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Abstract. In this work we propose a method to study a weak exponen-
tial stability for time-varying differential inclusions applying an averag-
ing procedure to a first approximation. Namely, we show that a weak
exponential stability of the averaged first approximation to the differ-
ential inclusion implies the weak exponential stability of the original
time-varying inclusion. The result is illustrated by an example.
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1. Introduction

The study of stability proprieties of nonautonomous nonlinear systems is
known as a hard problem. One of the techniques used to simplify the consid-
eration is the averaging method consisting in replacing the original system
by an averaged autonomous one which has similar proprieties but its analysis
is easier.

Several results relating exponential stability proprieties of the averaged
and original differential equations can be already found in the classical book
by Bogoliubov and Mitropolski [2]. Bogoliubov and Mitropolski used classical
linearization of the averaged differential equation to formulate the sufficient
conditions of exponential stability for the original equation. Later, in [7, 11],
under some homogeneity conditions, it was shown that the asymptotic sta-
bility properties of the original equation can be derived from the respective
asymptotic stability properties of the averaged equation. In [1, 6, 9] similar
results were established without any homogeneity conditions.

This work was completed with the support of our TEX-pert.
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The averaging method was also successfully used to solve some control
problems. For example, in [8], it was applied to construct an explicit time-
varying feedback laws for attitude stabilization of a spacecraft subject to two-
dimensional control. Recently, in [5], the authors studied weak exponential
stability of time-varying linear control systems and applied their results to
prove the existence of almost closed relative trajectories for satellite formation
flying with single-input control.

In this paper we study weak exponential stability of differential inclu-
sions via its first approximation averaging. Our approach differs from the
classical one [2, 3], where stability properties of the original system are ob-
tained analyzing the first approximation of the averaged system. The av-
eraging of the first approximation allows us to get easy verifiable sufficient
exponential stability conditions and to make the proof more natural and di-
rect. Some other results concerning weak stability for differential inclusions
via the averaging method can be found in the survey [10].

The paper is organized as follows. In Section 2 some background math-
ematical results, used later on, are gathered. We present our main result in
Section 3, establishing exponential stability for a time-varying differential in-
clusion applying the averaging method to the respective first approximation.
In Section 4, the obtained results are applied to differential inclusions gener-
ated by control systems. This section also contains an illustrative example.

Throughout this paper we denote by ℝn the real n-dimensional space
and by ∣ ⋅ ∣ the usual Euclidean norm, respectively. We use the notation
Bn = {x ∈ ℝn ∣ ∣x∣ ⩽ 1} for the closed unit ball in ℝn. The Minkowsky
function of a set A ⊂ ℝn is denoted by �(x) = inf{� > 0 ∣ x/� ∈ A}. The
notation ℱ(ℝn) is used for the set of all closed subsets from ℝn. The interior,
the convex hull, and the closure of a subset S ⊂ ℝn are denoted by intS,
coS, and clS, respectively. We denote by S[0,T ](F,C) the set of solutions to
differential inclusion ẋ ∈ F (t, x), t ∈ [0, T ], satisfying x(0) ∈ C ⊂ ℝn. The
closed unit ball in the space of continuous functions, C([0,+∞[,ℝn), with the
uniform norm, is denoted by ℬ. The graph of a set-valued map F : X → Y
is denoted by grF = {(x, y) ∈ X × Y ∣ y ∈ F (x)}, and its domain is defined
as domF = {x ∈ X ∣ F (x) ∕= ∅}.

2. Preliminary Notes and Results

To make the paper self-contained we include in this section some background
material used to state and prove our main result. Consider a differential
inclusion

ẋ ∈ F (t, x), (2.1)

and assume that the following conditions are satisfied:

(C1) 0 ∈ F (t, 0), ∀t ⩾ 0;
(C2) The map F is periodic in t with the period T > 0, i.e., F (t + T, x) =

F (t, x) for all (t, x) ∈ ℝ× ℝn;
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(C3) The map F (⋅, x) is measurable for all x ∈ ℝn. There exists b(⋅) ∈
L1([0, T ],ℝ) such that F (x, t) ⊂ b(t)Bn for all (t, x) ∈ ℝ× ℝn;

(C4) The map F (t, ⋅) is Lipschiztian for all t ∈ [0, T ], with a constant k(t),
where k(⋅) ∈ L1([0, T ],ℝ), i.e. F (t, x1) ⊂ F (t, x2) + k(t)∣x2 − x1∣Bn for
all x1 and x2 in ℝn and t ∈ [0, T ].

