here is due to the uncertainties because of unprecise
world modeling and/or changes in the robot environment, e.g. appearance and
disappearance of objects, and moving objects (Laumond, 1993; Hu and Brady,
1997). First, the path has been computed from unprecise geometric models of the
environment. Either the planned path is guaranteed to be safe with respect to these
uncertainties, or the robot has to check its safety in the real world. Second, the robot
does not perfectly execute the nominal path. Motion planning in the presence of
uncertainties and feedback control gave rise to the necessity of sensor based motion
planning (Feng and Krogh, 1990). However, it is not possible to simply add a
step to acquire sensory information, and then rebuilt the world model and re-plan
a collision free path dynamically using these classical schemes (i.e. computational
geometry methods) since they are very difficult to obtain and maintain in real time.
This also poses the problem of the overall control-theoretic stability of the path
generation systems, as the step-wise computation of representations of obstacles
and targets is not characterized by a time scale. Thus it might be difficult to
satisfy Brockett’s necessary condition of systems controllable by smooth feedback
(Brockett, 1983).

In contrast to the approaches described above, the potential field approach uses a
scalar function to describe both objects and free space (Khatib, 1986). The target
location is modeled with an attractive potential and the obstacles with repulsive po-
tentials. Traditional potential field methods typically consider all obstacles at every
point in the world. The path is then generated by following the negative gradient
of the overall potential function. Although this approach can be computationally
efficient (Barraquand and Latombe, 1991) and is suitable for on-line feedback
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control (Feng and Krogh, 1992) it suffers from local minima, which may cause
the path to terminate at a point other than the target location. Some solutions have
been proposed that attempt to overcome this limitation (Cannolly, Burns and

Weiss, 1990; Rimon and Koditschek, 1992).

The above approaches rely upon global representations of the world in which the
robot operates. Another approach to the navigation problem is to define instead a
local representation of the space around the robot (e.g. Lumelsky and Stepanov,
1986; Lumelsky and Stepanov, 1987). Still another possibility is the limit case
where sensory information is used at low levels of parameter extraction which is not
typically represented (Brooks, 1986; Borenstein and Koren, 1989; Zapata,

Lepinay and Thompson, 1994; Fujimori, Nikiforuk and Gupta, 1997). This
later approach is usually called sensor-based motion planning.

Among all the approaches, the potential field approach is one of the most popular
to date. The main reason is that this approach is suitable for on-line feedback control
(Arkin, 1989; Arkin, 1998).

The dynamic approach to path planning and control (Schöner and Dose,
1992) makes this linkage to control even stronger by replacing the transient solutions
of the potential field approach with attractor solutions (asymptotically stable states)
of a dynamical system, that therefore contributes to the asymptotically stability of
the overall control scheme.

In the planning dynamics, that is, in the equations of motion, the vector field
is specified so that it captures the task constraints as component forces that define
attractors or repellers of the dynamical system. An attractive force serves to attract
the system to the direction at which the target lies, and repulsive forces are used to
avoid the directions at which obstacles are located. Since some of these forces have
limited range from their superposition a non-linear dynamical system results. By
design the system is tuned so that the planning variable is in a resulting attractor of
this dynamics most of the time. Thus, the path is in fact generated by an attractor
solution and not by a transient solution of the dynamical system.

This way one can avoid the difficult problem of designing a non-linear dynami-
cal system all transient solutions of which fulfill multiple constraints. By contrast,
designing a dynamical system, the attractors of which fulfill particular constraints,
is possible by making use of the qualitative theory of dynamical systems (Perko,

1991). Qualitative changes in the robot’s behavior arise through changes in the
number, nature, and stability of fixed points. Such changes correspond to bifurca-
tions in the vector field. Local bifurcation theory helps to make design decisions
around points, at which the system must switch from one type of solution to an-
other (Schöner, Dose and Engels, 1995). The values of model parameters can
be chosen in part based on such analyses.
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4.2 The attractor dynamics of heading direction

The dynamic approach to path generation in autonomous vehicles (Schöner and

Dose, 1992; Schöner, Dose and Engels, 1995) employs the heading direction,
φ, relative to some external world axis as the planning variable. The path plan is
a time course of this variable which is obtained in time as attractor solutions of a
dynamical system for the heading direction.

Task constraints are component forces which are cast together into the vector
field of this dynamical system. For example, the directions φ = ψobs (relative to a
fixed external world axis) in which obstacles lie from the view point of the robot,
and similarly, the direction φ = ψtar in which the target lies are constraints that are
represented by repulsive and attractive force-lets acting on the heading direction (see
Figure 4.1). In isolation, each force-let erects an attractor (asymptotically stable
state) or a repeller (unstable state) of the dynamics of the planning variable, φ. The
attractive force-let serves to attract the system to the desired value of the heading
direction (here the direction in which the target lies). A repulsive force-let is used
to avoid that the system takes an undesired value (here the direction in which an
obstacle lies). By design, the system is operated so that the heading direction is in
or near a resulting attractor of this dynamics. As the vehicle moves, the directions
to the obstacles and target in the world changes, so that the resulting attractor
shifts, pulling the heading direction along (Figure 4.2).

Figure 4.1: Constraints for the dynamics of φ are the directions at which obstacles and
target lie from the current position of the robot, i.e. directions ψobs and ψtar.

Because all angles are measured in an external reference frame, the contributions
of the obstacles′ and the target to the dynamical system of heading direction do not
depend on the current orientation of the robot.

In Schöner and Dose (1992) and Schöner, Dose and Engels (1995) repre-
sentations of the locations of obstacles in the external reference frame were obtained
from a computer vision system, that employed the method of inverse perspective
projection (Mallot, Bültoff, Little and Bohrer, 1991) based on a cali-
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Figure 4.2: Resultant attractor (bottom Panel) from the superposition of the repulsive
force-let (middle Panel) from obstacle constraints and attractive force (top Panel) due
to the target constraint. Parameters must be tuned so that the system is relaxed in the
attractor.

brated camera geometry. Thus, if the robot was rotated on the spot, the directions
to the objects in the world did not change and thus the dynamics of heading direc-
tion was independent of the current value of heading direction. Only because this
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was true did the resultant dynamics have attractors and repellers as designed.
The question we address here is how can this approach be applied to our lower

level vehicles, which know nothing about external reference frames, nothing about
objects resting in the world, but have only their own low-level sensory information
to generate a dynamics of heading direction? We answer this question in the next
subsection.

4.2.1 Obstacle avoidance

The vehicle used in this project has seven infra-red sensors mounted on a ring which
is centered on the robot’s rotation axis. These infra-red sensors are used to measure
the distance to surfaces at the height of the ring (see Section 3.2).

On this low-level platform, each distance sensor points into a fixed direction, θi,
in a reference frame fixed to the robot body. Thus each distance sensor looks into a
direction, ψi = φ + θi, in an external reference frame if φ is the heading direction in
such an external frame. This is illustrated in Figure 4.3.

Figure 4.3: Each sensor i (i = 1, . . . , 7), which is mounted at angle θi relative to the
frontal direction, specifies an obstacle at direction ψi = φ + θi in an external reference
frame. In the figure, sensors 5 and 6 specify virtual obstacles at ψ5 and ψ6 respectively.

Our strategy is now simply to say that each sensor i (i = 1, 2, . . . , 7) specifies
a virtual obstacle in that direction ψi, if an obstruction is detected there, so that
repulsive force-lets centered at these directions are erected. Each repulsive force-let
reads (see Figure 4.4):

fobs,i(φ) = λi(φ − ψi) exp

[−(φ − ψi)
2

2σ2
i

]
i = 1, 2, . . . , 7 (4.1)
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In this equation only the difference φ − ψi = −θi, which is fixed and known,

Figure 4.4: A contribution to the dynamics of heading direction expressing the task con-
straint “avoid moving toward obstacles” is a force-let with a zero-crossing at the direction,
ψobs,i at which an obstruction has been detected. Every distance sensor (i = 1, 2, . . . , 7)
contributes such a force-let centered on the direction in which the sensor points. The pos-
itive slope of force at the zero-crossing makes that direction a repeller. By decreasing this
slope with increasing measured distance, only nearby surfaces repel strongly. The range
of the force-let is limited based on sensor range and on the constraint of passing without
contact.

enters into the dynamics of the heading direction. This renders the performance
independent from the calibration of the planning coordinate system. The strength
of repulsion, λi > 0, from the virtual obstacle at direction ψi, is a decreasing function
of the sensed distance, di:

λi = β1 exp

[
− di

β2

]
(4.2)

where β1 controls the maximum repulsion strength of this contribution, and β2

controls the rate of decay with increasing distance. Thus, when no surface is within
the range of the distance sensor, then the corresponding force-let is zero and drops
out of the dynamics of heading direction.

The angular range over which the force-let exerts its repulsive effect is determined
by σi, which depends on the sensor sector, ∆θ (= 30 deg), and also on the distance,
di, because the angle subentended by half the vehicle at the sensed distance is added
on each side of the sensor sector as a safety margin:

σi = arctan

[
tan

(
∆θ

2

)
+

Rrobot

Rrobot + di

]
(4.3)
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The first term reflects the angular range, ∆θ, over which the infra-red sensor may
detect reflected light, while the second term expresses the additional angle required
for the robot to pass next to an obstacle that would occupy maximally the entire
sensor range. The further away the robot is from the obstacle, the smaller the
angular safety margin, because the angle subentended by the robot itself when next
to the obstacle decreases as is indicated. This is depicted in Figure 4.5.

Figure 4.5: The range of the repulsive force-let is limited based on the sensor range and
on the constraint of passing next to the virtual obstacle without contact.

The contributions from all the sensors are summed. Therefore, the overall ob-
stacle avoidance dynamics reads:

dφ

dt
= Fobs(φ) =

7∑
i=1

fobs,i(φ) (4.4)

Figures 4.6 and 4.7 illustrate that the summed obstacle contributions depend
little on the current orientation of the vehicle.

In the situation depicted in Figure 4.3 two sensors respond to the obstacle. The
sum of their contributions leads to a single repeller that covers the entire angular
range subentended by the obstacle (see Figure 4.6). Figure 4.7 shows how at a
different orientation of the sensors relative to the obstacle three sensors detect now
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Figure 4.6: In the situation depicted in Figure 4.3 two virtual obstacles are detected, at
directions ψ5 and ψ6. In that figure φ = π/4 rad, ψ5 = 5π/12 rad and ψ6 = 7π/12 rad,
the sensed distances are both 35 cm. Two repulsive force-lets centered at these directions
are therefore erected (solid thin lines). The solid bold line shows the resultant obstacle
dynamics. The resultant repeller is at π/2 rad.

the obstacle, leading to changed individual repulsive force-lets. However, their sum
erects a repeller at approximately the same direction with respect to the external
reference frame. This result thus shows that the dynamics for the heading direction
has indeed the designed structure with the repellers and attractors at the right
location, as it is invariant under rotations of the vehicle on the spot. This invariance
is, of course, constrained by the number of sensors disposed around the robot. The
more sensors are used the more invariant the dynamics is.

4.2.2 Target acquisition

As a simple variation of the “find-goal problem” we assume that the absolute co-
ordinates of the target are known. A second, more higher level, variation of this
problem is to leave for the robot the responsibility of determining the target loca-
tion based on its own sensory information (see Chapter 6 and Bicho, Mallet and

Schöner, 1999a).

For simplicity, because in this chapter we want to focus on the problem of path
planning and motion control, the target is given in external coordinates (Xtarget,Ytarget).
The robot keeps an estimate of its own location, (Xrobot, Yrobot), in the external refer-
ence frame by integrating motor commands, through the dead-reckoning mechanism,
from an initial reference position:

dXrobot

dt
= v cos(φ) (4.5)

dYrobot

dt
= v sin(φ) (4.6)
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Figure 4.7: On the top: with respect to Figure 4.6 the robot turned left 5π/12 rad.
From this rotation three virtual obstacles at directions ψ2, ψ3 and ψ4 result. In this figure
φ = 2π/3 rad, ψ2 = π/3 rad, ψ3 = π/2 rad and ψ4 = 2π/3 rad. Distances are 40, 30 and 40
cm respectively. On the bottom: three repulsive force-lets are erected at these directions.
The bold line represents the resultant obstacle avoidance dynamics. The resultant repeller
is near π/2.

Where v is the path velocity and φ the heading direction as obtained from the
planning dynamics. The direction, ψtar, relative to the x-axis, in which the target
lies as “seen” from the current position of the robot is:

ψtar = arctan

(
Ytarget − Yrobot

Xtarget − Xrobot

)
(4.7)

The orientation toward the target, is specified by erecting an attractor at direc-
tion ψtar with strength λtar. Because target acquisition is desired from any starting
orientation of the robot the range over which this contribution exhibits its attractive
effect, over the heading direction of the robot, φ, is the entire full circle (i.e. from
0 to 2π rad). The simplest mathematical form for this attractive force-let is (see
Figure 4.8)
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dφ

dt
= ftar(φ) = −λtar sin(φ − ψtar) (4.8)

For this module the calibration of the dynamic variable heading direction, φ, does
matter.

Figure 4.8: A contribution to the dynamics of heading direction expressing the task
constraint “move toward targets” is a force with a zero-crossing at the specified direction
toward the target, ψtar. The negative slope at the zero-crossing makes this an attractor
of the dynamics. The target contribution is sinusoidal and extends over the entire range
of heading direction. This leads to a repeller in the direction π + ψtar opposite to ψtar.

4.2.3 Integrating the two behaviors

The integration of these two behaviors is obtained by summing obstacle and target
contributions to the vector field:

dφ

dt
= Fobs(φ) + ftar(φ) (4.9)

Precedence of obstacle avoidance is accomplished making the strength of the obsta-
cle contributions stronger than the target contribution. More sophisticated control
over activation and deactivation of such contributions can be obtained using acti-
vation networks (see Steinhage and Schöner, 1997; Steinhage, 1998; Large,

Christensen, Baczy, 1999) but is unnecessary here.
Figure 4.9 illustrates the simultaneous effect of target and obstacle constraints.

In the depicted situation, the space between the two obstacles is not sufficient for
the robot to pass between them. The target lies behind this opening, the most
challenging situation for obstacle avoidance. The obstacle avoidance contribution
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to the dynamics (solid thin line) generates a repeller at the direction in between the
two obstacles, while the target contribution (dashed line) erects an attractor at this
direction. The resultant dynamics (solid bold line) has a repeller at this direction
because the obstacle contributions dominate.

Figure 4.9: On the top: The distance between the obstacles is not sufficient for the
robot to pass through, and the target lies in the direction pointing in between the two
obstacles thus defying the obstacle avoidance behavior. On the bottom: Obstacle and
target contributions for the dynamics are represented by the solid thin line and the dashed
line respectively. The resulting dynamics is the solid bold line.

Qualitative changes of behavior arise if the number and stability of fixed points of
the heading direction dynamics changes. These changes correspond to bifurcations of
the vector field brought about by changing sensory information as the robot moves.
For instance, an attractor pointing along a path leading between two obstacles may
become unstable and turn into a repeller as the vehicle approaches the obstacles,
and the obstacle contributions widen in angular range. At such bifurcations, the
heading direction may come to lie exactly on a repeller (a former attractor that
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turned unstable). To ensure escape from repellers within a limited time, the planning
dynamics is augmented by a stochastic force

fstoch =
√Qξn (4.10)

chosen as Gaussian white noise, ξn, of unit variance, so that Q is the effective variance
of the force. This stochastic force is in addition to sensory and motor noise, which
may vary as a function of environmental conditions. Since behaviors are generated
by asymptotically stable states (attractors) the system is robust against noise.

The complete heading direction dynamics is therefore:

dφ

dt
= Fobs(φ) + ftar(φ) + fstoch (4.11)

Planning decisions, i.e. qualitative changes in the behavior, arise through bifur-
cations in the vector field which are brought about as the vehicle moves or the
environment changes.

4.3 Control of driving speed

As the robot moves sensory information changes and thus attractors (and repellers)
shift. The same happens if obstacles move in the world. To keep the system stable,
i.e. in or near an attractor at all times, the rate of such shifts must be limited to
permit the system to track the attractor as it shifts. One way this can be accom-
plished is by controlling the path velocity, v, of the vehicle. This is because, the
velocity with which the fixed points shift is determined by the relative velocity of
the robot with respect to its environment. Let us analyze the rate of such shifts
for the simplest case of the robot moving in a resting environment with constant
velocity and heading direction. Figure 4.10 shows that for this case the maximal
rate of change of obstacle or target bearing occurs when the corresponding objects
are seen sideways.

We derive the relationship between the maximal rate of change, ψ̇max, and the
vehicle’s path velocity, v (see Figure 4.11): Let us assume that initially, t = 0 sec,
the object (target or obstacle) is located exactly at a right angle to the current
heading direction and at a distance d from the robot. At this instant in time the
direction at which the object lies as seen from the current position of the vehicle
and with respect to the external reference axis is ψ0 = 0 rad. ∆t later the vehicle
has traveled a distance of ∆drobot(= v∆t). Thus the object direction as seen from
the new position of the robot is now

ψ∆t = arctan

(
∆drobot

d

)
(4.12)



36

Figure 4.10: Rate of change of obstacle or target bearing (here represented by the black
star) as the robot moves in a resting environment with constant movement direction.
On the left: The obstacle or target lies far ahead. Initially, the robot is at the position
indicated by t = 0. The direction at which the object is “seen” is ψA1. Later on the robot
is at the position indicated by t = ∆t. From this position the object is “seen” at direction
ψA2. Thus, in the time interval ∆t the rate of change of the object bearing is ∆ψA/∆t.
On the right: The obstacle or target is “seen” sideways. In the same interval of time the
rate of change of the object bearing is ∆ψB/∆t and is larger than in the previous case.

For small ∆drobot/d we can write:

ψ∆t ≈ ψ0 − ψ∆t

∆t
≈ v∆t

d
(4.13)

Therefore we can derive the maximal rate of shift of the fixed points as a function
of the vehicle’s velocity

ψ̇max ≈ ∆ψ

∆t
≈ v

d
(4.14)

This approximate description can be turn around to compute the desired path ve-
locity as a function of distance with ψ̇max as a design parameter, that can be tuned
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Figure 4.11: This figure illustrates the relationship between the maximal rate of change
of obstacle or target bearing and the vehicle’s path velocity, which occurs when the objects
are seen sideways.

to obtain good tracking. We compute the desired velocity separately for each of the
two constraints (i = tar or obs):

Vi = diψ̇max (4.15)

The desired velocities are imposed through a very simple dynamics (Bicho, Schöner,
1997)

dv

dt
= −cobs (v − Vobs) exp

[
−(v − Vobs)

2

2σ2
v

]

−ctar (v − Vtar) exp

[
−(v − Vtar)

2

2σ2
v

]
(4.16)

The strengths, cobs and ctar, are adjusted such that in the presence of strong obstacle
contributions the obstacle term dominates while in the absence of such contributions
the reverse holds. A systematic way to construct a function that indicates if ob-
stacle contributions are present, is to integrate the obstacle force-lets, from which a
potential function of the obstacle avoidance dynamics results:

U(φ) =
7∑

i=1

(
λiσ

2
i exp

[
−(φ − ψi)

2

2σ2
i

]
− λiσ

2
i /
√

e

)
(4.17)

Positive values of this potential function indicate that the heading direction is in
a repulsion zone of sufficient strength, λi, so cobs > 0 and ctar = 0 is required.
Conversely, negative values of the potential indicate that the heading direction is
outside the repulsion range or repulsion is weak, so now cobs = 0 and ctar > 0 is
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Figure 4.12: The dashed line is a repulsive force-let, fobs. Its integral provides a potential
(solid thin line), U , which is maximal near the heading direction to be avoided, i.e the
resultant repeller. The thresholded potential (solid bold line), α, serves as an indicator
function of those intervals of the heading direction from which obstacle forces repel.

required. The transformation of levels of the potential to the strengths of the two
contributions to the velocity control makes use of a sigmoidal threshold function,

α(φ) = arctan[cU(φ)]/π (4.18)

ranging from −1/2 to 1/2 (see Figure 4.12). Finally we can write the following
functions for the strengths of the two velocity contributions:

cobs = cv,obs (1/2 + α (φ)) (4.19)

ctar = cv,tar (1/2 − α (φ)) (4.20)

At sufficiently sharp sigmoids (c sufficiently large) this leads to the required transi-
tion behavior. The parameters, cv,tar and cv,obs, determine the relaxation rate of the
velocity dynamics in the two cases when either the obstacle or the target constraints
dominate.

The following hierarchy of relaxation rates ensures that the system relaxes to the
attractors and that obstacle avoidance has precedence over the target contribution:

λtar � cv,tar, λobs � cv,obs, λtar � λobs (4.21)

4.4 Implementation on Robodyn

The complete dynamic architecture was implemented and tested on the mobile plat-
form Robodyn.



Dynamic Approach to Behavior-Based Robotics 39

In the implementation, the dynamics of heading direction, path velocity and the
dead-reckoning equations are integrated numerically using the Euler method.

Sensory information is acquired once per computation cycle. The cycle time is
measured and is approximately 50 ms. As the time step must be smaller than the
fastest relaxation time on the system, this imposes minimal time scales on the entire
dynamical architecture. Thus the computational cycle time is the limiting factor for
determining the relaxation times of the dynamics in real time units and thus for the
overall speed at which the robot’s behavior evolves.

The rate of change of heading direction obtained from the dynamics of heading
direction (Equation 4.11) directly specifies the angular velocity, w, of the robot for
rotation around its center. This can be translated into the difference between left
and right wheel rotation speed. The path velocity, v, specifies the average rotation
speed of both wheels. Together, the rotation speeds of both wheels can be computed
and are sent as set point to the velocity servos of the two motors (see Section 3.3).

4.5 Experimental results

We first discuss a number of results demonstrating the properties of the path plan-
ning system, then the velocity control system, and finally we present some sample
trajectories of the vehicle in different scenarios.

4.5.1 Properties of the path planning dynamics

Decision making through bifurcations

The capability of the path planning system to make decisions is depicted in Fig-
ure 4.13, and discussed in more detail now. In the top Panel the robot faces two
obstacles that are sufficiently far apart to pass in between. In this case the corres-
ponding obstacle contributions to the vector field share little overlap. The resulting
obstacle avoidance dynamics has repellers corresponding separately to each obstruc-
tion, and an attractor in between, which attracts the robot to pass between the
obstacles. The target contribution also erects an attractor at the direction pointing
in between the two obstacles. Obstacle and target contributions “cooperate” and
give rise to a vector field with a strong attractor at that direction. Behaviorally this
means that the behavior corresponding to proceed straight to the target becomes
more stable, or put in another way, the decision to pass through the obstacles is
reinforced. In the bottom Panel, the robot faces again two obstacles but this time
they are positioned too close together for the robot to pass in between them. In
the illustrated situation four obstructions (i.e. four virtual obstacles) are detected:
two corresponding to the left obstacle while the other two to the right obstacle.
The repulsive force-lets from these four virtual obstacles are sufficiently overlap-
ping. Their superposition corresponds, therefore, to averaging among the repulsive
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Figure 4.13: Demonstration of decision making by the path planning dynamics: The
robot is placed at a distance 20 cm from the obstacles and facing them. The target lies
behind the obstacles. The two pictures in the left column illustrate two situations: In the
first (top of this column) the separation between the two obstacles is larger then the robot’s
size, while in the second (bottom of the column) the opposite holds. For each situation
two plots are presented. The first plot shows the individual repulsive force-lets(grey lines)
and their superposition (solid bold line). The second plot exhibits the resultant obstacles
contribution (dashed line), target contribution (doted line) and the resultant dynamics of
the heading direction (solid bold line). When the separation between the two obstacles is
larger than the vehicle size the path planning dynamics forms an attractor at the direction
pointing toward the passage. Conversely, the path planning dynamics erects a repeller at
this direction when the distance between the obstacles is not sufficient for the robot to
pass in between.
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force-lets, which leads to a single repeller in the obstacle avoidance dynamics, posi-
tioned at their average location. These two obstacles (or four virtual obstacles) are
thus behaviorally modeled as just one obstacle. The target contribution erects an
attractor at that direction. However, since the repeller from the obstacle constraints
is stronger than the attractor from the target constraint the resulting vector field
keeps a repeller at that direction. Behaviorally this corresponds to the decision of
steering away. Note that the resultant planning dynamics has two attractors, one on
each side of the repeller, which reflect the two possibilities, turning right or left. If
the robot turns left or right depends on which basin of attraction the heading direc-
tion is in. These decisions in the planning dynamics were investigated systematically
for a continuum of distance values between obstacles ranging from 80 cm down to 0
cm when the robot is at a distance of 20 cm from the obstacles. The resulting fixed
points are plotted in Figure 4.14 and their stability is indicated. When the obsta-

Figure 4.14: Bifurcation diagram of the path planning dynamics when the robot is at a
distance of 20 cm from the obstacles. Stable and unstable fixed points are indicated by
circles and squares, respectively. Pitch-fork bifurcation: The planning dynamics has an
attractor at φ = π/2 while the distance between obstacles is larger than 50 cm. For a
distance value smaller than 50 cm this attractor becomes unstable (i.e. a repeller) and
two new attractors appear. The value 50 cm is the bifurcation value and is the distance
below which the vehicle (with size 45 cm) cannot pass between the two obstacles.

cles are 80 cm apart the planning dynamics exhibits an attractor at the direction in
between the two obstacles. As the distance between obstacles is decreased a critical
value is reached where a bifurcation in the planning dynamics takes place. This
attractor becomes unstable and two new attractors appear (pitch-fork bifurcation1).
The bifurcation point is at 50 cm and is the distance below which the robot (with
size 45 cm) fails to pass physically between the two obstacles. Behaviorally, this bi-

1A bifurcation is called pitch-fork bifurcation when a stable fixed point becomes unstable and
casts off two stable fixed points.
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furcation leads to a qualitative change, i.e. a decision making, in the planned path.
For distances larger than 50 cm the robot passes straight through the obstacles to
reach the target while for smaller distances it turns around.

Decision making through bifurcations generated by the moving vehicle
itself

The bifurcation we have just described was induced by changing the environment
as sensed from the sensors, while the robot’s position and orientation were kept fix.
Now we show results where planning decisions arise during actual motion.

In Figure 4.15 the time course of the robot’s position and corresponding planning
dynamics, as the robot moves from an initial position toward the target location,
is shown. The robot faces two obstacles that are separated by a distance (20 cm)
smaller than the robot diameter. The target location lies behind the obstacles.

Initially (see Panel A) no obstructions are sensed by the infra-red sensors, thus
the obstacle contributions to the vector field of the planning dynamics are null. Only
the target contributes, the planning dynamics has therefore an attractor at the di-
rection at which the target lies, as seen from the current position. The heading
direction is relaxed in this attractor. As the robot approaches there is a distance for
which it starts to detect obstructions (Panel B). The obstacle avoidance dynamics
erects a repeller, at the average direction in between the two obstacles (π/2 rad),
which is weakly repulsive since the obstacles are still far away. The resultant vec-
tor field maintains the attractor at about the same position although its strength
of attraction is weakened. Behaviorally, the robot moves straight ahead. As the
robot continues approaching the obstacles an instability takes place (Panel C). This
because as the sensed distances to obstructions decrease the strength of the corres-
ponding repulsive force-lets increase. Thus the strength of the repeller erected by
the obstacle avoidance dynamics increases and eventually overrides the attractor,
leaving a repeller there and two atractors, one on each side which correspond to
the two possibilities, turning to the right or to the left. A bifurcation (subcritical
pitch-fork bifurcation) in the path planning dynamics has taken place. The system
has made a decision (no path is possible through the obstacles). As the distance
decreases even further the strength of repulsion of this new repeller increases (Panel
D) and strongly repels the heading direction of the robot from the direction it speci-
fies. The robot circumnavigates then the entire area in which obstructions have been
detected (Panel E). When it reaches the position indicated in Panel E another bi-
furcation takes place. An attractor replaces the repeller and the planning dynamics
pulls henceforth the robot to move toward the target.

If there is no opening between the obstacles, so that a single broad obstruction
is encountered (Figure 4.16), the same bifurcations take place and the robot follows
a qualitatively similar path. A new challenge is posed however. When too many
obstacle contributions are simultaneously activated, spurious attractors could hypo-
thetically arise: the pull to the left exerted by one contribution could be cancelled by
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Figure 4.15: Evolution in time of the robot’s position and corresponding heading direc-
tion dynamics as the robot moves toward the target. Initially the robot is positioned at
coordinates (0, 0) m facing two obstacles, which are separated by 20 cm (smaller than
the vehicles size). The target position is at (2.9, 0.0) m. Each picture in the left column
shows the robot position at a certain instant of time. For each robot position two plots
are presented. The first plot shows the individual repulsive force-lets (grey lines) and their
superposition (dashed line). The second plot illustrates the resultant obstacle contribu-
tions (dashed line), the target contribution (doted line) and their sum (solid bold line).
The arrow in the plots indicates the current value of the heading direction. The robot
moves ahead, toward the target, until it detects the obstacles. Since the spacing between
the obstacles is small the robot circumnavigates then both obstacles, through their right,
and eventually reaches the target(cont.).
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Figure 4.15: Continued.

the pull to the right of a next contribution. The figure demonstrates, however, that
even when multiple contributions are simultaneously activated, spurious attractors
need not arise.
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Figure 4.16: This figure is elaborated as explained in the Figure 4.15. The overture
between the obstacles depicted in that figure is here closed. The robot follows a qual-
itative similar path. It circumnavigates the long obstacle and successfully reaches the
target(cont.).
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Figure 4.16: Continued.

When the separation between the obstacles is sufficiently large the path fol-
lowed is qualitatively different. This is illustrated in Figure 4.17 where the overture
between the two obstacles was made just slightly larger (55 cm) than the robot size.
The time course of the robot position and corresponding planning dynamics is also
depicted. While the distance of the robot to the obstacles is larger than the range
of detection of the infra-red sensors no obstructions are detected and the resultant
vector field has an attractor at the direction pointing toward the target (Panel A).
The robot moves thus straight ahead. When the robot arrives at the position indi-
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cated in Panel B it detects two obstructions. At this point the angular separation

Figure 4.17: The obstacles depicted in Figure 4.15 are now placed at a distance of 55 cm
which is larger than the robot’s size. The qualitative path is therefore different. Here the
path is more direct. The robot passes through the overture in between the obstacles to
reach the target(cont.).

between the two obstructions, as detected from the current position of the robot, is
relatively small. The corresponding repulsive force-lets are sufficiently overlapping
and therefore these contributions are linearly dependent. Their superposition pro-
duces a repeller at their average angular distance. This repeller “competes” with
the attractor from the target dynamics. Because the strength of the attractor is
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Figure 4.17: Continued.

stronger than the repulsion of the repeller the resultant vector field maintains an
attractor, although less stable, at the direction at which the target is seen. The
robot continues driving ahead. As the robot approaches the obstacles their angular
separation, as detected from the current position of the robot, increases. The indi-
vidual repulsive force-lets become less overlapping. At a certain distance a phase
transition in the obstacle avoidance dynamics takes place. The sum of the repulsive
contributions now forms an attractor at that direction (Panel C). From this point
on, obstacle and target contributions cooperate and the resultant attractor is thus
more stable. In spite of the fact that the obstacle dynamics went through a phase
transition the complete vector field always produced a continuous varying attractor
solution, which smoothly tuned the robot movement through the narrow passage
toward the target.

Stability

We have just seen that as the vehicle moves the directions to the obstacles and the
target in the world change, thus the resulting attractor of the planning dynamics
shifts. Figure 4.18 shows, for the three examples presented above, how the time
courses of the heading direction track the time courses of the attractor solutions of
the heading direction dynamics. In each case, the system tracks one of the attractors
closely, except for those moments in time, when a bifurcation occurs, and some time
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is needed to relax to the nearest new attractor. These results demonstrate that the
complete dynamic planning system is stably coupled in closed loop to the sensory
information.

Figure 4.18: These three plots show the time course of the attractors and heading direc-
tion for each of the paths shown in Figures 4.15, 4.16 and 4.17 respectively. The attractors
are represented by circles, crosses and squares. The color of these symbols gives informa-
tion about the corresponding strength of attraction of the attractors they represent: The
darker they are the more stable the attractors are. The time course of the heading direction
is the black solid line.

4.5.2 Velocity control

To maintain the system stable, i.e. in or near an attractor, we guarantee that the
vehicle drives sufficiently slow so that the rate of shift of the attractors occurs at a
slower time scale than the time scale of the path planning dynamics. Figure 4.19
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illustrates the path velocity dynamics as the sensed world changes.

Figure 4.19: Evolution in time of the robot’s position and velocity dynamics as the robot
moves toward the target for the situation illustrated in Figure 4.16. Each picture in the left
column shows the robot position at a certain instant of time. For each robot position two
plots are presented. The first plot shows the resultant obstacle contributions Fobs (dashed
line), the corresponding potential U (solid thin line) and thresholded potential α (solid
bold line). The arrow indicates the current value of heading direction. The second plot
depicts the velocity dynamics and the arrow indicates the vehicle’s current velocity. The
trajectory is depicted as a sequence of points. The time interval between two consecutive
points of the trajectory is constant. Thus the plotted trajectory directly gives a perception
of the robot’s path velocity: The closer the points are the smaller the velocity is (cont.).
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Figure 4.19: Continued.

Panel A shows that when no obstructions are detected (indicated by negative
or zero α(φ) at the current heading direction) the robot velocity is stabilized by
an attractor, which is set proportional to the distance to the target, according to
the target constraint imposed by Equation 4.15. Conversely when obstructions are
detected (as illustrated in Panels B and C), α(φ) is positive at the current heading
direction, the velocity dynamics is governed then by an attractor whose value is
proportional to the minimal sensed distance to the obstructions if this minimal
distance is larger than 25 cm, otherwise its value is set proportional to dmin − 20
cm. This way the obstacle constraints are satisfied. Panel D shows what happens
in a situation where obstructions are detected but the robot’s heading direction is
outside the repulsion zone created by the obstructions (α(φ) negative). In this case
the velocity dynamics is dominated by the target constraint as we have just explained
above. The strengths of the attractors, erected by target or obstacle contributions
for the velocity dynamics, are adjusted according to Equation 4.21.

Again, as the vehicle moves the attractor for the path velocity dynamics, either
erected by the target or obstacle constraints, shifts. The system is able to follow the
attractor, however. This is depicted in figure 4.20.

4.5.3 Sample trajectories in complex environments

Figures 4.21 to 4.24 show sample trajectories of the robot as recorded by the dead-
reckoned robot position. The initial position of the vehicle is always considered the
referential point with respect to which the target coordinates (Xtarget, Ytarget) are
given. The vehicle stops running when the estimated distance to the center of the
vehicle to the target is equal to 30 cm. The error in this estimated distance and the
real distance varies between 10 and 20 cm depending on the length of the overall
path.

In the run depicted in Figure 4.21 the robot is initially placed inside a box.
The target position lies outside at coordinates (Xtarget, Ytarget) = (1.5,−1.5) m. As
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Figure 4.20: Time course of the attractor from the path velocity dynamics and robot’s
velocity along the path depicted in Figure 4.16. The attractor is represented by a cir-
cle. The color gives information about its strength of attraction. Darker color indicates
stronger attractor. The time course of the path velocity is the black solid line.

one can see, the robot first turns toward the target direction and circumnavigates
the detected obstacles that constitute the walls. It then finds the exit and continues
moving toward the target until it is inside the neighborhood of the target coordinates.

Figure 4.21: A sample trajectory of the robot as recorded by the dead-reckoned position.
Robot initial position is considered the reference point. The target is placed at a position
(1.5,−1.5) m with respect the reference point.

The two runs depicted in Figure 4.22 demonstrate the flexibility of the path gen-
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erating system. The results reported in subsection 4.5.1 have also demonstrated this
property, of course, but here the environment is more complex. Initially the robot
is positioned outside the box, in the bottom right corner. The target coordinates
fall inside the box ((Xtarget, Ytarget) = (−2, 1.8) m). In the first run (top Panel) the
robot circumnavigates the obstacles taking the top direction. It finds its way into
the box while successfully avoiding the walls and finally ends up stopping near the
target position. In the second run (bottom Panel) three obstacles indicated by A,
have been placed in front of the robot with respect to its departure position. From
this position the additional obstacles are not detectable, since they have been placed
at a distance larger then the sensors range. Initially, the robot attempts to reach
the target through the top direction as before. However, it detects that this way is a
dead-end. Therefore, it changes the direction of driving and once again successfully
reaches the target.

A longer run is illustrated in Figure 4.23. Initially, the robot is positioned in
the corridor of our lab. The target position lies inside a box in one of the offices,
(Xtarget, Ytarget) = (−3.2, 3.0) m. The robot drives along the corridor. Then, based on
the target contribution and helped by obstacle avoidance, the robot moves through
the office door. It circumnavigates the obstacles and eventually reaches the entrance
of the box. Finally, it stops near the target position.

All the results presented till now were obtained using distance measures provided
by infra-red sensors only, because it makes the computation cycle faster and thus
larger path velocities are possible. We end this section by illustrating the simulta-
neous use of infra-red sensors and sonars and the concomitant implications in the
generated path.

When infra-red sensors are used together with the sonars, sensory information
is acquired in the following way: The signal of each infra-red sensor is read only
once per each computation cycle as when they are used in isolation. In each com-
putation cycle five measures for each sonar are taken. In this case the cycle time
is approximately 70 ms. The distance estimate provided by a sonar is then taken
as the average among the five measures. This way errors due to specular reflexions
are reduced to a large extend. The “sensory fusion” between infra-red sensors and
sonars is performed through a very simple algorithm. In the overlap distances inter-
val (e.g from 45 to 60 cm) the minimum distance is taken as the estimated distance
to a detected obstruction.

Figure 4.24 illustrates how sensors distance range affect the generated path.
This figure shows two runs executed in the same scenario. The target position is at
coordinates (Xtarget, Ytarget) = (−1.0, 2.2) m with respect to the vehicle’s departure
position. In the first run only infra-red sensors have been used to measure distances
to obstructions. The maximal distance at which obstructions can be detected is 60
cm. Initially, the robot turns left in order to avoid the obstacles, indicated by A,
which lie on its right side. Then the robot attempts to reach the target through the
left direction. However it detects that this way is a dead-end (indicated by B). It
changes therefore its direction of driving and successfully reaches the target position.
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Figure 4.22: Flexibility of the path generating system is illustrated here. Top: the robot
is positioned initially at the lower left corner as illustrated. The target lies inside the box
at coordinates (−2, 1.8)m with respect to the departure position. The generated trajectory
that brought the system from its initial position to the target location is depicted. Bottom:
Here additional obstacles have been added to the configuration in a form that blocks the
previous path. The resultant trajectory takes a different course.

In the second run (depicted on the right side of the figure) both infra-red sensors
and sonars are used. The maximal distance at which obstructions can be detected
is now 175 cm. The robot starts detecting obstacles for larger distances and as a
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Figure 4.23: Another and longer trajectory is depicted here. The robot is initially placed
at the corridor. The target location is inside an office at coordinates (−3.2, 3)m relative
to the departure position.

consequence it can anticipate which direction to move. The dead-end is detected
earlier.

As we can see from the results the dynamic path planning system leads to smooth
collision free trajectories to the target. The result is valid for both types of sensors.

4.6 Conclusion

In this chapter we have demonstrated that the dynamic approach to path generation
can be used even in the absence of veridical representations of obstacles as objects
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Figure 4.24: Two sample trajectories of the vehicle as recorded by the dead-reckoned
position are depicted. The target is placed at coordinates (−1.0, 2.2) m with respect
to the robot’s initial position. Left: Only infra-red sensors have been used to measure
distances to obstructions. Right: Distance measures to obstructions have been provided
by infra-red sensors and sonars.

in the world. The information from distance sensors is directly used to define con-
tributions to a dynamical system of path planning. Heuristically, the sum over such
contributions has attractors that specify collision free directions toward the target.
Target and obstacle constraints also define contributions to a dynamical system of
path velocity. The generated trajectories are smooth. Flexibility is achieved in that
as the sensed environment changes, the system may change its planning solution
continuously, but also discontinuously.

Because this dynamic path generation system is a local form of path planning
one cannot guarantee that the trajectories toward a target are optimal with respect
to the overall traveled path.

The proposed solution involves explicit design and all system parameters can
be specified rationally based on the qualitative theory of dynamical systems and
bifurcation theory. The system never entered into spurious attractors.

Although we did not show here it for technical reasons, the dynamic architecture
works for dynamic environments, as long as the rate of change of the environment
is slow compared with the relaxation time of the planning dynamics. No concep-
tual difference exists between stationary and moving obstacle avoidance. Avoiding
moving obstacles is shown on a video demonstration.

Since motion planning is just a piece in the way robots interact with their world,
a next direction is to integrate this motion planning system with the related problem
of target detection and localization.



Chapter 5

Demonstrating the dynamic
approach on the 8-bit
micro-controller based platform

We have seen that the dynamic approach proposes a set of concepts with the help of
which autonomous systems can be specified and designed. While the approach builds
systems from elementary behaviors driven by behavior-specific sensory information,
it also represents behaviors internally in terms of the state of dynamical systems,
thus positioning itself somewhere between classical and behavior-based approaches.

This chapter demonstrates that the dynamic approach also lends itself naturally
to implementation on computationally very weak platforms, such as an 8 bit micro-
controller based vehicle, working with very low level sensory information.

Obstacle avoidance and target acquisition are implemented on Rodinsky. Ob-
stacle avoidance is based on using the five infra-red detectors as distance sensors.
Target acquisition consists of photo-taxis and is based on two photo-resistors.

We show how theoretical design, software simulation, and hardware implemen-
tation are tied effortlessly.

As a technical novelty we demonstrate the integration of dynamics at two differ-
ent levels of temporal derivative (see also Bicho and Schöner, 1997a).

5.1 Photo-taxis

As a simple form of sensory driven target acquisition we implement the task of
photo-taxis , that is, the task of moving toward light sources ( see Schone, 1984, for
the biological background). This obviates the need for explicit representation of ego-
position and its updating through dead-reckoning or other means (but see Stein-

hange and Schöner, 1997) for a dynamic approach toward such ego-position
representation). The idea is, essentially, to provide a dynamic version of Brait-
enberg’s proposal (Braitenberg, 1984). Braitenberg pointed out, that the mere

57



58

feed-forward connection of two light sensors, mounted side by side, to two motors,
driving the wheels of a single axle vehicle, can be organized to generate photo-taxis.
For instance, the left light sensor might be connected to the left wheel such as to
drive the wheel the faster the less light is sensed, and, correspondingly, the right
light sensor would drive the right wheel the faster the less light is sensed. This leads
to that wheel turning faster, on the side of which less light is sensed, so that the
vehicle turns toward the brighter side. The result is orientation toward light sources,
that is, photo-taxis.

This proposal can be implemented quite directly using, for instance, simple feed-
forward neural nets. However two problems must be addressed. First, such simple
taxis behavior must be integrated with other behavioral constraints, here for in-
stance, with obstacle avoidance. Second, and relatedly, the properties of the taxis
behavior must be characterizable so as to determine parameter values on a rational
basis and to specify the temporal and spatial limits within which performance can
be guaranteed. Both problems are solved by implementing the Braitenberg proposal
within the dynamic approach. Integration with obstacle avoidance is discussed in
the next section. The resultant behavior can be characterized in terms of linear sta-
bility theory. Because these dynamics in isolation do not undergo bifurcations, the
result is equivalent to standard control theoretic solutions. The present formulation
lends itself to integration with the obstacle avoidance module (cf. Section 5.2).

Light intensity is sensed by the two photo-resistors, one mounted on the left,
one on the right side of the vehicle (see Figure 3.1). The output voltage of these
photo-resistors, Ii (i =left or right), is a monotonically decreasing function of light
intensity. Because the intensity of the light source, the geometry of surfaces in the
surround and their reflectances all are unknown, the photo-resistors cannot be said
to specify a direction in space in which the target lies. Translating Braitenberg’s
proposal into dynamics, we can say, however, that each light specifies a turning
rate. For instance, the left photo-resistor can be constructed to specify turning to
the right, while the right photo-resistor, correspondingly, specifies turning to the left.
These turning rates increase with voltage (that is, decreasing with light intensity),

ωleft = −ctargetIleft (5.1)

ωright = ctargetIright (5.2)

(keep in mind that φ is mathematically positive, so that negative ω = φ̇ means
turning right). Thus, when the left sensor receives more light than the right sensor,
Ileft is smaller than Iright and hence the rate of turning right is smaller than the rate
of turning left. The vehicle would turn left toward increasing light intensity.

The averaging among the two specified turning rates is done by a dynamical
system

dω

dt
= gtaxis(ω) = gleft(ω) + gright(ω) (5.3)
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Figure 5.1: Two contributions for photo-taxis to the dynamics of turning rate are super-
posed (bold curve) leading to an attractor at an averaged turning rate because we use
rather broad range functions. On the left, the right sensor receives much less intensity
than the left sensor, which leads to an attractor at positive turning rates. On the right,
both sensors are similarly stimulated leading to an attractor close to zero turning rate.

with two additive contributions, each defining an attractive force-let (i = right or
left) centered at the turning rate value specified by the corresponding light sensor:

gi(ω) = − 2

τtaxis,ω

(ω − ωi) exp

[
−(ω − ωi)

2

2∆ω2

]
(5.4)

The time scale of this taxis dynamics, i.e. the relaxation time to the resultant at-
tractor, is specified by τtaxis,ω. As illustrated in Figure 5.1, we use a broad range
function (∆ω larger than the maximal values of ωi) to average these two forces
so that the resulting dynamics exhibits only one attractor, at positive or negative
turning rates depending on which sensor detects more light intensity. For instance,
when the left sensor receives more light intensity than the right sensor, the resulting
dynamics leads to an attractor at positive turning rates, which implies turning to
the left (left side in Figure 5.1). Conversely, when the right sensor receives more
light intensity than the left sensor, the resulting dynamics exhibits an attractor at
negative turning rates, which implies turning to the right. When both sensors are
stimulated by similar light intensity the resulting dynamics has an attractor close
to zero turning rate (right side in Figure 5.1).