Recall the definitions of weak stability.

Definition 2.1. The equilibrium position x = 0 of differential inclusion (2.1)
is said to be weakly asymptotically stable if, given any � > 0, there exists
� > 0 such that for any x0 ∈ �Bn, at least one solution x(⋅) of (2.1) with
x(0) = x0 satisfies ∣x(t)∣ < � for all t ≥ 0, and

lim
t→∞

x(t) = 0.

Definition 2.2. We say that the zero equilibrium position of differential in-
clusion (2.1) is weakly exponentially stable, if there exist positive constants
c, , and � such that for any x0 ∈ �Bn at least one trajectory x(⋅) of (2.1)
with x(0) = x0 satisfies

∣x(t)∣ ⩽ c∣x0∣e−t, t ≥ 0.

Weak exponential stability of inclusion (2.1) can be studied through its
first approximation. We say that a set-valued map A : ℝ × ℝn → ℱ(ℝn),
with domA(t, ⋅) = ℝn,∀t ⩾ 0, is a first approximation of the set-valued map
F : ℝ× ℝn → ℱ(ℝn) at the equilibrium position x = 0, if A(t, ⋅) is a convex
process, i.e. grA(t, ⋅) is a closed convex cone, and for any (x0, v0) ∈ grA(t, ⋅)
the following equality holds:

lim
ℎ↓0

ℎ−1d(ℎv0, F (t, ℎx0)) = 0,

for all t ⩾ 0.

If a first approximation is given we can consider the differential inclusion
of first approximation

ẋ ∈ A(t, x). (2.2)

We assume that A satisfies the following conditions:

(C5) The map A(t, ⋅) is a first approximation of the map coF(t, ⋅) at x = 0
for all t;

(C6) The map A(⋅, x) is periodic in t of period T > 0, i.e, A(t+T, x) = A(t, x)
for all (t, x) ∈ ℝ× ℝn;

(C7) The map A(⋅, x) is measurable for all x ∈ ℝn and domA(t, ⋅) = ℝn,∀t ⩾
0;

In [12], it was shown that under these assumptions the equilibrium posi-
tion x = 0 of differential inclusion (2.1) is weakly asymptotically stable when-
ever the zero equilibrium position of differential inclusion (2.2) is a weakly
asymptotically stable. The same proof also leads to the following stronger
result.
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Theorem 2.3. Assume that the equilibrium position x = 0 of differential in-
clusion (2.2) is weakly asymptotically stable. Then x = 0 is a weakly expo-
nentially stable equilibrium position of differential inclusion (2.1).

Recall a generalization of the Samoilenko-Stanzhitskii Theorem obtained
in [4]. Consider a differential inclusion

ẋ ∈ �F (t, x), (2.3)

where � > 0 is a small parameter, and the respective averaged inclusion

ẋ ∈ �F (x) = �
∩
�>0

F̄ �(x), (2.4)

where F̄ �(x) is a convex hull of the map

Φ̄�(x) = lim sup
�↑1

lim sup
T→∞

1

(1− �)T
I(�T, T, x, �),

and

I(t1, t2, x, �) =

{∫ t2

t1

v(t)dt ∣ v(⋅) ∈ Lloc
1 ([0,∞[,ℝn), v(t) ∈ F (t, x+ �Bn)

}
.