5.2 Obstacle avoidance dynamics defined at the

level of turning rate

In Chapter 4 we have defined a dynamics for obstacle avoidance using the heading
direction of the vehicle, φ, in an arbitrary but fixed world reference frame as a
behavioral variable. As we have just analyzed in the previous section, it turns
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out to be difficult to express photo-taxis at this level since the difference of light
intensity sensed on either side of the vehicle does not specify a direction, in the world,
toward which to move in the absence of a world model (of the light source and the
surrounding reflective surfaces). Nevertheless, we have shown how a dynamics for
the turning rate, ω(= φ̇), can be defined that has the adequate attractor to achieve
photo-taxis. Thus, integrating an obstacle avoidance dynamics as it was specified
in Chapter 4 with photo-taxis dynamics which was defined at the level of turning
rate involves integration of dynamics at two different orders of temporal derivative
of the dynamical system. To achieve this, we must find a way to lift the dynamics
for obstacle avoidance from the level of φ to the level of φ̇ (i.e. ω).

This lifting can again be based, of course, on the basic concepts of the dynamic
approach. We must ask which state at the level of ω is specified by the obstacle
contributions and then we use bifurcation analysis to select the adequate functional
form. Quite simply, while the heading direction is outside the repulsion zone created
by the obstacles or when obstacles are very far way (λi ≈ 0, in Equation 4.2), obstacle
contributions (given by Equation 4.1) are small (Fobs ≈ 0) and do not specify any
change of heading direction. This can be expressed by specifying an attractor for
a dynamics of ω at ω = 0 (“move straight ahead”). Inside the repulsion zone at
sufficient strength of the contribution, the attractor at ω = 0 must turn into a
repeller (“do not move straight ahead”). This transition can be modeled by a pitch-
fork bifurcation, which stabilizes two new attractors at positive and negative turning
rates ±ω �= 0. Its normal form

dω

dt
= αtaxisω − γtaxisω

3 (5.5)

is illustrated in the top row of Figure 5.2. (See e.g., Perko, 1991), for the mathe-
matical background). At γtaxis > 0 fixed, the dynamics is switched by αtaxis from a
regime with a single fixed point attractor at ω = 0 (αtaxis < 0, top left in Figure 5.2)

to a regime with two fixed point attractors at ±
√

αtaxis/γtaxis (turning either left or

right) (αtaxis > 0 top right in Figure 5.2). Thus, αtaxis must change sign as function
of whether the obstacle contributions are sufficiently weak or not and as a function of
whether or not the current heading direction is in the repulsion zone of the obstacle
contributions.

Applying a sigmoid threshold function to the potential function, U , of the ob-
stacle avoidance dynamics at the level of heading direction (i.e. Equation 4.17) such
as

αtaxis(φ) =
arctan[cU(φ)]

π
(5.6)

therefore generates the desired transition behavior. The parameter c determines the
size of the transition zone. This function is depicted in Figure 4.12.

This analysis was entirely local to ω = 0. It did not take into account that in
the presence of repulsive forces these also specify something beyond the immediate
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Figure 5.2: The dynamics of turning rate for obstacle avoidance are shown, on top, in the
form of Equation 5.5 and, on bottom, in the form of Equation 5.7. (a) The single attractor
at ω = 0 for negative αtaxis bifurcates in a pitchfork bifurcation into (b) two symmetric
attractors for turning left or right at positive αtaxis. This bistability generates hysteresis,
which ensures that a decision to turn either way persists sufficiently to suppress oscillations.
The symmetry of this dynamics is reduced by adding a constant term proportional to the
obstacle forces, Fobs. In (c) this constant is positive, enlarging the basin of attraction
of the attractor at positive turning rate, but maintaining bistability. In (d) the obstacle
forces are so large and positive that the attractor at negative turning rate has undergone a
tangent bifurcation and the system is now exclusively governed by the attractor at positive
turning rate.

vicinity of zero turning rate. In fact, from the sign of the obstacle forces, Fobs given
by Equation 4.4 (see Figures 4.6 and 4.7), we can read off, whether an attractor at
positive turning rate or an attractor at negative turning rate should be stabilized.

When Fobs is positive at the current heading direction means that the obsta-
cles are to the right and the robot must therefore turn left. Conversely, when the
obstacles are to the left Fobs is negative and the robot turns right.

Again, it is useful to think of the limit in which a bifurcation is generated: For
sufficiently positive obstacle forces we want to eliminate the attractor at negative
turning rates so that only an attractor at positive turning rates remains. Conversely,
for sufficiently negative obstacle forces the attractor at positive turning rate must
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disappear. These bifurcations can be modeled by tangent bifurcations induced by
the obstacle forces:1 For positive and increasing obstacle forces we can make the
attractor at negative turning rates and the repeller at zero turning rate to move
in the direction of each other such that they eventually collide and eliminate each
other. Similarly, for negative and increasing obstacle forces the attractor at positive
turning rates and the repeller at zero turning rate can be made to approach each
other and finally cancel each other.

To integrate the tangent bifurcations with the pitch-fork bifurcation, we only
need to add a term which is a function of the obstacle forces. To compute this term,
we multiply the obstacle forces, Fobs with αtaxis+1/2, which is infinitely close to zero
wherever the obstacle contributions fall below a threshold. This way the attractor
at ω = 0 is not shifted unnecessarily when obstacle contributions are weak. The
resultant obstacle avoidance dynamics

dω

dt
= gobs(ω) = (αtaxis +

1

2
)cw,obsFobs + αtaxisω − γtaxisω

3 (5.7)

is illustrated in the bottom row of Figure 5.2 for two different positive values of
Fobs. On the left, the positive obstacle forces enlarge the basin of attraction of the
attractor at positive turning rate. The attractor at negative turning rate continues
to exist, however, so that the system is stabilized by hysteresis if it arrives at this
situation while turning right. For even larger positive obstacle forces, the attractor
at negative turning rate is eliminated by a tangent bifurcation (the dynamics lifts
off the ω-axis) and only the attractor at positive turning rate remains. The system
is thus mono-stable.

Figure 5.3 summarizes the situation by showing the four regimes arising from a
single, finite strength force-let:

1. Outside the range of repulsion of the force-let the dynamics of turning rate is
mono-stable with an attractor at ω = 0 (“move straight ahead”).

2. To the right of the direction, ψobs, into which the obstacle lies, negative values
of fobs specify turning right, corresponding to an attractor at a negative value
of ω < 0.2

3. To the left of that direction, positive values of fobs specify turning left, corres-
ponding to an attractor at a positive value of ω > 0.

1A bifurcation in which occurs a sudden appearance and then splitting of a fixed point (or
conversely) is called a tangent or saddle node bifurcation. It is called a tangent bifurcation because
the curve dω/dt = gobs(ω) becomes tangent to the ω axis at the bifurcation value.

2Note that we use the mathematical convention for direction so that heading direction increases
for counter-clockwise rotation (turning left).
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Figure 5.3: This figure illustrates how the different regimes of a single repulsive obstacle
“force-let” (depicted at the center) are modeled at the level of turning rate. The outer
regime far from the specified direction leads to a mono-stable dynamics of turning with
an attractor at zero turning rate (top). For the direction in which the obstacle lies (center
region) a bistable dynamics with attractors at a positive and a negative turning rate, and a
repeller at zero turning rate is erected (bottom center). In the regime of negative obstacle
force (left) a dynamics with an attractor at negative turning rates is defined (bottom left).
Correspondingly, for positive obstacle force an attractor at positive turning rate is defined
(bottom right).

4. In the center zone, that is, for heading directions close to ψobs, turning either
left or right is specified as a bistable dynamics of turning rate with attractors
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at finite ±ω �= 0.

The transition from the center zone into either of the neighboring zones (i.e.
transition from (4) to (2) or (4) to (3)) is a tangent bifurcation, while the transition
to the outer zone (i.e. transition from (2) to (1) or (3) to (1)) is continuous and does
not involve an instability. The pitch-fork bifurcation (i.e. from (4) to (1)) emerges
as the strength of repulsion, λi (in Equation 4.1), decreases with increasing sensed
distance (as defined by Equation 4.2).

The design is completed by a formal analysis of the phase diagram of the com-
plete second order dynamics. The heading direction, φ, itself is always marginally
stable. Turning rate, ω, is stable at either zero or one of the non-zero values. The
attractor at zero turning rate has a relaxation time specified by τobs,ω=0 = 1/ | αtaxis|,
while the relaxation rate of the non-zeros values, τobs,ω=±ω, is slightly larger than
1/(2 | αtaxis|).3 The parameters are constrained by the requirement that relaxation
be sufficiently fast so that the system is close to its attractor at all times. At first
sight, this might appear to be a vacuous condition, since the time units of the beha-
vioral dynamics are really arbitrary. This requirement, nevertheless, constrains the
system because the time units of the dynamics are limited by the realizable sensory
throughput and by the computational cycle. Specifically, time scales must be chosen
such that given the computational cycle (during which sensory information must be
updated), the dynamics is numerically stable. Therefore, relaxation times must be
larger than the computational cycle time. The constraint that the dynamics has
relaxed then in turn limits the achievable turning rates of the vehicle.

5.3 Behavior integration

Because we have formulated both behaviors at the level of turning rate, integration
of these two behaviors simply consists of adding the corresponding contributions to
the vector-field

dω

dt
= gobs(ω) + gtaxis(ω) (5.8)

Precedence of obstacle avoidance is expressed by adjusting the time scale of obstacle
avoidance to be faster than the time scale of photo-taxis.

Because the system moves or the environment changes, sensory information is
time dependent and thus the value of turning rate at which the resulting attractor is
erected is also time dependent. Relaxation to the attractor can be enforced only if
we have some handle on the rate at which sensory information might change. That
rate of change can be specified by controlling the path velocity, v, of the vehicle
such that it drives sufficiently slow. This way the attractor shifts on a much slower
time scale than the characteristic relaxation time of the system and thus we can

3This is the relaxation time of the attractors, ±√
αtaxis/γtaxis, of ω̇ = αtaxisω − γtaxisω

3 when
αtaxis is negative.
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guarantee that the system tracks the moving attractor. The velocity is controlled
by the velocity dynamics presented in the previous chapter.

Finally, the following hierarchy ensures that the system is close to the attractor
and that obstacle avoidance has precedence over the photo-taxis contribution:

1/τtaxis,ω � cv,tar, 1/τobs,ω � cv,obs, τtaxis,ω � τobs,ω (5.9)

where cv,tar and cv,obs are the parameters that determine the relaxation rate of the
velocity dynamics in the two cases when either the obstacles or the target constraints
dominate (see Section 4.3).

5.4 Simulations

Equivalence of obstacle avoidance behaviors

Figure 5.4 shows runs generated from a software simulation. The vehicle is depicted
by a circle with a hair indicating its heading direction. The initial robot position
is indicated by a small circle inside the box with a single entrance. The outer
perimeter and the shaded regions are simulated obstacles. The path is shown as a
sequence of points. The left side of the figure shows a run based on the obstacle
avoidance dynamics defined at the level of heading direction, φ, as it was specified
by Equation 4.4 in Chapter 4. On the right side we illustrate that this second order
obstacle avoidance dynamics works in simulation equally smoothly and in similar
fashion as the first order dynamics first implemented.

Complete system

Figure 5.5 shows a simulation run of the complete system which demonstrates the
smooth behavior consistent with all imposed constraints.

5.5 Implementation on Rodinsky

For implementation of the dynamical equations a simple Euler algorithm was written
in Interactive C. Note that the dynamics at the level of heading direction does not
need to be integrated. Because the system operates close to attractors of known
stability, the maximal permissible step-size can be computed from the relaxation
times of the attractors (time scales of the two contributions). The required cycle
time needed to make one computational step delimits the time scales of the dynamics
that can be realized by the system in real time. The transformations from sensor
readings to the various distance dependent strengths, ranges and speeds were stored
in lookup tables. A single computational step was made for each loop of sensory
information acquisition. The cycle time in this form of operation is approximately
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Figure 5.4: Runs generated from a software simulation of the obstacle avoidance dynamics
are shown. The sensor model here consisted of measuring directly the distances from the
robot to obstacle surfaces, through ray-tracing, in the directions of the five vehicle mounted
infra-red sensors. The outer perimeter and the shaded regions are simulated obstacles. The
vehicle is represented by a circle with a hair indicating its heading direction. The initial
robot position is depicted by the small circle inside the box with a single entrance. Initial
heading direction is 90 deg. The left part of the figure shows a run based on the first order
dynamics given by Equation 4.4, the right part shows a run based on the dynamics lifted
to second order as defined by Equation 5.7.

157 msec. We used the parameter settings obtained from analytical work and tested
in the simulations. The system worked immediately.

5.6 Results of the implementation

The most striking feature of the system is its smooth behavior which seems to
react anticipatorily to upcoming changes. This is due to how the dynamic approach
permits information from various sources to affect in a graded fashion the generated
behavior.

We filmed the robot motion as viewed from top in a few simple situations (which
were limited by the space available within the viewing range of the camera). Fig-
ure 5.6 illustrates the robot’s behavior through a sequence of video images. The
situation is the simplest scenario testing the obstacle avoidance behavior by setting
it in conflict with the target acquisition component: Initially, the robot is separated
from the target (light source) by a row of obstacles, which consisted in four inverted
plastic glaces. The robot moves along a curved path around the obstacles to reach
the target.

In Figure 5.7 we illustrate a more complex scenario. Initially, the robot is posi-
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Figure 5.5: This figure shows a run of the complete behavioral dynamics implemented
in software simulation. The same conventions as in Figure 5.4 apply. The light sensor
is modeled by assuming that within an angular range of 75 deg, light intensity falls off
hyperbolically with the distance between the light sensor and light source. The sensors
are assumed to be mounted at a distance of Rrobot symmetrically and forward-looking.
Initially, the robot is inside the “box” heading toward a light source indicated by a cross
marked “1” outside the box. The obstacles are assumed not to block vision. The obstacle
avoidance contribution steers the vehicle out of the box toward the target. Once the target
is reached, the simulated light source is shifted to the position marked by a cross labeled
“2”, and so on, until target number “5” is reached again inside the box. Note, that in
addition to escape from a box, this simulation illustrates successful navigation in cluttered
environments when moving from position “4” to position “5”.

tioned in a box heading toward the right (white arrow), so that it is pointing away
from the only exit from the box (at the lower left corner of the box). The light source
is off during that period. The robot finds the exit and, in this case, roams around
in the absence of a luminosity gradient. At some point, the light inside the box is
turned on. The robot finds its way back into the box, while successfully avoiding
the side walls. It ends up stopped in front of the light source. Stopping comes about
due to the velocity control dynamics.

We also tested for oscillations near narrow passages and for escape from U-
shaped obstacles. For both, performance is very good, due to the stabilization of
zero-turning in the second order dynamics. The absence of memory is a limitation,
leading to meandering paths in complex obstacle arrays.
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Figure 5.6: A sequence of video images filmed from above illustrates the motion of the
real robot. Time increases from top to bottom, first along the left column, then along the
right column. The vehicle is the dark round object, located in the first frame in the lower
left corner. A light source is visible in the top right corner. Four plastic cups are obstacles
blocking the direct path for the robot toward the light source. The images show these
cups as black dots, but the shadows are visible as well. The work space is delimited by
pieces of cardboard, which are likewise detected as obstacles. The robot moves smoothly
around the obstacles toward the light source, stopping in the final frame in front of the
light source.
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Figure 5.7: This video image illustrates a more complex scenario. The initial position
of the robot is shown by a dashed white circle, with a white arrow indicating its initial
heading. The dark fuzzy shades are cardboard walls, enclosing the robot except for an
opening near the center of the image. Initially, the light source visible in the upper right
corner is off. The trajectory of the robot was reconstructed using a PC based video tracking
system. The white solid line tracks out the robot trajectory, with arrows indicating the
direction in which the trajectory is run through. After leaving the enclosure, the robot
wanders around until the light source within the half-open box is turned on. The robot
then finds its way back into the box and stops in front of the light source. The final
configuration of the robot is indicated by the solid black circle and black arrow.



70

5.7 Conclusion

We have demonstrated that the dynamic approach can be implemented to work
with very low level sources of sensory information, here five infra-red sensors and
two photo-resistors. This is in spite of the conceptual commitment of the dynamic
approach to explicit representation of the internal behavioral state and of the beha-
vior specified by sensory input. Moreover, a dynamic architecture including control
of turning rate and driving velocity based on constraints from obstacle avoidance,
target acquisition and the requirement to stabilize a maximum rate of change of
the attractors positions was implemented on a slow 8 bit micro-controller with only
32 KByte of memory (the code takes up 8 Kbyte). The results demonstrate that
computational cost is not a limiting factor of the dynamic approach.



Chapter 6

Dynamic field model for target
representation based on low-level
sound sensors

How can low-level autonomous robots with only very simple sensor systems be en-
dowed with cognitive capabilities? Specifically, we consider a system which uses 7
infra-red sensors and 5 microphones to avoid obstacles and acquire sound targets.
The cognitive abilities of the vehicle consist of representing the direction in which
a sound source lies. This representation supports target detection, estimation of
target direction, selection of one out of multiple detected targets, storage of target
direction in short-term memory, continuous updating of memory, and deletion of
memorized target information after a characteristic delay. We show that the dy-
namic approach employed to control the motion of the robot can be extended to the
level of representation by using dynamic fields to interpolate sensory information.
We show how the system stabilizes decisions in the presence of multi-value sensorial
information, and how it activates and deactivates memory. Smooth integration of
this target representation with target acquisition, in the form of phono-taxis , and
obstacle avoidance is demonstrated.

6.1 Introduction

Autonomous vehicles are robotic systems that are not only able to control their
motion in response to the sensory information acquired by themselves, but are also
able to act intelligently (or flexibly) in their environment. Acting in an intelligent
way requires the system to exhibit some cognitive capabilities. This means that
the system must be able to behave autonomously even in response to environmen-
tal constraints not directly linked to online sensory information. Moving toward
an occluded target, for instance, requires memory. That memory must be updated
when sensory information is again available, or must be deleted if such information
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continues to be unavailable over a characteristic period of time. Making and stabi-
lizing a decision in the presence of multi-valued or ambiguous information is another
form of cognitive capability, in that such decisions are not directly dictated by the
incoming sensory information. We speak of representations of information when the
processing of sensory information generates such cognitive capabilities.

Over the last decade or so, some controversy has existed regarding the appro-
priate role of representations within robotic systems. At one extreme, the use of
symbolic representations has been viewed as an impediment to efficient and effec-
tive control of autonomous robots, by roboticists subscribing to a behavior-based
approach (Brooks, 1991; Connell, 1990). On the other hand, it has long been
assumed and argued that strong forms of representation are needed when robots
are aimed at, that perform in ways that go beyond the purely reactive (Chatila,
1991). A consensus, which appears to emerge now, does no reject representations
as such, but emphasizes their integration within the architecture of an autonomous
robot (Arkin, 1998).

The dynamic approach to autonomous robotics was developed initially as a
method of planning within representations of the navigable space (Schöner and

Dose, 1992). The first implementations involved relatively high-level systems with
ample computing power and vision as primary source of sensory information (Schö-

ner, Dose and Engels, 1995). For such systems it has been shown, that the
approach is not limited to the realization of relatively simple control behaviors,
such as obstacle avoidance and target acquisition, but may generate sub-symbolic
memory (Engels and Schöner, 1995), or the representation of computed metric
information and its association with sensory input (for ego-position estimation see
Steinhage and Schöner,1997, for instance).

That there is nothing in the approach that actually requires us to work at such
a relatively high level of abstraction has been demonstrated in the two previous
chapters (see also Bicho and Schöner, 1997a; Bicho, Mallet and Schöner,
1998) where we have implemented obstacle avoidance and target acquisition on two
low-level platforms with very modest computational power and low level sensorial
information. These systems were reactive, however, lacking cognitive capabilities.

In this chapter we are exploring the extent to which the dynamic approach can
be used to generate cognitive properties in lower-level platforms. Specifically, can
continuous metric representations be derived from low-level sensory information, de-
cisions be stabilized on such representations, sub-symbolic memory and processes
operating on memorized information (e.g. suppression of outdated information) be
implemented? This transfer to lower levels of sensory information is not trivial. The
high-end systems deal with such cognitive functions essentially by compressing large
amounts of sensory information as obtained from computer vision into reduced rep-
resentations. The dynamic decision making and memory operations could be viewed
as sophisticated forms of noise removal and model-based estimation. By contrast,
low-level sensors typically provide very limited amounts of sensory information. For
instance, a small set of microphones provides a very coarse-grained sample of the
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ambient distribution of sound intensity. From this sample, a stable and graded
representation must be derived. The nature of the problem is thus changed from
information compression and noise removal towards interpolation. In both cases,
integration of the representations with stable action planning and control must be
achieved.

We answer these questions in the affirmative by demonstrating the cognitive
properties of a simple target representation system where targets are defined as
sound sources (see also Bicho, Mallet and Schöner, 1999). A dynamic field
representation of the spatial direction in which sound targets are detected is con-
structed. The robot receives sensory information from five weakly directional mi-
crophones that scan the forward 180 degree semicircle. Input to the field is thus
a two dimensional sound panorama (intensity versus direction). A dynamic neural
field representing sound target direction is endowed with the capacity to make and
stabilize decisions in response to multi-valued sensory information (such as when
two sound sources lead to a bimodal input distribution). Strong recurrent connec-
tions in the dynamic field lead to sub-symbolic memory that enables the robot to
continue moving toward a sound source even when it is temporarily silenced. A pro-
cess of adaptation is constructed which gradually reduces the stability of memorized
information so that a memorized target orientation is deactivated if no confirmatory
sensory information is received within a particular time span. This dynamics of
target representation is coupled into the dynamic architecture for target acquisition
and obstacle avoidance that has been previously established in Chapter 4 (see also
Bicho, Mallet and Schöner, 1998; Bicho, Mallet and Schöner, 1999b).
Results obtained from the implementation prove the capacity of the system to per-
form target detection and localization, target selection, and to exhibit temporary
knowledge (memory and forgetting). Smooth overt behavior and the ability to track
and follow moving sound sources are also demonstrated.

This chapter is structured as follows: In section 6.2 we review some related work.
Dynamic fields for behavior representation are presented in section 6.3. Next, in
section 6.4 the dynamic field representing sound targets is specified. Its integration
with the movement control architecture is explained in section 6.5. A view of the
implementation details of this architecture on a robot platform are given in section
6.6. Experimental results are described in section 6.7. The chapter ends with
discussion and conclusions in section 6.8.

6.2 Related work

Moving toward sound sources is called phono-taxis in biology (Braintenberg,
1984) and one may think of our system as a simple, although cognitive, realization
of this basic behavior of organisms. Phono-taxis is exhibited by quite simple ner-
vous systems. For example, in cricket mating, the male cricket attracts a female by
generating noise. Successful mating entails detection, recognition and localization
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in space of the mating sound, and movement toward the sound source (Cade and

Cade, 1992). This example illustrates that there are two fundamental problems
solved by the female cricket: The incoming sound signal must be detected and rec-
ognized as the call of a male member of the species. This detected signal must then
be used to locate the source of the sound. This biological example has inspired
work on low-level robots to test hypothesized control mechanisms that account for
phono-taxis in crickets (Webb, 1995). An interesting robot model is reported in
Lund, Webb and Hallam (1997). They tested their robot in a number of exper-
iments based on cricket research. They reproduce a set of behaviors including signal
choice, which have often been taken as evidence for complex mechanisms that go
beyond purely peripheral nervous control. In their model, however, phono-taxis is
implemented through a simple control-system-like mechanism. The model therefore
does not have any cognitive capabilities (e.g., no memory, no representation of direc-
tion other than by physically rotating the robot). The model also does not address
integration of phono-taxis with other behaviors such as the avoidance of obstacles
during movement toward the sound source.

A simple realization of taxis behaviors can be based on the rule of turning left
if left-looking sensors detect more signal than right-looking sensors and conversely.
Using nonlinear dynamical systems, this qualitative form of control can be integrated
with other behaviors, in particular, with obstacle avoidance (Chapter 5, Bicho and

Schöner, 1997a). Such a solution fails, however, to explicitly represent the spatial
direction toward the target source. That direction is only represented implicitly by
the physical orientation of the robot once the control mechanism has stabilized. The
presence of other constraints such as obstacle avoidance, distorts even this implicit
representation. It is therefore not possible, based on this simple algorithm, to per-
form additional computations on the target information, such as memorizing that
information, or steering at a given angle relative to the sound source (in order to per-
mit, for instance, multiple sound emitting robots to drive in formation). Moreover,
this simple mechanism does not support explicit decision making and stabilization
of decisions when sensory information is ambiguous, for instance, because sound
from two different sources impinges on the sensors with comparable intensity.

There is a considerable amount of modeling work on sound localization by higher
level nervous systems, including models of spatial hearing in humans (Mills, 1972;
Shamma, Shen and Gopalaswamy, 1989; Blauert, 1996; Duda, 1996). Binau-
ral processing is the mechanism through which humans (and some animals, like for
example the Barn Owl) localize sound. In humans, this entails exploiting inter-aural
intensity differences (for the estimation of the elevation of the source) and inter-aural
time differences (for the estimation of the horizontal orientation of the source). Some
technical systems for sound localization have used arrays of microphones measuring
differences between the signals received at the different microphones. An example,
which was aimed at robotics as its major application, is described in Guentchev

and Weng (1998). This system does not deal with multiple sources.

The approach adopted in this chapter is very close to mathematical models of
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biological systems for target localization and selection, in which the prey localization
and selection by frogs and toads (Chipalkatti and Arbib, 1987; House, 1988)
has been described using neural fields (Amari, 1977). In these species, prey catching
is triggered by very low level visual cues (Ewert, 1974). These models remained
somewhat limited at the time as they did not deal with continuous updating of
the target representation in time, nor with the integration of such a representation
into other ongoing behaviors (the goal of the models was not, of course, to create
autonomous robots).

Outside the particular angle provided by analogies with biological systems, re-
lated problems are addressed in robotics in the domain of target tracking. The
location, velocity and other attributes of multiple moving objects are estimated
from sensor data. Modern systems for target tracking often use multiple physically
distributed sensors of different types to provide complementary and overlapping in-
formation about targets. Thus fusion is necessary to extract the relevant information
on the targets and integrate that information across different sensor systems. Func-
tional architectures for tracking thus require the two operations of data association,
establishing which sensory measurement belongs to which target, and estimation
(Liggins, Kadar and Vannicola, 1997). A wide array of established methods
of estimation exist. In most cases estimates of the state of each target (e.g., position
and velocity) are based on a model of the target and its motion.

Such methods have, to our knowledge, not been directly applied to the problem
of estimating the direction in which a sound source lies. This may be due, in
part, to the limited practical importance of this problem for the target tracking
community. A more fundamental problem may be, however, that a good model of
sound propagation is difficult to establish without taking recourse to a substantial
amount of measurements to establish the geometry and reflective properties of the
environment.

6.3 Dynamic fields for representation

More abstract forms of behavior or processes cannot be realized with attractor dy-
namics of the type described in the previous chapters. Examples in the present
context are:

1. Target detection, in which a target is indicated only if sensory information is
sufficiently strong and convergent while the absence of a target is signaled for
weak or disperse sensory information.

2. Interpolation, that is, the capacity to make continuous estimates of the target
location when sensory information is provided by a discrete array of sensors.

3. Computations on distributed representations of sensory information in which
multiple instances of a sensed quality exist or sensory information is ambigu-
ous.
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4. Memory, that is, the representation of information about a target location,
during transient occlusions from the sensors, so that overt behavior can be
generated that continues to move the robot toward the target.

5. Forgetting, that is, the gradual deactivation of a memorized target location if
no confirmatory sensory information is received within a particular time span.

Such processes, which we continue to refer to as behaviors although they do not
necessarily involve overt movement, entail representations of information.

For phono-taxis, we want to represent the direction, ψ, in which a sound source
lies, as viewed from the robot but referenced to an external frame. This variable
can take on values in the interval [0, 2π] rad. We define an activation variable,
u(ψ), for each possible value of target direction, ψ. The function u(ψ) is considered
a dynamical state variable and “codes” the presence of a target in direction, ψ.
Positive values of activation, u(ψ) > 0, indicate that a target near ψ is detected,
negative values of activation, u(ψ) ≤ 0, indicate that no target was detected near
ψ. The amount of activation corresponds to the certainty about the detection of a
target. A single target is thus represented by a single localized peak of activation
in the field (Figure 6.1 top). The absence of information on a possible target is
expressed through a state of the field in which activation is negative everywhere
(u(ψ) ≤ 0 ∀ψ ∈ [0, 2π]) (Figure 6.1 bottom).

Next, the ideas about attractor dynamics and bifurcations are implemented at
the level of a dynamics of the entire field. Localized peaks of activation are made
attractor solutions by a particular pattern of interactions in the field. Sensory
information provides input to the field. We develop these ideas step by step.

The readings of the sound sensors at time t provide an input sound distribution,
S(ψ, t). In practice, the sensor readings at a small number of field locations, ψ, are
convolved with a Gaussian filter so that they activate continuous regions of the field
(cf. Section 6.4). The simplest dynamics is one in which all sites of the field evolve
independently of each other toward a level of activation, u(ψ, t), that reflects the
amount of input at each site:

τ
du(ψ, t)

dt
= −u(ψ, t) + S(ψ, t) (6.1)

This linear dynamics makes the field relax to the current input pattern, u(ψ) = S(ψ),
with a low pass characteristic. This dynamics is thus not yet useful by itself, as it
merely reproduces the shape of the input pattern. What we need are mechanisms
that make that activation in the field becomes positive only when a critical amount of
input is given (detection), that activate only one site if multiple sites receive similar
or even identical input (selection), and that are capable of retaining activation after
input is removed (memory). In the last case it becomes particularly clear that such
mechanisms involve interaction, that is, the evolution of activation at one site of
the field depends on the level of activation at other sites of the field. An interaction
mechanism that does the job has three characteristics:
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Figure 6.1: A field of activation is defined over the behavioral dimension, ψ, of the
direction in which a target is detected. Top: A localized peak of activation represents a
single target in the direction, ψtar, corresponding to the location of the peak. Bottom: A
flat, sub-zero level of activation represents the absence of target information.

1. Neighboring field sites provide each other with positive input (“local excita-
tion”).

2. Field sites at larger distances provide each other with negative input (“global
inhibition”).

3. Only field sites with positive activation contribute to interaction (“sigmoid
threshold”).

Localized peaks of activation develop due to the interplay between the inhibitory
and excitatory processes. These interactions enable the field dynamics to sustain
localized peaks of activation even once input has been removed. That is the basis of
memory. Moreover, when input creates a localized peak, there is a critical amount
of activation when the local excitation first sets in and beyond which the peak can
be self-sustained. This is the basis of detection. If there are multiple sites that
receive input, global inhibition sets in. As soon as one field site has gained even
only a minute advantage in activation, it wins the competition and suppresses other
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sites more than it is suppressed itself. This is due to the sigmoid, which weakens
the influence of sites with lower levels of activation.

A convenient mathematical format of this interaction mechanism is

τ
du(ψ, t)

dt
= −u(ψ, t) + S(ψ, t) +

∫ 2π

0
w(ψ − ψ′)Θ(u(ψ′, t))dψ′ + h (6.2)

Interaction collects input from all field sites, ψ′. The non-linear threshold function

Θ(u) =




0 for u < 0
u for 0 < u < 1
1 for u > 1

(6.3)

makes that only sites of the field with positive activation contribute to interaction
and that sites with larger activation contribute stronger to the interaction (the
threshold avoids that activation “explodes” to infinite).

The interaction kernel

w(∆ψ) =
{

kp for −lcoop < 2∆ψ < lcoop

−kn else
(6.4)

only depends on the distance, ∆ψ = ψ − ψ′, between field sites. It is positive
(kp > 0), if the two sites are closer to each other than the cooperativity length, lcoop,
and is negative (kn > 0) for larger distances. The kernel is shown in Figure 6.2.
Finally, the negative constant, h < 0, determines the resting level of the field without
input: u = h ∀ψ ∈ [0, 2π]. This controls how much input field sites need before
they first contribute to interaction.

����
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lcoop

-kn

kp

Figure 6.2: The interaction kernel is positive (“excitatory”) for sites that are closer to
each other than the cooperativity length, lcoop, and is negative (“inhibitory”) for larger
distances between the sites.

The particular form of the equation we are employing has been analyzed math-
ematically by Kishimoto and Amari (1979). Their studies provide valuable in-
formation about the different parameter regimes for the existence and stability of
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localized peaks of activation. Next, we discuss the role of the different parameters
in the field dynamics (see Appendix A for more details).

Detection

The resting level, h < 0, makes that interaction kicks in only when sufficient input is
applied. For an input, S(ψ), localized around one location, for instance, this means
that while that input has a small amplitude, the flat state of the field is deformed
by input but remains negative everywhere: u(ψ) = h + S(ψ), as illustrated in
Figure 6.3 on the left. The field codes absence of information (no target detected).
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Figure 6.3: A single localized input, S(ψ), is applied to the field (dashed line). Left:
When the amplitude of that input is below a critical level, the stable state of the field is
the homogeneous resting level with the input profile superposed: u(ψ) = h + S(ψ) < 0
(solid line). Right: Beyond a critical input amplitude, activation in the field becomes
positive and interaction sets in. The stable state that emerges (solid line)is a localized
peak of positive activation, which is largely self-sustained, but positioned over the location
of maximal input. The transition between these two states is hysteretic and represents
the detection mechanism.

When the amplitude of input is sufficiently strong, interaction becomes important.
The stable state of the field is now a localized peak of positive activation, the size
of which reflects not only input strength, but is also determined in large part by
local self-excitation. The transition between the sub-threshold peak and the self-
sustained peak as a function of input strength involves a dynamical instability and
is the mechanism used here for detection. Detection means that input needs to
be of sufficient size over a sufficient period of time in order to generate a self-
sustained peak. The location of the self-sustained peak is determined entirely by
input, however. The peak is positioned over the location of maximal input.
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Memory

Once a localized, positive peak of activation has been generated, the local self-
excitation within the peak is so strong, that a peaked pattern of activation remains
stable even after input is removed (Figure 6.4). This is the dynamic field mechanism
for memory. This form of memory is sub-symbolic. Within the category of memory,
defined by the behavioral dimension, ψ, an instance of memory is identified simply by
its location. There is not need to label peaks. When input information is reapplied,
the position of the stable peak is readjusted so as to be centered exactly on the
location of maximal input. Thus, memory is updated automatically without the
need for an explicit input-to-memory matching process.
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Figure 6.4: A localized positive peak of activation (dashed line) is stable in the presence
of input. It remains stable if input is removed (solid line). The peak is sustained by local
self-excitation. Its lateral diffusion is limited by global inhibition. This is the memory
mechanism in the dynamic field. The position of the peak within the field is marginally
stable, however, so that the contents of memory may slowly degrade with time.

Over the longer term, memorized information may become obsolete. Angular
information may become incorrect because the robot moved. Targets may actually
have been removed. Even the memory mechanism itself is subject to degradation as
the peak position within the field is only marginally stable in the absence of input.
A mechanism for forgetting must suppress positive localized peaks of activation if no
confirmatory sensory input arrives within an appropriate time interval. The resting
level, h < 0, provides such a mechanism. When the resting level is made sufficiently
negative, activation in the field is generally so low, that the local self-excitation is
no longer sufficient to sustain a positive peak of activation. In fact, mathematically,
the field dynamics without input goes through an instability when the resting level
is varied (Amari, 1977). At levels of h below but close to zero, the field dynamics is
bistable: the homogeneous “off” state of the field coexists with the state in which a
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localized positive peak of activation is positioned somewhere within the field. This
is the regime in which memory is operational: If input has induced a positive peak of
activation and is then removed, the system maintains a localized peak of activation.
If no input has been present, the homogeneous “off” state persists. When the resting
level is lowered below a critical value (h < −Wm = −maxψ{∫ ψ

0 w(∆ψ)dψ}) the
localized positive peak solution becomes unstable and the field dynamics is mono-
stable, only the homogeneous “off” state remains. Thus, a localized memory peak
can be deleted by lowering the resting level below this critical level. The two regimes
of the field dynamics are illustrated in Figure 6.5.
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Figure 6.5: The different stable states of the field dynamics without input are illustrated as
a function of the resting level, h. Below a critical level of h (−Wm), only the homogeneous
“off” state of the field is stable. All sites have the same negative level of activation.
Above the critical level (but still below zero), two types of stable states coexist. The
homogeneous state persists, but a positive localized peak of activation is likewise stable
(irrespective of where it is positioned). This bistable regime serves the memory function,
while the mono-stable regime induces forgetting or resetting of memory. Memory peaks
are set by applying sufficiently strong input (see detection mechanism).

Interpolation versus decision making

When more complex shapes of input distributions are considered, additional prop-
erties of this strongly interactive field come into play. The top of Figure 6.6 shows
that bimodal input patterns may lead to a single localized peak of activation that is
positioned over the mean of the two locations of maximal input. This is, in fact, a
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weighted mean as different amplitudes of the two input peaks lead to bias of the re-
sulting position of the localized peak of activation toward the site receiving stronger
input (left). This fusion or integration of input information results from the local
excitatory interaction. Roughly, when the two peaks of the input distribution are
within the cooperative length, lcoop of the dynamic field, then fusion takes place as
shown.

If, by contrast, the two peaks of the input distribution are separated by more
than the cooperative length, then a decision is made as to which peak to activate.
The field is bistable. A positive localized peak may be positioned over either of
the two sites. The other site remains more activated than the background, but is
suppressed below zero (bottom of Figure 6.6). Which of the two sites of maximal
input “wins” depends on two factors:

(a) The initial state of the field may bias the competition toward maintaining
positive activation where there has previously been positive activation. This
leads to hysteresis, in which a decision once made is stabilized in the face of
multi-valued or ambiguous information.

(b) If the two input peaks have different amplitude, then the site receiving stronger
input is more likely to be activated.

6.4 The dynamics of target representation

To build a dynamic field representation of the sound sources we use the direction, ψ,
in which the sound source lies as viewed from the current position of the vehicle. The
angle is taken relative to a fixed, but arbitrary reference orientation, so that it would
not change if the robot were to turn on the spot. In implementation this requires
integrating heading direction in time to maintain this reference frame. While the
absolute calibration of this reference frame is irrelevant, its drift contributes to
degradation of memorized information, but not of currently sensed information. A
much more limiting factor of this form of target representation is that memorized
angular information becomes obsolete as the robot moves over distances comparable
to the distance to the target. The main advantage of this representation is, however,
that distance information is not needed for detection, estimation, decision making
and short term memory of targets.

A dynamic field, as defined in the previous section, represents information about
the orientation of a potential sound target. Sensory input to the field is provided
by the time-varying signals, Mi, from 5 microphones (i = 1, 2, . . . , 5), each pointing
into a different sector on the forward field of view of the vehicle (angles (-90, -45, 0,
45, 90) deg from the main axis of the vehicle, see Figure 6.7). These signals reflect
the sound pressure measured by each microphone. They increase from zero with
increasing sound pressure. Their angular characteristic is described approximately
by a cone of about 60 deg opening, so that neighboring microphones have overlapping
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Figure 6.6: A bi-modal input, S(ψ), is applied to the field (dashed line). Top: when
the distance between the two peaks of the input distribution is within the cooperative
distance, the stable state of the field is a localized peak of activation (solid bold line)
positioned over the weighted mean of the input distribution. The field thus fuses input
information. Bottom: when the distance between the two peaks of the input distribution
is beyond the cooperative distance competition takes place. The field is bistable, in the
sense that it can evolve a peak of activation centered at either one of the two sites receiving
input (solid bold line). On the left, the site receiving stronger input “wins”. On the right,
the initial state of the field (solid thin line) has a peak of activation at a distance to the
smaller peak, within the cooperative distance, the competition is thus biased toward the
selection of the smaller input peak.

sensitivity cones. Thus, these sensors specify target orientation in the sense that
a single sound source induces a graded pattern of detected sound pressure, with a
maximum at the sensor pointing in the direction closest to the one in which the
sound source lies (except for reflections, cf. Section 6.7). Interpolation is based on
spreading the contribution of each microphone over a range in the field by convolving
with a Gaussian kernel of width, σ = 0.4 rad (±23 deg):

S(ψ, t) =

(
5∑

i=1

Mi exp

[
−(ψ − ψi)

2

2σ2

]
− 0.25

)
H(

5∑
i=1

Mi) (6.5)

Here, H(·) is the Heaviside step function. Multiplying with this step function applied
to the sum of all microphone signals turns input entirely off when no sensor receives
input (background sound below sensor threshold).

The parameter h is set so that the field operates in the memory mode. Thus,
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Figure 6.7: Sensory information about sound targets is acquired by five microphones,
each pointing into a direction ζi (=-90, -45, 0, 45, 90 deg), with respect to the heading
direction, φ, of the robot. The direction in the world at which microphone i is pointing is
ψi = φ + ζi.

once sufficient input (detection) has induced a single localized peak of positive acti-
vation (decision), that peak persists when input is removed (e.g, because the sound
source is momentarily silent or its volume is reduced due to occlusion). The memo-
rized target orientation is maintained for a time interval that permits the robot to
continue moving in the target direction. This memory peak must be deleted if no
renewed sensory input arrives within a particular period of time, because memorized
angular information becomes obsolete as the robot moves. This forgetting behavior
is modeled by making the resting level, h, a dynamical variable with the following
dynamics:

dh

dt
= −rh,minch(h − hmin) − rh,max(1 − ch)(h − hmax) (6.6)

Here, hmax = −0.25Wm and hmin = −1.1Wm are the two limit values of the resting
level within the bistable and the mono-stable regime, respectively (see previous
section and Figure 6.5 for significance of Wm). This dynamics lowers the resting level
(destabilizing memory) at the rate rh,min while a memorized peak exists (ch = 1). It
restores the maximal resting level (to enable memory) at the rate rh,max otherwise.
The destabilization (forgetting) process is slower than the restoring process, so that
after forgetting, the field is immediately able to again detect and memorize a new
target. The presence of a memorized peak is represented by

ch = [H(Nu) − H(Ns)]H(Nu) (6.7)
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where

Nu =
∫ 2π

0
H(u(ψ))dψ (6.8)

is the total positive activation in the field and

Ns =
∫ 2π

0
S(ψ)dψ (6.9)

is the total input activation (positive by construction). H(·) is the Heaviside step
function. The function ch is equal to one if there is positive activation in the field
(Nu > 0), but no input (Ns = 0). It is zero if there is no peak in the field or if there
is a peak but also input.

6.5 Coupling the dynamics of target representa-

tion with the attractor dynamics of heading

direction

Now we address how the direction, ψtar, in which a target lies, can be computed
from the activation on the dynamic field. Because the time scale, τ , of the field
is chosen faster than that of the heading direction and velocity dynamics, the field
has typically relaxed to a stable pattern on the time scale on which the movement
plans of the robot evolve. Directly reading out the location in the field of maximal
activation is not a very good solution, as the maximum of the stable state may
jump and thus destroy the carefully constructed stability properties of the system.
Moreover, such a procedure does not deal consistently with the absence of target
information. A better and elegant solution has been proposed by Kopecz and

Schöner(1995) and used in an earlier implementation of dynamic fields on vehicles
(Bicho and Schöner, 1997b). Because the field has by construction only a single
peak of positive activation, the peak location could be computed as a mean, if the
distribution of activation is interpreted as a probability density

ψtar =

∫ 2π
0 ψH(u(ψ))dψ

Nu

(6.10)

where division by the total positive activation, Nu, is needed to normalize the dis-
tribution. The normalization poses a problem when no positive activation exists in
the field (devision by zero).

This problem can be solved once it is realized, that what we actually need in the
dynamics of heading direction for target acquisition, is not necessarily ψtar itself,
but −λtar(φ − ψtar), an attractive force-let centered at that angle. The strength of
attraction must be zero if no target is represented. Thus, λtar should be replaced
by λ′

tarNu with a new constant, λ′
tar > 0. This leads to: −λ′

tar(Nuφ − Nuψtar), in
which the normalization factor cancels and division by zero never occurs. Thus, we
redefine the target contribution in Equation 4.8 as
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ftar =

{
−λ′

tar(Nuφ − ∫ 2π
0 (H(u(ψ))ψ)dψ) for ψtar − π/2 < φ ≤ ψtar + π/2

λ′
tar(Nu(φ − π) − ∫ 2π

0 (H(u(ψ))ψ)dψ) for ψtar + π/2 < φ ≤ ψtar + 3π/2
(6.11)

where φ is mapped into the listed cases through a modulus 2π operation. This
contribution is then used in Equation 4.11 together with the obstacle contributions
to generate the time course of the robot’s heading direction. The path velocity is
controlled as explained in Section 4.3.