(The lim sup stands for the Kuratowski upper limit, i.e., the set of all limit
points.) It is assumed that the following conditions are satisfied:

(H1) cl coF (t, x) = F (t, x), for all (t, x) ∈ ℝ× ℝn;
(H2) the set-valued map F (t, ⋅) is upper semi-continuous;
(H3) for any x there exists a measurable selection of F (t, x), i.e., a measurable

function t→ f(t, x) satisfying f(t, x) ∈ F (t, x);
(H4) there exists a nonnegative b(⋅) ∈ Lloc

1 ([0,∞[,ℝ) such that F (t, x) ⊂
b(t)Bn for all (t, x) ∈ [0,+∞[×ℝn;

(H5) there exists the limit

b = lim
T→∞

1

T

T∫
0

b(t)dt;

Under these assumptions the following theorem holds true.

Theorem 2.4. Let F : ℝ×ℝn → ℝn be a set-valued map satisfying conditions
(H1) - (H5). Assume that x = 0 is an asymptotically stable equilibrium po-
sition of the differential inclusion ẋ ∈ �F (x). Then for any � > 0 there exist
�0 > 0 and � > 0 such that S[0,∞[(�F, �B) ⊂ �ℬ, whenever � ∈]0, �0[.

Thus the asymptotically stability of the equilibrium position of the av-
eraged inclusion implies the boundedness of the original system solutions.

3. Weak exponential stability for differential inclusions

In this section we show that weak exponential stability of the zero equilibrium
position of the differential inclusion

ẋ ∈ �F (t, x), (3.1)
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can be inferred from the weak asymptotic stability of its averaged first ap-
proximation. We assume that the set-valued map F satisfies conditions (C1)-
(C4). Let A : ℝ × ℝn → ℱ(ℝn) be a set-valued map satisfying conditions
(C5)-(C7).

Define the averaged convex process as

A(x) :=

{
1

T

∫ T

0

a(s, x)ds ∣ a(s, x) ∈ A(s, x), a(s, x) ∈ L1([0, T ],ℝn)

}
,

and consider the associated averaged differential inclusion

ẋ ∈ �A(x), (3.2)

Several results concerning weak asymptotic stability of autonomous dif-
ferential inclusions like (3.2) are known. Let x = 0 be a weakly asymptotically
stable equilibrium position of (3.2). From [13, Theorem 9.1] we see that there
exist a convex polyhedron M, with the vertices {x1, . . . , xm}, and numbers
ℎ > 0 and � ∈]0, 1[ such that 0 ∈ intM, and for every k = 1,m there exists a
vector vk ∈ A(yk) satisfying

xk + ℎ�vk ∈ (1− �ℎ)M.

Let x ∈ ℝn. Consider the set-valued maps

Θ(x) = {(�1, . . . , �m) ∣
m∑
k=1

�kxk = x,

m∑
k=1

�k = �(x), �k ⩾ 0},

and

U(x) = {v =

m∑
k=1

�kvk ∣ (�1, . . . , �m) ∈ Θ(x)}, (3.3)

where �(x) is the Minkowski function of M. We will need the following lemma.

Lemma 3.1. The set-valued map U(⋅) is positively homogeneous, has compact
convex images and is upper semi-continuous.

Proof. Let x ∈ ℝn and � > 0. Obviously we have

�Θ(x) = Θ(�x), (3.4)

i.e, U(⋅) is positively homogeneous. Let v1, v2 ∈ U(x) and � ∈ [0, 1], then we
have

�v1 + (1− �)v2 =

m∑
k=1

(��1k + (1− �)�2k)vk,

where
m∑
k=1

�jkxk = x,
m∑
k=1

�jk = �(x), and �jk ⩾ 0, j = 1, 2. Since

��1k + (1− �)�2k ⩾ 0, � ∈ [0, 1],
m∑
k=1

(��1k + (1− �)�2k)xk = �x+ (1− �)x = x,

m∑
k=1

(��1k + (1− �)�2k) = ��(x) + (1− �)�(x) = �(x),
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we get �v1 + (1− �)v2 ∈ U(x), i.e., the set-valued map has convex images.

If vi ∈ U(xi),
m∑
k=1

�ikxk = xi,
m∑
k=1

�ik = �(xi), �ik ⩾ 0, and xi → x,

vi → v as i → ∞, then, without loss of generality, �ik → �k. Since �(⋅) is
Lipschitzian, passing to the limit as i→∞, we obtain

m∑
k=1

�kxk = x,

m∑
k=1

�k = �(x), �k ⩾ 0.