Finally, the following hierarchy of relaxation rates ensures that the system re-
laxes to the stable solutions, that obstacle avoidance has precedence over the target
acquisition and that the relaxation of the field is faster than the relaxation of the
target acquisition dynamics:

λtar � 1/τ, λtar � λobs, λobs � cv,obs, λtar � cv,tar (6.12)

6.6 Implementation on Robodyn

The dynamic architecture was implemented and tested on the mobile platform Ro-
bodyn (see Figure 3.2). In the implementation, the field dynamics as well as the
dynamics of heading direction and of path velocity are integrated numerically using
the Euler method.

The field is sampled spatially with a sampling distance of 8 deg. It is important
that the discretized form of the interaction kernel, w(∆ψ), is, like the exact kernel,
symmetrical around zero. Deviations from symmetry generate a tendency for local-
ized memory peaks to drift in one direction. Sensory information is acquired once
per computation cycle. The cycle time is measured and is approximately 110 ms.
As the time step must be smaller than the fastest relaxation time on the system,
this imposes minimal time scales on the entire dynamical architecture. Thus the
computational cycle time is the limiting factor for determining the relaxation times
of the dynamics in real time units and thus for the overall speed at which the robot’s
behavior evolves.

6.7 Experimental results

In this section we first present results that document the properties of the dynamical
field for target representation. These were obtained when the field evolved in re-
sponse to actual physical stimulation by sound sources, but the robot did not move.
Next we show how the robot behaves in a number of experimental scenarios that
challenge particular aspects of the architecture. In all cases, all behavioral modules
are integrated and work together.
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6.7.1 Cognitive properties of the dynamic field representing
targets

A set of experiments with fixed robot used a sound source that emitted a pulse
modulated wave with a fundamental frequency of 440 Hz. Pulse modulation makes
that this sound had high frequency harmonics that fell into the most sensitive range
of the microphones. In experiments involving multiple targets a sound generator
emitting a 2.5 KHz harmonic wave was used as a second sound source. Loudspeakers
were placed 100 cm from the periphery of the robot. The robot was pointing in
the 180 deg direction relative to the external reference frame in which we provide
information about the real direction to the sound source.

Detection

Figure 6.8 shows how the field evolves when the intensity of the test sound is in-
creased gradually. Initially, the entire field is “off” (u(ψ) = h < 0 everywhere).
While sensory input is weak, positive activation cannot arise and the field continues
to code for absence of a sound source. At time t ≈ 55 sec the strength of sensory
input becomes sufficiently strong to trigger generation of a peak of positive activa-
tion centered over the location that receives maximal input. From this point on a
target is detected and the peak of activation maintains its shape almost invariant
due to the strong interactions within the field. This result shows that the dynamic
field behaves nonlinearly in response to ambient sound of different intensities.

Interpolation

In the presence of a single sufficiently strong sound source, input is mono-modal,
although broad, and a single, localized positive peak of activation is stable in the
dynamic field (Figure 6.9). The peak is positioned over the maximum of the broad
input distribution, and thus unaffected by input that is further apart from the peak
than the kernel width. The estimated sound orientation, ψtar, is 115 deg, very close
to the actual target orientation, which was 112.5 deg. Repeating this experiment
for a number of different orientations of the sound source we evaluated the quality
of the interpolation of sound input by the dynamic field. Figure 6.10 summarizes
the result. The estimated values of target direction are very close to the real values
across a wide range from 110 to 250 deg. The two extreme configurations have a
small bias (still less than 10 deg), which is caused by the unsymmetric sampling of
these values due to the limited angular range of our microphone array.
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Figure 6.8: Here, the target detection behavior of the field is shown. Direction is in
degrees (deg) and time in seconds (sec). The sound source was placed in the forward
direction of the robot (indicated by the arrow) and sound intensity was increased from 0
to 2.5. Robot position and orientation (180 deg with respect to the world axis) in space
was kept fix. Top: the input to the field, S(ψ), is mono-modal and its strength increases
in time. Bottom: while the input is weak the field is in the state in which it is all off and
thus no target is detected. At time t ≈ 55 sec the input strength is sufficiently strong to
trigger the detection of the sound source. From this point on the stable state of the field
is a localized peak of positive activation centered over the location of maximal input.
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Figure 6.9: A sound source was placed at an angular position of 112.5 deg (the location
indicated by the arrow) with respect to the world axis. Robot orientation was 180 deg,
the five microphones where thus pointing in the directions 90, 135, 180, 225, 270 deg. Top:
sensory information leads to a broad mono-modal input distribution. Bottom: the field
activation relaxes to a stable localized peak centered over the maximum of the input. The
estimated sound orientation is 115 deg.
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Figure 6.10: The experiment illustrated in Figure 6.9 was repeated for a number of
different directions of the sound source. These directions can be read on the abscissas. On
ordinates one can read the corresponding estimated target directions.
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Tracking

Figure 6.11 shows how a moving sound target is tracked. The loudspeaker was
moved more or less continuously from an initial orientation at 90 deg all the way
to 270 deg. As a consequence sensory input has a moving peak. The dynamic
field responds to such moving input by evolving a peak of activation which tracks
and follows the moving input peak. The maximum of the field activation moves
continuously with the angular location of the target. The estimated target location
thus varies monotonically from approximately 102 deg to 261 deg.
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Figure 6.11: The robot was positioned with an orientation of 180 deg with respect to the
external axis. The sound source was moved continuously from an initial direction of 90 deg
(indicated by the left arrow) all the way to 270 deg (indicated by the right arrow). Top:
sensory information is mono-modal and its maximal location varies continuously. Bottom:
the field evolves a peak of positive activation which tracks and follows the moving input
peak.

Target selection

To test the capacity of the field to select one of multiple targets, two loudspeakers
were placed as illustrated in Figure 6.12. The loudspeaker on the left of the robot
emitted the pulse modulated test sound while the loudspeaker on the right emitted
the harmonic wave of 2.5 KHz. Both signals were played at similar intensity. Input
is bi-modal under these conditions. The interaction enables the field to make a
decision, in this case, selecting the site receiving stronger input. The field evolves
a single localized peak of positive activation centered near the input peak located
at 270 deg. The input information pertaining to the alternate site is discarded and
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does not bias the estimation of target position.
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Figure 6.12: The robot was placed with a heading direction of 180 deg with respect to the
external axis. Two sound sources, the pulse modulated wave and the harmonic wave, were
placed at angular positions 112.5 deg and 270 deg (as indicated by the arrows), respectively.
Top: under such experimental set up the sensory input to the field is bimodal. Bottom:
competition takes place and as a result the field makes a decision. The field evolves a
single peak of positive activation centered near the input peak located at 270 deg. Thus,
the left target is selected.

Memory and forgetting

In Figure 6.13 we demonstrate memory and forgetting. A loudspeaker was placed in
front of the robot (it could have been any other orientation). After a brief moment of
silence, the sound source was turned on, emitting the pulse modulated test sound. As
expected, the field evolves a stable peak of positive activation centered over the input
peak (the estimated target orientation is 183 deg). About 10 sec later the sound
source was turned off. Although sensory input was thus removed, the localized peak
persists, albeit somewhat weakened, for a certain time interval. During this time
interval the adaptive dynamics of the resting level, h, drives the resting level down,
and thus progressively destabilizes the memorized information. Since no renewed
sensory information is provided again the memorized peak eventually dies out. The
target orientation is “forgotten”. At this point the adaptive dynamics of h changes
and its value is quickly restored to the value at which the target representation
dynamics operates in the memory mode again. The field is once again sensitive to
new (or the same) sound targets, which can be detected, selected and memorized.
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Figure 6.13: A loudspeaker was placed in front of the robot heading direction (indicated
by the arrow). Top: 3 sec later the sound source was turned on. The sensory input to
the field is mono-modal. About 10 sec later the sound source was turned off. The sensory
input becomes zero everywhere. Center: while the sound source is on, the state of the
field is a localized peak of positive activation centered over the location of maximal input.
This peak solution persists (even though somewhat reduced in amplitude) even when the
input to the field is turned off (t ≈ 13 sec). The field is thus in the memory regime. At
time t ≈ 29 sec this peak solution becomes unstable due to the adaptation of the resting
level, h. Target orientation is thus “forgotten”. From this point on, the field remains in
the state in which it is off (negative activation everywhere). Bottom: the resting level is
in its maximum value until the input is turned off, which occurs at time t ≈ 13 sec. After
this instant and while there exists positive activation in the field the adaptive dynamics
of h reduces its value. At time t ≈ 29 sec the resting level reaches the value for which the
peak solution in the field corresponding to the memorized information becomes unstable.
Thus, the memorized peak is turned off. At this point the adaptive dynamics of h changes
again and its value is restored to the value at which the field dynamics operates in the
memory regime again.
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Memory together with the adaptation of the resting level thus endows the robot
with temporary knowledge about the target location.

6.7.2 Phono-taxis and obstacle avoidance on moving robot

In all the experiments reported here the sound source consisted of a loudspeaker
emitting CD music. The particular piece we used (Vivaldi, Printemps, Allegro) not
only provides sound at the higher frequencies to which our microphones are sensitive,
but also has moments of silence that give occasion to test the memory capability
of the target representation. To demonstrate target selection the music was played
through two loudspeakers.

Scenario with a single sound source

Figure 6.14 illustrates the robot’s behavior in the simplest scenario testing obstacle
avoidance in conflict with the phono-taxis behavior. The target was a single loud-
speaker placed behind a barrier (from the point of view of the initial position of
the robot). The robot moves along a smooth, curved path around the obstacle to
reach the target. It is the temporary knowledge about target direction retained in
the dynamic field that enables the robot to continue moving in the correct direction
during the periods of silence of the music. Two runs in the same scenario are shown.
On one occasion the robot goes around the obstacle to the right, on the other to the
left. The heading direction dynamics is bistable in this case and small fluctuations
in sensory information can bring about either of the two paths. Once heading di-
rection is in one of the two attractors, however, this decision is stabilized. In both
cases the target is reached and the robot comes almost to rest near the loudspeaker.

Scenario with two sound sources

Figure 6.15 shows target selection based on different input strengths. Two speakers
were fed with the same input signal. The robot was placed initially at position A
with the sound sources switched off. The robot moves straight ahead. At point B,
the sound sources are turned on. When the sound sources are at different distances
from the robot the closer one is always selected. Figure 6.16 shows that when both
sound sources are at quite exactly the same distance, the decision may depend on
random fluctuations of the input stream.

Target selection based on prior activation patterns (hysteresis) is demonstrated
in Figure 6.17. Two sound sources are both located behind obstacles (as seen from
the initial position of the vehicle). In one run, the robot is initially closer to the
sound source on the left. The field therefore establishes a peak at the leftmost target
direction. The obstacle configuration forces the robot to pass through a position
in which the robot receives symmetric input from the two sound sources. The
preexisting peak on the left makes the robot retain the leftmost target. Analogously,
when the robot starts out closer to the right target, that target is represented in the
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Figure 6.14: A sequence of video images illustrates the motion of the robot. Time
increases from top to bottom, first along the first row, then along the second row and so
on. The robot is the cylindrical object, located in the first frame in the lower left corner.
A loudspeaker is visible in the top right corner. A long obstacle makes a barrier in between
the robot’s initial position and the loud speaker. The sound source is on all the time but
exhibits some moments of silence. Part (a) shows that the robot moves smoothly around
the obstacle, to the left, toward the sound source, coming to rest in the final frame in
front of the loudspeaker. Part (b) shows a new run. This time the robot turns around
the obstacle to the right, steering toward the sound source and it comes to rest near the
loudspeaker.

dynamic field. The robot persists in the selection while it passes through the same
position as in the first run with approximately symmetric input.
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(b)
Figure 6.14: Continued.
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Figure 6.15: Two sequences of video images show the robot behavior in the presence of two
loudspeakers emitting the same sound and in an asymmetric configuration. Time increases
as announced in Figure 6.14. The robot is first located as depicted in the first frame. Two
loudspeakers, S1 and S2, are located near the left and right top corners respectively.
Initially, the sound sources are turned off, thus the robot moves straightforward. When
it has traveled a distance of one meter both sound sources are switched on. In part(a)
the loudspeaker on the left, S1, is closer to the robot. This sound source is thus selected
(it is visible in the 4th frame) and the robot moves smoothly toward it, coming to almost
stop near the loudspeaker S1. On part (b) another run is shown. Here the loudspeaker on
the right, S2, is closer to the robot. Analogously, the robot selects the closest sound (the
decision can be seen in frame 4) and moves toward it.
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(b)
Figure 6.15: Continued.
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Figure 6.16: The two loudspeakers are now placed at exactly the same distance to the
robot. In the run illustrated in part (a), the random fluctuations favor the selection of the
left most target, S1. The decision starts being visible on the third frame. The robot moves
toward S1 and finally stops in front of the loudspeaker (final frame). Part (b) shows a new
run. This time the random fluctuations favor the selection of the right target, S2. This
decision becomes visible on the third frame. Again the robot moves toward the selected
sound source and comes to rest in front of it.
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Figure 6.16: Continued.
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Figure 6.17: This figure shows that hysteresis enables to maintain a decision stable. Two
sequences of video images are presented. The two identical sound sources, S1 and S2,
are now placed behind obstacles as can be seen in the first frame. In part (a) the robot
initial position is the left bottom corner in the first frame, i.e. in this run the robot
is initially closer to the sound source on the left, S1. Thus, the field evolves a peak of
activation at the left most target direction. While moving toward S1, due to the obstacle
configuration, the robot is forced to pass through the opening in between the two barriers.
At this time (frame 6) the sensory information received from the two sound sources is
symmetric and the input to the field is bimodal with two input peaks of equal amplitude.
The preexisting peak on the field corresponding to the selection of the left target bias the
competition toward retaining the left most target. Thus the decision of moving toward S1

is maintained stable. Part (b) shows a similar run. The robot now is closer to the right
most target (see first frame). The robot starts moving toward the location of this sound
source (but constrained of course by the obstacles). This decision is maintained stable
when the robot is confronted with symmetric bimodal sensory input (frame 6). The robot
comes to rest in front of the loud speaker S2 (frame 9).
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Figure 6.17: Continued.
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Global behavior

In Figure 6.18 we illustrate behavior in a more complex environment. Initially, the
robot is positioned in the corridor of our lab. The target is a loudspeaker placed
inside one of the offices. Even while the robot moves along the corridor, its target
representation already engages an approximate representation of the sound source.
Based on that representation and aided by obstacle avoidance, the robot moves
through the office door. It circumnavigates a number of additional obstacles and
eventually finds the sound source, which is “hidden” inside a box with only a single
entrance. It stops in front of the sound source (controlled by the velocity dynamics).
Thus, although the architecture does not have global plans and finding a path is not
theoretically guaranteed, the robot finds a remote target by moving along surfaces
with the help of obstacle avoidance, until an “entry” is found. In our practical
experience we have found it difficult to create scenarios in which the robot does not
find its way even to quite intricately hidden sound sources.

6.8 Conclusion

We have demonstrated how dynamic fields can provide robotic systems with sub-
symbolic representations that rely on low-level sensory information. These represen-
tations enable the robot to show the simplest forms of cognitive capabilities, such as
detecting targets, estimating direction to a target through interpolation, stabilizing
a decision as to which of multiple targets to track, maintaining targets in short-term
memory during momentary removal of pertinent sensory information, and deleting
memory items after a characteristic delay to clear the memory of obsolete informa-
tion. In the implementation, the dynamic field enabled a small autonomous vehicle
to find sound sources while avoiding obstacles. Memory helped with intermittent
sound, decision making enabled tracking of a sound source even if obstacle avoidance
increased momentarily the distance from the sound source. Detection led to stable
behavior near the sensor threshold.

The demonstrated robotic system has a number of obvious applications. We
played, for instance, with the human voice as a sound source and demonstrated that
the robot can follow or move toward a human operator who voices an utterance
every now and then. The memory capacity of the dynamic field keeps the direction
toward the human operator active during the intervals of silence. This robot system
thus demonstrates an interesting interface, which could have multiple uses. Toys are
an obvious example. An autonomous platform carrying tools and being operated by
calling out is another example. Household devices to support handicapped people
could be another domain in which such a simple interface could be of use. By
installing particular filters at the auditory level, this system could be made sensitive
to only particular types of sound (e.g., human voices rather than ambient sound).

The principle of representing direction information obtained from low level sen-
sors could also be used to generate more complex movement behaviors of robotic
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Figure 6.18: This figure shows a video sequence of the robot behavior in a more complex
environment. The robot is initially positioned in the corridor. A sound source is inside one
of the offices as indicated in the first frame. The robot moves along the corridor (frame 1
to frame 4). When the robot approaches the office door the phono-taxis behavior makes
it enter into the room (frame 6). In frame 7 the robot is faced with a barrier of obstacles
in between it and the sound source. The sound source is visible on the left top corner of
this frame. The robot moves around the obstacles toward the target and finally comes to
near rest in front of the loudspeaker (last frame).

platforms. For instance, the vehicle can be made to steer at a particular angle with
respect to a sound source. In this way, a group of robots could drive in formation,
if each robot emits a sound. Maneuvers in front of a docking station could be based
on this mechanism. The representation of direction could also be used as a means of
re-calibrating robot orientation without the need for actual movement of the robot
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into a particular position or orientation. Finally, the fact that the sensed angle is
explicitly represented could be used to communicate that information among robots
or to an operator, which makes it possible to integrate such information into more
complex strategies, for instance, for multi-robot environments.

Sound is only one sensory channel on which this approach can be based. We
have tested a similar architecture that was based on light sensors (3 light depen-
dent resistors). That system was able to orient toward light sources (Bicho and

Schöner, 1997b). The fact that there is typically much more ambient light than
ambient sound in work environments makes this a useful architecture only for work
in near darkness, however. Chemo-detection is another potential sensor system that
could be enhanced through a dynamic field (Kuwana and Shimoyama, 1998).

One limitation of the system as it stands come from the computational demands
of dynamic fields. The cycle time obtained for a computational step on the order
of 100 ms leads to reasonably fast behavior, but one could be much faster. If
more complex architectures were tried with multiple dynamic fields for different
representations, then this could become a serious limitation. One solution might
be to implement the computationally critical parts in Assembler code. Another
approach might be to use more optimal numerical procedures.

There are, of course, limitations that come from the low-level sensor system. The
robot may select, for instance, sometimes an echo rather than the real sound source.
This is not severe, however, as echos do not persist as the robot changes position.
Once the robot has latched onto the real target, the stabilization of decision making
provided by the dynamic field makes sure that the robot does not get sidetracked
by new echos it encounters on the way to the target.



Chapter 7

Detecting, representing and
following walls based on low-level
distance sensors

Wall-following is an important behavior in navigation since in office environments, as
well as in maze like environments, corridors and long wall ways (in various shapes)
are very common. Thus, much of the work to bring a robotic vehicle from one
location to another consists of driving along a series of walls or corridors. So, when
a robot senses a wall it is very often useful to be able to follow the wall smoothly
instead of turning away from it.

In this chapter the problem of following walls with different shapes and keeping
a constant distance from the wall is analyzed. A solution is proposed which is based
on a sub-symbolic representation of walls and on a behavioral dynamics that controls
the distance from the wall. The wall representation system is built making use of
the dynamic field concept. It endows the robot with the following capabilities: wall
detection, wall orientation estimation, insensibility to noisy sensory data and wall
selection. Simulation results and experimental results are presented.

7.1 Introduction

Following our previous work (Chapter 6; Bicho, Mallet and Schöner, 1999a)
we continue to speculate, in this chapter, that in order for a low-level robot vehicle
to be endowed with cognitive capabilities, which are the background for intelligent
and flexible behavior, it may need to have representations. Such representations are
not general purpose descriptions, though. Instead, each representation is associated
with a particular behavior of the robotic system.

In Chapter 6 we have demonstrated how a dynamic field can provide a robotic
vehicle with a sub-symbolic target representation system that relies on low-level sen-
sory information. Specifically, the system used 5 microphones to provide information
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about sound targets. That representation enabled the robot to show the simplest
forms of cognitive capabilities, such as detecting targets, estimating direction to a
target through interpolation, stabilization of a decision as to which of multiple tar-
gets to track, maintaining targets in short-term memory during momentary removal
of pertinent sensory information and forgetting items after a characteristic delay to
clear the memory from old and therefore obsolete information.

As a case study, we address here the problem of representing information about
walls based on low-level distance sensors (e.g. infra-red sensors and sonars). These
sensors provide distance measures to objects at the directions at which they are
pointing in space. We assume that each pair of neighboring distance sensors defines
a wall segment whenever both detect obstructions (see Figure 7.1). Our goal is to
built a sub-symbolic wall representation system, from this sensory information, that
permits to endow a robot vehicle with a wall-following behavior which exhibits the
most basic cognitive capabilities: detecting walls , estimating the orientation of a
wall through averaging of sensory data, robustness against noisy sensory information
and wall selection.

Figure 7.1: A wall with orientation ψwall is to the right of the robot. Each pair of neigh-
boring distance sensors defines a wall segment whose orientation ideally is the orientation
of the wall.

In order to generate the basic cognitive elements enumerated above, a dynamic
field representation of the spatial orientation in which a wall is detected is defined.
Input to the field is provided by the orientation of each detected wall segment.
The dynamic field is endowed with the ability to suppress outliers in the input
pattern distribution (due to inaccurate sensory information), as well as of making
and stabilizing decisions in response to multi-valued sensory information (such as
when two walls lead to a bimodal input distribution).

This dynamic wall representation is coupled with a dynamics which generates
the overt wall-following behavior in the world. This overt behavior also exhibits
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decision making in the sense that the robot can follow a wall keeping it to its right
or to its left side. Results prove the capacity of the system to perform wall detection,
robust wall orientation estimation and wall selection. Results also show the ability
to follow walls in various shapes.

The robot has no a priori information about the environment, that is, no infor-
mation about position or shape of the walls or obstacles.

This chapter is structured as follows: In Section 7.2 we review some related
work. Section 7.3 and Section 7.4 present the dynamics of wall-following and the
dynamics of wall representation, respectively. In Section 7.5 explains the coupling of
the dynamics of wall representation with the behavioral dynamics of wall-following.
Next, in section 7.6 some simulation results are presented to illustrate the properties
of the dynamic field for wall representation. Section 7.7 discusses some implemen-
tation details of the dynamic architecture on the robotic platform. Experimental
results are described in Section 7.8 and finally the chapter ends with discussion and
conclusions in Section 7.9.

7.2 Related work

Wall-following has been a problem of interest in robotics research and a large body
of references can be found in the literature (Bauzil, Briot and Ribes, 1981;
Brooks, 1992; Iijima, Yuta and Kanayama, 1983; Giralt, 1984; Turennout,

Honderd and Schelven, 1992; Koza, 1994; Ando, Tsubouchi and Yuta,
1996; Yata, Kleeman and Yuta, 1998; Meng, Liu, Zhang and Sun, 1999).

The problem of wall-following has been examined as a case study both in model
based (Giralt, 1984; Cox, 1991) and behavior-based approaches to robotics (Bro-

oks and connel, 1986; Mataric, 1990; Brooks, 1992).

In the first approach sensor readings are taken to build straight lines (wall seg-
ments). For estimating the orientation of these straight lines robust methods exist
based on filtering techniques, if the error models are accurate. Then these straight
lines are matched against line segments in a model of the environment (either CAD
or self-learned), and finally a trajectory is planned toward the closest wall found
(Bauzil, Briot and Ribes, 1981; Giralt, 1984). The main drawback of this
approach is that models of the environment are difficult to obtain and maintain in
real time, thus limiting its application for navigation in unstructured and dynamic
environments, and the error models might not be sufficiently accurate.

In contrast, behavior-based approaches make no special assumptions and use
sensory information at low levels of parameter extraction. Wall-following is gen-
erated as a continuous link between sensing and acting (Brooks and Connell,
1986). This raises the difficulty to generate behavior that is not directly linked to
on-line sensory information. For example, the ability to keep the behavior stable
against noisy sensory data or to decide which wall to follow when two walls are
detected. This last problem is usually alleviated by algorithmically switching to a
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corridor following behavior so that the robot navigates along the center of the cor-
ridor (Balkenius, 1995). This might not be the most adequate solution, however,
especially if other vehicles or persons share the same physical space. The vehi-
cle should instead select one of the two walls and move along it in order to leave
maximum space available.

Mataric (1990) presents a wall-following behavior which is generated as an
emergent activity which results from the interaction between four mutually exclusive
behaviors and the environment. We argue that if a robot is supposed to navigate
along walls in order to improve its navigating performance its behavior should be
purposive.

Wall-following has been also an attractive problem for behavior based approaches
using Fuzzy control algorithms (Meng, Liu, Zhang and Sun, 1999) and genetic
algorithms (Ross, Daida, Doan, Begey and McClain, 1996) and good solu-
tions have been proposed. The drawback here is that the integration with other
behaviors requires the redesign of the overall control architecture.

Ando, Tsuboushi and Yuta (1996) as well as Chen and Luo (1998) present
results of a robot following walls in various shapes. The algorithm is reactive and
very simple. The results show that their algorithm for wall-following is robust even
though its success is much dependent on the specular reflections. An important
limitation of this algorithm is that the robot must be in the neighborhood of an
object at the initial time. These authors neither reported integration with other
movement behaviors nor the problem of having more than one wall. Based on this
simple algorithm it is difficult to support explicit decision making and stabilization
of decisions when sensory information is ambiguous or inaccurate.

7.3 Wall-following dynamics

Two possible wall-following behavioral modes must be distinguished: Right-mode,
where the robot follows a wall on its right, and Left-mode, where the robot follows a
wall on its left. In either behavioral mode, the robot must steer such as to follow the
wall contour at a fixed pre-defined distance. We design wall-following as a behavioral
dynamics of heading direction

dφ

dt
= Fwall(φ) = γrFwall,r(φ) + γlFwall,l(φ) (7.1)

where Fwall,r(φ) represents the Right-mode and Fwall,l(φ) the Left-mode. The strengths
γr and γl, when adequately tuned, select the behavioral mode that must dominate
the heading direction dynamics. We will explain later how this selection (i.e. decision
making) is brought about.

The Right-mode term is a sum of two contributions

Fwall,r(φ) = finwards,r(φ) + foutwards,r(φ) (7.2)
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each defining an attractive force (i = inwards, outwards):

fi,r(φ) =

{−λi,r(φ − ψi,r) for ψi,r − π/2 < φ ≤ ψi,r + π/2
λi,r(φ − ψi,r − π) for ψi,r + π/2 < φ ≤ ψi,r + 3π/2

(7.3)

where φ value is mapped into the listed cases through a modulus 2π operation.
The first contribution, finwards,r(φ), erects an attractor at a direction

ψinwards,r = ψwall − ∆ψw (7.4)

pointing inwards the wall. This direction is obtained subtracting an angle ∆ψw

(because the wall is to the right) to the estimated wall orientation, ψwall, relative to
the external reference frame. The strength of this attractor increases with distance,
dr, to the wall on the right of the robot

λinwards,r(dr) =
1

1 + exp (−(dr − dwall)/µ)
(7.5)

Here dr is the minimum distance measure given by the distance sensors on the right
side of the robot and dwall is the desired distance to the wall. The second contri-
bution, foutwards,r(φ), sets an attractor at a direction pointing outwards (obtained
summing ∆ψw to the orientation of the wall because the wall is on the right side)

ψoutwards,r = ψwall + ∆ψw (7.6)

with a strength that decreases with distance, dr, to the wall

λoutwards,r(dr) = 1 − λinwards,r(dr) (7.7)

Because the two attractive forces, finwards,r(φ) and foutwards,r(φ), are overlapping only
one attractor results from their superposition. The direction at which the result-
ing attractor is formed depends on the distance to the wall. This is illustrated in
Figure 7.2.

The Left-mode term in the vector field of heading direction dynamics (Equa-
tion 7.1), which represents the behavior of following a wall to the left, is formally
equivalent to the Right-mode. It is a sum of two attractive forces

Fwall,l(φ) = finwards,l(φ) + foutwards,l(φ) (7.8)

each with the same piecewise form of Equation 7.3. The first force erects an attractor
at a direction pointing inwards the wall on the left with a strength that increases



108

Figure 7.2: This figure shows the two contributions to the wall following dynamics (when
the wall is to the right) and their superposition for the three different physical situations.
finwards,r and foutwards,r are depicted by the dark grey and light grey thin lines respectively.
Their superposition, i.e. Fwall,r, is indicated by the bold black line. Left: When the robot
is at a distance to the wall larger than the desired distance the attractive force erected
at direction ψinwards,r is stronger than the attractive set at direction ψoutwards,r. Their
superposition leads to an attractor at a direction still pointing into the wall, i.e. smaller
than ψwall. Middle: Conversely, when the robot is closer to the wall than the desired
distance, the reverse holds, i.e. the attractive force set at direction ψoutwards,r is now
stronger than the attractive force at direction ψinwards,r. The resulting dynamics exhibits
an attractor at a direction pointing away from the wall. Right: When the robot is at the
desired distance to the wall the two attractive forces have the same strength which leads
to a resultant attractor at the orientation of the wall, i.e. ψwall.

with distance. The second force sets an attractor at a direction pointing outwards
the wall with a strength that decreases with distance. Since we assume that ψwall

is the orientation of the wall estimated in the counter-clock direction the values of
the attractors are

ψinwards,l = ψwall + π + ∆ψw (7.9)

ψoutwards,l = ψwall + π − ∆ψw (7.10)

The strengths of these attractors are given by Equation 7.5 and Equation 7.7 re-
spectively, where the distance is now the distance to the wall on the left side, of
course. Similarly to Fwall,r, Fwall,l exhibits one attractor only.

We now explain how the dominance of the Right-mode or the Left-mode in the
dynamics of the heading direction is brought about by adjusting the strengths, γr

and γl, in Equation 7.1.
The strengths γr and γl are tuned such that Fwall,r dominates when the detected

wall is to the right of the robot, while Fwall,l dominates when the wall is to the left.
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A function that indicates if a wall is to the right or to the left of the robot can be
constructed by making use of the repulsive force-lets from the obstacle avoidance
dynamics. In fact, from the sign of the obstacle forces, Fobs(φ) (Equation 4.4), we
can read off if a wall is to the right or to the left of the robot (see Figures 4.3 and
4.7 in Chapter 4). Positive values of Fobs(φ), indicate that the wall is to the right,
so γr > 0 and γl ≈ 0 is required. Conversely, negative values of Fobs(φ) indicate
that the wall is to the left, thus γr ≈ 0 and γl > 0 is required. Applying a sigmoid
threshold function to Fobs(φ)

T (Fobs(φ)) =
2 arctan (CwFobs(φ))

π
(7.11)

ranging from -1 to 1, we can write the functions for the two strengths:

γr = cr,w [1 + T (Fobs(φ))] (7.12)

γl = cl,w [1 − T (Fobs(φ))] (7.13)

For a sufficiently sharp sigmoid (i.e. Cw sufficiently large) this leads to the selection of
the required behavioral mode. The parameters cr,w and cl,w determine the relaxation
rate of the wall following dynamics in the two cases where the wall is to the right or
to the left respectively. They are tuned so that the heading direction is in or near
the resultant attractor of this dynamics. As the estimate of the wall orientation
changes (e.g., when the vehicle circumnavigates a curved wall) and/or the distance
to the wall changes, the resultant attractor of the wall following dynamics shifts
attracting the heading direction along.

7.4 The dynamics of wall representation

To compute the orientation of a wall we make use of the following strategy: Each
pair of neighboring distance sensors (of the same type) define a wall segment as
illustrated in Figure 7.3. Knowing the direction at which sensors are pointing in
the world and their distance measures we can compute the orientation, Ψi, of wall
segment number i through the trigonometric equation:

Ψi = arctan

[
(di+1 + Rrobot) sin(ψi+1) − (di + Rrobot) sin(ψi)

(di+1 + Rrobot) cos(ψi+1) − (di + Rrobot) cos(ψi)

]
i = 1, 2, . . . , 8

(7.14)
here ψi and ψi+1 are the directions in the world in which sensors i and i + 1 are
pointing, respectively. The vehicle’s heading direction, φ, is defined relative to the
same reference frame and sensor k is mounted at an angle θk relative to the forward
direction of the robot, thus ψk = φ + θk. In the implementation this requires
integrating heading direction in time to maintain the reference frame. The absolute
calibration of this reference frame is irrelevant, however.
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Figure 7.3: Problem associated with noisy and low resolution distance sensors: The
orientations of the individual wall segments differ from the orientation of the wall.

Given a distribution of measures (Ψ1, Ψ2, . . . , ΨN) for the orientation of a wall
(one per each detected wall segment) the next step is to estimate the wall orientation.
The standard mean does not give a good estimate because it is very sensitive to
outliers, which are a real problem when dealing with noisy and low resolution sensors.
Robust estimation methods exist that are not affected by outliers. But we still have
to deal with two more problems that can not be solved by these methods:

i) When does a wall exist? That is, when is sensory information consistent
enough for the robot to “decide” that a wall is present and thus when to
induce the wall-following behavior? For the situation depicted in Figure 7.4
on the left, should a wall be detected or just an obstacle?

ii) What should the robot do if two or more walls with different orientations exist?
Which wall should the robot follow? This problem is illustrated in Figure 7.4
on the right and rises the necessity for wall selection.

Given these problems our challenge is to represent information about walls for an
autonomous vehicle moving in the plane such that the following abstract behaviors
are realized:

1. Wall detection, in which a wall is signaled only if sensory information is suffi-
ciently convergent while the absence of a wall is indicated for weak or disperse
sensory information.
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Figure 7.4: Two more problems in wall-following. Left: Sensory data define a wall
segment. Should a wall be detected or not? Right: Sensors provide information about two
walls. The problem to be solved is thus wall selection and, simultaneously, computation
of a wall orientation estimate even in the presence of multi-valued sensory information.

2. The ability to make continuous estimates of the wall orientation, i.e. ψwall,
when sensory information is provided by an array of distance sensors.

3. Insensibility to noisy sensory data, i.e. elimination of outliers (robust estima-
tion).

4. Wall selection, i.e. computations on distributed representations of sensory in-
formation in which wall segments with different orientations are detected.

These information processing behaviors imply working with representations of infor-
mation, here the orientation of a wall. To generate the wall representation system
we make use, again, of the concept of a dynamic field of activation, as presented in
Section 6.3.

For wall-following we represent the orientation, ψ, in the counter-clock direction,
in which a wall lies, relative to an external reference frame. This variable can take
values in the interval [0, 2π] rad. An activation variable v(ψ), is defined for each
possible value of wall orientation, ψ. The variable v(ψ) is a dynamical state variable
and represents if a wall with orientation ψ is detected. The value ψ where a peak
of positive activation is centered indicates the estimated value for the orientation of
the wall. When sensory information does not specify a wall this is expressed in the
field through negative activation everywhere (v(ψ) ≤ 0 ∀ψ ∈ [0, 2π]).

Information processing takes place as the activation in the field evolves in time
as described by the Amari equation:

τw
dv(ψ, t)

dt
= −v(ψ, t) + Sw(ψ, t) + hw +

∫ 2π

0
Ww(ψ − ψ′)Θ(v(ψ′, t))dψ′ (7.15)
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Sw(ψ, t) represents input activation, which excites sites of the field for which sensory
information defines wall segments.1 If the data provided by the distance sensors
indicate a wall segment with orientation ψ at time t, then input activation at this
location is positive, Sw(ψ, t) > 0, else input activation is zero, Sw(ψ, t) = 0. The
contribution (i.e. the orientation) of each wall segment is spread in angular range by a
Gaussian kernel, such that near contributions from segments with close orientations
overlap for some amount

Sw(ψ) =
∑

i

exp
[
−(ψ − Ψi)

2/(2σ2
w)

]
(7.16)

In this equation σw was kept constant and equal to 0.25 rad (≈ 15 deg). The linear
part of the Equation 7.15

τw
dv(ψ, t)

dt
= −v(ψ, t) + Sw(ψ, t) + hw (7.17)

makes the field relax to the pattern of activation

v(ψ, t) = Sw(ψ, t) + hw (7.18)

with a low-pass characteristic. If the input varies in time the field activation follows
the input with a certain inertia (depending on τw). This linear dynamics per se is
not useful because an estimate of a wall orientation based on Equation 7.18 is not
robust, since each individual measurement of the wall orientation is taken equally
and contributes to the final estimate. When dealing with noisy sensory information
this is a serious drawback because outliers are frequent. We need a mechanism
that suppresses or inhibits wall orientation measures, that are far away from the
“actual” value, to contribute to the final estimate. This mechanism is provided by
the integral term in Equation 7.15, which endows the field with interactions.

The typical form of interactions that fulfills our necessities/requirements is local
excitation and global inhibition. Thus, we choose again, a rectangular interaction
kernel with local excitation and global inhibition

Ww(∆ψ) =
{

kp,w for −lcoop,w < 2∆ψ < lcoop,w

−kn,w else
(7.19)

which only depends on the distance, |∆ψ|, between field sites and makes that sites
that are closer to each other than the cooperativity length, lcoop,w, interact excita-
torily (Ww(∆ψ) = kp,w > 0), while for larger distances they interact inhibitorily
(Ww(∆ψ) = −kn,w < 0). The non-linear transfer function, Θ(·), is given by Equa-
tion 6.3.

We now discuss how the different behaviors enumerated above can be realized
by the field dynamics.

1Concretely, it is the orientation of each sensed wall segment that contributes to the input
activation.
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Wall detection

We want a wall to be signaled only if sensory information is sufficiently conver-
gent. Our criterion is that a wall is present only when two or more wall segments
have neighboring orientations. The size of the neighborhood is determined by the
parameter lcoop,w. The resting level, hw < 0, permits to control the value of the
input strength above which a detection is triggered. For an input, Sw, localized
around one location in the field, this means that while input has small amplitude
(Sw ≤ |hw| ), the state of the field is the solution v(ψ) = hw + Sw(ψ) which is
negative everywhere. The field codes absence of a wall. When the amplitude of the
input is sufficiently strong and lasts over a sufficient period of time, contributions
from interaction within the field start to dominate the dynamics. The stable state
of the field is now a localized peak of positive activation. The peak is positioned
over the location of maximal input. The position over which the peak of positive
activation is centered represents the wall orientation estimate, ψwall.

Weighted averaging versus decision making

In Chapter 6 we have seen that depending on the shape of the input distribution
the field exhibits different properties.

When the input distribution is multi-modal2 and has input peaks that are suf-
ficiently close (i.e. within the cooperative length lcoop,w) the field evolves a peak of
positive activation that is positioned over the weighted mean of the two locations
of maximal input. The mean is weighted because different amplitudes of the input
peaks lead to a bias of the position of the resulting peak of activation toward the
site receiving stronger input. This fusion of input information results from the local
excitatory interactions.

By contrast, if the input peaks are separated by more than the cooperative
length, lcoop,w, then activation at these sites interact mutually inhibitory so that one
site suppresses the others. The field evolves only one peak of positive activation.
The site that wins the competition depends on the prior state and on the relative
amplitudes of the peaks (as discussed in Section 6.3). The field dynamics exhibits
hysteresis, in which a decision or an estimate once made is stabilized, in the face of
multi-valued information (e.g. when two walls are present) or ambiguous information
due to noisy sensor data.

Robust estimation

The ability of the field to self-generate and self-stabilize peaks of activation through
cooperative interactions is used to endow the field with robust estimation properties
(see Neven, 1997; Giese, 1999, for a study of dynamic fields as robust estimators).
The estimate, ψwall, is robust in the sense that wall orientation measures which are

2Multi-modal input occurs when more than one wall are present and/or sensory information is
noisy.
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far away from the actual selected estimate are strongly inhibited such that they
contribute weakly to the final estimate, i.e. to the resultant pattern of positive
activation in the field. As a consequence these measures are effectively discarded as
outliers.

7.5 Coupling the dynamics of wall representation

with the behavioral dynamics of wall-following

By design the time scale of the field dynamics, τw, is set much faster than the
heading direction and velocity dynamics such that we can assume that the field
for wall representation has relaxed to a stable pattern on the time scale on which
the movement plans of the robot evolve. Moreover, by design the field has only
a single peak of positive activation. Thus, to compute the orientation, ψwall, of
the wall from the activation in the field we can employ the same solution used in
the previous chapter (see Section 6.5). The activation in the field is considered as a
probability density and ψwall is computed as a mean like indicated by Equation 6.10.
We have seen that this solution runs into trouble, however, when there is no positive
activation in the field. We have also seen how this problem can be solved. We make
the strength of each attractive force-let defined by Equation 7.3 also a function of
the total activation

Nv =
∫ 2π

0
H(v(ψ))dψ (7.20)

in the field,3 so that in the absence of activation (i.e. situation in which ψwall is unde-
fined) the attractive forces that compose the wall-following dynamics have strength
zero. We therefore redefine each attractive force-let (Equation 7.3) by multiplying
each by Nv. This amounts to defining:

finwards,r(φ) =

{−λ′
inwards,r (Nv(φ + ∆ψw) − Pv) for ψa < φ ≤ ψb

λ′
inwards,r (Nv(φ + ∆ψw − π) − Pv) for ψb < φ ≤ ψc

(7.21)

foutwards,r(φ) =

{−λ′
outwards,r (Nv(φ − ∆ψw) − Pv) for ψd < φ ≤ ψe

λ′
outwards,r (Nv(φ − ∆ψw − π) − Pv) for ψe < φ ≤ ψf

(7.22)

finwards,l(φ) =

{−λ′
inwards,l (Nv(φ − π − ∆ψw) − Pv) for ψg < φ ≤ ψh

λ′
inwards,l (Nv(φ − ∆ψw) − Pv) for ψh < φ ≤ ψi

(7.23)

foutwards,l(φ) =

{−λ′
outwards,l (Nv(φ − π + ∆ψw) − Pv) for ψj < φ ≤ ψl

λ′
outwards,l (Nv(φ + ∆ψw − π) − Pv) for ψl < φ ≤ ψm

(7.24)

3H(·) is the Heaviside step function
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where the limits are presented in Appendix B. Pv reads

Pv =
∫ 2π

0
H(u(ψ))ψdψ. (7.25)

The robot’s driving velocity is controlled by the same dynamics defined in Sec-
tion 4.3.

Finally, the following hierarchy of relaxation rates ensures that the system re-
laxes to the stable solutions, and that the relaxation of the field is faster than the
relaxation of the wall-following dynamics:

cr,w, cl,w � 1/τw, cr,w, cl,w � cv,obs (7.26)

7.6 Simulations

We illustrate in simulation how the dynamic field for wall representation evolves as
the robot moves along walls with different shapes.

Following a circular wall

Figure 7.5 and Figure 7.6 show a simulation run in which the wall representation
dynamics exhibits detection, continuous wall orientation estimation and hysteresis.
Figure 7.5 depicts the trajectory and Figure 7.6 shows snapshots of the dynamics.

As can be seen in Figure 7.5, the robot is initially positioned in the bottom center
of the arena and facing upwards (φ = 90 deg). From this position no obstructions
are sensed. No wall is thus detected and the robot moves forward. When the robot
reaches the position indicated by A sensory information defines a wall segment.
Input to the field is still weak, no positive activation arises and the field continues
to code for absence of a wall (see Panel A in Figure 7.6). The robot continues moving
ahead and when it arrives at position B, input to the field is sufficiently strong to
trigger generation of a peak of positive activation centered over the maximal input.
The field now codes the detection of a wall with an orientation of 180 deg, in the
counter-clock direction (Panel B in Figure 7.6). Because obstructions are detected
to the right and to the left of the robot the two behavioral modes for wall-following
(Right-mode and Left-mode) contribute to the dynamics of wall-following. The
resultant dynamics for the heading direction exhibits an attractor at 45 deg which
pulls the robot to turn right.

As the robot moves the orientation of the sensed wall segments varies continu-
ously. This leads to an input to the field with a moving peak. The peak of positive
activation in the dynamic field tracks and follows the moving input peak. The es-
timated wall orientation thus varies monotonically from 180 deg (at position B) to
30 deg (at the end of the depicted trajectory, indicated by the small grey circle
with a hair), in the counter-clock direction. This can be seen in the plots of the
field activation (Panel B to Panel H in Figure 7.6). The wall representation field
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Figure 7.5: The robot (black circle with hair) moves from an initial position at the bottom
center toward the circular obstacle and then it follows the contour of the circular wall at
a distance of 30 cm. The dynamics at the eight points marked by the letters from A to H
is depicted in Figure 7.6.

exhibits a single peak of positive activation, which moves continuously, from right
to left (i.e. toward increasing values of orientation), although its input is bimodal
during some periods reflecting the influence of the walls that make part of the outer
square boundary that delimits the robot’s workspace. For example, near point C
obstructions due to the bottom wall of the boundary are sensed which in turn in-
duce a second input peak centered over 360 deg (Panel C in Figure 7.6). Although
this second input peak is stronger than the the first input peak the field keeps the
representation of the “circular” wall stable. This is due to the strong interaction
effects in the field that endow the field with hysteresis. A similar case happens near
point G (see dynamics in Panel G in Figure 7.6). Here the second input peak arises
centered over 90 deg corresponding to the orientation of the right wall belonging to
the square boundary.
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Figure 7.6: The wall representation dynamics (left column) and the wall-following dyna-
mics (right column) for the positions signalled by the letters in Figure 7.5. Input to the
field is the thin line, the activation in the field is the bold line. The vertical arrow on the
plots of wall-following dynamics indicates the current orientation of the robot. Note that
the system is relaxed in or very near the attractor (cont.).
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Figure 7.6: Continued.
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Following a concave corner

How the field behaves when the robot is following a wall and then it encounters
a concave corner is illustrated in the simulation run depicted in Figure 7.7 and
Figure 7.8. The first figure depicts the trajectory while the second shows snapshots
of the dynamics.