Therefore the graph of U(⋅) is closed. Since U(⋅) is a bounded map, this means
that U(⋅) is upper semi-continuous. □

We are now in position to state and prove our main result.

Theorem 3.2. Let A : ℝ × ℝn → ℱ(ℝn) be a convex process satisfying con-
ditions (C5) - (C6). Suppose that x = 0 is a weakly asymptotically stable
equilibrium position of inclusion (3.2). Then, the origin is a weakly exponen-
tially stable equilibrium position of differential inclusion (3.1).

Proof. Consider the polyhedron M = co{xk}, introduced above. Recall that
there exist ℎ > 0 and � ∈ [0, 1[ such that for every k, there is a vector
vk ∈ A(xk), satisfying

xk + ℎ�vk ∈ (1− �ℎ)M.

If  > 0 sufficiently small then we have

xk + ℎ�(vk + x̄k) ∈
(

1− �ℎ

2

)
M.

for all k = 1,m. Consider the differential inclusion

dz

dt
∈ �(U(z) + z), (3.5)

where the set-valued map U(⋅) is defined by equality (3.3). Let z(⋅) be a
solution to inclusion (3.5). The function �(z(t)) is absolutely continuous. Let
t be a point such that the derivatives

d�(z(t))

dt
and

dz(t)

dt
∈ �(U(z) + z),

exist. Then, there exists v(t) ∈ U(z(t)) such that

dz(t)

dt
= �(v(t) + z(t)). (3.6)

Moreover, we have

z(t) + ℎ�(v(t) + z(t)) = z(t) + ℎ�

(
m∑
k=1

�kvk + z(t)

)
,

where (�1, . . . , �m) ∈ Θ(z(t)). Therefore we obtain

z(t) + ℎ�(v(t) + z(t)) =

=
m∑
k=1

�k(xk + ℎ�(vk + x̄k)) ∈ (1− �ℎ
2 )�(z(t))M.
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From this we get

d

dt
�(z(t)) ⩽

�(z(t) + ℎ�(v(t) + z(t)))− �(z(t))

ℎ

⩽
(1− �ℎ

2 )�(z(t))− �(z(t))

ℎ
= − �2�(z(t)).

Thus we have

�(z(t)) ⩽ �(z(0))e−
�t
2 .

This implies that z = 0 is an asymptotically stable equilibrium position of
inclusion (3.5). Consider the differential inclusion

dz(t)

dt
∈ �(W (t, z(t)) + z(t)), (3.7)

where

W (t, z) = {w =

m∑
k=1

�kak(t, xk) ∣ (�1, . . . , �m) ∈ Θ(z)},

and the functions ak(t, xk) ∈ A(t, xk), k = 1,m, satisfy

vk =
1

T

∫ T

0

ak(t, xk)dt.

As in Lemma 3.1, one can show that the set W (t, z) is compact and convex for
all (z, t) and the set-valued map W (t, ⋅) is upper semi-continuous. Moreover,
conditions (H1)− (H5) are satisfied. By Theorem 2.4, there exists a number
�0 > 0 such that the solutions of inclusion (3.7) are bounded, whenever
� ∈]0, �0[ and the initial conditions are sufficiently close to zero. Moreover,
from the homogeneity of the right-hand side of inclusion (3.7) we see that
there exists a constant c > 0 such that

∣z(t)∣ ⩽ c∣z(0)∣, t ⩾ 0. (3.8)

Let z(⋅) be a solution of inclusion (3.7). Set z(t) = e�tx(t). Then we
get

dz(t)

dt
= �e�tx(t) + e�t

dx(t)

dt
.

On the other hand, we have

dz(t)

dt
= �

(
m∑
k=1

�k(t)ak(t, xk) + z(t)

)
,

where (�1(t), . . . , �m(t)) ∈ Θ(z(t)) . From (3.4) we obtain

dx(t)

dt
= �

m∑
k=1

e−�t�k(t)ak(t, xk) (3.9)

= �

m∑
k=1

�̃k(t)ak(t, xk),
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where (�̃1(t), . . . , �̃m(t)) ∈ Θ(x(t)). From (3.8) we see that the solutions of
equation (3.9) satisfy the inequality

∣x(t)∣ ⩽ c̃∣x(0)∣e−�t,

i.e., x = 0 is a weakly exponentially stable equilibrium position of inclusion

ẋ ∈ �A(t, x).