The robot initially is following the vertical wall on its right side (i.e. right bound-
ary of the arena). The activation in the field represents this wall with an orientation
near 90 deg (see Panel A in Figure 7.8). When it arrives near point B the forward
distance sensor detects an obstruction which corresponds to the horizontal wall. The
neighboring right sensor still detects the obstruction caused by the wall on the right.
These two sensors together define a wall segment with an orientation in between the
two walls orientations (i.e. between 90 deg and 180 deg). The input to the field is
now bimodal. The field keeps the old wall orientation estimate (Panels B and C in
Figure 7.8). The robot continues moving forward (i.e. following the vertical right
wall). As the robot continues to approach the horizontal wall (top boundary of the
arena) the number of wall segments with orientations closer to 180 deg augments
while the number of wall segments with orientations near 90 deg decreases. In the
left column of Figure 7.8 (Panels D to G) we can see how the input to the field evolves
concomitantly. The field responds keeping the previous wall representation until the
input peak corresponding to the horizontal wall (i.e. input peak centered over 180
deg) is sufficiently strong to dominate over the field hysteresis. This happens at
point G (see dynamics on Panel G in Figure 7.8). At this point in time a sudden
change takes place and the dynamic field now evolves a peak of positive activation
centered over 180 deg. The field now represents a wall with an orientation of 180
deg. As a consequence the attractor of wall-following dynamics changes its value
thus attracting the robot to turn left. At point H the input is again mono-modal, the
input only reflects the contribution of the horizontal wall, and the robot’s heading
direction is relaxed near the attractor.
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Figure 7.7: The robot (black circle with hair) is following the right wall at a distance of
30 cm. When it arrives at position B its sensors start sensing the obstructions due to the
horizontal wall. The dynamics at the eight points indicated by the letters from A to H is
shown in Figure 7.8.
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Figure 7.8: Snapshots of the wall representation dynamics (left column) and the wall-
following dynamics (right column) for the positions signaled by the letters in Figure 7.7.
Input to the field is the thin line, the activation in the field is the bold line. The vertical
arrow on the plots of wall-following dynamics indicates the current orientation of the robot.
Note that the system is relaxed in or very near the attractor (cont.).
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Figure 7.8: Continued.
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The simulation results have demonstrated that the wall-following module is able
to drive the robot along the obstacles contour when their configuration is such that
they define a wall. Next, we present results obtained from the actual implementation
on the vehicle platform.

7.7 Implementation on Robodyn

The dynamic architecture comprising wall representation and wall-following was
implemented and evaluated on the mobile platform Robodyn. Sensory information
about distance to obstructions is acquired by nine infra-red sensors or nine sonars.
In the implementation, the neural field dynamics for wall representation, as well
as the behavioral dynamics of wall-following and of path velocity are integrated
numerically using the Euler method. The field is sampled spatially with a sampling
distance of 8 deg. Sensory information is acquired once per computation cycle. The
cycle time is measured and is 120 ms, when distance measures are obtained from
infra-red sensors, or 150 ms, when sonars are used instead. These values delimit the
time scales of the dynamics in real time units and thus determines the overall speed
at which the robot’s behavior evolves in the world.

7.8 Experimental results

In this section we start by presenting results that document the properties of the
dynamical field for wall representation. These were obtained when the field evolved
in response to actual physical stimulation induced by the presence of one or two
walls, but the robot did not move. Next we show the robot following walls in
various shapes.

7.8.1 Properties of the dynamic field representing walls

In the set of experiments reported in this section the robot was pointing in the
180 deg direction relative to the external reference frame and walls with different
orientations were constructed (using card boxes) in its vicinity. The dynamic field
for wall representation provides information about the real orientation of a wall.

Averaging

Figures 7.9 and 7.10 show that in the presence of a single wall and steady sensory
information, input is mono-modal and a single localized positive peak of activation
evolves in the dynamic field. In Figure 7.9 sensory information about the wall was
provided by sonars while in Figure 7.10 sensory information was obtained by infra-
red sensors. As one can read on these two figures the wall orientation estimates are
very close to the actual values.
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Figure 7.9: Based on sonars: A wall with orientation 225 deg, in the counter-clock
direction and with respect to the world axis, was built to the right side of the robot, 100
cm away. Top: sensory information leads to a mono-modal input distribution. Bottom:
The field activation relaxes to a localized-peak centered over the maximal input. The
estimated wall orientation is 226 deg.

Repeating these experiments for a number of different orientations of the wall we
evaluate the capacity of the the dynamic field to perform estimation based on sonars
and infra-red sensors. Results are presented in Figure 7.11. The results show that
even though wall orientation estimates based on sonars are accurate, this type of
sensors exhibits a serious drawback. For some wall orientations specular reflections
occur. For this reason, no obstructions are detected and thus no wall segments are
defined by the sensory information. The input to the field is null everywhere or
weak and the field codes therefore absence of wall. This happens when the wall
diverges from the forward direction of the robot with an angle of 45 deg or the wall
is perpendicular to the robot’s heading direction. These problems can be avoided by
choosing a value for the desired distance to the wall inside the range of detection of
the infra-red sensors. These are not so accurate but they are certainly more reliable.
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Figure 7.10: Based on Infra-red: A wall perpendicular (orientation 270 deg in counter-
clock direction) to the robot heading direction was built at a distance 35 cm. Top: Sensory
information is less convergent than in Figure 7.9 which is reflected by an input peak
with smaller amplitude. Sensory information leads to a mono-modal input distribution.
Bottom: The field activation relaxes to a localized-peak centered over the maximum of
the input. The estimated wall orientation is 267 deg.
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Figure 7.11: The experiments illustrated in Figures 7.9 and 7.10 were repeated for a
number of different wall orientations. These orientations can be read on the abscissas.
Here the vehicle was heading in the direction of 90 deg. The black arrow in both plots
indicates the robot’s heading direction. On ordinates we can read the corresponding
estimated wall orientation. Left: Sensory information provided by sonars. There are a
number of orientations for which no wall is detected. The arrows with grey color signal
these directions. Right: Wall orientation estimates based on infra-red sensors.
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Figure 7.12: Top: Sensory input to the field has a stable peak centered over 180 deg
but “corrupted” with outliers. Bottom: The field evolves and stabilizes a peak centered
over 180 deg. Through inhibition the contribution of the outliers for the wall orientation
estimation is annihilated.

Field behavior in the presence of noisy sensory data

In Figures 7.12 and 7.13 we illustrate how the dynamic field for wall representation
behaves in presence of noisy sensory information.

In a first experiment, a wall was built parallel to the robot (orientation 180 deg)
on its right side at a distance 100 cm. The distance measures were based on sonars.
On the left side of the robot there were moving obstacles. Figure 7.12 shows that
the estimate, ψwall (= 180 deg), computed by the dynamic field is robust against
wall orientation estimates which are far away from the actual selected estimate
because they are weighted, through inhibition, such that they do not contribute to
the resultant pattern of positive activation. As a consequence these measures are
effectively discarded. This result shows therefore that the field behaves as a robust
estimator for wall orientation.

Figure 7.13 depicts how the field behaves when the orientations of the segments,
originated from the same wall, vary due to time changing sensory information. A
wall was constructed on the right side of the robot with an orientation of 220 deg
and at a distance of 40 cm from the robot. Distance measures were provided by the
infra-red sensors. The environment is static but sensory information changed in time
though. Input distribution to the field is mono-modal with a jitter peak centered
over either 176 deg or 220 deg (which correspond to the averages of the orientations
of the sensed wall segments). The field behaves evolving a positive peak of activation,
centered over 213 deg, and stabilizes it against the jumping input peak. The error,
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7 deg, is relatively small and does not cause problems because the wall-following
dynamics also controls the distance to the wall.
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Figure 7.13: Top: Sensory input to the field exhibits a peak whose center oscillates
between 176 deg and 220 deg. Bottom: The field evolves and stabilizes a peak centered
over 213 deg. The local excitatory interactions within the field stabilize the peak of
activation against the jumping input peak.

Wall selection

The ability of the field to select one of multiple walls is illustrated in Figure 7.14.
Two walls are constructed to the right and to the left of the robot with orientations
160 deg and 20 deg, respectively. Input to the field is bimodal under this condition.
The interactions within the field enable decision making. The field evolves a single
localized peak of positive activation. Results demonstrate that the field is bistable.
In a first run the field selects the wall to the right and gives an estimate of 156 deg.
In a second run the field selects the wall to the left giving an estimate of 17 deg for
the orientation of this wall. In both cases the estimates are very close to the real
values.

Decision making in the presence of noisy and time varying sensory information is
depicted in Figure 7.15. The robot was faced with two walls. One to the right side
with orientation 220 deg, the other to the left with orientation 330 deg. Henceforth,
the input to the field is bimodal. For this scenario the sensory information is time
varying even if the environment is static. Despite these conditions the dynamic field
is able to generate and stabilize a single peak of positive activation. This is because it
is endowed with cooperative interactions. The right wall is selected and the estimate
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Figure 7.14: This figure shows the ability of the wall representation system to perform
wall selection and proves that the dynamic field is bistable. Input distribution is bimodal
(top row). Competition takes place and as a result the field makes a decision. The field
evolves a single localized peak of positive activation centered at one of the input peaks.
Bottom left: The field evolves a peak of positive activation centered over 156 deg. Thus
the right wall is represent on the field. Bottom right: Here the left wall is selected by the
field dynamics. This wall is represented by peak of positive activation centered over 17
deg.

for its orientation is 316 deg. The error between the real wall orientation and the
estimate is due to the influence of the second wall. This error is not problematic
since the control of the distance to the wall helps to compensate as we will show in
the next section.

7.8.2 Following walls with different shapes

Figures 7.16 to 7.19 show sample trajectories of the robot as recorded by the dead-
reckoned robot position for different scenarios. The initial heading direction of the
robot is φ = 180 deg. The times courses of the wall orientation estimate and the
robot’s heading direction are also depicted. The desired distance to the wall is 35
cm.
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Figure 7.15: Here is illustrated that the dynamic field for wall representation is able to
make and stabilize a decision in the presence of a bimodal and very noisy input. Top:
Input induced by two walls with orientations 220 deg (right wall) and 330 deg (left wall).
Bottom: The field evolves and stabilizes a peak of positive activation centered over the
maximal input. The peak is centered over 316 deg which corresponds to the selection of
the wall to the left of the robot.

Scenario with a planar wall

Figure 7.16 illustrates the robot’s behavior in the simplest scenario testing the wall-
following behavior. The wall is planar with orientation 215 deg in the counter-clock
direction (or 215 − 180 = 135 deg clockwise). Initially, the robot is placed at a
distance to the wall smaller than the desired distance and heading in the 180 deg
direction. The robot moves along a smooth and initially curved path in order to
orient itself parallel to the wall and to steer simultaneously at the desired distance
from the wall.

Scenario with a concave corner

Figure 7.17 shows the robot’s behavior in slightly more complicated scenario. The
robot faces a concave corner. Initially, the robot is placed closer to the wall than
the desired distance. It steers as to follow the contour of the concave corner at the
desired distance.



Dynamic Approach to Behavior-Based Robotics 131

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

2

2.5

3

x[m]

y[
m

]

wall 

robot 

t = 0 sec 

t = 19 sec 

t = 30 sec 

t = 84 sec 

0 20 40 60 80
50

100

150

200

250

time[sec]

or
ien

ta
tio

n[
de

g]

ψ wall 
φ 

−180 

Figure 7.16: Top: The wall has an orientation of approximately 215 deg in the counter-
clock direction (135 deg in the clockwise direction). Initially, the robot is placed at a
distance to the wall smaller than the desired distance and heading in the 180 deg direction.
The heading direction dynamics steers the robot to follow the wall based on the estimated
wall orientation and with the constraint of imposing a desired distance. Bottom: The plot
shows the time course on the heading direction and the time course of the wall orientation
estimate in the clockwise direction, i.e. ψwall−180 deg, because it makes the interpretation
easier when the wall is to the left. The estimate for the wall orientation (t = 0 sec) is 123
deg. The error between the estimate and the actual value decreases as the robot steers to
follow the wall. When the robot is at the desired distance (t ≈ 40 sec) the value ψwall−180
deg directly specifies the attractor for the heading direction dynamics.
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Figure 7.17: Top: Robot’s trajectory as it steers to follow the contour of a concave
corner at the desired distance. Bottom: Time courses of the heading direction and wall
orientation estimate (plotted in clockwise direction, i.e. ψwall − 180 deg). Note that the
difference between the estimated values for the orientation of the two perpendicular walls
is 85 deg which is close to the actual value (90 deg).
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Scenario with a circular wall

In Figure 7.18 we depict the robot’s trajectory for a circular wall. Initially, the robot
is placed at the desired distance to the wall. The robot successfully circumnavigates
the circle.
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Figure 7.18: Top: Initially, the robot is positioned already at the desired distance to the
wall at the position indicated by t = 0 sec. The robot makes a complete circumnavigation
around the circular wall and is stopped at position marked by t = 240 sec. Bottom: the
plot shows the time courses of the wall orientation estimate and heading direction. To
make the interpretation easier the wall orientation estimate is here plotted in the clockwise
direction (i.e ψwall−180 deg). Because the robot was placed already at the desired distance
the wall orientation estimate, ψwall−180 deg, defines directly the attractor for the heading
direction dynamics. This value varies monotonically from 180 deg at time t = 0 sec to 360
deg (= 0 deg) at time t ≈ 105 sec, and then from 0 deg up to 245 deg at time t = 240
sec. As one can see the heading direction follows the moving attractor very closely, i.e.
the system is always in a stable state.
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Scenario with two walls

Figure 7.19 shows wall selection. The robot was placed at the middle distance
between the two walls. Wall segments from both walls are sensed. The robot selects
the wall to its left. First the robot steers to approach the wall and then follows the
contour of the selected wall at the desired distance. The path is smooth.

Figure 7.19: One sequence of video images show the robot behavior in the presence of
two walls. Time increases first along the first row then along the second row. Initially, the
robot located exactly in between the two walls. The robot selects the wall to its left and
follows a smooth path along the wall contour.

7.9 Conclusion

In this chapter we have demonstrated how a dynamic field can provide a robotic
vehicle with a sub-symbolic representation of walls based on low-level (i.e. noisy and
low resolution) distance sensors. This representation enabled the vehicle to exhibit
some basic cognitive abilities such as detecting a wall, robustness when confronted
with noisy sensory information and to make and stabilize decisions as to which of two
walls to follow. A behavioral dynamics of heading direction that enables a vehicle to
follow a wall at a desired distance from the wall was proposed. Results have shown
the ability to follow walls with different shapes. One limitation of our system is that
when sensory information is based on sonars, walls with certain orientations are not
detected (they are successfully avoided as obstacles, however, as we will explain in
the next chapter). This is due to specular reflexions. Such problem can be prevented
however, by choosing a distance from the wall that is inside the detection range of
infra-red sensors.

The next chapter presents the integration of this wall-following dynamic module
with phono-taxis and obstacle avoidance.



Chapter 8

Complete dynamic architecture

In this chapter we present the integration of the wall-following module with phono-
taxis and obstacle avoidance. The complete dynamic architecture including sub-
symbolic representations of sound targets and walls, control of heading direction and
driving velocity is implemented on a vehicle platform. Simulation and experimental
results that demonstrate the stability of the complete architecture are shown.

8.1 Integration of wall-following with obstacle avoi-

dance and phono-taxis

Obstacle avoidance and phono-taxis have also been designed at the level of heading
direction (see Chapter 6 and Bicho, Mallet and Schöner, 1999a). Thus, the
integration of these two behaviors with wall-following may be obtained by adding the
corresponding contributions to the vector field of the heading direction dynamics.
However, when the robot is following a wall it should not avoid it simultaneously.
Therefore, we make the strength of the obstacle contributions, Fobs, dependent on
the total positive activation in the dynamic field for wall representation, such that,
the larger the activation in this field the weaker the contributions of the obstacles to
the heading direction dynamics. The complete vector field for the heading direction
is

dφ

dt
= µobsFobs(φ) + ftar(φ) + Fwall(φ) + fstoch (8.1)

with

µobs =
π − 2 arctan

[
10

∫ 2π
0 H(v(ψ))dψ

]
π

(8.2)

where H(·) is the Heaviside step function. The function µobs is one when no wall is
detected, thus the obstacle avoidance dynamics fully contributes to the vector field.
It is asymptotically equal to zero when a peak of positive activation is present in the
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field for wall representation. In this situation the obstacle avoidance dynamics is
essentially turned off and consequently the heading direction dynamics is governed
by the wall and target contributions.

Some of the contributions in Equation 8.1 have limited range. The sum of all
contributions leads therefore to a non-linear dynamical system, which may exhibit
multiple attractors and repellers. These appear typically in a few number (cf. Sec-
tion 8.2). The stochastic force, fstoch, guarantees escape from unstable fixed points.
By design we make the system to be in or near one of the attractors at all times.
This is accomplished by the correct choice of parameter values and on the require-
ment of controlling the maximum rate of shift of the attractor solutions. As we
have seen, this is possible by controlling the vehicle’s path velocity by means of the
dynamics presented in Section 4.3.

Finally, the following hierarchy of relaxation rates ensures that the system relaxes
to the attractor solutions as they change due to varying sensory information and
that obstacle avoidance and wall-following have precedence over phono-taxis:

λtar � cv,tar, λobs � cv,obs, λtar � λobs, λtar � λwall, τw � 1/λwall (8.3)

8.2 Simulation of the complete architecture

Figure 8.1 shows a simulation run of the complete system which demonstrates the
smooth behavior consistent with all imposed constraints.

The sound sensors were modeled by assuming that within an angular range of
60 deg1, sound intensity falls off exponentially with the distance between the sound
sensor and the sound target. Distance sensors where simulated through a ray-tracing
type algorithm. All dynamical equations and the dynamic fields were integrated with
a forward Euler method with fixed time step. Sensory information was generated
once per each Euler cycle.

Initially, the robot is at position marked “1” and the target lies at position
marked “2”. From position “1” to position “2” the robot is steered by wall-following
and target acquisition. A snapshot of the dynamics at point A is illustrated in panel
A on Figure 8.2. Once the target is reached, its position is shifted to position marked
“3” to force the robot to travel the cluttered region between positions “2” and “3”.
Although sometimes wall segments are sensed the input to the wall representation
field is not sufficient to trigger a peak of positive activation. The field thus codes
absence of wall and the obstacle avoidance behavior steers the robot (see panel B
in Figure 8.2). From position marked “3” to “4” the robot is driven again by the
wall-following and target acquisition. Panel C in Figure 8.2 shows the dynamics at
point C.

1Tests with the microphones performed in our lab have demonstrated that the angular range
of the microphones is 60 deg.
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Figure 8.1: This figure shows the trajectory generated by the complete behavioral dyna-
mics implemented in simulation. The target is indicated by a cross. Initially, the robot
is at position marked “1” and the target lies at position marked “2”. Once the target is
reached, its position is shifted to position marked “3”, and so on, until position marked
“5” is reached. The wall representation dynamics and the heading direction dynamics at
points A, B and C are presented in Figure 8.2.

8.3 Implementation on Robodyn

The complete architecture was implemented and evaluated on the mobile platform
Robodyn. Sensory information about distance to obstructions is acquired by nine
IR active sensors. Sensory information about sound targets is obtained by the five
microphones of the cardiod type. In the implementation, the neural fields dynamics
for target representation and wall representation, as well as the dynamics of heading
direction and of path velocity are integrated numerically using the Euler method.
Sensory information is acquired once per each computation cycle. The two fields are
sampled spatially with a sampling distance of 8 deg. Sensory information (sound
intensity and distance measures) is acquired once per computation cycle. The cycle
time is measured and is 150 ms. This value delimits the time scales of the dynamics
in real time units and therefore determines the overall speed at which the overt
robot’s behavior evolves.
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Figure 8.2: Snapshots of the wall representation dynamics (left column) and the heading
direction dynamics comprising all constraints (right column) for the positions signaled by
the letters in Figure 8.1. Input to the field is the line with grey color, the activation in the
field is the black line. The wall-following contribution is indicated by the piecewise solid
grey line. The target acquisition contribution is represented by the piecewise traced line
with grey color. The obstacle contribution is the dotted thin line. The resultant dynamics
is indicated by the bold black line. The vertical arrow on the plots of heading dynamics
indicates the current orientation of the robot. Note that the system is relaxed in or very
near the attractor.

8.4 Experimental results

In Figure 8.3 we illustrate the global behavior in a complex scenario. A sound source
(i.e. the target) consisting of a loudspeaker emitting CD music (the same used in
the experiments reported in Subsection 6.7.2) is placed inside one of the offices of
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Figure 8.3: This figure shows a complex scenario challenging the complete dynamic archi-
tecture. Time increases from left to right on each row and from top to bottom. Initially,
the robot is positioned in the corridor. A sound source lies inside one of the offices. The
robot follows the wall to the right (frame 1 to frame 3). When it arrives near the office
door the phono-taxis behavior, helped by obstacle avoidance, makes the robot to enter
into the room (frame 4). From frame 5 to frame 7 the robot avoids the obstacles on its
left side. Then the robot follows the wall to its left (frames 8 and 9). At the end of the
this wall the robot finds the entrance to the place where the target is “hidden”.

our lab. Initially, the robot is located in the corridor. The robot follows the wall to
its right, at a distance 30 cm from the wall, until it arrives near the office door. Its
target representation system provides an approximate representation of the sound
source. The robot moves through the door helped by obstacle avoidance and target
acquisition. Inside the office, the robot first avoids the obstacles on the left side and
then it follows the wall to its left. The target is inside a square arena constructed



140

with boxes. The robot arrives at the entrance, it enters into the squared arena and
finally finds the sound source.

8.5 Conclusion

We have demonstrated that a complex dynamic architecture can be implemented
on a robotic vehicle with modest computation power and very low-level sensors.
Specifically, the architecture integrates two dynamic fields for target and wall re-
presentation respectively, control of heading direction and path velocity based on
constraints of obstacle avoidance, target acquisition, following walls and the re-
quirement to stabilize the maximum rate of shift of the attractor solutions. Results
demonstrate that the overt behavior is smooth and stable.



Chapter 9

Discussion

9.1 Summary

Dynamical systems theory was used as a theoretical language and tool to design,
specify, analyze, simulate and implement behavior-based control architectures. The
architectures were fully formulated in terms of dynamics and implemented on com-
putationally modest vehicle platforms based on very low-level sensory information.
The main ideas and achievements are the following:

1. Attractor dynamics can be used to control motion based on low-level
sensors

(a) Robot action can be generated in the manner of control systems, by
assigning values to planning (i.e. behavioral) variables continuously in
time. A process that can be formalized through dynamical systems. It
was shown how an intelligent choice of such planning variables makes it
possible to generate flexible behavior from asymptotically stable states
(attractors) of such dynamical systems.

(b) Generation of behavior is an intrinsically non-linear problem. Behavioral
situations exist, in which a minor change in the configuration or sensory
situation must elicit a qualitative change in the behavior. This is a simple
form of decision making. This non-linearity poses a problem for the design
of dynamical systems, as no general theory exists for such systems.

(c) Bifurcation theory is one branch of the theory of non-linear dynamical
systems that is very structured by powerful theorems. Local bifurcation
theory helps to describe how attractors and repellers of dynamical sys-
tems may annihilate by collision or emerge through splitting at critical
parameter values. Because the approach in this thesis made use of at-
tractor solutions only, local bifurcation theory may be employed to design
the dynamical systems such that an appropriate bifurcation is obtained
when a behavioral decision must be made. Additional benefits are the
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contribution of the behavioral dynamics to the overall control theoretic
stability of the autonomous robot even when decision making takes place.

(d) Sensory information enters into the dynamical system by defining at-
tractive or repulsive values of the planning variables, determining the
strength of attraction or repulsion as well as the range of values over
which theses forces act. Although the contribution of each individual
sensor to the dynamical system is not invariant under change of the val-
ues of the planning variables, and neither necessarily generates the right
postulated functional form nor necessarily generates the right attractors
and repellers, the superposition of all contributions of all sensors does
exhibit that invariance and thus generates the designed dynamics. This
is ultimately true because the environment is invariant, for instance, un-
der rotation of the vehicles on the spot, and the summed contributions
sample that environment.

(e) We made a detailed presentation of how individual motion behaviors can
be designed, how they can be integrated and moreover how they can be
implemented on autonomous vehicles equipped with low-levels sensors
like infra-red sensors, sonars, photo-resistors or microphones.

(f) Vehicle motion toward targets while simultaneously avoiding obstacles
and/or following walls was generated from attractors of dynamical sys-
tems of heading direction and path velocity.

(g) Vehicle motion toward targets and avoidance of perceived obstructions
also was generated from attractors of dynamical systems of angular and
path velocities.

2. Dynamic fields can endow robots with sub-symbolic representations
based on low-level sensory information

(a) We showed how the ideas of attractor dynamics employed to control the
motion of the robots can be extended to the level of representation by
using dynamic fields to interpolate sensory information.

(b) We have demonstrated how dynamic fields can provide robotic systems
with sub-symbolic representations that rely on low-level sensory infor-
mation. These representations enabled a robotic vehicle to exhibit the
simplest forms of cognitive abilities. For instance:

• A dynamic field model for target representation based on low-level
sound sensors was built. This permitted the robot to exhibit skills
such as detecting targets only if sensory information was consistent,
estimating direction to a target through interpolation, deciding which
target to track when multiple targets were presented and stabilization
of such decision, maintaining targets in short-term memory during
momentary absence of pertinent sensory information, and deleting a
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memory item after a characteristic delay to clear the memory from
obsolete information.

• A dynamic field model for wall representation based on low-level
distance sensors (infra-red sensors and sonars) was also built that
supported wall detection, robust wall orientation estimation and wall
selection.

3. Representations can be integrated with stable action planning and
control

(a) The pattern of activation in a dynamic field shapes continuously in time
the vector field of the dynamics of the behavior to which it is dedicated:

i. The value over which a peak of positive activation is centered de-
fines an attractive value of the planning variable used to design the
behavioral dynamics.

ii. The amount of total positive activation in the field determines the
attraction strength of that force.

iii. Because the field dynamics is invariant under rotations of the vehicle
on the spot so is the dynamics that brings about the motion of the
vehicle.

(b) The amount of positive activation in a dynamic field may also inhibit the
contribution of other behaviors to the complete behavioral dynamics.

(c) The time scale of the field dynamics is set much faster than that of
the planning variables so that the field has typically relaxed to a stable
pattern on the time scale on which the movement plans of the robot
evolve. The resulting behavior is therefore stable.

(d) Two examples are:

• The dynamic field for target representation specifies the particular
form of the target acquisition dynamics.

• Analogously, the dynamic field for wall representation specifies the
wall-following dynamics.

• The dynamic field for wall representation inhibits the contribution of
obstacle avoidance to the planning dynamics when a wall is detected.

4. Navigation in non-engineered environments

(a) The smooth overt behavior generated when the systems are set to work
in non-structured environments was documented.

(b) The implementation of the dynamic field for target representation on a
small autonomous vehicle enabled it to find sound sources while avoiding
obstacles. Memory helped to keep it moving toward the target during
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the periods when sensory information was not available. Decision mak-
ing enabled the vehicle to track only one sound source. Hysteresis in the
field dynamics enabled the vehicle to continue moving toward the selected
sound target even when it approach a second sound source of equal in-
tensity due to obstacle avoidance. Detection of a sound target with an
intensity near the sensor threshold is stabilized through the cooperative
forces within the field.

(c) The implementation of the dynamic field for wall representation on a
small autonomous vehicle enabled it to follow walls with various shapes
(e.g. planar, circular and concave corners). Decision making allowed to
select a wall and hysteresis permitted to maintain the decision stable even
when new walls were encountered during the motion course.

9.2 Related work

Work related to the individual points addressed throughout this dissertation was
already discussed in the corresponding chapters. We focus now on reviewing projects
which also applied the dynamic approach to behavior generation and which are
therefore closely related.

Schöner and Dose (1992), simulated a dynamics of heading direction for
obstacle avoidance and target acquisition and implemented the obstacle avoidance
module on a mobile platform. A competitive non-linear dynamics was used to build
a representation of the navigable space around the robot. Sensory information was
visual. The path velocity was kept constant.

Engels and Schöner (1995) implemented a dynamics of heading direction
for obstacle avoidance and target acquisition on a mobile platform equipped with
vision. This dynamics was designed as a dynamic field. A dynamic field was used as
a memory layer in world coordinates in which the positions of obstacles were stored.
The path velocity was also kept constant.

Neven and Schöner (1996) implemented a dynamics of angular and path
velocities that permitted a vision-guided mobile robot to exhibit obstacle avoidance
and homing. Obstacle avoidance is based on extracting time-to-contact information
from optical flow.

Steinhage (1998) developed and simulated a fully dynamic model of complex
navigation behavior inspired on biological systems. Complex behavior is achieved
through a non-linear competitive dynamical system of neural variables that activate
and deactivated behaviors. This solution enables to generate sequences of behaviors
without explicit representation of the entire sequence. The overall system is flexible
and quite stable.

Bergener et al (1999) developed several behavioral skills for an anthropo-
morphic robot equipped with stereo vision. Dynamic fields are used to generate
behavioral goals depending on the constraints of reaching a target and avoiding



Dynamic Approach to Behavior-Based Robotics 145

obstacles: A one dimensional field specifies the next movement direction of the mo-
bile platform and a two dimensional field determines the end-effectors’ 3-d position.
For technical reasons the control of the manipulator arm is not performed in close
loop with sensory information. The behavior is impressively smooth and human-like
(See also Bergener and Steinhage, 1998; Bruckoff and Dahm, 1998; Dahm,

Bruckoff and Joublin, 1998).
Large, Christensen and Bajcsy (1999) simulated a dynamic model for

cooperation between two agents. To control the strength of attractors they make
use of a competitive non-linear dynamics.

The work presented in this dissertation has several aspects in common with these
projects. Nevertheless, the following is unique to this thesis:

• Motion control through attractor dynamics in close loop with sensory infor-
mation.

• The use of low-level sensory information to build dynamical systems the at-
tractors of which generate the desired overt behavior.

• The use of dynamic fields to generate cognitive abilities based on low-level
sensory information.

• To formalize these cognitive behaviors as asymptotically stable solutions of
dynamic fields.

• The way dynamic fields are coupled with the behavioral dynamics that brings
about the actual motion behavior.

• The implementation of fully dynamical architectures in robotic platforms.

• The use of computationally modest vehicle platforms.

It is worthwhile to finish this section by addressing concisely two other ap-
proaches to robotics which also make use of dynamical system theory albeit in a
different form. Smithers (1994) and Beer (1995) are the proponents of two other
dynamical systems approaches to robotics. Both place emphasis on the theoreti-
cal issues of the interchange of information between the agent and its environment.
Beer uses dynamics as a theoretical tool for the analysis of systems rather than as
a tool for design. To generate behavior he uses the transient solutions of neural net-
works. Smithers distinguishes between interaction and infrastructure dynamics.
He proposes some principles of design which may enable a rational choice of system
parameters and architectures.

The fundamental differences of these two approaches with our approach is that we
insist on identifying adequate planning variables, which permit to design behaviors
independently, on the principle of representation of information through dynamic
fields and the on concept of mapping behaviors on attractor solutions.
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9.3 Outlook

The work described in this dissertation offers various possibilities for further re-
search. Therefore, we conclude with a prospect for future work.

In a project of multi-robot teams, at the department of Industrial Electronics at
the University of Minho (Guimarães, Portugal), the idea of using dynamic fields to
represent directional information obtained from low-level sensors will be explored
to generate more complex movement behavior of robotic platforms. Two examples
are: (a) Formation control: a vehicle can be made to steer at a particular orien-
tation with respect to a leader vehicle which emits a specific signal (for example,
a sound) or it is identified by a an intrinsic property (for instance, its color). To
achieve successful formation control some basic cognitive abilities are required. (b)
Cooperativity among robots: The fact that a direction is explicitly represented will
be used to communicate that information among robots. Such information will be
then integrated with other sources of information in order to achieve more complex
strategies.

A project in the interface between cognitive science and psychology will make use
of one of the autonomous robot architectures developed in this thesis to implement
a model of infant spatial orientation behavior. This interdisciplinary project will be
in collaboration with the Equipe de Dynamique, at the CRNC-CNRS in Marseille
(France), and the Infants motor lab at the University of Indiana (Blomington, USA).

The transfer of the cognitive abilities, studied in this dissertation, to an anthro-
pomorphic robot and to an industrial manipulator arm equipped with vision are
planned. This will be a project in collaboration with the Institut für Neuroinfor-
matik at the University of Bochum (Germany). The aim is to develop a dynamic
field model that represents a reaching target in terms of the end-effector configu-
ration required for a successful reach (movement direction and amplitude). Such
representation must support target detection, target identification, estimation of
target location, selection of one out of multiple detected targets, storage of tar-
get location in short-term memory, continuous updating of memory and deletion of
memorized target information after a characteristic period of time. This cognitive
target representation system will be based on different but convergent sources of
sensory information.

We plan to extend the concepts of the dynamic approach to robotics toward the
development of Automatic Diagnostic Tools, that is, to build an active and possibly
autonomous system endowed with the ability to tune, monitor and diagnose the
performance of the autonomous robot.



Appendix A

Appendix of Chapter 6:
Dynamical properties of
one-dimensional homogeneous
fields of lateral-inhibition type

The dynamics of one-dimensional homogeneous fields of lateral-inhibition type was
analyzed analytically by Amari (1977), and Kishimoto and Amari (1979). Their
studies provide valuable information about the influence of the parameters on the
existence and stability of certain types of equilibrium solutions.

Here we apply some of their studies to explore the particular dynamic properties
of the field equation (Equation 6.2) we are using:

i) Rectangular interaction kernel with local excitation and global constant inhi-
bition (i.e. Equation 6.4).

ii) Circular, and thus finite, behavioral dimension (i.e. [0, 2π] rad).

iii) Ramp threshold function with saturation (i.e. Equation 6.3).

We first review some analytical results obtained for the case where the threshold
function, Θ(·), is a Heaviside step function. These results are then used to study
the existence and stability of equilibrium solutions when the threshold function is a
ramp function with saturation.

A.1 Dynamics of the field with Heaviside thresh-

old function

When the threshold function, Θ(·), is a Heaviside step function analytical results can
be obtained. The dynamics of pattern formation within the field can be categorized
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in different equilibrium solution types. The classes of equilibrium solutions that
are interesting, in the context of the work presented in this dissertation, are the
following:

(1) ∅-solutions which are characterized by u(ψ) ≤ 0 ∀ψ ∈ [0, 2π] rad (no excited
region).

(2) a-solutions with u(ψ) > 0 in the interval (ψ1, ψ2). This corresponds to a
pattern of activation with a localized peak of positive activation of length
a = ψ2 − ψ1 > 0 in the field.

(3) N-b solutions which consist of a pattern of activation with N localized peaks
of positive activation each with length b and separated by more than lcoop/2.

A.1.1 Existence and stability of equilibrium solutions

For simplicity we assume here a homogeneous input, S(ψ, t) ≡ so, and discuss the
case of a space variant input pattern in Section A.1.2. The existence regimes of the
three types of equilibrium solutions enumerated above are restricted by the following
theorem.

Theorem A.1 (Existence of equilibrium solutions) Let be W (ψ) =
∫ ψ
0 w(ψ′)dψ′.

Then with constant input activation S(ψ, t) ≡ so:

(1) There exists a ∅-solution if and only if so + h < 0.

(2) There exists an a-solution (pattern of activation with a localized peak of positive
activation) if and only if so + h < 0 and a > 0 satisfies

W (a) + so + h = 0. (A.1)

(3) There exists a N-b solution if and only if so + h < 0, b > 0 and (N − 1)kn > 0
satisfies

W (b) + so − (N − 1)knb + h = 0. (A.2)

For proofs of (1) and (2) see Amari (1977) and see Erlhagen (1997) for a proof
of (3). The stability of these equilibrium solutions is determined by the following
theorem:

Theorem A.2 (Stability of relevant equilibrium solutions) 1 With the same
assumption as in theorem A.1 and Wm = maxψ>0 W (ψ) = lcoopkp/2, and W∞ =
limψ→2π W (ψ) = kplcoop/2 − kn(π − lcoop/2) < 0 it follows:

1Stable equilibrium solutions are patterns of activation which the field can retain persistently
under a constant stimulation level. It should be noted that “stable” implies “wave-form stable” in
the more strict sense.
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(1) The ∅-solution is always asymptotically stable.

(2) The a-solution is asymptotically stable if dW (a)/da < 0 (or w(a) < 0) and
unstable if dW (a)/da > 0 (or w(a) > 0). An asymptotically stable a-solution
exists for −Wm < h + so < 0.

(3) The N-b solution is asymptotically stable if dW (b)/db < 0 and unstable if
dW (b)/db > 0. An asymptotically stable N-b solution exists for

−Wm < −(N − 1)knlcoop/2 + h + so < 0.

For proofs see Amari (1977) and Erlhagen (1997). Note that a stable a-solution
implies the existence of a ∅-solution. This means that the field is bistable. Further-
more, the existence of a stable N-b solution implies the existence a stable a-solution
and a ∅-solution. In this case the field is multi-stable.

These two theorems imply that we can easily check the existence and stability
of equilibrium solutions graphically. Figure A.1 depicts the graphical solution of
Equations A.1 and A.2 and the stability of the corresponding equilibrium solutions.

A.1.2 Behavior of the field in response to a single-peaked
input stimulation

In the following we assume that condition (2) in Theorem A.2 is fulfilled but not
condition (3), that is, only one self-stabilized peak of a certain width, ao can persist
within the field.

We first consider the response of the field to a single-peaked stimulus S(ψ) cen-
tered at ψinput. When the amplitude of the input peak is very large compared
to the non-linear part of the field dynamics described by the integral term, the
field behaves as a linear system with the asymptotically stable equilibrium solu-
tion u(ψ) ≈ S(ψ) + h. For our applications this behavior is not useful because the
field only reproduces the input pattern. When the strength of the input stimulus is
small the pattern of activation that will evolve in the field in response to such input
depends on the initial state of activation. Two cases have to be distinguished:

i) The initial state of the field is a stable localized peak of positive activation
with width ao centered at ψo. The input peak is centered at ψinput and is wide
enough to overlap with the interval (ψo − ao/2, ψo + ao/2). In response to
the input the peak of activation moves in the direction of increasing stimulus,
searching for the maximum of S(ψ). It stops to when the input stimulation
at the right and at the left boundary of the positive peak are equal. At the
same time the width of the peak of positive activation changes slightly (for
more details see Amari, 1977).

If the input peak is instead positioned such that the two intervals do not
overlap then to evolve a new peak centered at field position ψinput the input
stimulation at this site has to overcome not only the global inhibition level
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Figure A.1: The solutions of the Equations A.1 and A.2 are the intersection points of
curves f1(ψ) = −(h + so) and f2(ψ) = (N − 1)knψ − h − so with W (ψ) respectively.
The slope of W (ψ) at the intersection points indicates the stability of the corresponding
equilibrium solutions. We interpret the plot: The curve f1(ψ) intersects the curve W (ψ)
at the two points a1 and a2. This means that two a-solutions exist. One a-solution with a
localized peak of length a1 (a1-solution) and another a-solution with a peak of length a2

(a2-solution). The slope of W (ψ) at ψ = a1 is positive which indicates that the equilibrium
solution a1-solution is unstable. Conversely, the negative slope of W (ψ) at ψ = a2 denotes
that the a2-solution is stable. The curve f2(ψ) intersects the curve W (ψ) at the two points,
b1 and b2. The field has therefore also a N-b solution where the peaks have length b1 (N-b1

solution) and a N-b solution where the peaks have length b2 (N-b2 solution). W (ψ) has
positive slope at ψ = b1 and negative slope at ψ = b2. This reveals that the N-b1 solution
is unstable while the N-b2 solution is stable.

h but also the additional inhibition (−knao) created at this site by the peak
centered at ψo with length ao. Thus, to guarantee that the field will “delete”
the previous peak and that it will evolve a new peak, centered at ψinput, the
input strength S(ψinput) at this site, must exceed the value knao + h, i.e.
S(ψinput) > knao+h, and the input width has to fulfill the condition ainput > ao

(Erlhagen, 1997).

ii) When the initial state of the field is the flat solution, u(ψ) = h < 0 every-
where, the field can remain in the off-state or it can evolve a localized peak on
activation depending of the strength of the input stimulation. The question
we have to address is, how much input energy is necessary to bring the system
from the ∅-solution to a stable a-solution? For a mono-modal input the critical
stimulus energy that triggers this transition depends on the intensity and on
the length of the input peak. To get an estimation of this critical energy we
consider an uniform input stimulation of intensity s′ and length a′. The field



Dynamic Approach to Behavior-Based Robotics 151

activation converges to a stable a-solution if the following condition is satisfied

W (a) = −(h + s′). (A.3)

The critical length a(s′), which depends on the stimulus strength s′, can be
found by inverting the function W (a) in the interval 0 ≤ a ≤ lcoop/2, i.e.

a(s′) = W−1 (−(h + s′)) (A.4)

which can be accomplished graphically.

A.1.3 Behavior of the field in response to a multi-peaked
input stimulation

In our robotic applications we are interested in the ∅-solution and a-solution only.
Thus, we have to tune the parameters of the field to avoid the existence of N − b
solutions. This is accomplished by making the inhibition strength kn sufficiently
large such that the condition (2) in theorem A.2 is satisfied but not condition (3).
This way the field exhibits a competition process among various stimulated sites
and eventually only one self-stabilized peak of positive activation evolves. The field
converges to a a-solution in response to a multi-modal input stimulation.

A.2 Dynamics of the field with a ramp threshold

function with saturation

Kishimoto and Amari (1979) have demonstrated that the previous theorems can
be generalized to monotonic increasing threshold functions:

Θ(u) =




0 for u < 0
ϕ(u) for 0 ≤ u ≤ TH
1 for u > TH

(A.5)

where ϕ(u) is an arbitrary monotonically increasing differentiable function with
ϕ(0) = 0 and ϕ(1) = 1. The ramp threshold function with saturation can be seen
as piecewise linear approximation to the class of threshold functions defined by A.5.

To announce the theorems that constrain the existence and stability of the differ-
ent types of equilibrium solutions we need to introduce the following assumptions:

Let Θ0(·) and ΘTH(·) be Heaviside functions with different thresholds, respec-
tively,

Θ0(u) =
{

0 for u ≤ 0
1 for u > 0

(A.6)

ΘTH(u) =
{

0 for u ≤ TH
1 for u > TH

(A.7)
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Then the monotonic threshold function Θ(·) (i.e. Equation A.5) satisfies:

Θ0(·) ≥ Θ(·) ≥ ΘTH(·) (A.8)

Lets call Θ-field a field with a threshold function as defined by Equation A.5, and
lets call Θ0-field and ΘTH-field fields with threshold functions as defined by Equa-
tions A.6 and A.7 respectively. Throughout the rest of this section we further assume
a constant and stationary input stimulation S(ψ, t) ≡ so to the field. Under these
assumptions the following theorem determines the existence of a ∅-solution:

Theorem A.3 (Existence of ∅-solution) A Θ-field has the ∅-solution if and only
if the corresponding Θ0-field has the ∅-solution.

Lemma A.1 (Existence of a-solutions) Both the Θ0-field and ΘTH-field have a
stable and an unstable pattern of activation with a localized positive peak if and only if

TH − h − Wm < so < −h

For proofs of see Kishimoto and Amari (1979).

Theorem A.4 (Existence of a-solutions) If the Θ0-field and the ΘTH-field have
stable localized peak equilibrium solutions u0(ψ) and uTH(ψ), respectively, then the
Θ-field has a localized peak equilibrium solution satisfying

Θ0[u0(ψ)] ≥ Θ[u(ψ)] ≥ ΘTH[uTH(ψ)]

Theorem A.5 (Stability of a-solutions) The ΘTH-field has a stable localized peak
equilibrium solution when both the Θ0-field and the ΘTH-field have a stable one.

Theorem A.4 can be used to yield an estimation for a lower bound, mmin, of the
slope m of a ramp threshold function that still guarantees the existence and stabil-
ity of a self-stabilized peak (i.e. a a-solution). There exist a maximum permitted
threshold, TH = THmax, in Equation A.7 above which the excitatory forces within
the field are not sufficiently strong anymore to trigger the evolution of a stable lo-
calized activity distribution. Thus, it follows that mmin and THmax are interrelated.
Erlhagen (1997) proved that the relationship between these two parameters that
guarantees the stability of a a-solution is

mmin =
1

THmax

. (A.9)
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Appendix of Chapter 7: Interval
limits

ψa = ψwall − ∆ψw − π/2
ψb = ψwall − ∆ψw + π/2
ψc = ψwall − ∆ψw + 3π/2
ψd = ψwall + ∆ψw − π/2
ψe = ψwall + ∆ψw + π/2
ψf = ψwall + ∆ψw + 3π/2
ψg = ψwall + ∆ψw + π/2
ψh = ψwall + ∆ψw + 3π/2
ψi = ψwall + ∆ψw + 5π/2
ψj = ψwall − ∆ψw + π/2
ψl = ψwall − ∆ψw + 3π/2
ψm = ψwall − ∆ψw + 5π/2
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