From Theorem 2.3 we obtain the result. □

4. Differential inclusions generated by control systems

The obtained result can be applied to differential inclusions generated by
control systems. Consider the following control system

ẋ = f(t, x, u), u ∈ U ⊂ ℝm, (4.1)

where f : ℝ×ℝn ×U → ℝn is a function satisfying the following conditions:

(M1) There exists a periodic control u0 : ℝ → U of period T such that
f(0, t, u0(t)) = 0 for all t;

(M2) The function f is periodic in t with the period T > 0, i.e., f(t+T, x, u) =
f(t, x, u) for all (t, x, u) ∈ ℝ× ℝn × U ;

(M3) The function f is continuous in (x, u), measurable in t for all (x, u) ∈
ℝn ×U , and f(t, x, u) ∈ b(t)Bn for all (t, x, u) ∈ [0, T ]×ℝn ×U , where
b(⋅) ∈ L1([0, T ],ℝ);

(M4) The function f is differentiable with respect to x and its gradient is
bounded, namely ∣∇xf(t, x, u)∣ ⩽ k(t) for all (t, x, u) ∈ [0, T ]×ℝn ×U ,
where k(⋅) ∈ L1([0, T ],ℝ);

(M5) The set f(t, x, U) is compact for all (t, x) ∈ ℝ× ℝn.

We can associate the control system (4.1) to the differential inclusion

ẋ ∈ F (t, x) ≡ f(t, x, U) =
∪
u∈U

f(t, x, u). (4.2)

It can be shown that the set-valued map A(t, x) = C(t)x + K(t), with
C(t) = ∇xf(t, 0, u0) and K(t) = cl

∪
�>0

�cof(t, 0, U), is a first approximation

of coF (t, x), see [13, Proposition 2.8].

Set C =
1

T

∫ T
0
C(s)xds and

K =

{
1

T

∫ T

0

u(s)ds ∣ u(s) ∈ K(t), u(t) ∈ L1([0, T ],ℝn)

}
.

Consider the averaged first approximation to inclusion (4.2)

ẋ ∈ Cx+K. (4.3)

From Theorem 3.2, we obtain the following result.
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Theorem 4.1. Let f : ℝ × ℝn × U → ℝn be a function satisfying conditions
(M1) - (M5). Suppose that x = 0 is a weakly exponentially stable equilibrium
position of inclusion (4.3). Then, the origin is weakly exponentially stable
equilibrium position of differential inclusion (4.2).

We finish the section with an illustrative example.

Example. Consider the control system

ẍ = − sin(x) + u sin

(
t

�

)
,

where � > 0 is a small parameter and u is a control subject to the constrain
u ≥ 0. Rewriting the system we have{

ẋ = v
v̇ = − sin(x) + u sin

(
t
�

) (4.4)

Set � = t/�, y(�) = x(��) and w(�) = v(��). Then (4.4) takes the form{
dy/d� = �w
dw/d� = −� sin(y) + �u sin(�)

.

After linearization at the equilibrium position (y, w) = (0, 0), we obtain

d

d�

(
ỹ
w̃

)
= �

[(
0 1
−1 0

)(
ỹ
w̃

)
+

(
0

ũ sin(�)

)]
, ũ ⩾ 0.

Obviously we have⎧⎨⎩ 1

2�

2�∫
0

ũ sin(�)d� ∣ ũ ⩾ 0, ũ(⋅) ∈ L1([0, 2�],ℝ)

⎫⎬⎭ = ℝ.

Therefore the averaged inclusion is

d

d�

(
y
w

)
∈ �
[(

0 1
−1 0

)(
y
w

)
+

(
0
ℝ

)]
. (4.5)

This inclusion is weakly asymptotically stable. From Theorem 3.2 we see that
the zero equilibrium position of control system (4.4) is weakly exponentially
stable.
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